
HAL Id: tel-02280110
https://theses.hal.science/tel-02280110

Submitted on 6 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

De novo algorithms to identify patterns associated with
biological events in de Bruijn graphs built from NGS

data
Leandro Ishi Soares de Lima

To cite this version:
Leandro Ishi Soares de Lima. De novo algorithms to identify patterns associated with biological events
in de Bruijn graphs built from NGS data. Bioinformatics [q-bio.QM]. Université de Lyon; Università
degli studi di Roma ”Tor Vergata” (1972-..), 2019. English. �NNT : 2019LYSE1055�. �tel-02280110�

https://theses.hal.science/tel-02280110
https://hal.archives-ouvertes.fr


�� ������� ��� � 	
��
����
��

����� �� �����	
� �� ��
����	���� �� ����
������ �� ��	
 ��

��������	�
� ��
��� ����
�� ���� �

����� ���
��
�� ����
����

�����
��
� �� ���
��

 � �������� 

�!��

���
�
�� ����	�����

 �� ����������� ��� �

������� ���� ������ �� ����

�� ���� ����	
��
� �� 
����
��

�����	�� �����
���� �
�� �
����
���

������ 
� �� �	�
�� �	���� ��
��

�	�
 ��� ����

����

 �� ���� ������� �� �

��������� ������ ���� ���������� �������� ! "�#�� � ��� �� $�����%��&�&&� '�((�� ����

)*+�� ,�-��� ������ '�����&.��� �$�
%��) '�((�� ���



�

��������	
���
�� ����
�� ���� ���������� �
�������� ������ ���
��� ���
 � �����
�	

�����

�������  �����
� !�
��� "���������� #�
��� � $%"
 &������� �����
�����

%���� '����(��� 
�������� ���������� �
�������) �� "��� *&�� +��,���* �����
�����

+���� !��
	 ��-��
�� ���� ���������� �
�������� �� ����� �����
�����

 �,�� '����	���
���  �
��� "���������� ����� $%"$
 "�.
�	
�-�� /��������� �� ��0��

$�����
� #����--�� ���� ���������� �
�������) �� "��� *&�� +��,���* ��	��������� ��

��0��

������� +�
��
�� 
�������� ���������� �
�������� ������ ���
��� ���
 � ��	�
�����
�

�� ��0��� $
����



���������� 	
���� 
�������
��� �

��������	 �� 
����
����	� �� 
� ���������� �� ������

��������	 �
 ������
 ��������
� �� 
� ��������
� �� ��� �����
�������������	 �
 ������
 ���������	��	��� �� 
� ��������
� �� ���� 
�����!�������	 �
 ������
 "����	��� �	 �� 
� ��������
� �� ����� ���
��� #��$����	����
�����!�������	 �� 
� ���������� ���%���%� �� "� ��  &�
�����	�
� '�����
 ��� (��$���� �� �� ��  �#

���������	� ����	

"��

	� �� �������  )�����	 � �
�
��
�������

�����	�
�* �� 
� ��������
� +� �,�����

"��

	� �� �������� �	 �� ���
	��
� �����	�
�* ��� 
� ��������
�� �� �#��  -�
 )�� (
� �%��
�� �����
.
"��

	� ��-���	�
�/�� �����	�
�* �� 
� ��������
� �� �-#�'�-�(
���	�	
	 ��� (������� �%������
	��
�� �����	�
�* ��� 
� ��������
�� �� �����'#����
�	 ���
�/��
��
���	�	
	 ,��%���
�� �� �����!	�	��� �����	�
�* �� 
� ��������
� ��,�  -�
��!��	����	 �� "����	��� �	 ���	�� �� �����	�
�* ��� 
� ��������
�� ���� (��-,,
���%���%� �� ���
�/�� �
�����

���������	� 	� 
	����	�	��� 
	 ���	��	� 	� �	�
������	

"��

	� ��� (������� �	 ,��%��
�/��� �����	�
�* �� "� �� ������
��!��	����	 ���
�/�� �����	�
�* �� 
� ��������
� "� ,��������
��!��	����	 �%���� ����%���� �����	�
�* ��� �� "� �0
��!��	����	 '���� �
��	���
� �	 �����	�
�* �� ������ ����-#��
��� ��������
��!��	����	 �������	��
� �����	�
�* �� 
� ��������
� (� �11-#���
��!��	����	 ��	%���	��
�� �����	�
�* �� 
� ��������
� '� ,-���-�
��!��	����	 �������
� �����	�
�* �� 
� ��������
� �� ��� �����
��!��	����	 �%)���
� �����	�
�* �� 
� ��������
� +�� � ���,
#"� (������� �	 ,��%���
�� ��� �����	�
�* �� 2�����-#  �
��	�$�	�� �%)���
�� �	 (!��	�$��
-3���$�	���� ��� (������� �� 
�#��$��� ��
 )��

�����	�
�* �� �� '#�����-��

���
� ��
)	��%���
� #��$����	���� ��  )�� 4 �����	�
�* �� 
� ��������
� ��������
���
� (
!����
�� �� �%���� �����	�
�* �� '� ��'��# ,
�%)���
� �
��	�����
�
���	�	
	 #��$����	���� �� ,��%��
�/�� ��
 )�� 4

�����	�
�* �� 
� ��������
� �� ��,-�

���
� (
!����
�� �
 ����������	 �	 ��

���
��	���

�����	�
�* �� 
� ��������
� �� �-#'��-,,�

���	�	
	 �� (������ "������5�� �����	�
�* �� ��  ��-�(��
�	 �����
������





��������	
�����


����� ��� 	
���
�� 
 ����� �� 	����� 	
� ����� ������� ���� �� 
� ����� 	
�� ����� 
	
���� �� �������� ����� ��� �
 ��� ���� �
 ��� ��������� �� �� ��� �
� ���� 	
� ��� 
	
��� ������� �
 ������ ������� ������ ��� ������� ��� �� ��	��  ��
!���  ��
!�� ��� ����
������� �
 �� �� �
�� ����
��� ������ ��
�� �
 ���������� ����� 
 ��� �
�� �
����� ������
��� ��������� �
��
���� ����
��� ��� ������
� �
 �
�� �
 ������ ��� �
 � ��� ���
� "
��� 
���  ��
!�� ��� ������ ���� �
 �
��� "
��� ��� ����
�� �� ���
��� ��� ��
��
����  
������ 
 ���#� ���� 	������ ���� ��� �
������ ���$��� �� ��� �
��� �
� �� ����
�
 �
�� ��� ��
����� �� ��� ������ �� ������ ��� �
 ��� %
&' ����� (��� ��� ��� ������
�� �� ����� ����
����� �� �� ��� �

�� ���� ��� )���) ���� 
	 ��� ���� &�� ��� ���
�
�� ������� ����
� �� �� ��
�� ���� ����
��� �
� ����������� ���
���� �� ��� 
� �� ����
�
 ��� ���
 	�� �
��� �
� ���
����� ��� ��������� �
� ���� ������ ��� ����� ������ �
 

�
�� � )
 �
�� �
�) �� ���� �
 �*����� ��� �� 	�������+


 �� ���
 ���� �����	�� �
 �� ��������
��� �����,������ &��
�� -������� 
������
� ���
%������ .���
�*� /��� ������ ��� �
������ ������� 
	 �
�� ����
�� ��� �������
��� 
 ����
������� � �
� ���
��� �
�� �
� 
��� ��
�� �
� �
 �
 ��������� ��� ���
 �
� �
 �
����
,
���� ���� � ������� ����� 
	 ������������ ������� 	�
� ������������� �������� �
 ����
�
������������ �
���� 	�
� ��0����� ������
����� ����� �� ��������� �� ��
��	
�������� 

���
 ����� �
� 	
� ��� �
�� �������� ������ ����� 	
�� ������ 
 ����
������ ���� �� �� �
�
���� �
 ����
� ��������� &
������� 
#�� ���� �����
��� 
� 
 �
��� �
���� �
� 	
� �
��
������� ������� 
� 	
��
� ������� ����� ���� �
��� �
� ���� �
 �������� �� ������� 
 ��� �
�
���� 
���������� ������ /��� �
��� ���� �
 ������� ��������� �
������� ������ �
� ������
�
������� ���� �
� ��� �����
��� �
 �� �����
����� &
 
 ����� �
� � �
� 	
� ��� ���
�������� �
� ��� ���� �� ������ ����� ����
��� ��� ���� �� ��� ��
�� �������� �
� �
 �

�������� 
 ������ ����� ������� �
�� �
� �
�����
�� �
 � ������ ��� ����������� ���� 	�
�
��� ��
���� �
 ��� �������� 
 �� ���� �����	�� 	
� ��� ����
��� �
�#�� ����� �
 ������
��� �� �� ���
��� �� �
 �� ������ �
 ��� ����� �������
�� ����� ������� �
�� 
	 �
�,�����
������� 	
� �� �
 �
���� ��� �
�� 
	 ��� ���������� 	
� �� �
 �*��
��� ��������� ��� $���

 �
� 	��� �
�$���� �
 �
�� 
� �������� ��
"���� ��� �
 �
� ��� �
�� ���������
��

�� 	������ 
	 ��������� ���
 �*����� �
 �� �
�,��������
�� �
����
���
�� ����� ��������
�
�� �
��� 1������������ 
����23 .������ 4��
� ��� 5���� 6������ ����� ��� �
� ����
��� ����
��������� 
	 ����
���� ��� ��� 	�
� ����� 
 ���� ������� ��� �
 ����� �������
�
��� ��������� '�� ���
 �
 ��� 
���� �
,$��� ����
�� �� �
�� ������ 1������������ 
����23
������� &��������� ��� ������ 4�������� ����� ��� � �������� �
 �
�� ����� ��� 	�
� ��


 ������� �
�� ��
�� ���
������� �
������ �������� ����������� ��� -7'&� 
 ���
 �����
��� ��� 
���� �
����
���
�� �� ��������� �
��� 1������������ 
����23 '��* ��� �������

8



�������� ��	
 �����
 �������
 �������� ����
�
 ������� ���
���
 ����� �������������

������� �� �����
 �	��� �� ���������
 ������ �� ���!
 "����� ��������
 #������ ��
��
����
 $����� %�&�'��������
 $(�)�� *��'��
 +������&����� ������
 +�������
 ���	

%���� ���������
 ������������ %�� ���
 ���� *�������
 ������ ���(
 �� ���� #�����

����� ��''�
 �(���)�� �� �
��
 ��&��� *������
 ,�
���� �
�-�
 ��� ,��
��� ������ ���
���	 ������ .��� ���� ������� .��/� �� ����������� ���
������� 0��&�� ���
�� �����12
���3 ��������
 ������� %�������
 ������ ���	
 ������� ���������
 #� ����� ������

������� ���������
 ���� ����4�� ���
 ��� ��� ��� ��� ��� �! ��� ��*"� 
����������
�&�
��� ����/� �� ������ �����
 ������ �� #��5�
 ��� ������
� �������� !�� ���&��!	���
� ��� ���  �����
��
	� 6! 
����� ���� �! ��� 
��������� � ���� .��/�� .��� ������ ����
���� !������
  �� � .���� ��/� ���� �� ����/ ��� ��� ����� !������ � ��� ���� ������ ���
��� 0��&�� ���
�� �����12 ���
� +����� %�!����)��
 ����� 7��������
 ��������� ��
���

��
���� 8����
 ��������� ������
 ����� �������
 ���&���� ������
 "��
 �������
 9����
0$(���1 :���
 ����� ;��/�
 8������ ��
��
 %���� <� ���
 %������ �������
 ��������
������)�
 ������ :�������
 ������ #����������
 =�
���� $�� ���
 =��� ��>���
 ���
��� %�������
 ��
���� �������
 �
����� ��
��
 ����� $������
 *����� ����
 ��� ?�����
��������
�	 ���&��� ����/� �� ����	��� ��������� �& �� ���� 0� ��&� � ��� ��� !����� ��	���@1

�� &����
���� ��� ���� .��/��� �� %��"A%	��
 .��
� 
��&���� �	 ��
���
  �� ����
&������ !����	 �� ����� !��� 	����� *���/� !�� ��� ��� ������
 
�>���A����
 ������ ���

 ����
 ������
 ��
@
� ����/ <��������( ������ ������� %	�� B
 <��������C ����� ����� �� ���� D*�� ,������D

��� ��� "�� �� ���� !�� �

�&���� �� �� � ��� �������� � .���� ��/� �� ����/ �&�
����	
��� "�&�
� <�	� �����
� !��� <��������( �� %	��
 .��
� ���� �  �� ��>����
� �� �	 ���	
�� ����
�� ���	  �����
����
 ������ .��� ������ �����	 ��� �� "�&�
� <�	�
 ��� ���	 ����
�� !��� ���	 .��
��� �� ����
�
 ������� ����� �
����� ��
� �� ������ �� ���������� ���
����
� 
������
 
������	
 �� ���
 ��

 �� .��� �� ������ !�� ��� ��� ��������E !�������� *���
�����
� ��/�� � ���� ��>����
� �� ��� ��!� �! !�������� ��� ��������
 ��� "�&�
� <�	� ���
�� �.����� �� ����	���� .� ������ �� 
����
� ����� � ���� ����/ ��� �F�� ������������!
%��" ��� ��� ����
���� �� �� ��
���
�� �� ��� "����� ��
������� 0����"���1 !�� ��/���
���  �����
��
	 �! � ��� ���� ����	�
%����	
 � .���� ��/� �� ����/ ��� D�������� =�
����� �� ��������������� ������G
� �
*�
������
� H �=�4D ��� ��� D������(��� �� ��I�
��
 *�
������� � �����5J� � ��*�D
!��� ���'��
 .��
� !����� ���� ��� ������� ��� D��I�
�� ��� ���������� � ���D &�������
� ���� ����/ ��� !���
� &��&�� �� ������� !��  ���� .��� ��� �&�� �� !����������



����� �� ��	�
	��

���������� �� ���� ���� ����������	���� �� ������ 	������� � ��� ���������� �����������
�	�� ��� ��	���� �� ��  ���!� ���������� � �	���� �� ������� "#$

��$%&� �� ��	�
	��
'���!����� �������	� �� ����� ��(�� ��� �� �������������) ��	������	���� �� ����	��	���� ��
�������� �� ��	������� �� ������� �	������ �� ������
	��) �������	������ ��� ��������
�� ������
	�� ��
�" ������� �� �������) ���� �������������� 	���� �	 ������	��� �
�������� � ����	���� ��������� �����������) �� �	��������� �	�� ��� �����*��� �� ��	������+
������� �� �������	�� 	�����	���,

"���� ��!����� �����	� ��	�� �� ���������� ��� �������� ���� ��	���� ��� ������� ��
�"+���
�� ���*�(�� �����	���� � ��	��� �� ��	���� �� ��  ���!� 	�� �� ���������� � �	 ������	����
��� �������	�� 	�����	���) ��� 	 ��� �*����� �	�� ��� ����� �������� ��	�	�*, '� �������
	������ -.�	����� /) 	������ 01123 	 �*����� �� �����(�� ��� ��� ����������� 	�������� 	�*
	���������� �� ��	���������� �� ����� �� ���� �	� ������������ ��	�����, "��� 	����
������ ��� �	 ����������� �� �	 ��������� �� ����� 	��������� ���	� �������	�� 	�����	���
	������	���� ��������	������� ������� ��� ����������� ��	���� ������������ ����������,
'� ������ -.�	����� 4) 	������ 05523 ������ ��� ��	����	���� ������������ �������	�� 	�+
����	���� 	��� ��� ����� 	������� ������� � �	��� �� ��	�� ������ �� �	����	��) ����
��	����� ���� ������	���, 
����) 	�� ���*������ �� �	��(�� �*�	������ ��� ����������
�������	�� 	�����	���� �	�� �� ���	�������) ���� ����������� ��������	���� �������� ��� 	�+
������� ���������	
� �� �

��
����	
�, 6�	�� ����� ��� ���� 	���� ��� ������ ��	�����
�� ������ �	�� ��� ��	���� �� ��  ���!� ���������� � �	���� �� ������� ������� ��
�"+���)
��� ��� ���������� � 	�	�7��� �	�� �	 ��	�����) �	�� �� ������(�� ��	�	�� -.�	����� 8) 	�+
������ 05)923) ���� 	���� �*����� ������������� �	 �	��(�� �� ����������� �:�	������ ��
�� �	��(�� ����	��� �����	�� ��� ������ ��	 �� �����	���� ��� ������, '��*����	���� ��
��	�	�7�� ��� ������ �	�� �� �����	���� ���� ��	���	���� �	�� �	 ��	����� �� ������� ;���
����������	���� 	�* 	���������� �� ����	� �� ��	�� ��� 	�	�7���� �� ����+�������� ��
�����	�� ��� ������,

'�� ����	���	����� �� ��� 	�	����� ��� �	 ����������� �� ������
	�� ���� ��� ������� � ��	+
�	����� �	�� ��	����� ����+���	���� �� �	 ���������	�����) ���� ���< ������ ��	�����	����
� ��������� ��� �������) ���������� �������� �� 	������	�� �7�����, "���� ��	���(�� ��	+
�	�� -.�	����� =) 	������ 04>23 ������ ��� ������� �:�	�� ���� ������� �� ����������� ���
������
 ��������� 	�������� � �� ������7��) �� �	��������� �	 ������	��� 	�* 	������������)
�� ��� ���� ��� ������ ��	�����	���� � ��������� ��� ������� ���� 	���������� 	�* �	����
�	��������) ������� ���* ��� ����������� ��� �	������� ��	�������, �	�� ����� ������(��
��	�	�� -.�	����� 1) 	������ 01=23) ���� ��	����� �	�� ������ ������ ��� �������� �*��+
�	���� �� ���������� �������� 
�" � ������� ������ ���� �	�	���� �� �������� ��� ��������
������� ��
�"+��� � �	�* �������� �����, "��� ��������� ���	���� ����� �� ����	���
���� ��� 	����� ���� ���� ��� �����	����� �� ��� �� ����* 	�	��� � ������ ��� ����	�����) ��
��� �� ����* ����	�� ;��� ����� �	� ��	�	�7�� �� 	�	�,

'�� �������� ������� ��
�"+��� ����������� ��� �������� ����������� ��� �	 �	��(��
��	�	�7��� ��� ������� ��	��������������) ������������ ���� �	�	���� �� ������� ��� ���������
�����(��� ��� 
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B

α A β B B
β α

B B A
NPC

B

G = (V,A) s
t

s t G

G = (V,A) s
t

s t

G = (V,A) s t
k

s t p ∈ G p ≥ k

G = (V,A) s t
s t p ∈ G v ∈ G

G = (V,A) G′ = (V ′, A′)
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��� �� ��� ����� �	
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 	�� i�	� ���
��	 �� s'
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����� G = (V,E)' 	�� ���� 
�	 E ���
�
	
 �� ��������� ����
 �� ���	���
' ��	��� 	���

��� ���� ���� ���	 
�������� �	 ��� �
�	��� �� ��� ����
���
�� � 	�����
 ������� ��� �� ����
 �� �����
��������	
 ��
���
������ ����������� ����� �
� ������� �����
����� ����
����	 ���	� ���� ����������
�	 �����
 �� ��� ������ 	����



(u, v)
G = (V,A) (u, v) u

v (u, v)
u v (u, v) G

v u
G = (V,A) v ∈ V

N+(v) = {u ∈ V | (v, u) ∈ A}
N−(v) = {u ∈ V | (u, v) ∈ A}

d+(v) = |N+(v)| d−(v) = |N−(v)| v d(v) = d+(v)+d−(v)

v N(v) = {u ∈ V | (v, u) ∈ E}
d(v) = |N(v)| v d+(v) > 1 d−(v) > 1
d(v) > 2

a

G′ = (V ′, E′) G = (V,E) V ′ ⊆ V
E′ ⊆ E V ′ ⊆ V G

V ′ GV ′ V ′ G
V ′ E′ ⊆ E G E′

GE′ E′ G
E′ V ′ ⊆ V E′ ⊆ E
G \ V ′ V \ V ′ G \ E′

E \ E′ G H G ∪ H F
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V (F ) = V (G)∪V (H) ��� E(F ) = E(G)∪E(H)� ����	 ��
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F �
	 ����� V (F ) = V (G) ∩ V (H) ��� E(F ) = E(G) ∩ E(H)�
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s k s k
k S n ≥ k span(S, k)

k S
S k Gk(S) = (V,A) V = span(S, k)

(u, v) ∈ A u[2, k] = v[1, k − 1]

k k k

s1 s2
k k = 4

k k − 1 = 3 k
k

k

v ∈ Gk(S) a(v)
k S

e = (s, t) ∈ Gk(S) ra+(e) = a(t)/
∑

v∈N+(s) a(v) ra−(e) = a(s)/
∑

v∈N−(t) a(v))

(u, v) ∈ A d+(u) = 1 d−(v) = 1
u

v

(u, v) u, v
x N−(x) = N−(u) N+(x) = N+(v)

k u k v



k = 3

k k
k

k

k

k

s |s| = k
k
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Abstract 

Background:  The main challenge in de novo genome assembly of DNA-seq data is certainly to deal with repeats 

that are longer than the reads. In de novo transcriptome assembly of RNA-seq reads, on the other hand, this problem 

has been underestimated so far. Even though we have fewer and shorter repeated sequences in transcriptomics, they 

do create ambiguities and confuse assemblers if not addressed properly. Most transcriptome assemblers of short 

reads are based on de Bruijn graphs (DBG) and have no clear and explicit model for repeats in RNA-seq data, relying 

instead on heuristics to deal with them.

Results: The results of this work are threefold. First, we introduce a formal model for representing high copy-number 

and low-divergence repeats in RNA-seq data and exploit its properties to infer a combinatorial characteristic of 

repeat-associated subgraphs. We show that the problem of identifying such subgraphs in a DBG is NP-complete. 

Second, we show that in the specific case of local assembly of alternative splicing (AS) events, we can implicitly avoid 

such subgraphs, and we present an efficient algorithm to enumerate AS events that are not included in repeats. 

Using simulated data, we show that this strategy is significantly more sensitive and precise than the previous ver-

sion of KISSPLICE (Sacomoto et al. in WABI, pp 99–111, 1), TRINITY (Grabherr et al. in Nat Biotechnol 29(7):644–652, 2), and 

OASES (Schulz et al. in Bioinformatics 28(8):1086–1092, 3), for the specific task of calling AS events. Third, we turn our 

focus to full-length transcriptome assembly, and we show that exploring the topology of DBGs can improve de novo 

transcriptome evaluation methods. Based on the observation that repeats create complicated regions in a DBG, and 

when assemblers try to traverse these regions, they can infer erroneous transcripts, we propose a measure to flag 

transcripts traversing such troublesome regions, thereby giving a confidence level for each transcript. The originality 

of our work when compared to other transcriptome evaluation methods is that we use only the topology of the DBG, 

and not read nor coverage information. We show that our simple method gives better results than RSEM-EVAL (Li et al. 

in Genome Biol 15(12):553, 4) and TRANSRATE (Smith-Unna et al. in Genome Res 26(8):1134–1144, 5) on both real and 

simulated datasets for detecting chimeras, and therefore is able to capture assembly errors missed by these methods.
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Background
Transcriptomes can now be studied through sequenc-

ing. However, in the absence of a reference genome, de 

novo assembly remains a challenging task. The main 

difficulty certainly comes from the fact that sequencing 

reads are short, and repeated sequences within tran-

scriptomes could be longer than the reads. This short 

read/long repeat issue is of course not specific to tran-

scriptome sequencing. It is an old problem that has been 

around since the first algorithms for genome assembly. 

Even though the problems repeats cause in both contexts 

are similar, they have also some characteristics that are 

specific to each. In genome assembly, repeats tend to 

be longer and present in more copies. In transcriptome 

assembly, repeats are located within genes and tend to 

be shorter and in fewer copies. However, in this last case, 

coverage cannot be applied to discriminate contigs that 

correspond to repeats, as it can be in genomics by using 

e.g. Myers’ A-statistics [6, 7], since the coverage of a gene 

does not only reflect its copy-number in the genome, 

but also and mostly its expression level. Some genes are 

highly expressed and therefore highly covered, while 

most genes are poorly expressed and therefore poorly 

covered. Such specificities complicate the application of 

a genomic repeat-solving strategy to the transcriptomic 

context.

Initially, it was thought that repeats would not be a 

major issue in RNA-seq, since they are mostly in introns 

and intergenic regions. However, the truth is that many 

regions which are thought to be intergenic are tran-

scribed [8] and introns are not always already spliced out 

when mRNA is collected to be sequenced [9]. Repeats, 

especially transposable elements, are therefore very pre-

sent in real samples and cause major problems in tran-

scriptome assembly, if not addressed properly.

Most, if not all current short-read transcriptome 

assemblers are based on de Bruijn graphs. Among the 

best known are Oases [3], Trinity [2], and to a lesser 

degree Trans-Abyss [10] and IDBA-tran [11]. Com-

mon to all of them is the lack of a clear and explicit model 

for repeats in RNA-seq data. Heuristics are thus used 

to try and cope efficiently with repeats. For instance, 

in Oases short vertices are thought to correspond to 

repeats and are therefore not used for assembling genes. 

They are added in a second step, which hopefully causes 

genes sharing repeats not to be assembled together. 

In Trinity, there is no attempt to deal with repeats by 

explicitly modelling them. The first module of Trinity, 

Inchworm, will try and assemble the most covered con-

tig which hopefully corresponds to the most abundant 

alternative transcript. Then alternative exons are glued 

to this major transcript to form a splicing graph. The last 

step is to enumerate all alternative transcripts. If repeats 

are present, their high coverage may be interpreted as a 

highly expressed link between two unrelated transcripts. 

Overall, assembled transcripts may be chimeric or 

spliced into many sub-transcripts.

In the method we had previously developed, KisSplice, 

which is a local transcriptome assembler [12], repeats are 

less problematic since the goal is not to assemble full-

length transcripts. KisSplice instead aims at finding 

variants in transcriptomes (SNPs, indels and alternative 

splicings). However, as we reported in [12], KisSplice 

was not able to deal with large portions of a de Bruijn 

graph containing subgraphs associated to highly repeated 

sequences, e.g. transposable elements, the so-called com-

plex Biconnected Components.

Here, we try and achieve three goals: (1) give a clear 

formalisation of the notion of repeats with high copy-

number in RNA-seq data, (2) apply it on local transcrip-

tome assembly by giving a practical way to enumerate 

bubbles that are lost because of such repeats, and (3) 

apply it on global transcriptome assembly by showing 

that the topology of the subgraph around a transcript can 

give some hints about its confidence level. Recall that we 

are in a de novo context, so we assume that neither a ref-

erence genome/transcriptome nor a database of known 

repeats, e.g. RepBase [13], are available.

First, we formally introduce a model for represent-

ing high copy-number repeats and exploit its properties 

to infer that repeat-associated subgraphs in a de Bruijn 

graph contain few compressible arcs. However, we show 

that the problem of identifying, in a de Bruijn graph, a 

subgraph corresponding to repeats according to such 

characterisation is NP-complete. A polynomial time 

algorithm is therefore unlikely to exist.

Second, we show that in the specific case of a local 

assembly of alternative splicing (AS) events, by using a 

strategy based on the compressible-arc characterization, 

we can implicitly avoid such subgraphs. More precisely, 

it is possible to find the structures (i.e. bubbles) corre-

sponding to AS events in a de Bruijn graph that are not 

contained in a repeat-associated subgraph (see Fig. 3 for 

an example). While there has been great efforts in the lit-

erature to solve repeats, there has been almost no explo-

ration on how to avoid them. This is explained by the fact 

that most efforts in assembly concentrate on full-length 

genome and transcriptome assembly, in which avoid-

ing repeats is not an option, and the performance of an 

assembler can be narrowed down to how well it solves 

repeats. However, in our case, repeat-avoidance can be 

an effective technique. Indeed, this fact was confirmed by 

our experiments, where using human simulated RNA-seq 

data, we show that the new algorithm improves signifi-

cantly the sensitivity of KisSplice, while also improv-

ing its precision. We further compared our algorithm to 
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two of the best transcriptome assemblers, namely Trin-

ity [2] and Oases [3], in the specific task of calling AS 

events, and we show that our algorithm is more sensitive 

than both tools, while also being more precise. In addi-

tion, our results show that the advantage of using the new 

algorithm proposed in this work is more evident when 

the input data contains high pre-mRNA content or the 

AS events of interest stem from highly-expressed genes. 

Moreover, we give an indication of the usefulness of our 

method on real data.

Third, we show that the method described can also 

be applied in the context of full-length transcriptome 

assembly. We introduce a measure based on the pro-

posed model to identify low-confidence transcripts, 

which are the ones that traverse complex regions in 

the de Bruijn Graph. Within these complex parts of the 

graph generated by repeats, any assembler will have to 

choose the “right” path(s) among the many present. This 

choice is not simple and may lead to incorrect solutions 

(e.g. chimeric or truncated transcripts). It is therefore 

important to be able to identify the transcripts com-

ing from such complex regions in order to know that 

the solution presented is not the only one, and further-

more may not be the right one. We compared our meas-

ure against two state-of-the-art methods for de novo 

transcriptome evaluation, namely Rsem-Eval [4] and 

TransRate [5], for the specific task of identifying chi-

meric transcripts in both real and simulated datasets. We 

show that our measure provides good results despite the 

fact that it uses only the graph topology, and not cover-

age, nor read information. The results obtained thus sug-

gest that exploring the topology of the subgraph around 

a transcript, an information that is currently disregarded 

by transcriptome evaluation methods, can be useful to 

infer some of the transcript’s properties, such as confi-

dence level, quality, assembly hardness, etc. Therefore, 

our measure can improve the state-of-the-art methods 

for de novo transcriptome evaluation, since it is able to 

capture assembly errors missed by these tools.

Preliminaries

Let � be an alphabet of fixed size σ. Here we always 

assume � = {A,C ,T ,G}. Given a sequence (string) 

s ∈ �∗, let |s| denote its length, s[i] the ith element 

of s, and s[i,  j] the substring s[i]s[i + 1] . . . s[j] for any 

1 ≤ i < j ≤ |s|.

A k-mer is a sequence s ∈ �k. Given an integer k and 

a set S of sequences each of length n ≥ k, we define 

span(S, k) as the set of all distinct k-mers that appear as 

a substring in S.

Definition 1 Given a set of sequences (reads) R ⊆ �∗ 

and an integer k, we define the directed de Bruijn graph 

Gk(R) = (V ,A) where V = span(R, k) and (u, v) ∈ A if 

and only if u[2, k] = v[1, k − 1].

Given a directed graph G = (V ,A) and a vertex 

v ∈ V  , we denote its out-neighbourhood (resp. in-

neighbourhood) by N+(v) = {u ∈ V | (v,u) ∈ A} (resp. 

N−(v) = {u ∈ V | (u, v) ∈ A}), and its out-degree (resp. 

in-degree by d+(v) = |N+(v)| (d−(v) = |N−(v)|). A (sim-

ple) path π = s � t in G is a sequence of distinct vertices 

s = v0, . . . , vl = t such that, for each 0 ≤ i < l, (vi, vi+1) is 

an arc of G. If the graph is weighted, i.e. there is a func-

tion w : A → Q≥0 associating a weight to every arc in 

the graph, then the length of a path π is the sum of the 

weights of the traversed arcs, and is denoted by |π |.

An arc (u, v) ∈ A is called compressible if d+(u) = 1 and 

d−(v) = 1. The intuition behind this definition comes 

from the fact that every path passing through u should 

also pass through v. It should therefore be possible to 

“compress” or contract this arc without losing any infor-

mation. Note that the compressed de Bruijn graph [2, 3] 

commonly used by transcriptomic assemblers is obtained 

from a de Bruijn graph by replacing, for each compress-

ible arc (u, v), the vertices u, v by a new vertex x, where 

N−(x) = N−(u), N+(x) = N+(v) and the label is the 

concatenation of the k-mer of u and the k-mer of v with-

out the overlapping part (see Fig. 1).

Repeats in de Bruijn graphs
Given a de Bruijn graph Gk(R) generated by a set of reads 

R for which we do not have any prior information, our 

goal is to identify whether there are subgraphs of Gk(R) 

that correspond each to a set of high copy-number 

repeats in R. To this end, we identify and then exploit 

some of the topological properties of the subgraphs that 

are induced by repeats. Starting with a formal model for 

representing repeats with high-copy number, we show 

that the number of compressible arcs, which we denote 

by γ, is a relevant parameter for such a characterisa-

tion. This parameter will play an important role in the 

algorithm of “Bubbles “drowned” in repeats” section. 

CTG

ACT

TCT

TGA

GAT

GAG

a

CTGA

ACT

TCT

GAT

GAG

b
Fig. 1 Example of compressible arc in a de Bruijn graph. a The arc 

(CTG, TGA) is the only compressible arc in the given de Bruijn graph 

(k = 3). b The corresponding compressed de Bruijn graph
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However, we also prove that, for an arbitrary de Bruijn 

graph, identifying a subgraph G′ with bounded γ (G′) is 

NP-complete.

Simple uniform model for repeats

We now present the model we adopted for representing 

high copy-number repeats, e.g. transposable elements, in 

a genome or transcriptome. First, we would like to clarify 

that our model is a simple one and, as such, should be 

seen as only a first approximation, yet realistic enough, 

of what may happen in reality. We consider here that 

sequencing errors can be successfully removed. Indeed, 

there are several techniques to remove the big majority of 

the sequencing errors in RNA-seq data. In KisSplice, for 

example, we prune the de Bruijn graph using an absolute 

and a relative cut-off based on the k-mer coverage. The 

absolute cut-off enables us to remove sequencing errors 

in general, and the relative one is tailored to deal with 

highly-expressed genes (more details can be found in 

[14]). Furthermore, while we realise that there is room for 

improvement, in practice, the sequencing-error-removal 

procedure in KisSplice seems to be effective, as most 

sequencing errors are removed at the expense of losing 

some rare genomic variants [14].

Basically, our model consists of several “similar” 

sequences, each generated by uniformly mutating a fixed 

initial sequence. In particular, it enables to model well 

recent invasions of transposable elements which often 

involve high copy-number and low divergence rate (i.e. 

divergence from their consensus sequence). Consider 

indeed as an example the recent subfamilies AluYa5 and 

AluYb8 with 2640 and 1852 copies respectively, which 

both present a divergence rate below 1% [15] (see  [16] 

for other subfamilies with high copy-number and low 

divergence).

The model is as follows. First, due to mutations, the 

sequences s1, . . . , sm that represent the repeats are not 

identical. However, provided that the number of such 

mutations is not high (otherwise the concept of repeats 

would not apply), the repeats are considered “similar” 

in the sense of having a small pairwise Hamming dis-

tance between them. We recall that, given two equal 

length sequences s and s′ in �n, their Hamming distance, 

denoted by dH (s, s′), is the number of positions i for 

which s[i] �= s′[i]. Indels are thus not considered in this 

model.

The model has then the following parameters: �, the 

length n of the repeat, the number m of copies of the 

repeat, an integer k (for the length of the k-mers consid-

ered), and the mutation rate, α, i.e. the probability that a 

mutation happens in a particular position. The sequences 

s1, . . . , sm are then generated by the following process. 

We first choose uniformly at random a sequence s0 ∈ �n. 

At step i ≤ m, we create a sequence si as follows: for each 

position j, si[j] = s0[j] with probability 1 − α, whereas 

with probability α a value different from s[j] is chosen 

uniformly at random for si[j]. We repeat the whole pro-

cess m times and thus create a set S(m, n,α) of m such 

sequences from s0 (see Fig.  2 for a small example). The 

generated sequences thus have an expected Hamming 

distance of αn from s0.

Topological characterisation of the subgraphs generated 

by repeats

Given a de Bruijn graph Gk(R), if a is a compressible arc 

labelled by the sequence s = s1 . . . sk+1 then, by defini-

tion, a is the only outgoing arc of the vertex labelled by 

the sequence s[1, k] and the only incoming arc of the ver-

tex labelled by the sequence s[2, k + 1]. Hence the (k − 1)

-mer s[2, k] appears as a substring in R, always preceded 

by the symbol s[1] and followed by the symbol s[k + 1] . 

We refer to such (k − 1)-mers as being boundary rigid. 

It is not difficult to see that the set of compressible arcs 

in a de Bruijn graph Gk(R) stands in a one-to-one corre-

spondence with the set of boundary rigid (k − 1)-mers in 

R.

We now calculate and compare among them the 

expected number of compressible arcs in G = Gk(R) 

when R corresponds to a set of sequences that are gener-

ated: (1) uniformly at random, and (2) according to our 

model. We show that γ is “small” in the cases where the 

induced graph corresponds to similar sequences, which 

provides evidence for the relevance of this parameter.

Claim 1 Let R be a set of m sequences randomly chosen 

from �n. Then the expected number of compressible arcs 

in Gk(R) is �(mn).

Proof The probability that a sequence of length k − 1 

occurs in a fixed position in a randomly chosen sequence 

of length n is (1/4)k−1. Thus the expected number of 

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A A C T G T A T C C s0
A C C T G T A G C C s1
G A C T C A A T C C s2
A A C T C T A T C C s3
A A C A G T A T C A s4
A A T T G T A G C C s5
A G C T G T A T C A s6
...

...
...

...
...

...
...

...
...

...
A A G T G A A T C C s20

Fig. 2 An example of a set of repeats S(20, 10, 0.1)
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appearances of a sequence of length k − 1 in a set of 

m randomly chosen sequences of length n is given by 

m(n − k + 2)(1/4)k−1. If m(n − k + 2) ≤ 4k−1, then 

this value is upper bounded by 1, and all the sequences 

of length k − 1 are expected to be boundary rigid (as a 

sequence is expected to appear once). The claim follows 

by observing that there are m(n − k + 2) different (k − 1)

-mers. □

We consider now γ (Gk(R)) for R = S(m, n,α). We 

upper bound the expected number of compressible arcs 

by upper bounding the number of boundary rigid (k − 1)

-mers.

Theorem 1 Given integers k, n, m with k < n and a real 

number 0 ≤ α ≤ 3/4, the de Bruijn graph Gk(S(m, n,α)) 

has o(nm) expected compressible arcs.

Proof Let s0 be a sequence chosen randomly from �n. 

Let S(m, n,α) be the set {s1, . . . , sm} of m repeats gener-

ated according to our model starting from s0. Consider 

now the de Bruijn graph G = Gk(S(m, n,α)). Recall 

that the number of compressible arcs in this graph is 

equal to the number of boundary rigid (k − 1)-mers 

in S(m, n,α). Let X be a random variable representing 

the number of boundary rigid (k − 1)-mers in G. Con-

sider the repeats in S(m, n,α) in a matrix-like ordering 

as in Fig.  2 and observe that the mutations from one 

column to another are independent. Due to the sym-

metry and the linearity of the expectation, E[X] is given 

by m(n − k + 2) (the total number of (k − 1)-mers) 

multiplied by the probability that a given (k − 1)-mer is 

boundary rigid.

The probability that the (k − 1)-mer ŝ = s[i, i + k − 2] 

is boundary rigid clearly depends on the distance from 

the starting sequence ŝ0 = s0[i, i + k − 2]. Let d be the 

distance dH (ŝ, ŝ0).

Observe that if the (k − 1)-mer s[i] . . . s[i + k − 2] is not 

boundary rigid then there exists a sequence y in S(m, n,α) 

such that y[j] = s[j] for all i ≤ j ≤ i + k − 2 and either 

y[i + k − 1] �= s[i + k − 1] or y[i − 1] �= s[i − 1]. It is 

not difficult to see that the probability that this happens 

is lower bounded by (2α − 4/3α2)(1 − α)k−1−d(α/3)d. 

Hence we have:

By approximating the above expression we therefore have 

that:

Pr[ŝ is boundary rigid|dH (ŝ, ŝ0) = d]

≤
(
1 − (2α − 4/3α2)(1 − α)k−1−d(α/3)d

)m−1
.

For a sufficiently large number of copies 

(
e.g.m =

(
k
αk

))
 

and using the fact that 

(
k
αk

)
≥ (1/α)αk, we have that 

E[X] is o(mn). This concludes the proof. □

The previous result shows that the number of com-

pressible arcs is a good parameter for characterising a 

repeat-associated subgraph.

Identifying a repeat-associated subgraph

As we showed, a subgraph due to repeated elements has 

a distinctive feature: it contains few compressible arcs. 

Based on this, a natural formulation to the repeat iden-

tification problem in RNA-seq data is to search for large 

enough subgraphs that do not contain many compress-

ible arcs. This is formally stated in Problem  1. In order 

to disregard trivial solutions, it is necessary to require a 

large enough connected subgraph, otherwise any set of 

disconnected vertices or any small subgraph would be a 

solution. Unfortunately, we show that this problem is NP-

complete, so an efficient algorithm for the repeat identifi-

cation problem based on this formulation is unlikely.

Problem  1 [Repeat Subgraph] INSTANCE: A directed 

graph G and two positive integers m, t.

DECIDE: If there exists a connected subgraph 

G′ = (V ′,E′), with |V ′| ≥ m and having at most t com-

pressible arcs.

In Theorem 2, we prove that this problem is NP-com-

plete for all directed graphs with (total) degree, i.e. sum 

of in and out-degree bounded by 3. The reduction is 

from the Steiner tree problem which requires finding a 

minimum weight subgraph spanning a given subset of 

vertices. It remains NP-hard even when all arc weights 

are 1 or 2 (see [17]). This version of the problem is 

denoted by STEINER(1,  2). More formally, given a 

complete undirected graph G = (V ,E) with arc weights 

in {1, 2}, a set of terminal vertices N ⊆ V  and an integer 

B, it is NP-complete to decide if there exists a subgraph 

of G spanning N with weight at most B, i.e. a connected 

subgraph of G containing all vertices of N.

We specify next a family of directed graphs that we 

use in the reduction. Given an integer x, we define the 

directed graph R(x) as a cycle on 2x vertices numbered 

in a clockwise order and where the arcs have alternating 

(1)

E[X] ≤ (n − k − 1)m

k−1∑
d=0

Pr[ŝ is boundary rigid|dH (ŝ, ŝ0) = d]

≤ (n − k − 1)me
−(m−1)(2α−4/3α2)/( α

3 )k−1
.
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directions, i.e. for any i ≤ x, (v2i, v2i+1) is an arc. Observe 

that in R(x), all vertices in even positions, i.e. all vertices 

v2i, have out-degree 2 and in-degree 0, while all vertices 

v2i+1 have out-degree 0 and in-degree 2. Clearly, none of 

the arcs of R(x) is compressible.

Theorem  2 The Repeat Subgraph Problem is NP-com-

plete even for directed graphs with degree bounded by d, 

for any d ≥ 3.

Proof Given a complete graph G = (V ,E), a set 

of terminal vertices N and an upper bound B, i.e. an 

instance of STEINER(1,  2), we transform it into an 

instance of the Repeat Subgraph Problem for a graph 

G′ with degree bounded by 3. Let us first build the 

graph G′ = (V ′,E′). For each vertex v in V \ N , add a 

corresponding subgraph r(v) = R(|V |) in G′ and for 

each vertex v in N, add a corresponding subgraph 

r(v) = R(|E| + |V |2 + 1) in G′. For each arc (u,  v) in E 

with weight w ∈ {1, 2}, add a simple directed path com-

posed by w compressible arcs connecting r(u) to r(v) 

in G′; these are the subgraphs corresponding to u and 

v. The first vertex of the path should be in a sink of 

r(u) and the last vertex in a source of r(v). By construc-

tion, there are at least |V| vertices with in-degree 2 and 

out-degree 0 (sink) and |V| vertices with out-degree 

2 and in-degree 0 (source) in both r(v) and r(u). It is 

clear that G′ has degree bounded by 3. Moreover, the 

size of G′ is polynomial in the size of G and it can be 

constructed in polynomial time.

In this way, the graph G′ has one subgraph for each ver-

tex of G and a path with one or two (depending on the 

weight of the corresponding arc) compressible arcs for 

each arc of G. Thus, there exists a subgraph spanning N in 

G with weight at most B if and only if there exists a sub-

graph in G′ with at least m = 2|N | + 2|E||N | + 2|V |2|N | 

vertices and at most t = |B| compressible arcs. This fol-

lows from the fact that any subgraph of G′ with at least 

m vertices necessarily contains all the subgraphs r(v), 

where v ∈ N , since the number of vertices in all r(v), with 

v ∈ V \ N , is at most |E| + 2|V |2 and the only compress-

ible arcs of G′ are in the paths corresponding to the arcs 

of G.□

We can obtain the same result for the specific case of 

subgraphs of de Bruijn graphs. The reduction is more 

technical but follows similarly.

Theorem  3 The Repeat Subgraph Problem is NP-com-

plete even for subgraphs of de Bruijn graphs on |�| = 4 

symbols.

Bubbles “drowned” in repeats
In the previous section, we showed that an efficient algo-

rithm to directly identify the subgraphs of a de Bruijn 

graph corresponding to repeated elements according 

to our model (i.e. containing few compressible arcs), is 

unlikely to exist since the problem is NP-complete. How-

ever, in this section we show that in the specific case of 

a local assembly of alternative splicing (AS) events based 

on the compressible-arc characterisation of “Topological 

characterisation of the subgraphs generated by repeats” 

section, we can implicitly avoid such subgraphs. More 

precisely, it is possible to find the structures (i.e. bubbles) 

corresponding to AS events in a de Bruijn graph that 

are not contained in a repeat-associated subgraph, thus 

answering to the main open question of [12].

KisSplice  [12] is a method for de novo calling of AS 

events through the enumeration of so-called bubbles, that 

correspond to pairs of vertex-disjoint paths in a de Bruijn 

graph. The bubble enumeration algorithm proposed in [12] 

was later improved in [1]. However, even the improved 

algorithm is not able to enumerate all bubbles correspond-

ing to AS events in a de Bruijn graph. There are certain 

complex regions in the graph, likely containing repeat-asso-

ciated subgraphs but also real AS events [12], where both 

algorithms take a huge amount of time. Figure 3 shows an 

example of a complex region with a bubble corresponding 

to an AS event. In practice, the enumeration is halted after 

a given timeout. The bubbles drowned (or trapped) inside 

these regions are thus missed by KisSplice.

In “Repeats in de Bruijn graphs” section, the repeat-asso-

ciated subgraphs are characterised by the presence of few 

compressible arcs. This suggests that in order to avoid repeat-

associated subgraphs, we should restrict the search to bub-

bles containing many compressible arcs. Equivalently, in a 

compressed de Bruijn graph (see “Preliminaries” section), we 

should restrict the search to bubbles with few branching ver-

tices. We recall that a branching vertex is a vertex of in-degree 

or out-degree strictly at least 2. Indeed, in a compressed de 

Bruijn graph, given a fixed sequence length, the number of 

branching vertices in a path is inversely proportional to the 

number of compressible arcs of the corresponding path in the 

non-compressed de Bruijn graph. We thus modify the defini-

tion of (s, t,α1,α2)-bubbles in compressed de Bruijn graphs 

(Def. 1 in [1]) by adding the extra constraint that each path 

should have at most b branching vertices.

Definition 2 Given a weighted directed graph 

G = (V ,E) and two vertices s, t ∈ V , an (s, t,α1,α2, b)

-bubble is a pair of vertex-disjoint st-paths π1, π2 with 

lengths bounded by α1,α2, each containing at most b 

branching vertices.
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By restricting the search to bubbles with few branching 

vertices, we are able to enumerate them in complex regions 

implicitly avoiding repeat-associated subgraphs. Indeed, 

in  “Experimental results” section we show that by consider-

ing bubbles with at most b branching vertices in KisSplice, 

we increase both its sensitivity and precision. This supports 

our claim that by focusing on (s, t,α1,α2, b)-bubbles, we 

avoid repeat-associated subgraphs and recover at least part 

of the bubbles trapped in complex regions.

Enumerating bubbles avoiding repeats

In this section, we modify the algorithm of [1] to enumer-

ate all bubbles with at most b branching vertices in each 

path. Given a weighted directed graph G = (V ,E) and 

a vertex s ∈ V , let Bs(G) denote the set of (s, ∗,α1,α2, b)

-bubbles of G. The algorithm recursively partitions the 

solution space Bs(G) at every call until the considered 

subspace is a singleton (contains only one solution), and 

in that case it outputs the corresponding solution. In 

order to avoid unnecessary recursive calls, it maintains 

the invariant that the current partition contains at least 

one solution. The algorithm proceeds as follows.

Invariant At a generic recursive step on vertices u1,u2 

(initially, u1 = u2 = s), let π1 = s � u1,π2 = s � u2 be 

the paths discovered so far (initially, π1,π2 are empty). 

Let G′ be the current graph (initially, G′ := G). More pre-

cisely, G′ is defined as follows: remove from G all the ver-

tices in π1 and π2 but u1 and u2. Moreover, we also main-

tain the following invariant (INV): there exists at least 

one pair of paths π̄1 and π̄2 in G′ that extend π1 and π2 so 

that π1 · π̄1 and π2 · π̄2 belong to Bs(G).

Base case When u1 = u2 = u, output the (s,u,α1,α2, b)

-bubble given by π1 and π2.

Recursive rule Let Bs(π1,π2,G
′) denote the set of 

(s, ∗,α1,α2, b)-bubbles to be listed by the current recur-

sive call, i.e. the subset of Bs(G) with prefixes π1,π2. It is 

the union of the following disjoint sets:

  • The bubbles of Bs(π1,π2,G
′) that use e, for 

each arc e = (u1, v) outgoing from  u1, that is 

Bs(π1 · e,π2,G
′ − u1), where G′ − u1 is the subgraph 

of G′ after the removal of u1 and all its incident arcs.

  • The bubbles that do not use any arc from u1, that is 

Bs(π1,π2,G
′′), where G′′ is the subgraph of G′ after 

the removal of all arcs outgoing from u1.

The same holds for u2 instead of u1.

In order to maintain the invariant (INV), we only per-

form the recursive calls when Bs(π1 · e,π2,G
′ − u) or 

Bs(π1,π2,G
′′) are non-empty. In both cases, we have to 

decide if there exists a pair of (internally) vertex-disjoint 

paths π̄1 = u1 � t1 and π̄2 = u2 � t2, such that |π̄1| ≤ α′
1 , 

|π̄2| ≤ α′
2, and π̄1, π̄2 have at most b1, b2 branching verti-

ces, respectively. Since both the length and the number 

of branching vertices are monotonic properties, i.e. both 

are smaller for a prefix instead of for the full path, we can 

drop the vertex-disjoint condition. Indeed, let π̄1 and π̄2 be 

a pair of paths satisfying all conditions but the vertex-dis-

joint one. The prefixes π̄∗
1 = u1 � t∗ and π̄∗

2 = u2 � t∗ , 

where t∗ is the first intersection of the paths, satisfy all 

conditions and are internally vertex-disjoint.

Moreover, using a dynamic programming algorithm, 

we can obtain the following result.

Lemma 1 Given a non-negatively weighted directed 

graph G = (V ,E) and a source s ∈ V , we can compute the 

shortest paths from s using at most b branching vertices in 

O(b|E|) time.

Fig. 3 An alternative splicing event in the SCN5A gene (human) [22] trapped inside a complex region, likely containing repeat-associated sub-

graphs, in a de Bruijn graph. The alternative isoforms correspond to a pair of paths shown in red and blue
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Proof Let d[β , t] denote the distance from s to t using 

at most β branching vertices (s is never counted as a 

branching vertex, even if it is branching). The recurrence 

to calculate d[β , t], for 0 ≤ β ≤ b and t ∈ V  is:

Initialisation step:

Main recurrence:

d[0, s] = 0;
d[0, t] = |(s, t)| if (s, t) ∈ E and t is not branching;
d[β , t] = +∞ if d[β , t] was not initialised.

introns, and less frequently but still present, within their 

UTRs and also exons (e.g. exonised repeats). Even if a 

repeat-containing intron is always spliced out in the splic-

ing phase, this intron, and consequently the repeat, can 

still be present in RNA-seq data. The fraction of introns 

present in the sequenced data depends on the cell com-

partment that is sampled (nucleus, cytoplasm or both) 

and the protocol to remove rRNA (ribo-0 or polydT 

primers). As estimated in [9], the level of pre-mRNA can 

be assumed to vary between 2 and 22%. The true level of 

pre-mRNA may however be in practice higher, because 

d[β , t] =

{
min(minv∈N−(t){d[β − 1, v] + |(v, t)|}, d[β − 1, t]), if t is branching
min(minv∈N−(t){d[β , v] + |(v, t)|}, d[β − 1, t]), if t is not branching.

This recurrence works only on compressed graphs, i.e. 

it requires that the neighbours of simple vertices are 

branching. However, since the graph compression proce-

dure described in “Preliminaries” section can be applied 

to general graphs, this recurrence is also applicable to 

general graphs. The calculation order for d[β , t] in the 

main recurrence must be by increasing value of β and, 

for a fixed β, the branching vertices must be processed 

before the non-branching ones. Moreover, the short-

est paths themselves can be constructed by a traceback 

procedure.

Finally, since the calculation of each value d[β , t] 

takes O(|N−(t)|) time, the algorithm runs in 

O(b
∑

t∈V |N−(t)|) = O(b|E|) time. We can guarantee 

that this algorithm runs in time polynomial in the length 

of the input by upper-bounding b by |V| (if b > |V |, we 

simply set b = |V |). □

As a corollary of Lemma 1, we can decide if 

Bs(π1,π2,G) is non-empty in O(b|E|) time. Now, using 

an argument similar to [1], i.e. the leaves of the recursion 

tree and the solutions are in one-to-one correspondence 

and the height of the recursion tree is bounded by 4b, we 

obtain the following theorem.

Theorem  4 The (s, ∗,α1,α2, b)-bubbles can be enumer-

ated in O(b2|E||Bs(G)|) time. Moreover, the time elapsed 

between the output of any two consecutive solutions (i.e. 

the delay) is O(b2|E|).

Measuring the confidence of a transcript 
in full-length transcriptome assemblers
Reconstructing full-length transcripts from reads is a chal-

lenging task because two transcripts, even from different 

genes, may very well share subsequences that are longer 

than the sequenced reads, or even longer than the frag-

ments in case of paired-end sequencing. This is specially 

true when genes host transposable elements within their 

the methods used for estimating it are mapping-based and 

therefore deal poorly with reads stemming from repeated 

regions. Besides, the upper bound given in [9] corresponds 

to extraction protocols which are harder to obtain. In this 

work, we considered the most commonly used extraction 

protocol to extract RNA, and assumed that they yielded 

pre-mRNA fractions between 5 and 15%. Thus, more 

introns than expected are sequenced, generating problems 

to transcriptome assemblers, particularly when they span 

several members of a specific repeat family.

Most transcriptome assemblers are based on de Bruijn 

graphs and have no clear and explicit model for repeats 

in RNA-seq data, relying instead on heuristics to deal 

with them. Within the complex parts of the graph gen-

erated by repeats, any assembler will have to choose the 

“right” path(s) among the many present. Even with hints 

given by (paired-end) reads, assemblers can still have 

several arguable options to extend a contig (see Fig.  4). 

This problem gets harder if the (paired-end) reads do not 

span the repeat entirely, thereby not giving the assembler 

any reliable information on how to connect the unique 

regions. If the assembler decides to guess a path, it may 

erroneously extend a contig and create a chimeric tran-

script. It can also choose to be conservative by not choos-

ing any path in complicated regions of the de Bruijn 

graph, and instead truncating the transcript. Although 

this strategy can lead to an accurate assembly, it will 

produce a very fragmented one, which is not desired. 

Whatever the strategy (conservative or permissive), the 

resulting assembled transcript may be erroneous (chi-

meric or truncated).

It is hence important to be able to identify low-confi-

dence transcripts, which are the ones traversing complex 

regions of a de Bruijn graph, in order to know that the 

solution presented is the result of a “difficult” choice and 

therefore may not be the right one. To identify such tran-

scripts, we introduce the concept of Branching Measure 

of a transcript. Consider the set of transcripts T  output 
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by a full-length transcriptome assembler starting from a 

set of reads R. We construct the de Bruijn graph Gk(R), 

and map back each transcript t ∈ T  to the graph by iden-

tifying each of its k-mers. Given a positive integer w, let 

W be a w-sized window (or substring) with the largest 

number of branching k-mers in t. We define the Branch-

ing Measure of a transcript t, B(t), as the proportion of 

branching k-mers in W. By looking at B(t), it is possible 

to infer if t traversed a hard-to-assemble region in the 

de Bruijn graph, and this can be used as a measure of its 

confidence, i.e. the higher B(t) is, the lower is the confi-

dence of t.

As a proof of concept, in the following we show two 

examples of the application of the Branching Measure to 

transcripts assembled by Trinity on RNA-seq data from 

the GEUVADIS project [18].

 The first example (Fig.  5) is the chimeric transcript 

c12400_g1_i1 that aligns to the gene MOB1A in chromo-

some 2 and also to the gene PEBP1 in chromosome 12, in 

which the fusion of these genes is due to a small identi-

cal region shared between two different repeats present 

in their UTR regions. Figure  5a shows the alignment of 

the transcript c12400_g1_i1 to reference hg38, visualised 

using the UCSC Genome Browser. The alignment on the 

top shows that the built transcript aligns almost perfectly 

to an isoform of gene MOB1A in chromosome 2. Due to 

the repeats inside the red circles, the alignment is trun-

cated in the 3′-UTR of MOB1A, and continued on the 

5′-UTR of gene PEBP1 in chromosome 12 (alignment 

on the bottom). Thus, here we have a chimeric tran-

script. Figure 5b zooms in the regions where both align-

ments intersect the repeats that cause the chimerism. 

The main reason of the junction between the two genes 

is due to a stretch of 18 As shared between the A-tail 

of a SINE AluY in the 3′-UTR of MOB1A and a Simple 

Repeat A(n) in the 5′-UTR of PEBP1. Even though this 

repeated region is short, it was enough to cause prob-

lems to Trinity, which had access to 76-bp paired-end 

reads, with an average insert size of 158 bp. In Fig. 5c we 

mapped all reads back to transcript c12400_g1_i1 and 

visualised them using IGV [19]. As we can see, there are 

no single or paired-end reads traversing the small repeat. 

This shows that this chimera is not an in vitro or a bio-

logical one, but indeed an assembly mistake by Trinity. 

Figure  5d conveys a local visualisation of the subgraph 

induced by the k-mers of transcript c12400_g1_i1 at 

the junction point which causes the chimerism (the full 

graph can be accessed at http://kissplice.prabi.fr/bm/

graph_chimera.html). We can see that this is a complex 

region since the transcript (red path) traverses a region 

Fig. 4 A theoretical scenario showing some problems repeats cause to assemblers. On the top of the figure, we can see two real transcripts con-

taining each one a member of a repeat R. When building the assembly graph, the two copies of R may collapse into a single region of the graph, 

and connect the unique regions of both transcripts. The only correct assemblies are ARB and CRD, but the assembly graph also allows for the 

generation of the chimeric transcripts ARD and CRB, or truncated transcripts, in case the assembler chooses to be conservative
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Fig. 5 The chimeric transcript c12400_g1_i1 that aligns to the gene MOB1A in chromosome 2 and also to the gene PEBP1 in  chromosome 12, in 

which the fusion of these genes is due to a small identical region shared between two different repeats present in their UTR regions (see “Measuring 

the confidence of a transcript in full-length transcriptome assemblers” section for details of each panel). a The alignment of the transcript c12400_

g1_i1 to reference hg38, visualised using the UCSC Genome Browser. b The regions where both alignments intersect the repeats that cause the 

chimerism. c The mapping of all reads to transcript c12400_g1_i1 visualised using IGV. d A local visualisation of the subgraph induced by the k-mers 

of transcript c12400_g1_i1 at the junction point which causes the chimerism
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having 11 branching k-mers in a window of 12, and could 

thus be flagged by the Branching Measure. There is no 

other such complex region in this transcript, i.e. this is 

the only hard-to-assemble region that this transcript goes 

through. We can also see in the picture the correct exten-

sion which should have been followed as the reference 

transcripts (the green and blue paths). Observe that even 

the reference transcripts could also have been flagged by 

our method since they traverse regions containing a con-

centration of branching vertices due to the repeated ele-

ments presented in Fig. 5a, b.

The second case, depicted in Fig. 6, shows a mis-assem-

bly of the last exon of gene SLC35F2, in which Trinity 

assembled several truncated transcripts instead of the 

full exon. Figure  6a shows, on the 3’ → 5’ orientation 

(reverse strand), the three truncated short transcripts: 

c65590_g1_i1, c64_g1_i1, and c14482_g2_i1. The trunca-

tion points were cause caused by repeats, where the first 

split is due to a simple repeat (A(n)) and the second is due 

to 2 consecutive Alus (AluJo and AluSz). Figure  6b dis-

plays a schematic global view on how the last exon of gene 

SLC35F2 was assembled by Trinity and how the three 

Fig. 6 A mis-assembly of the last exon of gene SLC35F2, in which TRINITY assembled several truncated transcripts instead of the full exon (see “Measur-

ing the confidence of a transcript in full-length transcriptome assemblers” section for details of each panel). a The three truncated short transcripts: 

c65590_g1_i1, c64_g1_i1, and c14482_g2_i1. b A schematic global view on how the last exon of gene SLC35F2 was assembled by TRINITY and how 

the three next figures are connected in the full graph drawing. c A local visualisation of the truncation point between c65590_g1_i1 and c64_g1_i1 

due to a simple repeat. d A local view of the region that traverses the repeat AluJo, and where the assembler has chosen to truncate the transcript 

c64_g1_i1. e A local view of the region that traverses the repeat AluSz, and where the assembler has chosen to truncate the transcript c14482_g2_i1
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next figures are connected in the full graph drawing. This 

figure and the next assume the 5′ → 3′ orientation. Fig-

ure 6c conveys a local visualisation of the truncation point 

between c65590_g1_i1 and c64_g1_i1 due to a simple 

repeat. We can see that Trinity mis-assembled the very 

end of c65590_g1_i1 (only the last base) and truncated the 

transcript. The yellow path is accurate although truncated 

and does not go through a complicated region (one hav-

ing a concentration of branching vertices). Even though 

the reference exon path in this region has 11 consecutive 

branching vertices and would be flagged by the Branch-

ing Measure, this method is unable to flag c65590_g1_i1 

since it is truncated too early, before entering the com-

plex region. Figure  6d shows a local view of the region 

that traverses the repeat AluJo, and where the assembler 

has chosen to truncate the transcript c64_g1_i1. We can 

see that Trinity mis-assembled the last 29 bases of c64_

g1_i1 and truncated it. At the end of c64_g1_i1, we have 

23 branching vertices in a window of 34 vertices, so this 

truncated transcript can be flagged by our method, as it 

is deeply enough plunged into a complex region. Finally, 

Fig.  6e displays a local view of the region that traverses 

the repeat AluSz, and where the assembler has chosen to 

truncate the transcript c14482_g2_i1. Again, the Branch-

ing Measure is not able to flag this transcript since it is 

not deeply enough plunged into a complex region. The 

full graph of Fig. 6b–e can be accessed at http://kissplice.

prabi.fr/bm/graph_truncated.html.

Experimental results
Local assembly: experimental setup

To evaluate the performance of our method, we simu-

lated RNA-seq data using the FluxSimulator version 

1.2.1 [20]. We generated 100 million reads of 75 bp using 

its default error model. We used the RefSeq annotated 

Human transcriptome (hg19 coordinates) as a reference 

and we performed a two-step pipeline to obtain a mix-

ture of mRNA and pre-mRNA (i.e. with introns not yet 

spliced). To achieve this, we first ran the FluxSimula-

tor with the Refseq annotations. We then modified the 

annotations to include the introns and re-ran it on this 

modified version. In this second run, we additionally con-

strained the expression values of the pre-mRNAs to be 

correlated to the expression values of their corresponding 

mRNAs, as simulated in the first run. Finally, we mixed 

the two sets of reads to obtain a total of 100M reads. We 

tested two values, namely 5 and 15% for the proportion 

of reads from pre-mRNAs. Those values were chosen so 

as to correspond to realistic ones (see “Measuring the 

confidence of a transcript in full-lengthtranscriptome 

assemblers” section).

On these simulated datasets, we ran KisSplice [12] ver-

sions 2.1.0 (Ks_..) and 2.2.0 (Ks_.., with a maximum 

number of branching vertices set to 5) and obtained lists of 

detected bubbles that are putative alternative splicing (AS) 

events. We also ran the full-length transcriptome assemblers 

Trinity version r2013_08_14 and Oases version 0.2.09 on 

both datasets, obtaining a list of predicted transcripts, from 

which we then extracted a list of putative AS events. For 

Oases, there was one locus in each dataset for which we 

were not able to extract the putative AS events. A manual 

inspection revealed that they were mostly composed of sub-

parts of introns or UTRs flanked by repeats, usually copies 

of ALUs. The presence of such high copy-number repeats 

in these transcripts induced the clustering of all these unre-

lated sequences into one complex locus. More precisely, in 

the dataset containing 5% of the reads from pre-mRNAs, 

the largest locus that Oases predicted comprised 20,769 

transcripts, while the second largest contained only 139 

transcripts. In the other simulated dataset, the largest locus 

comprised 39,389 transcripts, and the second largest con-

tained only 205 transcripts. This indicates that Oases faces 

similar issues to Ks_... For fairness of comparison, we 

did not post-process these complex loci, and we were then 

unable to retrieve the potential AS events that they could 

describe. It is worth mentioning though, that the majority of 

the transcripts inside these loci corresponded to subparts of 

introns or UTRs, and not to full introns or exons, and there-

fore could not describe AS events.

In order to assess the precision and the sensitivity of 

our method, we compared our set of found AS events to 

the set of true AS events. Following the definition of Ast-

alavista, an AS event is composed of two sets of tran-

scripts, the inclusion/exclusion isoforms respectively. We 

consider that an AS event is true if at least one transcript 

among the inclusion isoforms and one among the exclu-

sion isoforms is present in the simulated dataset with at 

least 5 reads per kilobase (RPK). The rationale for add-

ing this threshold is that very rare events are considerably 

hard, or even impossible, to detect by all methods.

To compare the results of KisSplice with the true AS 

events, we propose that a true AS event is a true positive 

(TP) if there is a bubble such that one path matches the 

inclusion isoform and the other the exclusion isoform. If 

there is no such bubble among the results of KisSplice, 

the event is counted as a false negative (FN). If a bubble 

does not correspond to any true AS event, it is counted 

as a false positive (FP). To align the paths of the bubbles 

to transcript sequences, we used the Blat aligner  [21] 

with 95% identity and a constraint of 95% of each bubble 

path length to be aligned (to account for the sequencing 

errors simulated by FluxSimulator). We computed the 
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sensitivity TP/(TP+FN) and precision TP/(TP+FP) for 

each simulation case and we report their values for vari-

ous classes of expression of the minor isoform. Expres-

sion values are measured in RPK.

Local assembly: results

The overall sensitivity and precision of Ks_.., 

Ks_.., Trinity and Oases can be found in Fig.  7a, 

b, respectively. A first look reveals that Ks_.. outper-

forms the other three methods in both measures and 

datasets.

A closer look at Fig.  7a shows that both versions of 

KisSplice had better sensitivity than both transcriptome 

assemblers in the 5% pre-mRNA dataset. However, due 

to its inability to deal with repeat-associated regions, the 

performance of Ks_.. drops substantially, from 46 to 
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Fig. 7 The overall values for sensitivity and precision, and the detailed sensitivity by expression levels of KS_2.1.0, KS_2.2.0, TRINITY and OASES on the 

two simulated datasets. a Overall sensitivity of the four methods on the two simulated datasets. b Overall precision of the four methods on the two 

simulated datasets. c Detailed sensitivity by expression levels of the four methods on the 5% pre-mRNA dataset. d Detailed sensitivity by expres-

sion levels of the four methods on the 15% pre-mRNA dataset. The expression levels in c and d represent several classes of expression of the minor 

isoform. Each class (i.e. point in the graph) contains the same number of AS events. It is therefore an average sensitivity on a potentially broad class 

of expression
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33%, when a higher rate of 15% of pre-mRNA is present 

in the data. The same happened with Oases. Ks_.. and 

Trinity, on the other hand, were able to slightly improve 

their sensitivity from the 5 to the 15% pre-mRNA data-

set. It is however worth mentioning that the sensitivity of 

Ks_.. is substantially higher than the one of Trinity 

in the 15% pre-mRNA dataset. In summary, we can say 

that Ks_.. is substantially more sensitive than all the 

other three methods. This reflects the fact that most prob-

lematic repeats are in introns. A small unspliced mRNA 

rate leads to few repeat-associated subgraphs, so there 

are not many AS events drowned in them. In this case, 

the advantage of using Ks_.. is less obvious, whereas 

a large proportion of pre-mRNA leads to more AS events 

drowned in repeat-associated subgraphs which are identi-

fied by Ks_.. and usually missed by the other methods.

In Fig.  7b we can see that Ks_.. and Trinity pre-

sented the highest precision (98%) of all methods in the 

5% pre-mRNA dataset. Although Ks_.. is ranked 

third, it still presents a very high precision (95%), while 

Oases presented a moderate value (80%). Nevertheless, 

the most important aspect to be observed in Fig.  7b is 

that Ks_.. kept the same high precision even when a 

higher rate of 15% of pre-mRNA is present in the data. 

Trinity, on the other hand, dropped significantly from 

98 to 79%. This drop in precision is actually mostly due 

to the prediction of a large number of intron retentions, 

since Trinity assembles both the mRNA and the pre-

mRNA. Ks_.. dropped slightly from 95 to 91%, and 

Oases dropped moderately, from 80 to 70%. In summary, 

we can say that both versions of KisSplice are more 

precise than both transcriptome assemblers, except that 

Trinity shows comparable precision if a small rate of 

pre-mRNA is present in the data, and, more specifically, 

that Ks_.. outperformed all the other three methods. 

The high precision we obtain indicates that we have very 

few false positives. Those mostly correspond to repeat-

induced bubbles mistakenly identified as AS events.

Finally, Fig.  7c, d present the detailed sensitivity by 

expression levels of the four methods on both datasets, 

allowing for a better understanding of their performance. 

As we can see, Ks_.. presented the best sensitivity in 

practically all expression levels in both datasets, while the 

other three methods were worse, but comparable between 

themselves. We can also observe that the gap between the 

sensitivity of Ks_.. and the sensitivity of the other meth-

ods tends to increase as the expression levels of the genes 

increase, especially in the 15% pre-mRNA dataset. Since 

highly-expressed genes tend to present higher levels of pre-

mRNA content, they bring several repeat copies in their 

introns, and thus some parts of their associated graphs are 

complex and repeat-induced. Therefore, AS events inside 

such genes tend to be trapped in troublesome regions of 

the graph, making them harder to find. As Ks_.. is able 

to avoid such complex regions and retrieve the AS events 

deeply plunged into them, it presents better sensitivity than 

the other methods, especially in highly-expressed genes 

and datasets with high rate of pre-mRNAs.

As was already reported in [12], KisSplice (i.e. both 

Ks_.. and Ks_..) is faster and uses considerably less 

memory than Trinity and Oases. For instance, on these 

datasets, KisSplice uses around 5  GB of RAM, while 

Trinity uses more than 20 GB, and Oases, around 18 GB. 

However, it should be noted that both these latter methods 

try to solve a more general problem than KisSplice, that is 

reconstructing the full-length transcripts.

To conclude, our results show that Ks_.. is signifi-

cantly more sensitive and precise than Ks_.., Trin-

ity and Oases for the task of identifying AS events. The 

advantage of using Ks_.. over the other three methods 

is more evident when the input data contains high pre-

mRNA content or the AS events of interest stem from 

highly-expressed genes.

On the usefulness of KS_2.2.0 on real data

In order to give an indication of the usefulness of our 

repeat-avoiding bubble enumeration algorithm with real 

data, we also ran Ks_.. and Ks_.. on the SK-N-

SH Human neuroblastoma cell line RNA-seq dataset 

(wgEncodeEH000169, total RNA). In Fig. 8, we have an 

example of a non-annotated exon skipping event not 

found by Ks_... Observe that the intronic region 

contains several transposable elements (many of which 

are Alu sequences), while the exons contain none. This 

is a good example of a bubble (exon skipping event) 

drowned in a complex region of the de Bruijn graph. 

The bubble (composed by the two alternative paths) 

itself contains no repeated elements, but is surrounded 

by them. In other words, this is a bubble with few 

branching vertices that is surrounded by repeat-associ-

ated subgraphs. Since Ks_.. is unable to differentiate 

between repeat-associated subgraphs and the bubble, it 

spends a prohibitive amount of time in the repeat-asso-

ciated subgraph and fails to find the bubble.

Global assembly

To test our hypothesis that the Branching Measure is able 

to identify problematic transcripts, we evaluated it on the 

transcripts assembled by Trinity on the two simulated 

RNA-seq datasets described in “Local assembly: results” 

section, and on two other real RNA-seq datasets: one 

from the GEUVADIS project [18]1 and one from a neuro-

1 This dataset can be found at the ArrayExpress database (http://www.ebi.

ac.uk/arrayexpress/) under the accession number E-GEUV-6, and we used 

the individual named NA06994, extract name “NA06994.2.M_111215_7 

extract”.
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blastoma SK-N-SH cell line (ENCODE) differentiated or 

not using retinoic acid.2 Even though our method is ref-

erence-free, we have chosen to evaluate it under a model 

species so that we could make use of annotated reference 

genomes to assess if our predictions are correct. We 

compared our measure against two state-of-the-art 

methods for de novo transcriptome evaluation, Rsem-

Eval [4] and TransRate [5], on the specific task of 

identifying chimeric transcripts in Trinity’s assemblies 

on all four described datasets. In all our tests, we used 

the contig impact score of Rsem-Eval as a measure of 

contig correctness. Formally, the contig impact score is a 

statistical measure that compares the hypothesis that a 

particular contig (i.e. transcript) is a true contig with the 

null hypothesis that the reads composing the contig actu-

ally represent the background noise [4]. In other words, 

the contig impact score determines the relative contribu-

tion of each transcript to explaining the assembly. Well-

assembled transcripts should therefore have a high contig 

impact score, and badly assembled transcripts, including 

chimeras, should have a low contig impact score. Tran-

sRate [5], on the other hand, allowed us to work with a 

specific metric representing the probability that a contig 

is derived from a single transcript. This metric denotes 

the probability that the read coverage of a transcript is 

best modelled by a single Dirichlet distribution, rather 

than two or more distributions, and it corresponds to the 

field sCseq of TransRate’s output file contigs.csv.

As was shown before, one of the main errors that 

transcriptome assemblers do is to build chimeric tran-

scripts. We compared the performances of the Branching 

2 This dataset can be found at http://genome.crg.es/encode_RNA_dash-

board/hg19/, and is also accessible with the following accession numbers: 

ENCSR000CPN—SRA: SRR315315, SRR315316 and ENCSR000CTT—SRA: 

SRR534309, SRR534310. For cell lines treated by retinoic acid, the reads 

were 76nt long, while they were 100nt long for the non treated cells. Hence 

we trimmed all reads to 76nt.

Measure, Rsem-Eval, and TransRate on identifying 

chimeric transcripts. In order to have our ground truth, 

we first identified which assembled transcripts are chi-

meric with respect to a reference genome by using Algo-

rithm 1. In total, 253 out of 18,706 transcripts (1.3%) in 

the 5% pre-mRNA dataset, 376 out of 26,407 transcripts 

(1.4%) in the 15% pre-mRNA dataset, 375 out of 99,591 

transcripts (0.3%) in the GEUVADIS dataset, and 2830 

out of 457,383 transcripts (0.6%) in the SKNSH dataset 

were classified as chimeric. Figure  9 depicts four ROC 

curves showing the performance of the three methods 

on all datasets. We can observe that the Branching Meas-

ure outperforms both Rsem-Eval and TransRate by a 

large margin in all tests and, with a high-value threshold, 

is also able to flag a majority of the chimeric transcripts 

while keeping a low false positive rate. These experiments 

show that, in the provided datasets, chimeric transcripts 

could be well captured by the Branching Measure. Our 

false positives include well-assembled transcripts tra-

versing high copy-number low divergence repeats, and 

our false negatives include chimeric transcripts that did 

not go through a complex region. The main issue with 

Rsem-Eval and TransRate, on the other hand, is that 

both methods failed to find chimeric transcripts assem-

bled from genes with similar expression levels. These 

chimeras had low scores and corresponded to the false 

negatives at the end of the ROC curves for Rsem-Eval 

and TransRate. As a side effect of this misclassifica-

tion, many well-assembled transcripts had higher scores 

than several real chimeras, and were mistakenly flagged 

as chimeras.

Fig. 8 One of the bubbles found only by KS_2.2.0 with the corresponding sequences mapped to the reference human genome and visualised 

using the UCSC Genome Browser. The first two lines correspond to the sequences of, respectively, the shortest (exon exclusion variant) and longest 

paths (exon inclusion variant) of the bubble mapped to the genome. The blue line is the Refseq annotation. The last line shows the annotated SINE 

and LINE sequences (transposable elements)
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Fig. 9 The performance of the Branching Measure, RSEM-EVAL, and TRANSRATE on identifying chimeric transcripts on the four datasets described in 

“Global assembly” section. BM-x stands for Branching Measure using a window of size x. In this test, the 10% leftmost and rightmost parts of the 

transcripts were disregarded in the Branching Measure calculation. a Simulated dataset with 5% pre-mRNA. b Simulated dataset with 15% pre-

mRNA. c GEUVADIS dataset. d SKNSH dataset
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Algorithm 1: GetChimericTranscripts(T , G)
Definition 1: An alignment a(t,G) of t to G is a good alignment if it aligns
more than 80% of t with matches;
Definition 2: An alignment a(t,G) of t to G is a potential chimeric
alignment if it aligns at least 100 bases, but less than 80% of t with matches;
Definition 3: If we have two alignments a1 and a2 such that the largest covers
at least 80% of the smallest, we can merge a1 and a2 into an alignment am,
where the start position of am is the leftmost start position between a1 and a2

and the end position of am is the rightmost end position between a1 and a2.
Data: Set of transcripts T and a reference genome G
Result: Set of chimeric transcripts C
Map each t ∈ T to G (e.g. using Blat);
C ← ∅;
foreach t ∈ T do

if t has no good alignments and t has 2 or more potential chimeric
alignments then

Let MPCA be all maximal potential chimeric alignments of t;
Let MMPCA be a set obtained by merging all alignments in MPCA

until convergence;
if |MMPCA| ≥ 2 then

C ← C ∪ t

return C

the design of an algorithm for efficiently identifying AS 

events that are not included in repeated regions. The new 

algorithm was implemented in KisSplice version 2.2.0, 

and by using simulated RNA-seq data, we showed that it 

improves significantly the sensitivity of the previous ver-

sion of KisSplice, while also improving its precision. In 

addition, we compared our algorithm to Trinity and 

Oases, and showed that for the specific task of calling 

AS events, our algorithm is significantly more sensitive 

while also being more precise. Our results also showed 

that the advantage of using KisSplice version 2.2.0 is 

more evident when the input data contains high pre-

mRNA content or the AS events of interest stem from 

highly-expressed genes. Moreover, we gave an indication 

of the usefulness of our method on real data. Finally, we 

explored the proposed model in the context of full-length 

transcriptome assembly by introducing the Branch-

ing Measure, which is able to flag the transcripts that go 

through a complex region in the de Bruijn graph. Even 

though one should not directly consider low-confidence 

transcripts as erroneous ones since they could have been 

correctly assembled despite the hardness, the described 

Concluding remarks and perspectives
Although transcriptome assemblers are now commonly 

used, their way to handle repeats is not satisfactory, argu-

ably because the presence of repeats in transcriptomes 

has been underestimated so far. Given that most RNA-

seq datasets correspond to total mRNA extractions, 

many introns are still present in the data and their repeat 

content cannot be simply ignored. Although repeats in 

transcriptomic and genomic data cause similar problems 

to assemblers, the specificities of each mean that a suc-

cessful strategy in one context may fail in the other. It is 

thus essential for transcriptome assemblers to formally 

address the repeats problem.

In this paper, we first proposed a simple formal model 

for representing high copy-number repeats in RNA-seq 

data. Exploiting the properties of this model, we estab-

lished that the number of compressible arcs is a rel-

evant quantitative characteristic of repeat-associated 

subgraphs. We proved that the problem of identifying 

in a de Bruijn graph a subgraph with this characteris-

tic is NP-complete. However, this characteristic drove 
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measure is useful from a user’s point-of-view since it ena-

bles to flag the transcripts that result from a “difficult” 

choice during the assembly, no matter which assembler 

is used. We showed that this measure can indeed cap-

ture assembly errors in real cases and, when compared 

to Rsem-Eval [4] and to TransRate [5] on the specific 

task of identifying chimeric transcripts, the measure we 

propose outperformed the ones used by Rsem-Eval and 

TransRate by a large margin. The originality of our 

work, when compared to other methods for transcrip-

tome assembly evaluation, is that we use only the topol-

ogy of the graph. Despite the successful application of the 

Branching Measure in global transcriptome assembly, it 

remains a simple method, and in particular, we would 

like to emphasise that it must be seen as a proof of con-

cept that exploring the topology of the subgraph around 

a transcript can give some hints about its confidence 

level, quality, assembly hardness, etc. The method pro-

posed is not a full-fledged one for assessing transcripts in 

a de novo context. It could however be a promising direc-

tion to improve transcriptome assembly evaluation, espe-

cially when combined with statistical and read-mapping 

approaches (e.g. Rsem-Eval [4] or TransRate [5]).

As concerns the local transcriptome assembly of 

variations, the most interesting open problem which 

currently remains is how to efficiently enumerate 

AS events whose variable region (e.g. skipped exon, 

retained intron) traverses repeats. Although the appli-

cation of the proposed model enabled to retrieve sev-

eral AS events that were previously missed, the current 

algorithm is still only able to avoid repeats, not to 

solve them. The presence of repeats in RNA-seq data 

shows that transcriptome assemblers should formally 

address the repeats issue, as is generally the case of 

genome assemblers, preferably by solving them. Even 

if repeats are less frequent in transcriptomic data and 

are thus easier to solve than in the genomic context, 

the complexity and ambiguity they add are enough to 

cause problems if not addressed properly. If this is not 

done, it will impact the assembly of full-length tran-

scripts or variants, leading to either erroneous or frag-

mented ones, especially in regions that are more prone 

to contain repeats, such as introns, UTRs, and exonised 

repeats.

As concerns future works, our repeats model could be 

improved. One direction would be to employ a tree-like 

structure to take into account the evolutionary nature of 

repeat (sub)families. Variability in the sizes of the copies 

of a repeat family would also enable to model more real-

istically the true nature of families of transposable ele-

ments (the type of repeats which cause most trouble in 

assembly). Another example would be to explicitly model 

sequencing errors in Theorem  1. Although, in practice, 

assemblers like KisSplice [1] employ a sequencing error 

removal module, it remains unclear how to distinguish 

the structures created by sequencing errors from the 

ones induced by a lowly-expressed member of a highly-

expressed family of repeats, or by infrequent allelic dif-

ferences in pool-seq. The difficulty increases in regions 

that are highly expressed or that present sequencing 

error bias. In practice, error removal strategies may be 

too stringent and erroneously remove SNPs and repeats. 

Taking into account the sequencing errors in the model 

would make it applicable even without any pre-process-

ing of the data, and would thus be more sensitive for find-

ing repeats if such errors are correctly modeled. Finally, 

the Branching Measure could also be extended to identify 

truncated transcripts and isoforms stemming from par-

alogous genes.
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In the last 10 years, the prevalence of alternative splicing has been completely re-evaluated. Recent reports claim 
that more than 90% of multi-exon genes produce at least two splicing variants1,2. The depth at which transcrip-
tomes can be sampled with next generation sequencing techniques opens the possibility not only to annotate 
splicing variants in various conditions, but also to detect which transcripts are differentially spliced across patho-
logical and physiological conditions.

This growing interest in splicing both as a fundamental process and because of its implication in pathologies3–5 
has been accompanied by an increasing number of methods aiming at analyzing RNAseq datasets6–8. The ultimate 
goal of these methods is to identify and quantify full-length transcripts from short sequencing reads. This task is 
particularly challenging and recent benchmarks show that all methods still make a lot of mistakes9. The difficulty 
of reconstructing full-length transcripts (isoform-centric approaches) also prompted a number of authors to 
focus on identifying exons that are differentially included within transcripts (exon-centric approaches)10–13.

Whether they are exon- or isoform-centric, methods to study splicing from RNAseq data can further be 
divided in two main categories14. The mapping-first approaches first map the reads to the reference genome and 
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the mapped reads are then assembled into exons and eventually transcripts. In contrast, assembly-first approaches 
first assemble the reads based on their overlaps. The assembled sequences (corresponding to sets of exons) are 
then aligned to the reference genome.

Mapping-first approaches have been the most used so far, essentially because they were the first to be devel-
oped and because they initially required less computational resources. De novo assembly methods were also 
thought to be restricted to non-model species, where no (good) reference genome is available, and they seemed 
to be inadequate when an annotated reference genome is available.

Recent progress in de novo transcriptome assembly is clearly changing this view, and the argument of the 
heavier computational burden does not hold anymore.

The application of de novo assembly to human RNAseq datasets however still remains rare, although some 
studies have already shown its potential to detect novel biologically relevant splicing variants15,16.

The generalization of de novo assembly approaches for studying splicing in human seems to be mostly impeded 
by the lack of a clear evaluation of its potential interest in comparison to more traditional mapping-based 
approaches.

This is the gap we aim at filling with the work presented here.
To achieve this goal, we performed a systematic evaluation of an assembly-first and a mapping-first approach 

on two RNAseq datasets.
As a first step, we compared pipelines that we developed in parallel, namely KisSplice and FaRLine, because 

we could easily control their parameters. Any difference between the predictions that is solely due to a parameter 
setting could be fixed easily, which enabled us to obtain a precise understanding of the irreducible differences 
between the two approaches.

In a second step, we confirmed the generality of our findings by benchmarking our methods against Cufflinks6, 
MISO11 and Trinity17, which are widely used pipelines.

A significant part of our work has been to manually dissect a number of cases found by only one of the two 
methods. This enabled us to go beyond a simple qualitative description and provide the community with a precise 
understanding of which cases are overlooked by each type of method, and where new methods are needed.

All the software and step-by-step protocols presented in this work are freely available at http://kissplice.prabi.
fr/pipeline_ks_farline. This should facilitate the reproducibility of our work, and applications to other datasets.

From a general point of view, the combination of approaches we propose should enable to improve 
splicing-related transcriptomic analyses in physiological and pathological situations.

S  and F . Figure 1 presents schematically the two pipelines that we developed and com-
pared. A detailed description of each step is given in the Methods section. In the assembly-first approach, a De 
Bruijn graph is built from the reads. Alternative splicing events, which correspond to bubbles in this graph are 
enumerated and quantified by KisSplice. Each path is then mapped on the reference genome using STAR and the 
event is annotated by KisSplice2RefGenome, using the EnsEMBL r75 annotations as an evidence. Importantly, 
exons not present in the annotations can be identified by this approach. In the mapping-first approach, reads 
are aligned to the reference genome using TopHat2. Mapped reads are then analyzed by FaRLine, using the 
EnsEMBL r75 annotations as a guide.

We also tested STAR instead of TopHat2 for the mapping-first pipeline, and found that our main results were 
essentially unchanged (see Methods).

Quantification of splicing variation is performed similarly in the two pipelines. Only junction reads are con-
sidered. Exonic reads are not considered, for reasons exposed in Methods. For the inclusion isoform, there are 
two junctions to consider. We calculate the mean of the counts of these two junctions.

The differential analysis is performed by a common method for the two approaches: kissDE, which tests if the 
relative abundance of the inclusion isoform has changed significantly across conditions.

Overall, we developed and adapted jointly these two pipelines in order to minimize the discrepancies that 
could complicate the comparison.

Applying KisSplice and 
FaRLine to the same RNAseq datasets generated by the ENCODE consortium (SK-N-SH cell lines treated or 
not with retinoic acid), we noticed that 68% of the alternatively skipped exons (ASE) identified by KisSplice 
were also identified by FaRLine and that 24% of ASEs identified by FaRLine were also identified by KisSplice 
(Fig. 2A). This observation highlights that the mapping-first approach predicts a much larger number of events. 
This difference in sensitivity is due to the fact that while mapping-first approaches require that each exon junction 
is covered by at least one read, assembly-first approaches require overlapping reads across the entire skipped exon. 
Therefore, it can be anticipated that low abundant isoforms, that are covered by few reads, will be reported by 
mapping, but not by the assembly-first approach. Supporting this prediction, we observed that for ASEs reported 
only by FaRLine, the number of reads supporting the minor isoform is much lower than in the other categories 
(Fig. 2 B). The same results were obtained using another RNAseq dataset representing MCF-7 cells expressing or 
not the DDX5 and DDX17 splicing factors (Supplementary Figure S1).

Having clarified that rare variants are better handled by the mapping-first approach, we decided to filter them 
out, in order to analyse other differences between the two approaches. Experimental validations by RT-PCR that 
we performed on rare variants stratified by read support enabled us to clarify that both an absolute and a relative 
cutoff on the number of reads are required to discriminate variants which can be validated from those which 
cannot. Indeed, out of the 48 tested cases, we were able to validate 41 (Supplementary Figure S9). The non vali-
dated cases indeed corresponded to cases supported by fewer reads. However, what really departed them from 
the validated cases was their lower relative abundance (Supplementary Figure S10, Supplementary Table 1). In the 
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remaining of our work, we chose to use both criteria and we filtered variants supported by less than 5 reads, and 
less than 10% compared to the major isoform.

As expected, the proportion of candidates reported simultaneously by both methods increased significantly. 
Approximately 70% of predicted skipped exons were indeed found by both approaches after filtering lowly 
expressed isoforms. (Fig. 2C, Supplementary Figure S1C).

Furthermore, the estimation of their inclusion rates was consistent across the two approaches (R2 > 0.9)).
Beyond the overall concordance of the two approaches in detecting common splicing events, a number of 

candidates remained reported by only one approach. Since many of them have a highly-expressed minor isoform 
(supported by more than 100 reads) (Fig. 2D, Supplementary S1D), the failure of one approach to detect them is 
likely not due to a lack of coverage.

For events only found by one approach, we patiently dissected the reasons why they could have been missed 
out by the other approach. This enabled us to define 4 main categories which cover 70% of the cases (Fig. 3A) The 
remaining 30% of cases did not fit into clearly defined biological categories. We however classified them using 
methodological criteria. The full list of categories is presented in Supplementary Table 2. For each of the 4 main 
categories, we selected cases to validate experimentally. All 34 RT-PCR validations were successful and are pre-
sented in Supplementary Figure S11 confirming that these events are not false positives.

The first category corresponds to cases 
that were missed out by the mapping-first approach and corresponds to alternative splicing events involving novel 
exons or novel combinations of existing exons.

Figure 1. The two pipelines compared in this study: KisSplice and FaRLine. The first step of KisSplice is to 
assemble the reads and extract the splicing events. These events are then mapped back to the reference genome 
and classified by event type. The annotated and quantified events are then used for the differential analysis 
between the biological conditions. In contrast, the first step of FaRLine is to map the reads on the reference 
genome. From this mapping, annotated and quantified events are extracted. Finally, the differential analysis is 
done with the same method as in the KisSplice pipeline.
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There are two reasons to explain why the mapping-first approach does not detect these events. First the map-
per may fail to map the reads, or map them to an incorrect location, as junction discovery using short reads is 
a challenging task. Second, even in the case where the mapper succeeds, FaRLine may fail to report the event 
because it relies on annotations. Among these 1864 cases, we distinguished 3 sub-categories of errors due to the 
annotation. Either the exon is unannotated (30%), one of its flanking exon is unannotated (13%) or both exons 
are annotated but no transcript combining them was annotated (57%).

The assembly-first approach, KisSplice, does not consider annotations, and an interesting resulting advantage 
is that novel junctions have the same chance to be assembled as known junctions. Mapping assembled novel junc-
tions to the genome is indeed less challenging than read mapping because the assembled sequences are longer.

More importantly, the ability of KisSplice to identify novel splicing events comes from the fact that it intro-
duces known annotations as late as possible in its pipeline (see Methods). Annotations are used as an evidence, 
not as a filter. AS events involving novel splice sites are clearly identified as such, and can be specifically tested and 
experimentally validated. More than 99% of the novel splice sites were canonical splice sites (GT-AG).

As an example, the HIRA gene contains a novel exon, whose inclusion is supported by at least 20 reads on each 
junction (Fig. 3B, Supplementary Figure S8A). This case was overseen by the mapping-first approach, FaRLine. 

Figure 2. Comparison of the ASE identified by the assembly-first and mapping-first pipelines. (A) Venn 
diagram of ASEs identified by the two pipelines. FaRLine detected many more events than KisSplice. 68% of 
ASE found by KisSplice were also found by FaRLine and 24% of ASE detected by FaRLine were also found 
by KisSplice. (B) Boxplot of the expression of the minor isoform in the 3 categories defined in the Venn 
diagram of panel A: ASE identified only by FaRLine, ASE identified by both pipelines and ASE identified only 
by KisSplice. The number of reads supporting the minor isoform of the ASE identified by FaRLine is overall 
much lower. Many isoforms are supported by less than 5 reads. (C) Venn diagram of ASEs identified by the two 
pipelines after filtering out the poorly expressed isoforms (less than 5 reads, or less than 10% of the number of 
reads supporting both isoforms). The common events represent a larger proportion than before filtering: 77% 
of the ASE identified by FaRLine and 69% of the ASE identified by KisSplice. (D) Boxplot of the expression of 
the minor isoform in the 3 categories defined in the Venn diagram of panel C: ASE identified only by FaRLine, 
ASE identified by both pipelines and ASE identified only by KisSplice. The distribution of the number of reads 
supporting the minor isoform is similar for the 3 categories with highly expressed variants in each category.
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The panel B of the Supplementary Figure S8 shows an example of an ASE not reported by FaRLine because the 
included exon was not present in the transcripts.

The second category of splicing events identified by only one approach corresponds to recent gene duplica-
tions. Untangling the relation between alternative splicing and gene duplication is a difficult topic, subject to 
debate18,19. It is indeed difficult to assess the amount of alternative splicing that occurs within paralogous genes. 
With the mapping-first approach, the reads stemming from recent paralogs are classified as multi-mapping reads. 
FaRLine, like the vast majority of mapping-first pipelines, discards these reads for further analysis, as their pre-
cise location cannot be clearly established. This results in silently underestimating alternative splicing in recent 
paralog genes. Note that setting the mapper to keep multi-mapping reads in the analysis leads to overestimating 
alternative splicing, as all members of the family will be predicted as alternatively spliced. In opposition, de novo 
assembly can faithfully state that a family of recent paralogs collectively produce two isoforms that vary in their 
sequence. However, whether the two isoforms are produced from the same locus or from different loci remains 
undetermined. KisSplice detects these cases of putative AS in paralog genes. Figure 3C illustrates the case with 

Figure 3. (A) Main categories explaining why some exons are detected by only one method. (B) The exon in 
intron 8 of the HIRA gene is an example of an exon not annotated in EnsEMBL r75. This event was identified by 
KisSplice but not by FaRLine. (C) RASA4 and RASA4B are 2 paralog genes. KisSplice detected 2 isoforms that 
could be produced by these 2 genes. FaRLine did not detect any event in either of these genes. The exon skipped 
is exon 18 in RASA4 (corresponding to exon 17 in RASA4B). The third band on the RT-PCR is the inclusion 
of another exon in the intron 18 of RASA4. (D) Exon 2 of the RAB5C gene is an example of exon skipping 
overlapping an Alu element identified only by FaRLine. The events in panel B to C were validated by RT-PCR. 
(E) The RPAIN gene contains a complex event with a lowly expressed isoform. This weakly expressed isoform 
was not identified by KisSplice, while the other isoforms were identified by both approaches.
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genes RASA4 and RASA4B. Exon 18 in RASA4 (denoted as exon 17 in RASA4B) was detected to be skipped. 
The exclusion isoform is supported by 160 reads, while the inclusion isoform is supported by 400 reads. The 
mapping-first approach did not detect either of these isoforms at all. Another example from this category is pre-
sented in Supplementary Figure S2C.

The third category of splicing events identified by only one approach corresponds to cases that are missed 
out by the assembly-first approach. Out of the 1663 cases belonging to this category, a large fraction (21%) cor-
responds to cases where the skipped exon overlaps a repeat, notably Alu elements. Alu are transposable elements 
present in a very large number of copies in the human genome20. Most of these copies are located in introns and 
a number of them have been exonised21,22. The reason why the mapping-first approach is able to identify these 
cases is because even though the reads partially map to repeated sequences, the boundaries of these exons are 
unique and annotated. Hence the mapper, if set properly, can map these reads to unique annotated exon junctions 
and is not confused by multiple mappings. Importantly, if the annotations are not provided to the mapper, it will 
be confused by multiple mappings and will not be able to map the read to the correct location (Supplementary 
Figure S7). Figure 3D and Supplementary Figure S2D represent two RT-PCR validated Alu-derived exons identi-
fied by the mapping-first approach. The assembly-based approach fails to detect most of these events. The reason 
is that, although they do form bubbles in the DBG generated by the reads, these bubbles are highly branching 
(supplementary figure http://kissplice.prabi.fr/sknsh/graph_RAB5C_distance_3.html23). Enumerating branch-
ing bubbles is computationally very challenging, and may take a prohibitive amount of time. In practice, we 
restrict our search to the enumeration of bubbles with at most 5 branches (Supplementary Figure S12A).

The fourth category of splicing events identified by only one approach corresponds to cases where more 
than two splicing isoforms locally coexist, and one of them is poorly expressed compared to the others. The 
RPAIN gene is a good illustration of such cases (Fig. 3E), as exons 5 and 6 of RPAIN may be skipped and the 
intron between exons 4 and 5 may be retained. While both methods successfully reported the skipping of exon 
6, with exons 5 and 7 as flanking, FaRLine additionally reported the skipping of the same exon, but with exons 
4 and 7 as flanking exons. The reason why KisSplice did not report this case is because the junction between 
exons 4 and 6 is relatively weakly supported. More specifically, this junction is supported by only 55 reads, which 
accounts for less than 2% of the total number of reads branching out from exon 4. Transcriptome assemblers, 
like KisSplice, usually interpret such relatively weakly supported junctions as sequencing errors or spurious 
junctions in highly-expressed genes, therefore disregarding them in the assembly phase (see Supplementary 
Methods). Supplementary Figure S2E shows another example of a complex event not correctly handled by 
KisSplice because there were locally more than 5 branches.

Beyond the tasks of identifying exon skip-
ping events, a natural question which arises when two conditions are compared is to assess if the exon inclusion 
rate significantly changed across conditions.

In order to test this, we took advantage of the availability of replicates for both the SK-N-SH cell line and the 
same cell line treated with retinoic acid. For each detected event, we tested with kissDE24, whether we could 
detect a significant association between one isoform and one condition. Focusing on those condition-specific 
events, we again partitioned them in events reported by both methods, by FaRLine only and by KisSplice only. 
As shown in Fig. 4, the majority of condition-specific events were detected by both approaches. This is the case 
for instance of exon 22 of gene ADD3 which is clearly more included upon retinoic acid treatment (Fig. 4C), 
with a DeltaPSI of 27%. The estimation of the DeltaPSI is overall very similar across the two approaches (Fig. 4B) 
with a correlation of 0.94. The outliers essentially correspond to ASE with several alternative donor/acceptor 
sites. KisSplice considers these events as different exons while FaRLine considers them as an unique exon, and 
sums up all the incoming (resp. outgoing) junction counts. Hence, the read counts will differ. Supplementary 
Figure S8D gives an example.

When focusing on condition-specific events, the proportion of events predicted by only one method 
increased, for two main reasons. First, some ASE annotated by both approaches were predicted to be differentially 
included only by one method. This is again due to differences in the quantification of the inclusion rate, especially 
for ASE with multiple 5′ and 3′ splice sites. Second, some of the exons that were missed out by one method at the 
identification step happened to be condition specific. This is the case of an exon in NINL intron 5 (Fig. 4D), only 
identified by KisSplice because it was not annotated. This is also the case of SAR1B exon 3 (Fig. 4E), only iden-
tified by FaRLine because it overlaps with an Alu element. The analysis of the MCF-7 RNAseq dataset gave very 
similar results (Supplementary Figure S3).

The observation that many of the AS events that were annotated only by one method are differentially regu-
lated across conditions confirms that these AS events should not be discarded from the analysis. Focusing only on 
AS events annotated by one approach may lead to miss splicing events which are central in the biological context.

In a first step, we picked FaRLine and KisSplice as examples of a 
mapping-first and an assembly-first approach respectively. Clearly, there are other published methods in both 
categories. MISO is probably the most widely used to annotate AS events. We therefore ran it on the same datasets 
to check how its predictions overlapped with ours. As shown in Fig. 5A (SK-N-SH dataset), 77% of predictions 
made by MISO were common to both FaRLine and KisSplice, 18% were only common with FaRLine, 2% were 
only common to KisSplice and the remaining 3% were specific to MISO. The overlap between the different 
methods was very similar when the MCF-7 RNAseq dataset was used (Supplementary Figure S4A). Overall, 
almost all candidates predicted by MISO were also predicted by FaRLine. This large overlap with FaRLine was 
expected, because both are mapping-first approaches. This also shows that the differences between mapping- and 
assembly-first approaches reported above are not limited to one mapping-first approach.
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Besides exon-centric approaches, which aim at finding the differentially spliced exons, there is also a number 
of published methods which are isoform-centric and have the more ambitious goal to reconstruct full-length 
transcripts at the expense of underestimating alternative splicing.

The most widely used mapping-first and isoform-centric approach is Cufflinks6 that we compared to FaRLine 
using the same dataset. As shown in Fig. 5B (and Supplementary Figure S4B), we found that the vast majority of 
ASE were predicted by both approaches.

Finally, we compared KisSplice to one of the most widely used de-novo transcriptome assembler, Trinity17. 
As shown in Fig. 5D (and Supplementary Figure S4D), most ASE found by Trinity were also found by KisSplice. 
However, KisSplice was significantly more sensitive. The goal of Trinity is to assemble the major isoforms 

Figure 4. (A) Condition-specific variants identified by FaRLine, KisSplice or both methods. Within dashed 
lines are events identified by both approaches but detected as condition-specific by only one approach. (B) 
DeltaPSI as estimated by KisSplice and FaRLine, for events identified by both methods. The red dots represent 
complex events for which KisSplice found at least 2 ‘bubbles’. (C) Exon 22 of the ADD3 gene is an example of 
regulated ASE identified by both approaches. (D) A new exon in intron 5 of NINL gene is identified only by 
KisSplice. The inclusion of this exon is differentially regulated between the 2 experimental conditions. (E) 
Because exon 3 of the SAR1B gene is an exonised Alu element, only FaRLine identified this event. Moreover 
this exon is significantly more included in the treated cells (SK-N-SH RA) compared to the control cells.
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for each gene, it therefore largely under-estimates alternative splicing, especially inclusion/exclusion of short 
sequences.

For completeness sake, we also provide an all-vs-all comparison (Supplementary Figure S5). An interac-
tive version of this Figure is available at http://kissplice.prabi.fr/pipeline_ks_farline/. The list of events found 
by any used method can be retrieved from this interactive figure and analysed in IGV, to reproduce the sashimi 
plots of the paper. The general conclusions from these comparisons is that there is a clear distinction between 
mapping-first and assembly-first approaches, and between exon-centric and isoform-centric approaches, the lat-
ter being less sensitive.

De novo assembly is usually applied to non-model species where no (good) reference genome is available. We 
show here that even when an annotated reference genome is available, using assembly offers a number of advan-
tages. We named this approach “assembly-first” because it does use a reference genome, but as late as possible in 
the process, in order to minimize the a priori on which exons should be identified.

Using this strategy, we identified novel alternatively skipped exons, which were not identified by traditional 
read mapping approaches (Fig. 3 and Supplementary Figure S2). While it is believed that the human genome is 
fully annotated, it is important to underline that we have not yet established a final map of the parts of the genome 
that can be expressed. It can be anticipated that sequencing of single-cells from different parts of the body will 
lead to the discovery of a huge diversity of transcripts and that a substantial number of new exons will be dis-
covered. An example is the case of unannotated skipped exons which overlap with repeat elements. We cannot 
exclude that this category is currently largely under-annotated.

We also showed that assembly-first approach has the ability to detect splicing variants within recently dupli-
cated genes (Fig. 3 and Supplementary Figure S2). This is because mapping approaches discard reads which map 
to multiple genomic locations. Identification of such splicing variants produced from different genomic regions 

Figure 5. (A) 77% of ASE identifed by MISO are also annotated by FaRLine and KisSplice. 18% of MISO’s 
ASE are also annotated by FaRLine while only 2% of MISO’s ASE are also annotated by KisSplice. Finally, 
only 3% of these ASEs are only annotated by MISO. (B) Most of the events annotated by Cufflinks are identified 
by FaRLine. (C) GTF2I exon 13 is an example of an ASE annotated by FaRLine but not by Cufflinks. Indeed, 
Cufflinks only identified the isoform corresponding to the exon inclusion. (D) Most of the events annotated by 
Trinity are also annotated by KisSplice. But half of the ASE annotated by KisSplice are not annotated by the 
global assembler Trinity. (E) KisSplice annotates an ASE in the RFWD2 gene, while Trinity only identified the 
isoform corresponding to the exon inclusion. The events in panels C and E have been validated by RT-PCR.
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sharing sequence similarities (e.g. paralog genes, pseudogenes) is however very important, since splicing variants 
generated from paralogous genes but also from pseudogenes may have different biological functions25.

Conversely, we showed that some ASE were detected only by the mapping-first approach. As shown in 
Fig. 2 (and Supplementary Figure S1), we observed that the mapping-first approach has a better ability to detect 
lowly-expressed splicing variants. Although such lowly-expressed splicing variants are often considered as 
“noise” or biologically non relevant, caution must be taken with such assumptions for several reasons. First, 
mRNA expression level is not necessarily correlated with protein expression level. Second, as observed from 
single-cell transcriptome analyses, some mRNAs can be expressed in few cells, within a cell population (e.g. 
they are expressed at a specific cell cycle step) and may therefore appear to be expressed at a low level in total 
RNAs extracted from a mixed cell population26. Therefore, computational analysis should not systematically dis-
card lowly-expressed splicing variants and filtering these events should depend on the biological questions to be 
addressed.

We also observed that the mapping-first approach better detects exons corresponding to annotated-repeat 
elements (Fig. 3 and Supplementary Figure S2). While it has been assumed for a long time that repeat elements 
are “junk”, increasing evidences support important biological functions for such elements. For example, repeat 
elements like Alu can evolve as exons and the presence of Alu exons in transcripts has been shown to play impor-
tant regulatory functions22,27.

When two methods give non-overlapping predictions, the temptation could be to focus on exons found by 
both approaches and to discard the others. We argue that this is not the best option, because approach-specific 
cases can be validated experimentally, and also because many of them correspond to regulated events, i.e. the 
inclusion isoform is significantly up or down regulated depending on the experimental condition.

In conclusion, combining mapping- and assembly-first approaches allows to detect a larger diversity of splic-
ing variants. This is very important towards the in depth characterization of cellular transcriptome although other 
approaches are further required to analyze their biological functions.

From a computational perspective, a number of challenges are still ahead. The co-development of two 
approaches enabled us to narrow down the list of difficult instances not properly dealt with by at least one 
approach, but we cannot exclude that some categories are still missed out by both approaches. The categories of 
challenging cases that we defined in Fig. 3: lowly-expressed variants, exonised Alu, complex splicing variants, par-
alogs have been overlooked up to now. Possibly because they are much harder to detect, they have been assumed 
to play a minor role in transcriptomes, but more recent studies however argues the opposite.

For exonised ALUs, paralog genes and genes with complex splicing patterns, the possibility to sequence longer 
reads with third generation techniques28,29 should prove very helpful. The number of reads obtained with these 
techniques is however currently much lower than with Illumina, thereby preventing their widespread use for dif-
ferential splicing, for which the sequencing depth, and not so much the length of the reads, is the critical parame-
ter which conditions the statistical power of the tests. In the coming years, methods combining second and third 
generation sequencing should enable to obtain significant advances in RNA splicing.

Figure 1 shows the two pipelines that we are comparing. While STAR and TopHat 
are third-party softwares, we developed the other methods ourselves. KisSplice was first introduced in Sacomoto 
et al.13. The novelty here is that its usage is now possible in the case where a reference genome is available, which 
required specific methodological developments implemented in the newly released KisSplice2RefGenome 
software. kissDE was first introduced in Lopez-Maestre et al.24 in the context of SNPs for non-model species. 
We present here its extension for alternative splicing. FaRLine is a new mapping-first pipeline, that we intro-
duce in this paper. It is the RNAseq pipeline associated to the FasterDB database30 and was already successfully 
applied to the analysis of the effect of metformin treatment on myotonic dystrophy type I (DM1) with a valida-
tion rate of 95%31. Specifically, 20 cases of ASE regulated by the metformin treatment were tested, and 19 were 
validated. In this paper, we provide additional validations of FaRLine with similar validation rates (36 out of 38), 
Supplementary Figure S19.

For the sake of self-containment, we explain all methods here.

KisSplice. KisSplice is a local transcriptome assembler. As most short reads transcriptome assemblers8,17,32, it 
relies on a De Bruijn graph (DBG). Its originality lies in the fact that it does not try to assemble full-length tran-
scripts. Instead, it assembles the parts of the transcripts where there is a variation in the exon content. By aiming 
at a simpler goal, it can afford to be more exhaustive and identify more splicing events. The key concept on which 
KisSplice is built is that variations in the nucleotide content of the transcripts will correspond to specific patterns 
in the DBG called bubbles (Supplementary Figure S13). KisSplice’s main algorithmic step therefore consists in 
enumerating all the bubbles in the graph built from the reads. Examples of bubbles in the DBG and explanation 
of the parameters used to filter out sequencing errors and repeat-induced bubbles are given in Supplementary 
Methods.

Annotating the events with KisSplice2RefGenome. KisSplice outputs bubbles in the form of a pair of 
fasta sequences. Clearly, such information is insufficient to analyse alternative splicing for model species. 
KisSplice2RefGenome enables to provide for each bubble: the gene name, the AS event type, the genomic coor-
dinates and the list of splice sites used (novel or annotated).

Bubbles found by KisSplice are mapped to the reference genome using STAR, with its default settings, which 
means that in the case of multi-mappings, STAR reports all equally best matches. The mapping results are then 
analysed by KisSplice2RefGenome. Bubbles are classified in sub-types depending on the number of blocks 
obtained when mapping each path of the bubble to the genome (Supplementary Figure S14). For exon skipping, 
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the longer path of the bubble corresponds to 3 blocks, while the lower path corresponds to 2 blocks. The splice 
sites are located and compared to the annotations. Events with novel splice sites are reported explicitly as such in 
the output of the program.

In the case where the bubble corresponds to a genomic insertion or deletion, it exhibits a specific pattern in 
terms of block numbers (one block for one path and two blocks for the other) and is reported separately.

The criterion of the number of blocks is discriminative in most cases. However, there is a possible confusion 
between intron retentions and genomic deletions, since in both cases, the longer path will map into one block 
and the lower path in two blocks. In this case, we also use the distance between the blocks, and introduce a 
user-defined threshold, which we set to 50nt, below which the bubble is classified as a genomic deletion, and 
above which it is classified as an intron retention.

In the special case where the exon flanking the AS event is very short (less than k nt), the number of blocks is 
increased for both paths, but the difference of number of blocks remains unchanged.

In the special case where there is a genomic polymorphism located less than k nt apart from the AS event, 
KisSplice will report several bubbles (possibly all combinations of genomic and transcriptomic variants). This 
redundancy is removed in KisSplice2RefGenome where the primary focus in on splicing.

In the case where the bubble maps to two locations on the genome, a distinction is made between the case 
of exact repeats where both paths map to both locations and inexact repeats where each path maps to a distinct 
location (Supplementary Figure S12B). The cases of exact repeats correspond to recent gene duplications.

FaRLine. FasterDB EnsEMBL r75 annotation. FasterDB RNAseq Pipeline, FaRLine, uses the FasterDB-based 
EnsEMBL r75 annotation database. FasterDB is a database containing all annotated human splicing variants30.

Each transcripts present in the FasterDB, is composed of a succession of exons, that we call transcript exons 
(represented in blue in Supplementary Figure S15). The genomic exons (represented in red in Supplementary 
Figure S15) are defined by projecting the transcript exons. First, the transcript exons are grouped by position. 
Then each group of exons defines a projected exon with the following rules:

The start is the leftmost start of the non-first-exon of the group.
The end is the rightmost end of the non-last-exon of the group that ends before the start of the next group of 
exons.

When the most frequent event annotated in the transcripts is an intron retention, the projected genomic exon 
is defined as a combination of the two exons flanking the retained intron. In Supplementary Figure S15, the exons 
5 and 6 and the intron 5 are considered as one unique exon. As events included within one exon are not tested, 
this results in some events being missed.

Mapping. The first step of FaRLine is to map the reads to a reference genome. This step is done using 
Tophat-2.0.116. tophat–min-intron-length 30–max-intron-length 1200000\-p 8 [–solexa1.3-quals for Sknsh_rep1 
and Sknsh_rep2]\–transcriptome-index

A transcriptome index has been built by TopHat using EnsEMBL r75 annotations in gtf format. When a 
transcriptome index is used, the mapping steps are modified: instead of aligning first to the genome, which 
is the default behavior, TopHat uses Bowtie to align the reads to the transcript sequences first, then align the 
remaining unmapped reads to the genome. Minimal and maximal intron lengths have been modified (default 
70 and 500000) to maximize the number of junctions detected, according to the statistics provided by FasterDB 
EnsEMBL r75 annotations.

The resulting alignment files have been filtered using samtools 0.1.1933.
Samtools view -F 260 -f 1 -q 10 -b
With this step, only the primary alignments are kept. The minimum read alignment quality was set up so that 

multi-mapping reads were removed from the alignment file.

Annotation and quantification of alternative splicing events. For each gene, all the reads with at least one base 
overlapping the gene from the start to the end coordinates are retrieved. CIGAR strings are then used to find the 
alignments blocks. Junction reads are identified by the presence of at least one’N’ letter in the CIGAR. Junction 
reads were filtered if:

More than 10% of soft-clipping was detected in the alignment (it should not be the case with TopHat).
An indel was close to the junction site, as it would make the junction position uncertain.

Junction read alignments are then processed block by block sequentially from left to right. Alignment blocks 
under 4 bp on read extremities are removed from the reads as we considered it is not sufficient to identify cor-
rectly the mapping localization. Then each block is compared to FasterDB annotations to check if the block 
boundaries correspond to known exons annotated in FasterDB, or to a putative new acceptor or donor site. First 
and last alignment blocks for each read must overlap one and only one exon for a read to be considered. For the 
inner blocks, if alignment blocks map to a succession of exons and introns, it is considered as an intron retention. 
For the acceptors and donors, we also added a supplementary filter. If a new donor is identified within a junction, 
we check if the junction also has an acceptor identified of the same length +/−1bp on the other side of the junc-
tion, showing most probably a problem of mapping. Once all the blocks are identified, the block annotations are 
used to annotate putative alternative splicing events: alternative skipped exon, multiple exon skipping, acceptor, 
or donor sites.
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Once all the junction reads are processed, the alternative splicing events identified are pooled and the reads 
participating to each event are quantified, as well as the known exon-exon junction. If an exon-exon junction 
is annotated with multiple known acceptors and/or donors, all the possible junction reads are quantified and 
summed up. To fasten the quantification step, a junction coordinate file with the corresponding read numbers is 
produced from the read alignment using the same filters than described above and will be used for all the quanti-
fication tools: junction, exon skipping, acceptor and donor.

A challenge in defining the alternative skipped exon events is to identify the flanking exons. In the first version 
of FaRLine, these flankings exons were defined as the closest annotated genomic exons. This rule led to miss a lot 
of ASE events. Therefore, to define the flanking exons, we now use the information contained in the transcripts 
and in the reads. We consider each junction which skips an exon and is covered by at least one read. If this junc-
tion is annotated in the transcripts, we extract all annotated events containing this junction. Else, we annotate 
the event with the longest covered inclusion isoform. It allows FaRLine to be more robust to the incompleteness 
of the annotation compared to other methods, like MISO (Supplementary Figure S6). Panel C of Supplementary 
Figure S8 gives an example of an ASE reported by FaRLine but not by MISO because the exclusion isoform is not 
annotated in the transcripts.

Comparison with STAR. We also mapped the reads with STAR, ran FaRLine on these alignments and compared 
the predicted skipped exons with KisSplice. The main results are similar to what we found with TopHat. Indeed, 
without any filter, 69% of ASE annotated by KisSplice are also found by FaRLine and 24% of FaRLine’s event by 
KisSplice (compared to 68% and 24% respectively for the mapping with TopHat). When we filter out the events 
with an unfrequent variant, we show that approximately 70% of predicted ASE are found by both approaches.

Quantification and differential analysis. Both pipelines perform ASE detection and quantification. The quanti-
fication step was done similarly in the two pipelines where only the junction reads were taken into account. To 
evaluate if using exonic reads in the quantification could increase the accuracy of our methods, we ran KisSplice 
on the MCF-7 dataset with the option –exonic reads set to on. In doing so, only the inclusion rate of the AS 
events changes. When comparing usage of only junction reads to usage of both junction and exonic reads, we 
observed that the p-values calculated strongly correlate as shown in Supplementary Figure S16. We found that 
some AS events became significant upon the addition of exonic reads but the opposite also happened. Inspection 
of these events revealed that many are borderline cases, where the p-value is close, but slightly above 5%. A man-
ual inspection of the AS events with a very different p-value upon addition of exonic reads revealed that they cor-
respond to exons overlapping alternative first or last exons (see STARD4, Supplementary Figure S17A) or novel 
exons located in poorly spliced introns (see PANK2 and PRRC2B, Supplementary Figure S17 B and C). Overall, 
we concluded that exonic reads can bring some statistical power in cases where the skipped exon does not overlap 
with any other event. In case of more complex events, exonic reads tend to “pollute” the pairwise comparison.

The last step of the pipelines is the differential analysis of the expression levels of the variants. This task is per-
formed using the kissDE24 R package, which takes as input a table of read counts as in Supplementary Figure S18, 
and outputs a p-value and a DeltaPSI (Percent Spliced In).

Our statistical analysis adopted the framework of count regression with Negative Binomial distribution. We 
considered a 2-way design with interaction, with isoforms and experimental conditions as main effects. Following 
the Generalized Linear Model framework, the expected intensity of the signal was denoted by λijk and was decom-
posed as:

λ μ α β αβ= + + +log ( ) (1)ijk i j ij

where μ is the local mean expression of the gene, αi the contribution of splicing variant i on the expression, βj the 
contribution of condition j to the total expression, and (αβ)ij the interaction term. The target hypothesis was 

αβ ={ }H : ( ) 0ij0  i.e. no interaction between the variant and the condition. If this interaction term is not null, a 
differential usage of a variant across conditions occurred. The test was performed using a Likelihood Ratio Test 
with one degree of freedom. To account for multiple testing, p-values were adjusted with a 5% false discovery rate 
(FDR) following a Benjamini-Hochberg procedure34.

In addition to adjusted p-values, we report a measure of the magnitude of the effect. The measure we provide 
is based on the Percent Spliced In (PSI):

=
+

PSI counts
counts counts (2)condition

variant

variant variant

1

1 2

If counts for a variant are below a threshold, then the PSI is not calculated. This prevents from over-interpreting 
large magnitudes derived from low counts. When several replicates are available for a condition, then a PSI is 
computed for each replicate, and we calculate their mean.

Finally, we output the DeltaPSI:

= −DeltaPSI PSI PSI (3)condition condition1 2

unless one of the mean PSI of a condition could not be estimated. The higher the DeltaPSI, the stronger the effect. 
In practice, we consider only DeltaPSI larger than 0.1, a threshold below which it is difficult to perform any exper-
imental validation.

We downloaded a total of 959 M reads from http://genome.crg.es/encode_RNA_dash-
board/hg19/35. They correspond to long polyA+ RNAs generated by the Gingeras lab, and are also accessible 
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with the following accession numbers (ENCSR000CPN - SRA: SRR315315, SRR315316 and ENCSR000CTT 
-SRA: SRR534309, SRR534310). For cell lines treated by retinoic acid, the reads were 76nt long, while they were 
100nt long for the non treated cells. Hence we trimmed all reads to 76nt.

MCF-7 were transfected (two biological replicates) with siRNA targeting both DDX5 and 
DDX17 RNA helicases, and total RNA were extracted as described previously36. cDNA synthesis was made 
using the TruSeq Stranded Total RNA protocol after Ribo-Zero Gold-mediated elimination of ribosomal RNA 
(Beckman Coulter Genomics). High throughput sequencing (2 × 125 bp) was carried out on an Illumina HiSeq 
2500 platform (Beckman Coulter Genomics), generating between 45 and 50 millions of paired-end pairs of reads. 
Raw datasets are available on GEO under the accession number GSE94372.

Reads were trimmed according to standard quality control filters using prinseq37 and adapter were removed 
using cutadapt38. The resulting reads had length between 25 and 125nt. Because MISO is unable to deal with reads 
of unequal length, we selected only reads with length larger than 100nt (87% of the reads) and trimmed longer 
reads to 100nt.

FaRLine 
took 45 hours and 10 Go of RAM. The time-limiting step was TopHat2, which took 41 hours, even parallelised on 
8 cores. When STAR was tested instead of TopHat2, it took 4 hours, but 30 Go of RAM. KisSplice took 30 hours 
and 10 Go of RAM. The RAM-limiting step was STAR which took 30Go of RAM. All the steps of the pipelines can 
be reproduced using the following tutorial:

http://kissplice.prabi.fr/pipeline_ks_farline.

SK-N-SH cells were purchased from the American Type Culture Collection 
(ATCC) and cultured using EMEM medium (ATCC) complemented with 10% FBS (Thermo Fisher Scientific). 
Cells were differentiated for 48 h using 6 μM of all-trans retinoic acid (Sigma-Aldrich).

After harvesting, total RNA were extracted using Tripure isolation reagent (Sigma-Aldrich), treated with 
DNase I (DNAfree, Ambion) for 30 min at 37 °C and reverse-transcribed (RT) using M-MLV reverse transcriptase 
and random primers (Invitrogen). Before PCR, all RT reaction mixtures were diluted at 2.5 ng μL of initial RNA. 
PCR reactions were performed using GoTaq polymerase (Promega).

MCF7 cells were cultured as described in36. RT-PCRs were performed using the same protocol as for SK-N-SH 
cells.
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Abstract Bubbles are pairs of internally vertex-disjoint (s, t)-paths in a di-
rected graph, which have many applications in the processing of DNA and
RNA data. Listing and analysing all bubbles in a given graph is usually un-
feasible in practice, due to the exponential number of bubbles present in real
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a polynomial-sized subset of bubbles from which all the other bubbles can
be obtained through a suitable application of a specific symmetric difference
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bubble of a graph into the bubbles of such a generator in a tree-like fashion.
Finally, we present two applications of the bubble generator on a real RNA-seq
dataset.

Keywords Bubbles · Bubble generator set · Decomposition algorithm

1 Introduction1

Bubbles are pairs of internally vertex-disjoint (s, t)-paths in a directed graph,2

which find many applications in the processing of DNA and RNA data. For3

example, in the genomic context, genome assemblers usually identify and re-4

move bubbles in order to linearise the graph [16,21,25]. However, bubbles can5

also represent interesting biological events, e.g., allelic differences (SNPs and6

indels) when processing DNA data [9,23,24], and alternative splicing events in7

RNA data [18,17,12,19]. Due to their practical relevance, several theoretical8

studies concerning bubbles were carried out in the past few years [2,4,15,18,9

22], usually related to bubble-enumeration algorithms.10

Although the enumeration of bubbles could be important to describe bio-11

logical events appearing in the sequences, this approach has a significant dis-12

advantage. Indeed, while many biological events can be represented by bubbles13

in a de Bruijn graph (see e.g. [19,14,17]) (the graph build from the reads pro-14

vided by a sequencing process), the opposite is not true: most of the bubbles15

do not correspond to any biological phenomena and appear just because of a16

combination of other events [12,17]. In practice, due to the high throughput17

of second-generation sequencing machines, the genomic and transcriptomic18

De Bruijn graphs tend to be huge, usually containing from millions to billions19

of vertices. As expected, the number of bubbles also tends to be huge, in the20

worst case exponential in the number of vertices. As a consequence, algorithms21

that deal with bubbles either tend to simplify the graph by removing them,22

or just enumerate a small subset of the bubbles. Such subsets usually corre-23

spond to bubbles with some predefined characteristics, and may not be the24

best representatives of the biological phenomena under study. More worrying25

is the fact that, by focusing only on these particular bubbles, all the relevant26

events described by bubbles that do not satisfy the constraints may be lost.27

On the other hand, any algorithm that tries to be more exhaustive, say by28

enumerating a large portion of the bubbles, will certainly spend a prohibitive29

amount of time in real data graphs and thus it is not likely to be practical [12,30

17]. This motivates further work for finding efficient ways to recognise bubbles31

that correspond to relevant events and/or to represent the set of bubbles in a32

more concise way.33

In this paper, we propose an elementary bubble generator, i.e., a subset of34

bubbles that is able to generate any other bubble in the graph. More specifi-35

cally, we show how to identify, for any given directed graph G, a generator set36

G(G) of bubbles which is of polynomial size in the input graph, and such that37

any bubble in G can be obtained in a polynomial number of steps by properly38

combining the bubbles in the generator G(G) through a symmetric difference39
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operator. In several biological applications, it is desirable to decompose a bub-40

ble into elementary bubbles in such a way that only bubbles can be generated41

at each step of the decomposition. This happens, for instance, when one wishes42

to decompose complex alternative splicing events [19] into several elementary43

alternative splicing events. Our bubble generator enjoys this property: in order44

to take this into account, we consider a constrained version of the symmetric45

difference operator, where two bubbles are combinable only if the output is46

also a bubble (i.e., the operator is undefined if the output is not a bubble).47

Moreover, we present a polynomial-time decomposition algorithm that, given48

a bubble B in the graph G, finds a sequence of bubbles from the generator49

G(G) whose combination results in B. Our algorithm can be applied when one50

needs to know how to decompose a bubble into its elementary parts, e.g., when51

one is interested in identifying and decomposing complex alternative splicing52

events [19] into several elementary alternative splicing events.53

At first sight, a bubble generator might seem related to a cycle basis,54

which represents a compact description of all Eulerian subgraphs in a graph.55

The study of cycle bases started a long time ago [13] and has attracted much56

attention in the last fifteen years, leading to many interesting results, such as57

the classification of different types of cycle bases, the generalisation of these58

notions to weighted and to directed graphs, as well as to several complexity59

results for constructing bases. We refer the interested reader to the books of60

Deo [6] and Bollobás [3], and to the survey of Kavitha et al. [10] for an in-depth61

coverage of cycle bases. Unfortunately, problems related to bubble generators62

appear to be very different (and more difficult) from their counterparts in cycle63

bases, so that it does not seem possible to apply directly to bubble generators64

all the techniques developed for cycle bases. Indeed, a cycle basis in a directed65

graph contains subgraphs that are not necessarily directed cycles in the orig-66

inal graph, but more generally cycles in the underline undirected graph [11].67

As a consequence, the techniques developed for cycle bases in undirected and68

directed graphs cannot be applied to our problem, since they do not guaran-69

tee a decomposition into elementary bubbles, which generates only bubbles at70

each step.71

To test the practical effectiveness of our generator set of bubbles, we applied72

it in two different directions in the analysis of a real RNA-seq dataset. First,73

we employed the generator as a preprocessing step in all algorithms that find74

bubbles, by “cleaning” from the graph all unnecessary arcs (i.e. arcs that75

do not belong to any bubble). Second, we use it to find alternative splicing76

(henceforth denoted by AS) events in a reference-free context. In particular,77

some bubbles in our generator set correspond to AS events that are hard to78

find by the state-of-art algorithm for AS events enumeration [12]. However,79

this application should still be seen just as a proof-of-concept on the practical80

potential of the bubble generator or as complementary to current methods,81

since it is still limited for the exhaustive enumeration of AS events. The latter82

would require a non-trivial procedure to enumerate AS-associated bubbles by83

combining generator bubbles and would be beyond the scope of this paper (see84

Section 6).85
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The remainder of this paper is organised as follows. Section 2 presents some86

definitions that will be used throughout the paper. Section 3 introduces our87

bubble generator. Section 4 presents a polynomial-time algorithm for decom-88

posing any bubble in a graph into elements of our bubble generator. Section 589

presents two applications of the bubble generator in processing and analysing90

RNA data. Finally, we conclude with open problems in Section 6.91

2 Preliminaries92

Throughout the paper we assume that the reader is familiar with the standard93

graph terminology, as contained for instance in [5]. A graph is a pair G =94

(V,E), where V is the set of vertices, and E ⊆ V × V is the set of edges. For95

convenience, we may also denote the set of vertices V of G by V (G) and its96

set of edges E by E(G). We further set n = |V (G)| and m = |E(G)|. A graph97

may be directed or undirected, depending on whether its edges are directed or98

undirected. In this paper, will deal with graphs that are directed, unweighted,99

finite and without parallel edges. An edge e = (u, v) is said to be incident to100

the vertices u and v, and u and v are said to be the endpoints of e = (u, v). For101

a directed graph, edge e = (u, v) is said to be leaving vertex u and entering102

vertex v. Alternatively, e = (u, v) is an outgoing edge for u and an incoming103

edge for v. The in-degree of a vertex v is given by the number of edges entering104

v, while the out-degree of v is the number of edges leaving v. The degree of v105

is the sum of its in-degree and out-degree.106

We say that a graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E)107

if V ′ ⊆ V and E′ ⊆ E. Given a subset of vertices V ′ ⊆ V , the subgraph108

of G induced by V ′, denoted by GV ′ , has V ′ as vertex set and contains all109

edges of G that have both endpoints in V ′. Given a subset of edges E′ ⊆ E,110

the subgraph of G induced by E′, denoted by GE′ , has E′ as edge set and111

contains all vertices of G that are endpoints of edges in E′. Given a subset of112

vertices V ′ ⊆ V and a subset of edges E′ ⊆ E, we denote by G \ V ′ the graph113

induced by V \ V ′ and by G \E′ the graph induced by E \E′. Given a set S114

of subgraphs of G, GS denotes the graph induced by the edges in ∪s∈SE(s).115

Given two subgraphs G and H, their union G ∪ H is the graph F for which116

V (F ) = V (G)∪ V (H) and E(F ) = E(G)∪E(H). Their intersection G∩H is117

the graph F for which V (F ) = V (G) ∩ V (H) and E(F ) = E(G) ∩ E(H).118

Let s, t be any two vertices in G. A (directed) path from s to t in G is a119

sequence of vertices and edges s = v1, e1, v2, e2, . . ., vk−1, ek−1, vk = t, such120

that ei = (vi, vi+1) for i = 1, 2, . . . , k−1. Since there is no danger of ambiguity,121

in the remainder of the paper we will also denote a path simply as s = v1, v2,122

. . ., vk−1, vk = t (i.e., as a sequence of vertices). A path is simple if it does123

not contain repeated vertices, except possibly for the first and the last vertex.124

Throughout this paper, all the paths considered will be simple and referred to125

as paths. A path from s to t is also referred to as an (s, t)-path. The length of126

a path p is the number of edges in p and will be denoted by |p|. Note that, as127

a special case, we also allow a single vertex to be a path, i.e., a path of length128
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Fig. 1: An example of a graph G and the set B(G) of all the bubbles in G.
The set G(G) = {B1, B2, B4} is a generator set that satisfies conditions of
Theorem 1.

0. If p and q are paths, we say that p is a subpath of q if p is contained in q,129

and we denote this p ⊆ q. Given a path p1 from x to y and a path p2 from130

y to z, we denote by p1 · p2 their concatenation, i.e., the path from x to z131

defined by the path p1 followed by p2. A path q is a prefix of a path p if there132

exists a path r such that p = q · r. Similarly, a path q is a suffix of a path p133

if there exists a path r such that p = r · q. A (directed) cycle is a simple path134

(of length greater than zero) starting and ending on the same vertex.135

Definition 1 Given a directed graph G and two (not necessarily distinct)136

vertices s, t ∈ V (G), an (s, t)-bubble consists of two directed (s, t)-paths that137

are internally vertex disjoint. Vertex s is the source and t is the target of the138

bubble. If s = t then exactly one of the paths of the bubble has length 0, and139

therefore B corresponds to a directed cycle. In this case, we say that B is a140

degenerate bubble.141

In Fig. 1 we show an example of a graph and all the bubbles in it. We denote142

by B(G) the set of all bubbles in G. Before giving formally the definition143

of bubble generator of G, we recall some basic definitions of cycle bases in144

undirected graphs.145

Let G be an undirected graph. Two subgraphs G1, G2 of G can be combined146

by the operator Δ that simply consists in the symmetric difference of the set147

of edges. More formally, G1ΔG2 = (G1 ∪G2) \ (E(G1)∩E(G2)) where E(Gi)148

is the set of edges of Gi. With this operation, it can be shown that the space of149

all Eulerian subgraphs of G (called the cycle space of G) is a vector space [8,150

10,11,13]. In the theory of vector spaces, a set of vectors is said to be linearly151

dependent if one of the vectors in the set can be defined as a linear combination152

of the others; if no vector in the set can be written in this way, then the vectors153

are said to be linearly independent [20]. A basis is a minimum set of vectors,154

such that any vector in the space is a linear combination of this set. Clearly155

a basis is a set of linearly independent vectors. Furthermore, given a vector156
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space and a set of k linearly independent vectors F , the subspace of vectors157

generated starting from elements in F is called the span of F and its dimension158

is k. It is well-known that a cycle basis for a connected undirected graph G,159

denoted by C(G), has dimension m−n+1. If the graph G is not connected this160

is generalised to m − n + c, where c is the number of connected components161

(see, e.g., [8,10,11,13]) .162

As mentioned in Section 1, we are interested in decomposing a bubble into163

elementary bubbles in such a way that, at each step of the decomposition,164

only bubbles are generated. To ensure this property, we define next a suitable165

symmetric difference operator which takes as input two bubbles and produces166

one bubble as output. Given two bubblesB1 andB2, the constrained symmetric167

difference operator Δ is such that B1ΔB2 is defined if and only the subgraph168

induced by (E(B1)∪E(B2))\ (E(B1)∩E(B2)) is a bubble. Otherwise, we say169

that B1ΔB2 is undefined. If B1ΔB2 is defined, we also say that B1 and B2170

are combinable. Given two combinable bubbles B1 and B2, we refer to B1ΔB2171

as the sum of B1 and B2, and denote it also by B1 +B2. We also say that the172

bubble B1 + B2 is generated from bubbles B1 and B2, or alternatively that173

it can be decomposed into the bubbles B1 and B2. Let B be a set of bubbles174

in G. We say that a bubble B is spanned by B if it can be generated starting175

from bubbles in B. The set of all the bubbles spanned by B is called the span176

of B. B is a bubble generator if each bubble in G is spanned by B, i.e., each177

bubble in G can be generated by starting from the bubbles in B.178

Due to our constrained symmetric difference operator Δ, all subgraphs179

generated by the elements in B are necessarily bubbles. Since not all pairs of180

bubbles of G are combinable, the bubble space is not closed under Δ, and181

therefore it does not form a vector space (over Z2). Hence, the techniques182

developed for cycle bases cannot be applied directly to bubble generators.183

A generator is minimal if it does not contain a proper subset that is also184

a generator; and a generator is minimum if it has the minimum cardinality.185

We are interested in finding a minimum bubble generator of a given directed186

graph G.187

3 The bubble generator188

In this section, we present a bubble generator for a directed graph G. Through-189

out, we assume that shortest paths in G are unique. This is without loss of190

generality, since there are many standard techniques for achieving this, in-191

cluding perturbing edge weights by infinitesimals. However, for our goal, it192

suffices to use a “lexicographic ordering”. Namely, we define an arbitrary or-193

dering v1, . . . , vn on the vertices of G. A path p is considered lexicographically194

shorter than a path q if the length of p is strictly smaller than the length of q,195

or, if p and q have the same length, the sequence of vertices associated with196

p is lexicographically smaller than the sequence associated with q. We denote197

this by p <lex q.198
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We denote by B = (p, q) the bubble having p, q as its two internally vertex-199

disjoint paths, referred to as legs. We denote by �(B) (resp., by L(B)) the200

shorter (resp., longer) between the two legs p, q of B. Note that, because of201

the lexicographic order, there are no ties. We also denote by |B| the number202

of edges of bubble B. Note that |B| = |�(B)|+ |L(B)|. Next, we define a total203

order on the set of bubbles.204

Definition 2 Let B1 and B2 be any two bubbles. B1 is smaller than B2 (in205

symbols, B1 < B2) if one of the following holds: either (i) L(B1) <lex L(B2);206

or (ii) L(B1) = L(B2) and �(B1) <lex �(B2).207

Definition 3 A bubble B is composed if it can be obtained as a sum of two208

smaller bubbles. Otherwise, the bubble B is called simple.209

For a directed graph G, we denote by S(G) the set of simple bubbles of210

G. It is not difficult to see that S(G) is a generator. We are not able for now211

to prove that any bubble in G can be obtained in a polynomial number of212

steps from bubbles in S(G). Nevertheless, to achieve the latter goal, we will213

introduce next another generator G(G) ⊇ S(G). Let p : s = x0, x1, . . . , xh = t214

be a path from s to t and let 0 ≤ i ≤ j ≤ h. To ease the notation, we denote215

by pi,j the subpath of p from xi to xj , and refer also to p0,j as ps,j and to pi,h216

as pi,t. The next theorem provides some properties of simple bubbles.217

Theorem 1 Let B be a simple (s, t)-bubble in a directed graph G. The follow-218

ing holds:219

(1) �(B) is the shortest path from s to t in G;220

(2) Let L(B) = s, v1, . . . , vr, t. Then s, v1, . . . , vr is the shortest path from s221

to vr in G.222

Proof Let B be a simple (s, t)-bubble: we show that both conditions (1) and223

(2) must hold.224

We first consider condition (1). If B is degenerate, then it trivially satisfies225

condition (1). Therefore, assume that B is non-degenerate and, by contradic-226

tion, that �(B) is not the shortest path from s to t. Let p∗ : s = x0, x1, . . . , xh =227

t be the shortest path from s to t in G. For 0 ≤ i ≤ j ≤ h, by subpath op-228

timality, p∗i,j is the shortest path from xi to xj . Let k be the smallest index,229

0 ≤ k < h, for which the edge (xk, xk+1) does not belong to either one of the230

legs of B. Such an index k must exist, as otherwise p∗ would coincide with a231

leg of B. Furthermore, let l, k < l ≤ h, be the smallest index greater than k232

for which xl ∈ V (B). Such a vertex xl must also exist, since xh = t ∈ V (B).233

In other words, xk is the first vertex of the bubble B where p∗ departs from234

B and xl, l > k, is the first vertex where the shortest path p∗ intersects again235

the bubble B. By definition of xk and xl, p
∗
k,l is internally vertex-disjoint with236

both legs of B. We now claim that B can be obtained as the sum of two smaller237

bubbles, thus contradicting our assumption that B is a simple bubble.238

To prove the claim, we distinguish two cases, depending on whether xk and239

xl are on the same leg of B or not. Consider first the case when xk and xl are240
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Fig. 2: Case (1) of the proof of Theorem 1. The prefix of the shortest path
from s to t is shown as a solid line.

on the same leg p of B (see Fig. 2(a)). Let B1 be the bubble with �(B1) = p∗k,l241

and L(B1) = pk,l. First, note that if either xk �= s or xl �= t, then pk,l is a242

proper subpath of a leg of B. Hence, |L(B1)| = |pk,l| < |L(B)|, and B1 < B.243

Otherwise, suppose s = xk and t = xl. Then either L(B1) = �(B) <lex L(B),244

or L(B1) = L(B) and �(B1) = p∗k,l = p∗ <lex �(B). In both cases, B1 < B.245

Let B2 be the bubble which is obtained from B by replacing pk,l by p∗k,l (see246

Fig. 2(a)). Since p∗k,l is a shortest path, by subpath optimality, p∗k,l <lex pk,l,247

thus B2 < B. As a result, B can be obtained as the sum of two smaller bubbles248

B1, B2, thus contradicting the assumption that B is simple.249

Consider now the case where xk and xl are on different legs of B (see250

Fig. 2(b)). Notice that this means xk �= s and xl �= t. Let p be the leg containing251

xl and q the one containing xk. Note that p = p0,l · pl,h and q = p∗0,k · qk,h.252

Moreover, the two legs of bubble B1 are p∗0,k · p∗k,l <lex q and p0,l, which is a253

proper subpath of p. Hence, B1 < B. The two legs of bubble B2 are qk,h which254

is a proper subpath of q and p∗k,l ·pl,h <lex p. Hence, B2 < B, and B = B1+B2255

which implies again that B is not simple.256

Fig. 3: Case (2) of the proof of Theorem 1. The shortest path from s to t and
the prefix of the shortest path from s to vr are shown as solid lines.
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We show now that B satisfies also condition (2). Assume, by contradiction,257

that B satisfies condition (1) but not (2), and so p = s, v1, . . . , vr (note that258

p is equal to L(B) without its last edge) is not the shortest path from s to259

vr in G. Let p∗ : s = x0, . . . , xh−1 = vr, p
∗ �= p, be such a shortest path in260

G. Similarly to the previous case, let k be the smallest index, 0 ≤ k < h− 1,261

for which the edge (xk, xk+1) does not belong to either one of the legs of B,262

i.e. xk is the first vertex where the shortest path p∗ departs from B. Such263

an index k must exist, as otherwise p∗ would coincide with a leg of B. Let264

l, k < l ≤ h − 1, be the smallest index such that xl ∈ V (B). Namely, xl is265

the first vertex after xk where the shortest path p∗ intersects again bubble B.266

Such a vertex xl must always exist, since xh−1 = vr ∈ V (B). Since k < l, we267

have that |p∗k,l| ≥ 1. Furthermore, we claim that xl must be in L(B) \ {s, t}.268

If this were not the case, we would have two distinct shortest paths from s to269

xl in G (p∗x0,xl
and the subpath of �(B) from s = x0 to xl), which contradicts270

our assumption that shortest paths are unique.271

We again distinguish two cases: when both xk, xl belong to L(B), and when272

xk ∈ �(B) and xl ∈ L(B). We set p = L(B), q = �(B).273

In the first case (see Fig. 3(a)), let B1 be the bubble with �(B1) = �(B)274

and L(B1) = p∗0,k · p∗k,l · pl,h. Since |p∗k,l| <lex |pk,l| then L(B1) <lex L(B), and275

thus B1 < B. Let B2 be the bubble with �(B2) = p∗k,l, and L(B2) = pk,l. Since276

L(B2) ⊂ L(B) (as xk �= t), B2 < B. As a result, B can be obtained as the277

sum of two smaller bubbles B1, B2, thus contradicting the assumption that B278

is simple.279

In the second case (see Fig. 3(b)), let B1 be the bubble with �(B1) =280

p∗0,k · p∗k,l and L(B1) = p0,l. Since L(B1) ⊂ L(B), B1 < B. Let B2 be the281

bubble with �(B2) = qk,h, and L(B2) = p∗k,l · pl,h. Since |L(B2)| < |L(B)|,282

B2 < B. Again, B can be obtained as the sum of two smaller bubbles B1, B2,283

thus contradicting the assumption that B is simple. Finally, notice that this284

includes also the case xk = t and the argument holds identically with B2 being285

a degenerate bubble. For the sake of clarity, we depicted this case separately286

in Fig. 3(b1). �287

Given a directed graph G, we denote by G(G) the set of bubbles in G288

satisfying conditions (1) and (2) of Theorem 1. An example of a graph together289

with a generator G(G) is given in Fig. 1.290

Theorem 2 Let G be a directed graph. The following holds:291

(1) G(G) is a generator set for all the bubbles of G;292

(2) |G(G)| ≤ nm.293

Proof (1) Recall that S(G) is the set of simple bubbles. By Theorem 1, S(G) ⊆294

G(G), and thus G(G) is a generator set for all the bubbles of G.295

(2) Since every bubble b in G(G), with �(b) = s, u1, . . . , t and L(b) = s, v1, . . . , vr, t,296

can be uniquely identified by its vertex s and its edge (vr, t), then the number297

of bubbles in G(G) is upper-bounded by nm. �298
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The upper bound given in Theorem 2 is asymptotically tight, as shown by299

the family of simple directed graphs on vertex set Vn = {1, 2, . . . , n} and all300

possible n ∗ (n− 1) edges in their edge set En = {(u, v) : u �= v, u, v ∈ V }.301

Remark 1 Conditions (1) and (2) of Theorem 1 are not sufficient to guarantee302

that a bubble is simple, e.g., see Fig. 4. Thus, the generator G(G) is not303

necessarily minimal. Recall that a generator is minimal if it does not contain304

a proper subset that is also a generator; and a generator is minimum if it has305

the minimum cardinality.306

Fig. 4: An example showing that conditions (1) and (2) of Theorem 1 are
not sufficient to guarantee that a bubble is simple. (a) A directed graph G.
(b) The three bubbles B1, B2 and B3 of G satisfying conditions (1) and (2)
of Theorem 1, in which B1 and B2 are simple, but B3 is composed, since
B1 < B3, B2 < B3 and B3 = B1 +B2.

4 A polynomial-time algorithm for decomposing bubbles307

The main result of this section is to provide a polynomial-time algorithm for308

decomposing any bubble of G into bubbles of G(G). To do so, we make use of309

a tree-like decomposition. We need to take extra care in this decomposition310

since a naive approach could generate (several times) all the bubbles that are311

smaller than B, yielding an exponential number of steps.312

Definition 4 A bubble B is short if it satisfies condition (1) of Theorem 1,313

but not necessarily condition (2). Namely, let L(B) = s, v1, . . . , vr, t be such314

that �(B) is a shortest path from s to t in G but s, v1, . . . , vr is not necessarily315

the shortest path from s to vr in G.316

We next introduce a measure for describing how “close” is a bubble to317

being short.318
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Definition 5 Given an (s, t)-bubble B, let p∗ be the shortest path from s to319

t. We say that B is k-short, for k ≥ 0, if there is a leg p ∈ {�(B),L(B)} for320

which p∗ and p share a prefix of exactly k edges.321

Since in our case shortest paths are unique, only one leg of a bubble B can322

share a prefix with the shortest path p∗. Furthermore, any bubble B is k-short323

for some k, 0 ≤ k ≤ |�(B)|. In particular, a bubble is short if and only if it is324

k-short for k = |�(B)|.325

Definition 6 Given a k-short bubble, we define the short residual of B as326

follows: residuals(B) = |B| − k.327

Since 0 ≤ k ≤ |�(B)|, and |B| = |�(B)| + |L(B)|, we have that |L(B)| ≤328

residuals(B) ≤ |B|.329

We now present our polynomial time algorithm for decomposing a bubble330

of the graph G into bubbles of G(G). In the following, we assume that we331

have done a preprocessing step to compute all-pairs shortest paths in G in332

O(mn+ n2 log n) time.333

Lemma 1 Let B be an (s, t)-bubble that is not short. Then, B can be decom-334

posed into two bubbles B1 and B2 (B = B1 +B2), such that: (a) B1 is short,335

and (b) residuals(B2) < residuals(B). Moreover, B1 and B2 can be found in336

O(n) time.337

Proof Let B be a k-short (s, t)-bubble, 0 ≤ k < |�(B)| and let p∗ : s =338

x0, x1, . . . , xh = t be the shortest path from s to t in G. To prove (a), we339

follow a similar approach to Theorem 1. Since B is k-short, there is a leg340

p ∈ {�(B),L(B)} such that p∗ and p share a prefix of exactly k edges, 0 ≤341

k < h. In other terms, leg p starts with edges (x0, x1), . . ., (xk−1, xk), the edge342

(xk, xk+1) is not in leg p, i.e., xk is the first vertex where the shortest path p∗343

departs from the leg p. Note that as a special case, k = 0 and xk = x0 = s.344

Let l, k < l ≤ h, be the smallest index such that xl ∈ V (B). Namely, xl is the345

first vertex after xk where the shortest path p∗ intersects again the bubble B.346

Such a vertex xl must always exist, since xh = t ∈ V (B). Since k < l, we have347

that |p∗k,l| ≥ 1. We have two possible cases: either the vertices xk and xl are348

on the same leg of B (see Fig. 2(a)) or xk and xl are on different legs of B (see349

Fig. 2(b)). In either case, we can decompose B as B = B1 +B2, as illustrated350

in Fig. 2. Note that in both cases, the bubble B1 is short since one leg of B1 is351

a subpath of the shortest path p∗, and hence a shortest path itself by subpath352

optimality.353

Consider now B2 in Fig. 2. To prove (b), we distinguish among the fol-354

lowing three cases: (1) xk �= s and vertices xk and xl are on the same leg355

of B; (2) xk �= s and vertices xk and xl are on different legs of B; (3)356

xk = s. First, consider case (1) (see Fig. 2(a)) and note that residuals(B) =357

|pk,l| + |pl,h| + |q0,h| where q is the other leg of B different from p. More-358

over, residuals(B2) = |pl,h| + |q0,h|. Hence, residuals(B) − residuals(B2) =359

|pk,l| ≥ |p∗k,l| ≥ 1. Consider now case (2), (see Fig. 2(b)) and note that360
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residuals(B) = |p0,l| + |pl,h| + |qk,h| and residuals(B2) = |pl,h| + |qk,h|, and361

thus residuals(B) − residuals(B2) = |p0,l| ≥ |p∗0,k| + |p∗k,l| ≥ 1. The proof362

of case (3) is completely analogous to the one of case (1), with xk = s and363

p∗0,k = ∅, and again residuals(B) − residuals(B2) = |pk,l| ≥ |p∗k,l| ≥ 1. In all364

cases, residuals(B) − residuals(B2) > 0, and thus the claim follows. Finally,365

note that in order to compute B1 and B2 from B, it is sufficient to trace the366

shortest path p∗. Since all shortest paths are pre-computed in a preprocessing367

step, this can be done in O(n) time. �368

Lemma 2 Any bubble B can be represented as a sum of O(n) (not necessarily369

distinct) short bubbles. This decomposition can be found in O(n2) time in the370

worst case.371

Proof Each time we apply Lemma 1 to a bubble B, we produce in O(n) time372

a short bubble B1 and a bubble B2 such that residuals(B2) < residuals(B).373

Since residuals(B) ≤ |B| ≤ n, the lemma follows. �374

We next show how to further decompose short bubbles. Before doing that,375

we define the notion of residual for short bubbles, which measures how “close”376

is a short bubble to being a bubble of our generator set G(G).377

Definition 7 Let B be a short (s, t)-bubble, let �(B) = p∗1 be the shortest378

path from s to t in G, and let L(B) = s, v1, . . . , vr, t be the other leg of B. Let379

p be the longest prefix of L(B) − (vr, t) such that p is a shortest path in G.380

Then, the residual of B is defined as residual(B) = |L(B)| − 1− |p|.381

Since p is a prefix of L(B)− (vr, t), we have that 0 ≤ |p| ≤ |L(B)| − 1. Thus,382

0 ≤ residual(B) ≤ |L(B)| − 1.383

Lemma 3 Let B be a short (s, t)-bubble such that residual(B) > 0. B can384

be decomposed into two bubbles B1 and B2 (B = B1 + B2) such that B1 and385

B2 are short and residual(B1) + residual(B2) < residual(B). Moreover, it is386

possible to find the bubbles B1 and B2 in O(n) time.387

Proof Since B is a short (s, t)-bubble, it satisfies condition (1) of Theorem 1.388

Furthermore, as residual(B) > 0, it does not satisfy condition (2). Therefore,389

there exists two bubbles B1 < B and B2 < B such that B = B1 + B2 (from390

Theorem 1). Since �(B) is the shortest path from s to t, using arguments391

similar to the ones in Theorem 1, it can be shown that B can be decomposed392

into B1 and B2 and the only possible cases are the ones depicted in Fig. 3.393

Note that in all three cases of Fig. 3, each of the bubbles B1 and B2 has394

one leg that is a shortest path. Thus, in all three cases, B1 and B2 are short.395

Moreover, in Fig. 3(a), residual(B1) ≤ |pl,h|−1 and residual(B2) ≤ |pk,l|−1.396

Therefore, residual(B1)+residual(B2) ≤ |pl,h|−1+|pk,l|−1 = residual(B)−397

1 < residual(B). Similarly, in Fig. 3(b) and (b1), residual(B1) ≤ |p0,l| − 1,398

residual(B2) ≤ |pl,h|−1, and thus, residual(B1)+ residual(B2) ≤ |p0,l|−1+399

|pl,h| − 1 = residual(B)− 1 < residual(B). In all three cases, B1 and B2 are400

short and residual(B1)+residual(B2) < residual(B). The claim thus follows.401
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Once again, observe that in order to compute B1 and B2 from B, it is suf-402

ficient to trace the shortest path p∗. Since all shortest paths are pre-computed403

in a preprocessing step, this can be done in O(n) time. �404

Lemma 4 Any short bubble B has a tree-like decomposition into O(n) (not405

necessarily distinct) bubbles from the generator G(G). This decomposition can406

be found in O(n2) time in the worst case.407

Proof Each time we apply Lemma 3 to a short bubble B, we produce in O(n)408

time two short bubbles B1 and B2 such that residual(B1) + residual(B2) <409

residual(B). Since |�(B)|+ residual(B) ≤ n, this implies that a short bubble410

can be decomposed in O(n) bubbles from the generator set G(G) in O(n2)411

time. �412

Theorem 3 Given a graph G, any bubble B in G can be represented as a sum413

of O(n2) bubbles that belong to G(G). This decomposition can be found in a414

total of O(n3) time.415

Proof The theorem follows by Lemma 2 and Lemma 4. �416

5 Applications of the bubble generator in analysing RNA-seq data417

In this section, we describe as a proof-of-concept, two applications of the bub-418

ble generator to the analysis of RNA-seq data.419

Our test dataset is a subset (coming from the same chromosome) of reads420

of the 58 million RNA-seq Illumina paired-end reads extracted from the mouse421

brain tissue (available in the ENA repository under the following study: PR-422

JEB25574). We mapped all reads to the Mus Musculus reference genome and423

annotations (Ensembl release 94) using STAR [7]. We then selected only the424

reads mapping to chromosome 10 of the genome, comprising 4,932,572 reads,425

as our test dataset. We built the de Bruijn graph from these reads and ap-426

plied standard sequencing-error-removal procedures, by using KisSplice [12,427

17], a method to find alternative splicing events in a reference-free context by428

enumerating bubbles in a de Bruijn Graph. Finally, we extracted the bubble429

generator from the resulting graph, and evaluated it on two aspects: (i) how430

well it can preprocess the de Bruijn graph to reduce the work required by a431

subsequent bubble enumeration algorithm, and (ii) how it performs in terms432

of finding alternative splicing events. These applications are detailed in the433

following subsections.434

5.1 Preprocessing the de Bruijn graph435

Similarly to the practical application of a cycle base, the bubble generator436

can be used as a preprocessing step in all algorithms that find bubbles, by437

“cleaning” from the graph all unnecessary edges and vertices, i.e. those that438

do not belong to any bubble. In KisSplice [12,17], this cleaning is based439
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on a biconnected component (BCC) decomposition. A biconnected undirected440

graph G is a connected graph such that, for any v ∈ V (G), G−v is connected.441

Biconnected components (BCCs) are the maximal biconnected subgraphs of442

a graph G. Given a directed graph, consider its underlying undirected version443

by ignoring the direction of its edges. Clearly a bubble in the directed graph444

corresponds to a cycle in the underlying graph, and every edge that belongs445

to a cycle, belongs also to a BCC of the graph. The graph can then be cleaned446

by removing every vertex or edge that does not belong to a BCC. This clean-447

ing partitions a potentially massive graph into smaller subgraphs, which are448

then processed by a bubble enumeration algorithm (e.g. [12,17]). However,449

the BCC-decomposition-based cleaning is not perfect: some vertices and edges450

might belong only to undirected cycles and not to bubbles.451

To improve over this, we perform a more refined cleaning: we compute a452

bubble generator G(G) of the directed graph G and we remove every edge and453

vertex that do not belong to any bubble in G(G). Notice that this would be a454

perfect cleaning, meaning that after applying it, every edge of the graph would455

belong to some bubble.456

We evaluated this cleaning procedure on the de Bruijn graph contructed457

from our test dataset. We first applied the BCC-decomposition-based cleaning458

on this de Bruijn graph. Then to the result obtained, which is now irreducible459

by this cleaning, we apply a second cleaning procedure using the bubble gener-460

ator. The bubble generator cleaning led to a reduction of 40.1% on the number461

of vertices and of 39.8% on the number of edges. This shows that the generator462

can indeed yield a better procedure for cleaning the graph, although comput-463

ing the generator requires more time than computing the BCCs (recall that464

the BCCs can be computed in linear time). In other words, as expected, a465

better cleaning comes at the expense of a higher computing time.466

5.2 Calling alternative splicing events467

As a second application, we consider the problem of finding AS events in a468

reference-free context. As already mentioned in the introduction, this is a chal-469

lenging problem in bioinformatics. Indeed, local assemblers such as KisSplice470

[12] are faced with a dramatically large (and often practically unfeasible) run-471

ning time due to the exponentially large number of bubbles present, most of472

which are not interesting as they are not related to AS events. Indeed, a sig-473

nificantly large number of bubbles is due to artefacts of the de Bruijn graph474

created by repeats longer than the reads (i.e., artificial bubbles not associ-475

ated with biological events). Hence, in order not to get “lost” in listing false476

positives, KisSplice relies on heuristics that try to avoid listing bubbles that477

traverse a repeat-induced subgraph. More specifically, based on the idea that478

subgraphs of the De Bruijn graph related to repeats have many branching479

vertices (i.e. vertices with in-degree or out-degree at least 2), KisSplice enu-480

merates only bubbles with a number of branching vertices that is below some481

threshold b.482
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The question we tackle in this section is how many AS events we are able483

to find just by looking at the bubbles in the generator set. To this purpose,484

given our dataset we consider the set of bubbles belonging to the generator485

and the set of bubbles generated by KisSplice (KisSplice being run with486

default parameters, with a maximum number of branching vertices set to 5).487

In both cases some simple filters are applied to filter out bubbles that probably488

do not correspond to AS events (e.g. the shorter leg of AS events usually has489

a length between 2k − 8 and 2k − 2, with k being the size of the k-mer in the490

De Bruijn graph [12,17]). We obtained, as putative AS events, 1403 bubbles491

for the generator set and 1293 bubbles for KisSplice. In order to assess the492

precision of our method, we mapped the bubbles output by both methods493

to the Mus Musculus reference genome and annotations (Ensembl release 94)494

using STAR [7], which were then analysed by KisSplice2RefGenome [1].495

KisSplice2RefGenome provides, for each bubble, the gene name, the AS496

event type (exon skipping, alternative acceptor/donor splice site, intron reten-497

tion, etc), the genomic coordinates and the list of splice sites used (novel or498

annotated). We retrieved only those that corresponded to AS events.499

Among the generator bubbles classified as putative AS events, 1085 bubbles500

correspond to true AS events, according to KisSplice2RefGenome, yielding501

a precision (AS events / putative AS events) of 77.3%. Note that the preci-502

sion of KisSplice is 90.3% for this dataset. However, what is interesting to503

see is that 18.5% of the putative AS events from our bubble generator will504

never be found by KisSplice using the default parameters, as they have more505

than 5 branching vertices. Moreover, 10% of these bubbles correspond to true506

AS events that are missed by KisSplice. Increasing the maximum number507

of allowed branching vertices will increase the running time of KisSplice’s508

algorithm exponentially. A large threshold of b is in practice unfeasible. Since509

we have bubbles corresponding to putative AS events in the generator that510

have more than 20 branching vertices, these will be missed by KisSplice.511

This analysis shows the practical interest of the bubble generator. Even this512

simple application led to results that were comparable with the state-of-art513

algorithm KisSplice and sometimes complementary.514

6 Conclusions and open problems515

Bubbles in De Bruijn graphs represent interesting biological events, like alter-516

native splicing and allelic differences (SNPs and indels). However, the set of517

all bubbles in a De Bruijn graph built from real data is usually too large to518

be efficiently enumerated and analysed. To tackle this issue, in this paper we519

have proposed a bubble generator, which is a polynomial-sized subset of the520

bubble space that can be used to generate all and only the bubbles in a di-521

rected graph. In particular, we have presented efficient algorithms to identify,522

for any given directed graph G, a generator set of bubbles G(G), and to decom-523

pose any bubble B in G into bubbles from G(G). Concerning the applications524

of the bubble generator, we showed its usefulness in analysing RNA data. In525
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particular, we indicated that our bubble generator can be used in addition to526

KisSplice to find AS events corresponding to bubbles with a high branching527

number.528

Our work raises several open theoretical questions. First, our generator529

G(G) is not necessarily minimal, i.e. it might happen that there exists three530

bubbles B1, B2, B3 ∈ G(G) such that B1 < B3, B2 < B3, and B3 = B1 + B2.531

Is it possible to find in polynomial time a generator G′(G) that is minimal?532

Second, it seems natural to ask whether all minimal generators for bubbles in533

directed graphs have the same cardinality. Third, it would be interesting to find534

a generator G(G) with some additional biologically motivated constraints, as535

for example the maximum length of the legs of a bubble [18]. Given an integer536

k and a graph G, is it possible to find a generator G(G) that generates all and537

only the bubbles of G which have both legs of length at most k? Fourth, are538

there faster algorithms to find a bubble generator? Fifth, this work is related539

to the research done in the direction of cycle bases. However, as we already540

mentioned, our problem displays characteristics that make it very different541

from the ones related to cycle bases. Thus, it may be of independent interest542

to further investigate the connections between those two problems.543

There are also some practical questions that need to be addressed in future544

work, and which might be interesting on their own. We see three possible545

directions: (i) reduce the false positive AS events by adding more biologically546

motivated constraints (e.g. the ones mentioned in the previous paragraph) to547

the bubbles in the generator, (ii) find “complex” AS events by listing also548

the bubbles that result from a combination of two or more bubbles from the549

generator.550

Finally, our polynomial-time decomposition algorithm could be useful in551

the case where we want to identify and decompose complex alternative splicing552

events [19] into their elementary parts. We defer all those problems to further553

investigations.554
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Université de Lyon. L. Lima is supported by the Brazilian Ministry of Science,562

Technology and Innovation (in portuguese, Ministério da Ciência, Tecnologia e563
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Abstract
Genome-wide association study (GWAS) methods applied to bacterial genomes have

shown promising results for genetic marker discovery or detailed assessment of marker

effect. Recently, alignment-free methods based on k-mer composition have proven their

ability to explore the accessory genome. However, they lead to redundant descriptions and

results which are sometimes hard to interpret. Here we introduce DBGWAS, an extended k-

mer-based GWASmethod producing interpretable genetic variants associated with distinct

phenotypes. Relying on compacted De Bruijn graphs (cDBG), our method gathers cDBG

nodes, identified by the association model, into subgraphs defined from their neighbourhood

in the initial cDBG. DBGWAS is alignment-free and only requires a set of contigs and pheno-

types. In particular, it does not require prior annotation or reference genomes. It produces

subgraphs representing phenotype-associated genetic variants such as local polymor-

phisms and mobile genetic elements (MGE). It offers a graphical framework which helps

interpret GWAS results. Importantly it is also computationally efficient—experiments took

one hour and a half on average. We validated our method using antibiotic resistance pheno-

types for three bacterial species. DBGWAS recovered known resistance determinants such

as mutations in core genes inMycobacterium tuberculosis, and genes acquired by horizon-

tal transfer in Staphylococcus aureus and Pseudomonas aeruginosa—along with their MGE

context. It also enabled us to formulate new hypotheses involving genetic variants not yet

described in the antibiotic resistance literature. An open-source tool implementing

DBGWAS is available at https://gitlab.com/leoisl/dbgwas.

Author summary

Genome-wide association studies (GWAS) help explore the genetic bases of phenotype

variation in a population. Our objective is to make GWAS amenable to bacterial genomes.

These genomes can be too different to be aligned against a reference, even within a single
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species, making the description of their genetic variation challenging. We test the associa-

tion between the phenotype and the presence in the genomes of DNA subsequences of

length k – the so-called k-mers. These k-mers provide a versatile descriptor, allowing to

capture genetic variants ranging from local polymorphisms to insertions of large mobile

genetic elements. Unfortunately, they are also redundant and difficult to interpret. We

rely on the compacted De Bruijn graph (cDBG), which represents the overlaps between k-

mers. A single cDBG is built across all genomes, automatically removing the redundancy

among consecutive k-mers, and allowing for a visualisation of the genomic context of the

significant ones. We provide a computationally efficient and user-friendly implementa-

tion, enabling non-bioinformaticians to carry out GWAS on thousands of isolates in a few

hours. This approach was effective in catching the dynamics of mobile genetic elements in

Staphylococcus aureus and Pseudomonas aeruginosa genomes, and retrieved known local

polymorphisms inMycobacterium tuberculosis genomes.

Introduction
The aim of Genome-Wide Association Studies (GWAS) is to identify associations between

genetic variants and a phenotype observed in a population. They have recently emerged as an

important tool in the study of bacteria, given the availability of large panels of bacterial

genomes combined with phenotypic data [1–7].

GWAS rely on a representation of the genomic variation as numerical factors. The most

common approaches are based on single nucleotide polymorphisms (SNPs), defined by align-

ing all genomes of the studied panel against a reference genome [1, 3, 4] or against a pangen-

ome built from all the genes identified by annotating the genomes [8], and on gene presence/

absence, using a pre-defined collection of genes [5, 7]. The use of a reference genome becomes

unsuitable when working on bacterial species with a large accessory genome—the part of the

genome which is not present in all strains. On the other hand, methods focusing on genes are

unable to cover variants in noncoding regions, including those related to transcriptional and

translational regulation [9, 10]. Moreover, some poorly studied species still lack a representa-

tive annotation [11].

To circumvent these issues and make bacterial genomes amenable to GWAS, recent studies

have relied on k-mers: all nucleotide substrings of length k found in the genomes [2, 5, 6].

The presence of k-mers in genomes can account for diverse genetic events such as the acquisi-

tion of SNPs, (long) insertions/deletions and recombinations. Unlike SNP- or gene-based

approaches, k-mer analyses do not require a reference genome or any assumption on the

nature of the causal variants and can even be performed without assembling the genome

sequences [12].

While k-mers can reflect any genomic variation in a panel, they do not themselves represent

biological entities. Translating the result of a k-mer-based GWAS into meaningful genetic var-

iants typically requires mapping a large and redundant set of short sequences [2, 5, 6, 13].

Recent studies have suggested reassembling the significantly associated k-mers to reduce

redundancy and retrieve longer marker sequences [6, 13]. Nonetheless, k-mer representation

often loses in interpretability what it gains in flexibility, and the best way to encode the geno-

mic variation in bacterial GWAS is not yet clearly defined [14, 15].

Our approach, coined DBGWAS, for De Bruijn Graph GWAS, bridges the gap between, on
the one hand, SNP- and gene-based representations lacking the right level of flexibility to

cover complete genomic variation, and, on the other hand, k-mer-based representations
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which are flexible but not readily interpretable. We rely on De Bruijn graphs [16] (DBGs),

which are widely used for de novo genome assembly [17, 18] and variant calling [12, 19]. These

graphs connect overlapping k-mers (here DNA fragments), yielding a compact summary of all

variations across a set of genomes. Fig 1 illustrates the construction of such a graph for a simple

example, where the only variation among the aligned genomes is a point mutation. DBGs also

accommodate more complex disparities including rearrangements and insertions/deletions

(S1 Fig).

DBGWAS relies on the ability of compacted DBGs (cDBGs) to eliminate local redundancy,

reflect genomic variations, and characterise the genomic environment of a k-mer at the popu-

lation level. More precisely, we build a single cDBG from all the genomes included in the asso-

ciation study (in practice, up to thousands). The graph nodes—called unitigs—represent, by

construction, sequences of variable length and are at the right level of resolution for the set of

genomes considered, taking into account adaptively the genomic variation. The unitigs are

individually tested for association with the phenotype, while controlling for population struc-

ture. The unitigs found to be phenotype-associated are then localised in the cDBG. Subgraphs

induced by their genomic environment are extracted. They often provide a direct interpreta-

tion in terms of genetic events which results from the integration of three types of information:

1) the topology of the subgraph, reflecting the nature of the genetic variant, 2) themetadata
represented by node size and colour, allowing us to identify which unitigs in the subgraph are

associated to a particular phenotype status, and 3) an optional sequence annotation helping to

detect unitig mapping to—or near—a known gene.

We benchmarked our novel method using several antibiotic resistance phenotypes within

three bacterial species of various degrees of genome plasticity:Mycobacterium tuberculosis,
Staphylococcus aureus and Pseudomonas aeruginosa. The subgraphs built from significant uni-

tigs described SNPs or insertions/deletions in both core and accessory regions, and were con-

sistent with results obtained with a resistome-based association study. In addition, novel

genotype-to-phenotype associations were also suggested.

Fig 1. Compacted DBG construction over a set of sequences differing by a single point mutation. In this example two sequences s1 and s2 of
length 12 differ by a single letter. (A) All k-mers (k = 4) present in these sequences are listed. A link is drawn between two k-mers when the
k − 1 = 3 last nucleotides of the first k-mer equal the 3 first nucleotides of the second k-mer. (B) The bubble pattern represents the SNP C to A;
each branch of the bubble represents an allele. (C) Linear paths of the graph are compacted; the compacted DBG of the example only contains
four nodes (unitigs) and represents the same variation as the original DBG, which contained 13 nodes (k-mers).

https://doi.org/10.1371/journal.pgen.1007758.g001
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Results
We developed DBGWAS, available at https://gitlab.com/leoisl/dbgwas, and validated it on

panels for several bacterial species for which genome sequences and antibiotic resistance phe-

notypes were available. DBGWAS comprises three main steps: it first builds a variant matrix,

where each variant is a pattern of presence/absence of unitigs in each genome. Each variant is

then tested for association with the phenotype using a linear mixed model, adjusting for the

population structure. Finally, it uses the cDBG neighbourhood of significantly associated uni-

tigs as a proxy for their genomic environment. DBGWAS outputs a set of such subgraphs

ordered by minq, which is the smallest q-value observed over unitigs in each subgraph. The top

subgraphs therefore represent the genomic environment of the unitigs most significantly asso-

ciated with the tested phenotype. Fig 2 summarises the main steps of the process. A detailed

description of the pipeline is presented in the Methods section.

Here we rely on a few experiments to illustrate how the subgraphs output by DBGWAS can

be read as genetic events. We then benchmark DBGWAS against two other k-mer-based

approaches and one resistome-based approach. DBGWAS recovers known variants, while sug-

gesting novel candidates out of the range of the resistome-based approach. We also find it to

be more computationally efficient and to provide more interpretable outputs than the other

k-mer-based methods.

A synthetic description of the discussed subgraphs is provided in Table 1, while a descrip-

tion of the top subgraphs obtained for all tested antibiotics is provided in S3, S4, and S5 Tables.

Fig 2. DBGWAS pipeline.DBGWAS takes as input draft assemblies and phenotype data for a panel of bacterial strains. A variant matrix X is
built in step 1 using cDBG nodes (called unitigs). Variants are tested in step 2 using a linear mixed model taking into account the population
structure. Significant variants are post-processed in step 3 to provide an interactive interface assisting their interpretation.

https://doi.org/10.1371/journal.pgen.1007758.g002
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Table 1. Resistance determinants identified by DBGWAS for S. aureus (SA),M. tuberculosis (TB) and P. aeruginosa (PA) panels.

Panel Phenotype Rank Sign.
unitigs

minq Est.
effect

Annotation Type Knowledge
on markers

SA Methicillin 1 71/565 7.68 × 10−188 0.949 mecA + 7000 bp of SC Cmec MGE Pos

2 99/735 3.39 × 10−72 0.865 6000 bp of SCCmec MGE r2 = 0.96

3 11/190 2.14 × 10−61 0.813 2000 bp of SCCmec MGE r2 = 0.94

4 13/117 2.29 × 10−37 0.957 1500 bp of SCCmec MGE r2 = 0.93

Ciprofloxacin 1 7/57 8.67 × 10−104 -0.893 parCQRDR LPG Pos

2 7/31 2.21 × 10−76 0.955 gyrAQRDR LPG Pos

Erythromycin 1 110/510 2.69 × 10−100 0.823 ermC + circular plasmid MGE Pos

Fusidic acid 1 7/50 2.75 × 10−136 -0.910 fusA LPG Pos

2 214/882 7.94 × 10−49 0.924 fusC + SCC fusCcassette MGE Pos

3 22/260 5.35 × 10−43 0.924 1,500 bp of SCCfusC MGE r2 = 0.98

3 1/72 5.35 × 10−43 0.924 200 bp of SCCfusC MGE r2 = 0.98

5 5/64 2.02 × 10−22 -0.888 purN LPG r2 = 2 × 10−3

Trimethoprim 1 7/54 8.38 × 10−24 0.969 folA LPG Pos

2 3/41 9.30 × 10−18 -0.966 btw. hyp. prot. & VOC prot. LPN r2 = 0.19

3 11/70 9.30 × 10−18 -0.966 ybaK LPG r2 = 0.44

4 2/30 6.82 × 10−10 -0.632 mqo1 LPG r2 = 0.29

Gentamicin 1 173/1193 1.30 × 10−205 0.873 aac(6’)gene within a plasmid MGE Pos

2 127/367 9.02 × 10−75 0.751 seq. of plasmid carrying aac(6’) MGE r2 = 0.38

3 2/23 9.01 × 10−53 0.634 seq. of plasmid carrying aac(6’) MGE r2 = 0.40

4 1/29 1.04 × 10−40 0.579 seq. of plasmid carrying aac(6’) MGE r2 = 0.48

5 2/56 1.49 × 10−33 -0.831 odhB LPG r2 = 8 × 10−5

TB Rifampicin 1 36/115 4.84 × 10−70 -0.577 rpoBRRDR LPG Pos

2 6/37 4.35 × 10−20 -0.355 katG LPG CR

3 5/41 4.02 × 10−8 -0.224 embBM306V LPG Pos

Streptomycin 1 5/30 3.70 × 10−31 0.544 rpsL(30S ribos.protein S12) LPG Pos

2 6/37 1.06 × 10−28 -0.428 katG LPG CR

3 25/113 2.87 × 10−16 -0.339 rpoBRRDR LPG CR

4 6/45 1.40 × 10−9 -0.271 embBM306V LPG CR

5 8/31 2.86 × 10−9 -0.535 rrs, 16S rRNA C517T LPG Pos

6 13/69 9.18 × 10−5 -0.216 gyrAQRDR LPG CR

7 2/20 1.20 × 10−3 0.739 espG1 LPG r2 = 3 × 10−3

Ofloxacin 1 31/85 9.66 × 10−144 -0.888 gyrAQRDR LPG Pos

2 9/68 1.59 × 10−4 0.507 ubiA(Rv3806c) LPG CR

3 3/32 3.86 × 10−2 -0.746 Rv3909 LPG r2 = 9 × 10−3

Ethionamide 1 9/39 7.86 × 10−11 -0.462 fabG1promoter LPN Pos

2 15/47 5.16 × 10−10 -0.406 gyrAQRDR LPG CR

3 4/26 5.55 × 10−4 0.319 rrs, 16S rRNA A1401G LPG CR

XDR 1 6/68 3.66 × 10−39 0.905 rpoBI1187T (out. RRDR) LPG Ukn

1 3/27 3.66 × 10−39 0.905 Rv2000 LPG r2 = 1

3 3/24 9.58 × 10−36 0.883 espApromoter LPN r2 = 0.98

PA Amikacin 1 4/83 5.86 × 10−9 0.621 SNP in aac(6’) LPG Pos

2 3/82 1.37 × 10−6 0.662 DEAD/DEAH box helicase LPG r2 = 0.55

3 38/315 2.21 × 10−6 0.523 plasmid mapping on pHS87b MGE r2 = 0.17

Levofloxacin 1 5/27 7.21 × 10−29 -0.884 gyrAQRDR LPG Pos

2 5/29 5.68 × 10−6 -0.737 parCQRDR LPG Pos

3 5/38 1.87 × 10−2 0.688 Histidine kinase/response regulator LPG r2 = 0.17

For each antibiotic, we report subgraphs with their rank, number of significant unitigs over all unitigs in the subgraph (Sign. unitigs), q-value of the unitig with the

lowest q-value (minq), the corresponding estimated effect (b̂ coefficient of the linear mixed model) and annotation of the subgraph. The type of event represented by the

subgraph is colour-coded as: yellow for MGE, light blue for local polymorphism in gene (LPG), and dark blue for local polymorphism in noncoding region (LPN).

Known resistance markers are indicated in dark green (Pos), determinants whose presence was described to be caused by co-resistance in orange (CR), unknown

variants arriving at the first rank in grey (Ukn). For other subgraphs, an r2 value relative to the first subgraph is provided as an estimation of linkage disequilibrium with

the first subgraph. It was computed between the most significant patterns of the first and the considered subgraphs.

https://doi.org/10.1371/journal.pgen.1007758.t001
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The subgraphs themselves are available at http://pbil.univ-lyon1.fr/datasets/DBGWAS_

support/experiments/#DBGWAS_all_results.

Coloured bubbles highlight local polymorphism in core genes, accessory
genes and noncoding regions

For P. aeruginosa levofloxacin resistance, the subgraph obtained with the lowest minq
highlighted a polymorphic region in a core gene (Fig 3A). Indeed, it showed a linear structure

containing a complex bubble, with a fork separating susceptible (blue) and resistant (red)

strains. The annotation revealed that all unitigs in this subgraph mapped to the quinolone

resistance-determining region (QRDR) of the gyrA gene. gyrA codes for a subunit of the DNA

gyrase targeted by quinolone antibiotics such as levofloxacin and its alteration is therefore a

prevalent and efficient mechanism of resistance [20, 21]. In all our experiments related to

quinolone resistance, DBGWAS identified QRDR mutations in either gyrA or parC, which
codes for another well-known quinolone target: P. aeruginosa levofloxacin (first subgraph,

gyrA: minq = 7.21 × 10−29 and second, parC: 5.68 × 10−06), S. aureus ciprofloxacin (first, parC:
minq = 8.67 × 10−104 and second, gyrA: 2.21 × 10−76), and ofloxacin resistance inM. tuberculo-
sis, whose genome does not contain the parC gene [22] (first, gyrA: minq = 9.66 × 10−144).

For P. aeruginosa amikacin resistance, the top subgraph (minq = 5.86 × 10−9) highlighted a

SNP in an accessory gene (Fig 3B). As in Fig 3A, it contained a fork separating a blue and a red

node. However, other remaining nodes were not grey: they represented an accessory sequence

because they were not present in all the strains. Most of these nodes were pale-red, showing

that the accessory sequence was more frequent in resistant samples. The annotation revealed

that this subgraph corresponded to aac(6’), a gene coding for an aminoglycoside 6-acetyltrans-

ferase, an enzyme capable of inactivating aminoglycosides, such as amikacin, by acetylation

[23]. Most unitigs in this gene had a low association with resistance, except for the ones

describing this particular SNP. Mapping the sequence of these unitigs on the UniProt database

[24] revealed an amino-acid change at L83S, right in the enzyme binding site. This SNP was

previously shown to be responsible for substrate specificity alteration in a strain of Pseudomo-
nas fluorescens [25]. It appears to increase the amikacin acetylation ability of aac(6’), making

its association to amikacin resistance more significant than the gene presence itself.

Finally, forM. tuberculosis ethionamide resistance, the top subgraph (minq = 7.86 × 10−11,

Fig 3C) represented a polymorphic region in a core gene promoter. The subgraph was mostly

grey and linear with a localised blue and red fork. The most reliable annotation for this sub-

graph was fabG1 (also known asmabA), a core gene previously shown to be involved in ethi-

onamide and isoniazid resistance [26, 27]. None of the significantly associated unitigs mapped

to the fabG1 gene, but their close neighbours did (highlighted in Fig 3C by black circles), sug-

gesting that the detected variant was located in the promoter region of the gene. This was con-

firmed by mapping the significant unitig sequences using the Tuberculosis Mutation database

of themubii resource [28].

Long single-coloured paths denote mobile genetic element insertions

For S. aureus resistance to methicillin, the top subgraph (minq = 7.68 × 10−188), shown in Fig

3D, revealed a gene cassette insertion. It contained a long path of red nodes, and a branching

region including another red node path. The first path mapped to themecA gene, extensively

described in this context and known to be carried by the Staphylococcal Cassette Chromosome

mec (SCCmec) [21, 29, 30]. The other part of the subgraph represented a>5,000 bp fragment

of the cassette. It was less linear because it summarised several types of the cassette differing by

their structure and gene content [29]. The next subgraphs represented other regions of the
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same cassette. Interestingly, retaining a greater number of unitigs to build the subgraphs leads

to merging these individual subgraphs, representing related genomic regions, into a single

one. This can be done by increasing the Significant Features Filter (SFF) parameter value,

which defines the unitigs used to build the subgraphs. By default, the unitigs corresponding to

Fig 3. Different types of genetic events identified by DBGWAS. Each subgraph represents a distinct genetic event. Colours are continuously
interpolated between blue for susceptible unitigs and red for resistant ones. Untested unitigs, present in> 99% or< 1% of the strains, are shown
in grey. Nodes found to be not significative are shown with a transparency degree. The node size relates to its allele frequency: the larger the
node, the higher the allele frequency. Circled black nodes map to annotated genes. The two tables in each panel provide information on the
sugraph nodes. As an example, the subgraph in panel (A) is composed of 27 unitigs, 5 of which were significantly associated with resistance. All
unitigs of this subgraph mapped to the gyrA gene. The subgraphs presented in the four other panels correspond to the top subgraphs (with
lowest minq) obtained for different panels/phenotypes. All subgraphs are snapshots taken from DBGWAS interactive visualisation and are
available online.

https://doi.org/10.1371/journal.pgen.1007758.g003
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the 100 lowest q-values are retained (SFF = 100). Increasing the SFF value to 150 (150th q-

value = 1.60 × 10−27) allowed us to reconstruct the entire SCCmec cassette, as shown in S3 Fig.

For S. aureus erythromycin resistance, a unique subgraph was generated (minq =

2.69 × 10−100). As shown in Fig 3E, the subgraph described the circular structure of a 2,500 bp-

long plasmid known to carry the causal ermC gene together with a replication and mainte-

nance protein in strong linkage disequilibrium with ermC [30, 31].

For P. aeruginosa amikacin resistance, the third subgraph (minq = 2.21 × 10−6) represented

a 10,000 bp plasmid acquisition. Using the NCBI nucleotide database [32], most of the unitigs

in this subgraph mapped to the predicted prophage regions of an integrative and conjugative

plasmid, whose structure corresponds to a plasmid, pHS87b, recently described in the amika-

cin resistant P. aeruginosaHS87 strain [33]. S4 and S5 Figs provide more examples of MGEs

recovered by DBGWAS, and the Interpretation of significant unitigs (step 3) subsection of the

Methods section discusses SFF default value and tuning.

DBGWAS reports expected variants without prior knowledge

Although resistance determinants are not perfectly or exhaustively known for all species, some

resistance mechanisms are well described. This is the case of gyrA and parC alteration in fluo-

roquinolone resistance in P. aeruginosa [20], and of the alteration of two streptomycin targets:

the ribosomal protein S12 (coded by rpsL) and the 16S rRNA (coded by rrs) inM. tuberculosis
[34]. Here we verify the ability of bacterial GWAS methods to recover these known mecha-

nisms. We compared DBGWAS results to those obtained by applying the same association

model to a collection of known resistance genes and SNPs [7, 35] (see the Resistome-based

association studies subsection of the Methods section), and to two other recent k-mer-based

methods: pyseer [6, 36], and HAWK [13].

For P. aeruginosa levofloxacin resistance (Table 2), both DBGWAS and pyseer identified

the two expected known causal determinants reported by the prior resistome-based study:

gyrA and parC, while HAWK only reported gyrA. pyseer reported 224 k-mers, all mapping to

gyrA and parC, while the other methods reported less than 10 features (subgraphs or reassem-

bled k-mers), among which were several unknown, potentially new candidate markers.

ForM. tuberculosis streptomycin resistance (Table 3), the four methods reported the two

expected known causal determinants rpsL and rrs. However, while the resistome-based study

Table 2. Resistance determinants found by the four methods for P. aeruginosa levofloxacin resistance.

Legend resistome-based DBGWAS pyseer HAWK

Time (mem) 37m (7.2 GB) 21m (3.2 GB) 24h22m (14.5 GB) 39m (4.2 GB)

Nb reported 2 variants 5 subgraphs 224 k-mers 8 reassembled k-mers

Known
positive

gyrA (2.11 × 10−22) gyrA (7.21 × 10−29) gyrA (1.97 × 10−17) gyrA (2.82 × 10−14)

parC (1.83 × 10−5) parC (5.68 × 10−6) parC (5.68 × 10−9)

Unknown HK/RR (1.87 × 10−2) tnp (1.66 × 10−14)

tnp NC near tnp

topA

This table presents the annotation of the features identified by the tested methods with default parameters. The total number of reported features, as well as the

execution time and memory load (in Gigabytes) are given in the header. For k-mer-based methods, annotations were retrieved by mapping unitig/k-mer sequences to

the resistance and Uniprot databases (see Interpretation of significant unitigs (step 3) subsection of the Methods section), and completed when needed by Blast on NCBI

Nucleotide database. Green cells correspond to resistance determinants already described in the literature. Grey cells represent unknown determinants. Within each

category, annotations are ordered by increasing minimum p/q-values. p/q-values are reported only for the most significant annotations. For each method, the

annotation with the lowest p/q-values is underlined. ‘NC’ means noncoding region and ‘tnp’ transposase.

https://doi.org/10.1371/journal.pgen.1007758.t002
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and DBGWAS methods ranked the causal rpsL determinant first, pyseer and HAWK reported

their lowest p/q-values for the false positive katG determinant. katG and other false positives

caused by co-resistance were among the top-ranked features for all methods and this is a well

described phenomenon inM. tuberculosis species [34, 37].
Additional results for all antibiotics can be found in S6 and S7 Tables for resistome-based

association studies, and in S3 and S5 Tables for DBGWAS.

DBGWAS provides novel hypotheses

In addition to resistance markers, all three k-mer-based approaches reported several unknown

variants, not described in the context of resistance. Among them, in the context of streptomy-

cin resistance, a noncoding region between a transposase and a PPE-family protein was

Table 3. Resistance determinants found by the four methods forM. tuberculosis streptomycin resistance.

Legend resistome-based DBGWAS pyseer HAWK

Time (mem) 1h31m (2.1 GB) 42m (4.3 GB) 14h14m (102.4 GB) 3h01m (3.7 GB)

Nb reported 28 variants 24 subgraphs 85,011 k-mers 2,038 reassembled k-mers

Known
positive

rpsL (1.96 × 10−33) rpsL (3.70 × 10−31) rpsL (4.85 × 10−55) rpsL (5.72 × 10−47)

rrs (5.40 × 10−8) rrs (2.86 × 10−9) rrs (1.63 × 10−14) rrs (3.45 × 10−20)

Determinant described for other antibiotics katG (2.61 × 10−30) katG (1.06 × 10−28) katG (2.12 × 10−71) katG (1.44 × 10−57)

rpoB rpoB rpoB embB
gidB embB embB kasA
gyrA gyrA ubiA embC
embB gidB pncA gyrA
fabG1 promoter rpoC fabG1 promoter iniA
pncA fabG1 promoter gyrA embA
rpoC ubiA gidB embR
inhA ethA gidB

embA tsnR
embC rpoB

pncA
ethA

Unknown
(top list)

espG1 (1.20 × 10−3) NC near tnp/PE (1.13 × 10−19) NC near tnp/PPE (2.93 × 10−57)

rpsN Rv0270 tnp

NC near tnp/PPE Rv2665 Rv2825c/Rv2828c

rnj Rv2743c 13E12 repeat family protein

Rv2672 Rv2522c PPE

espA promoter NC near tnp/PPE CRISPR repeats, down Cas genes
Rv2456c promoter guaA mmpL14
whiB6 kdpD esxM
. . . . . . . . .

This table presents the annotation of the features identified by the tested methods with default parameters. The total number of reported features, as well as the

execution time and memory load (in Gigabytes) are given in the header. For k-mer-based methods, annotations were retrieved by mapping unitig/k-mer sequences to

the resistance and Uniprot databases (see Interpretation of significant unitigs (step 3) subsection of the Methods section), and completed when needed by Blast on NCBI

Nucleotide database. Green cells correspond to resistance determinants already described in the literature, orange cells to resistance determinants described for

association with other antibiotics. The annotations not found by the resistome-based strategy are written in bold. Grey cells represent unknown determinants. Within

each category, annotations are ordered by increasing minimum p/q-values. p/q-values are reported only for the most significant annotations. For each method, the

annotation with the lowest p/q-values is underlined. ‘NC’ means noncoding region, ‘tnp’ transposase, ‘PE’ stands for PE-family protein and ‘PPE’ for PPE-family

protein.

https://doi.org/10.1371/journal.pgen.1007758.t003
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reported by the three methods but, as expected, not by the resistome-based approach, as only

resistance genes were included in this analysis. More generally, knowledge-based approaches

such as SNP-, gene- or resistome-based GWAS can be limited in the context of new marker

discovery, since any causal variant absent from the chosen reference would remain untested.

Besides being time-consuming, preparing such a list of genetic variants can be problematic for

bacterial species without extensive annotation or reference availability. Here we describe asso-

ciations identified by DBGWAS and which were never described in the antibiotic resistance

literature.

In our P. aeruginosa panel, the second subgraph obtained for amikacin resistance (minq =

1.37 × 10−6) gathered unitigs mapping to the 3’ region of a DEAD/DEAH box helicase, known

to be involved in stress tolerance in P. aeruginosa [38]. The unitig with the lowest q-value was
present in 13 of 47 resistant strains and in only 1 of 233 susceptible strains and represented a

C-C haplotype summarising two mutated positions: 2097 and 2103. This annotation was not

an artefact of the population structure, properly taken into account by the linear mixed model.

Indeed the 13 resistant strains corresponded to distinct clones belonging to two phylogroups,

one of them containing the susceptible strain. In P. aeruginosa levofloxacin resistance, the

third subgraph (minq = 1.87 × 10−2) represented a L650M amino-acid change in a hybrid sen-

sor histidine kinase/response regulator. Such two-components regulatory systems play impor-

tant roles in the adaptation of organisms to their environment, for instance in the regulation

of biofilm formation in P. aeruginosa [39], and as such may play a role in antibiotic resistance.

In S. aureus, polymorphisms within genes not known to be related to resistance were

identified for several antibiotics: purN (minq = 2.02 × 10−22) for fusidic acid, odhB (minq =

1.49 × 10−33) for gentamicin, ybaK andmqo1 (minq = 9.30 × 10−18, resp. 6.82 × 10−10) for tri-

methoprim. None of these genes have been associated with antibiotic resistance before, to the

best of our knowledge.

InM. tuberculosis, polymorphisms in two genes encoding proteins involved in cell wall and
cell processes, espG1 and espA, were found associated with streptomycin (seventh subgraph,

minq = 9.43 × 10−4) and XDR phenotype (third subgraph, minq = 9.58 × 10−36), respectively.

Again, these genes have never been reported in association with antibiotic resistance before.

Although experimental validation would be required to tell whether these hypotheses are

false positive (e.g., in linkage with causal variants) or actual resistance mechanisms not yet doc-

umented, DBGWAS is a valuable tool to screen for novel candidate markers. Moreover it pro-

vides a first level of variant description (SNPs in gene or promoter, MGE, etc) which can

directly drive the biological validation.

DBGWAS facilitates the interpretation of k-mer-based GWAS

Other k-mer-based approaches are as agnostic as DBGWAS and were also able to provide

novel hypotheses, but interpreting their output can prove more challenging than a SNP/gene-

based GWAS. In theM. tuberculosis streptomycin resistance experiment for example, they

reported several thousands of features, while DBGWAS reported only 24 annotated subgraphs

without missing any expected determinant (see Table 3). The thousands of k-mers generated

by HAWK and pyseer are of course also amenable to interpretation: to build our Table 3, we

mapped these k-mers to references and extracted annotated variants which showed at least

one hit. However, doing so required additional efforts and a working knowledge of the most

appropriate annotated references. In addition, k-mers which do not map to the chosen refer-

ence cannot be interpreted. By contrast, DBGWAS always returns a subgraph containing these

k-mers. Even when no annotation exists, the topology and colours of the subgraphs may hint

towards the nature of the causal variant.
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In addition to providing context for significant k-mers and guiding their interpretation as

SNPs or MGEs, DBGWAS clustering of close variants into a subgraph can describe hypervari-

able regions as single entities, and highlight highly associated haplotypes. As an example, the

top subgraph for rifampicin resistance (minq = 4.84 × 10−70) contained 36 significant unitigs,

distinguishing between susceptible (blue) and resistant (red) strains. Instead of a single point

mutation, this subgraph represented a polymorphic region known as the rifampicin resis-

tance-determining region (RRDR) of the rpoB gene. The unitig with the lowest q-value cov-

ered several mutant positions, defining a particular haplotype strongly associated with

rifampicin susceptibility. Where DBGWAS reported in this case only one subgraph, pyseer,

for instance, reported 470 k-mers with the rpoB annotation, and the resistome-based associa-

tion study reported in this case 4 distinct SNPs in rpoB (S6 Table). In another user-submitted

example, DBGWAS identified mosaic alleles of three pbp genes involved in beta-lactam resis-

tance of Streptococcus pneumoniae. Like in the RRDR example, it returned five subgraphs cor-

responding to the three genes—three subgraphs were annotated pbp2x and represented three

distinct polymorphic regions of the gene. Each subgraph summarised the polymorphism of

the gene, as opposed to one separate feature for each SNP.

Admittedly, some subgraphs output by DBGWAS are not readily interpretable: they are

neither coloured bubbles highlighting SNPs, nor long single-coloured paths denoting MGE

insertions. This was the case of several subgraphs produced for P. aeruginosa amikacin resis-

tance, and presented in S6 Fig. Genetic variants inserted in variable regions, for example, lead

to subgraphs with a high average degree, or to very large subgraphs. The fourth subgraph for

instance (minq = 2.21 × 10−6) contains a path of three red (positively-associated) nodes lying

in a noncoding region between variable accessory genes. Consequently, their neighbour uni-

tigs branch to various other unitigs, making the structure complex and hard to interpret. Com-

plex subgraphs also arise when several associated variants have overlapping neighbourhoods

(as defined in the Graph neighbourhoods subsection in the Methods section, and tuned with

the nh parameter) in at least one strain. This is the case for the subgraph with the smallest

minq which aggregates aac(60) acetyltransferase and the CML efflux pump.

The interpretation of such subgraphs is not straightforward. We often found it helpful to

tune the nh and SFF parameters to break large subgraphs into a set of smaller ones, as dis-

cussed in the discussed in the Methods section. For the aac(60) subgraph, where nearby vari-
ants are aggregated into a large subgraph, reducing the SFF value to 15 provided a much

smaller and easier-to-interpret subgraph focusing on the aac(60) mutation (Fig 3B). Otherwise,

we recommend to focus on the topology of the most significant unitigs and their close

neighbours.

DBGWAS is fast, memory-efficient, and scales to very large panels

To assess the scalability of DBGWAS to large datasets, we retrieved 5,000 genomes from

M. tuberculosis, 9,000 genomes from S. aureus and 2,500 genomes from P. aeruginosa, as
described in the Large panels subsection of the Methods section. We present in S9 Fig the run-

time and memory usage performances for these panels. All 180 runs took less than 5 days and

250 GB of RAM on 8 cores. Both the computational time and memory usage increase log-line-

arly with the panel size. Moreover, at equal panel size, DBGWAS performance also depends

on the genome complexity, requiring less computational resource for more clonal genomes

such asM. tuberculosis.
We also compared the computational performance of DBGWAS with pyseer and HAWK.

The benchmark was performed on 13 datasets, including one large dataset of 2,500 genomes

for each of the 3 species (see the Datasets subsection in the Methods section for details).
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Detailed results are presented in S2 Table. DBGWAS was the fastest tool in 11 out of 13 experi-

ments, always taking less than 2 hours. HAWK ran in less than 10 hours in 12 out of 13 experi-

ments, and was a little faster than DBGWAS on two of the large-scale datasets. pyseer took

from 13 to 53 hours on 9 experiments, and failed on the 4 others: one exceeded the disk space

limit of 1TB, three exceeded the runtime limit of five days. It was brought to our attention dur-

ing the reviewing process that piping the output of fsm-lite through gzip would decrease the

disk space usage. HAWK was more parsimonious in memory usage than DBGWAS on the

large scale panels. This can be explained by the fact that the 0.8.3-beta version of HAWK

which we are using does not take into account the population structure, and as such does not

have to compute an n × n covariance matrix, providing it a large gain in memory usage—and,

to a lesser extent, runtime—for large panels. On the other hand, disregarding the population

structure could also lead to spurious discoveries. HAWK v0.9.8-beta offers an adjustment but

failed to recover the known true positives, which is why we chose to present the results of the

0.8.3-beta version. DBGWAS and HAWK typically used one order of magnitude less memory

than pyseer. The most memory-consuming step for pyseer was the k-mer counting step relying

on fsm-lite.

Discussion
In this article we introduce an efficient method for bacterial GWAS. Our method is agnostic:

it considers all regions of the genomes and is able to identify potentially new causal variants

as different as SNPs in noncoding regions and MGE insertions/deletions. It performs as well

as the current SNP- and gene-based gold standard approaches for retrieving known determi-

nants, from genome pre-assemblies and without relying on annotations or reference

genomes.

DBGWAS exploits the genetic environment of the significant k-mers through their neigh-

bourhood in the cDBG, providing a valuable interpretation framework. Because it uses only

contig sequences as input, it allows GWAS on bacterial species for which the genomes are still

poorly annotated or lack a suitable reference genome. DBGWAS makes bacterial GWAS possi-

ble in two hours using a single-core computer (see S1 Table), outperforming other state-of-

the-art k-mer-based approaches.

Underlying our method, graph-based genome sequence representations such as DBGs,

extend the notion of the reference genome to cases where a single sequence stops being an

appropriate approximation [40, 41]. As demonstrated in this paper, they pave the way to

GWAS on highly plastic bacterial genomes and could also be useful for microbiomes [42] or

human tumours [13].

DBGWAS currently relies on the Benjamini-Hochberg procedure to control the FDR and

offers no advance exploiting the dependence among presence/absence patterns. An important

improvement would be to control the false discovery rate at the subgraph level instead of the

unitig level. DBGWAS could be extended to different statistical tasks by adapting its underly-

ing association model, to allow for continuous phenotypes or identify epistatic effects, for

instance. The interpretability of the extracted subgraphs could also be improved by training a

machine learning model to predict which types of event they represent [43]. This automated

labelling could guide users in their interpretation and allow them to search for specific events,

such as SNPs in core genes or rearrangements.

Several recent studies describe in silicomodels for defining a genomic antibiogram and

hopes are high that such technologies will complement the classic phenotypic methods [44].

Several studies have already demonstrated that in some cases, genomic antibiograms can be at

least as good as phenotypic ones [30, 45–47]. Contrary to our approach, these studies require

Fast agnostic bacterial GWASwith De Bruijn graphs

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007758 November 12, 2018 12 / 28



extensive resistance marker databases. DBGWAS will surely contribute to the extension of

such databases or to the development of agnostic genomic antibiograms.

In conclusion, we demonstrate for three medically important bacterial species that resis-

tance markers can be detected rapidly with relative ease, using simple computer equipment.

Our integrated software and visualisation tools offer an intuitive variant representation, hence

will provide future users with an enhanced insight into genotype to phenotype correlations, in

all domains of microbiology, beyond that of antibiotic resistance. This will include complex

traits such as biofilm formation, epidemicity and virulence.

Methods

Encoding genomic variation with compacted DBGs

DBGs are directed graphs that efficiently represent all the information contained in a set of

sequences. Nodes represent all the unique k-mers (genome sequence substrings of length k)
extracted from the input sequences. Edges represent (k − 1)-exact-overlaps between k-mers:

an edge connects a node n1 to a node n2 if and only if the (k − 1)-length-suffix of n1 equals the
(k − 1)-length-prefix of n2 (Fig 1A).

These graphs can be compacted into cDBGs by merging linear paths (sequences of nodes

not linked to more than two other nodes) into a single node referred to as a unitig [48–50] (Fig
1C). Compaction yields a graph with locally optimal resolution: regions of the genome which

are conserved across individuals are represented by long unitigs, while regions which are

highly variable are fractioned into shorter unitigs (S1 Fig).

Representing strains by their unitig content (step 1)

cDBG construction. We build a single DBG from all genomes given as input using the

GATB C++ library [51]. We start from contigs rather than reads and, consequently, we do not

need to filter out low abundance k-mers, allowing for the exploration of any variation present

in the set of input genomes. We then compact the DBG using a graph traversal algorithm,

which identifies all linear paths in the DBG—each forming a unitig in the cDBG. During this

step, we also associate each k-mer index to its corresponding unitig index in the cDBG.

There is no general rule for choosing the ideal k-mer length as it depends on many factors,

including the assembly quality, complexity of the input genomes, or presence of repeats. High

values of k lead to haplotypes containing multiple SNPs instead of distinct single SNPs, if these

SNPs are separated by less than k bases. As k increases, the k-mer-defined haplotypes also

become more specific to a genome sub-population, leading to a loss of power to detect geno-

type to phenotype associations. Low values of k, on the other hand, produce highly connected

sets of non-specific k-mers. In particular, any repeated region with at least k bases may create a

cycle in the DBG (Fig 4). We use k = 31 by default, as it produced the best performance to

retrieve known markers of P. aeruginosa resistance to amikacin and levofloxacin (Fig 5). We

found DBGWAS results to be robust to small variations of k between 21 and 41. Similar graph

structures were generated whatever the tested value of k for the clonalM. tuberculosis species
(S7 Fig). More variability was observed for P. aeruginosa resistance to amikacin, which

involves more complex resistance mechanisms (S8 Fig).

Unitig presence across genomes. Each genome is represented by a vector of presence/

absence of each unitig in the cDBG. To do so, we query the unitig associated to each k-mer in

a given genome. This procedure is efficient because it relies on constant time operations.

Firstly, we use GATB’s Minimal Perfect Hash Function (MPHF) [52] to retrieve the index of a

given k-mer, and then we use the previously computed association between k-mer and unitig

indices to know which unitigs the given genome contains. Since these two operations take
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Fig 4. Effect of k on the graph topology. A cDBG was built from the P. aeruginosa gyrA gene sequences from several
strains. When k is small, k-mers are highly repeated, which generate numerous loops. As k increases, k-mer sequences
become more specific and the graph gets more linear. For large values of k, few k-mers are shared by all the strains, and
the linear path thickens into parallel paths belonging to variable strain populations.

https://doi.org/10.1371/journal.pgen.1007758.g004

Fig 5. Choice of k. True positive versus false positive curves for several values of k for both amikacin and levofloxacin resistance phenotypes.
True positives are unitigs mapping to genuine variants described in resistance databases for the studied drugs [7]. In both cases, the value of k
leading to the best AUC is k = 31.

https://doi.org/10.1371/journal.pgen.1007758.g005
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constant time, producing this vector representation for a genome takes linear time on the size

of the genome. It is important to note that the GATB’s MPHF can be successfully applied here

because we always use the same list of k-mers, i.e., after building the DBG, the set of k-mers is

fixed and not updated, and because we always query k-mers that are guaranteed to be in the

DBG (since we do not filter out any k-mer).

The unitig description on all the input genomes is stored into a matrix U:

Ui;j ¼
1; if the j th unitig is present in the i th input genome;

0; otherwise:

(

We then transform the matrix U into Z, which represents the minor allele description, in

terms of presence [5]: Z is identical to U except for columns with a mean larger than 0.5,

which are complemented: Zj = 1 − Uj for these columns.

We then restrict Z to its set of unique columns. If several unitigs have the same minor allele

presence pattern, then they will be represented by a single column. Keeping duplicates would

lead to performing the same statistical test several times. Finally, we filter out columns whose

average is below 0.01—the user can specify this threshold using the - option. We denote

the de-duplicated, filtered matrix of patterns by X.
Importantly, both k-mers and unitigs lead to the same set of distinct patterns across the

genomes. Indeed, every unitig represents (at least) one k-mer, and conversely every k-mer is

represented by one (single) unitig. When de-duplicated, the two representations therefore lead

to the same set of patterns to be tested for association with the phenotype.

Testing unitigs for association with the phenotype (step 2)

Human GWAS literature extensively discusses how testing procedures can result in spurious

associations if the effect of the population structure is not taken into account [53–55]. Popula-

tion structures can be strong in bacteria because of their clonality [5, 6, 56, 57]. An additional

performance analysis comparing several models for population structure, on both simulated

and real data, showed that correcting for population structure using LMMs is often preferable

to using a fixed effect correction or not correcting at all (S1 Appendix).

We thus rely on the bugwas method [5], which uses the linear mixed model (LMM) imple-

mented in the GEMMA library [58], to test for association with phenotypes while correcting

for the population structure. This method also offers the possibility to test for lineage effects,

by calculating p-values for association between the columns of the matrix representing the

population structure, and the phenotype [5]. DBGWAS optionally provides bugwas lineage

effect plots when the user specifies a phylogenetic tree using the - option. An example

of the generated figures is available at http://pbil.univ-lyon1.fr/datasets/DBGWAS_support/

full_dataset_visualization/.

Formally, the LMM represents the distribution of the binarized phenotype Yi, given the j-th
minor allele pattern Xij and the population structure represented by a set of factorsW 2 n�p,

by:

Yi ¼ XijbþWT
i aþ ij; j ¼ 1; . . . ; p: ð1Þ

is the fixed effect of the tested candidate on the phenotype, a � N ð0; s2
aÞ, s2

a > 0 is the ran-

dom effect of the population structure, and ij �iid N ð0; s2Þ are the residuals with variance σ2 >
0.W is estimated from the Zmatrix, which includes duplicate columns representing both core

and accessory genome. More precisely, denoting Z = USV> the singular value decomposition

of Z, we useW = US.
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We testH0: = 0 versusH1: 6¼ 0 in Eq 1 for each pattern using a likelihood ratio proce-

dure producing p-values and maximum likelihood estimates b̂. To tackle the situation of mul-

tiple testing caused by the high number of tested patterns, we compute q-values, which are the

Benjamini-Hochberg transformed p-values controlling for false discovery rate (FDR) [59].

Interpretation of significant unitigs (step 3)

The LMM is used to identify de-duplicated minor allele presence patterns significantly associ-

ated with the phenotype at a chosen FDR level. While the testing step is done at the pattern

level, the interpretation of the selected features is done at the unitig level. As a result of the de-

duplication procedure, a given pattern may correspond to several distinct unitigs. To faithfully

interpret the results, all the unitigs corresponding to the significant patterns are retrieved and

are assigned the q-value of their pattern. We now show how the initial cDBG can be used in

the interpretation step.

Significance threshold. The interpretation step focuses on the unitigs with the lowest q-

values. These unitigs are indeed used to build the resulting annotated subgraphs. The unitig

selection can be either based on the FDR (q-value threshold) or on a number of presence/

absence patterns ordered by increasing q-values. Practically, this is done in DBGWAS using a

Significant Features Filter (SFF). For a selection based on a FDR threshold, the SFF value is set

between 0 and 1, while any integer value> 1 defines the number of patterns to consider.

In our experiments, we choose not to apply a fixed FDR threshold, even though DBGWAS

offers this option. Different datasets lead to different q-values, even by several orders of magni-

tude, and a single FDR threshold would lead to selecting a large number of unitigs generating

more than 1,000 subgraphs on some of them (e.g. S. aureus ciprofloxacin) as shown in S8

Table. Instead, we retain the 100 patterns with lowest q-values. Although arbitrary, this choice

is tractable for all datasets and provides satisfactory results in our experiments. It does not pro-

vide and explicit control of the FDR: only the q-value provides an estimation of the proportion

of false discoveries incurred when considering patterns below this value. Checking the q-values

of the selected unitigs is therefore essential to assess their significance. If the default SFF = 100

is not satisfactory, it is also possible to re-run the third step only, with a more suitable SFF

value.

Graph neighbourhoods. We define the neighbourhood of each significant unitig u
(defined by the SFF) as the set of unitigs whose shortest path to u has at most ne = 5 edges.

Users can modify the ne value using the - option. The objects returned by DBGWAS are the

connected components of the graph induced by the neighbourhoods of all significant unitigs

in the cDBG. As illustrated in Fig 6, nearby significant unitigs might belong to the same con-

nected component, so this process groups unitigs which are likely to be located closely in the

genomes. We refer to the connected components as subgraphs in the Results section.

The SFF value can be tuned to optimise the number and size of the output subgraphs. It has

no impact on subgraphs describing SNPs in core sequences (S2 Fig). On the other hand, when

significant unitigs map to different regions of a single MGE, such as a plasmid, several sub-

graphs are generated but can be gathered into a single subgraph by increasing the SFF thresh-
old (S4 Fig). When significant unitigs map to several distinct mobile regions, which can be

found in different contexts (transposon, integron, etc.) at the population level, the resulting

subgraph can become very large and highly branching: decreasing the SFF threshold allows to

select the few most significant unitigs, generating a subgraph focusing on the most relevant

region (S6 Fig). Reducing the graph complexity can also be done by decreasing the ne value,
using the - option.
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Representing metadata with coloured DBGs. The subgraphs are enriched with metadata

to make their interpretation easier. We use the node size to represent allele frequencies, i.e.,
the proportion of genomes containing the unitig sequence. We describe the effect of each

unitig as estimated by the LMM using colours, in the spirit of the coloured DBGs [19]. Colours

are continuously interpolated between red for unitigs with a strong positive effect and blue for

those with a strong negative effect.

Annotating the subgraphs. DBGWAS can optionally integrate an automated annotation

step using the Blast suite [60] (version 2.6.0+) on local user-defined protein (- option)

or nucleic acid (- option) sequence databases. We annotate the subgraphs of interest by

blasting each unitig sequence to the available databases. Users can then easily retrieve the

annotations which are the most supported by the nodes in the subgraph, or with the lowest E-

value. Importantly, DBGWAS works with any nucleotide or protein Fasta files as annotation

databases straight away. However, users can customize the annotation databases by changing

the Fasta sequences headers to make DBGWAS results more interpretable. A common exam-

ple is compacting the annotation in the summary page by using abbreviations or gene class

names, and expanding them to full names in the subgraph page. Other custom fields can also

be included in the annotation table by adding specific tags to the headers. A detailed explana-

tion on how to customize annotation databases for DBGWAS can be found in https://gitlab.

com/leoisl/dbgwas/wikis/Customizing-annotation-databases. We also provide on the

DBGWAS website a resistance determinant database built by merging the ResFinder, MEGA-

Res, and ARG-ANNOT databases [61–63], and a subset of UniProt restricted to bacterial pro-

teins [24]. Subgraphs discussed in the Results section were annotated using these databases.

Fig 6. Subgraphs induced by the neighbourhood of significantly associated unitigs. In this example, a neighbourhood
of size ne = 2 was used: any unitig distant up to 2 edges from a significant unitig is retrieved to define its neighbourhood.
Neighbourhoods are merged if they share at least one node, e.g. the neighbourhoods ofU1 andU2 are merged because
they shareN6, and will be represented in a single subgraph.

https://doi.org/10.1371/journal.pgen.1007758.g006
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Interactive visualisation. DBGWAS produces an interactive view of the enriched and

annotated subgraphs, allowing the user to explore the graph topology together with informa-

tion on each node: allele and phenotype frequencies, q-value, estimated effect, and annotation.

The view is built using HTML, CSS, and several Javascript libraries, the main one being Cytos-

cape.js [64]. Results can be shared and visualised in a web browser. As a large number of com-

ponents can be produced in one run of DBGWAS, we provide a summary page allowing users

to preview and filter the subgraphs. Filtering can be based upon the minimum q-value of all

unitigs in the component (minq), or based on the annotations. A complete description of the

DBGWAS interactive interface is available in https://gitlab.com/leoisl/dbgwas/wikis/

DBGWAS-web-based-interactive-visualization.

Re-running from step 2 or step 3. It is possible to re-run a part of the analysis if a first run

with the default values was unsatisfactory. The - option allows to re-run from the sec-

ond step, for instance to compute the lineage effects (adding the - option). It is also

possible to re-run only the third step by using the - option, for instance when the

default SFF and nh values generated highly connected graphs, or if the annotation was

incomplete.

Datasets

We used in our experiments genome sequences from three bacterial species with various

degrees of genome plasticity, from more clonal to more plastic:M. tuberculosis, S. aureus, and
P. aeruginosa. We also built large datasets with random phenotypes for these 3 species, and

used them only for time performance and memory usage assessment. All panels are summa-

rised in Table 4.

TB panel. M. tuberculosis (TB) is a human pathogen causing 1.7 million deaths each year

[66]. This species is known for its apparent absence of horizontal gene transfer (HGT) and,

accordingly, most of the reported resistance determinants are chromosomal mutations [67] in

core genes or gene promoters. Intergenic regions are also described to be instrumental in mul-

tidrug-resistance (MDR) and extensively drug-resistant (XDR) phenotypes [9]. We use the

PATRIC AMR phenotype data, as well as genome assemblies from their resource [35, 68]. We

thus gather a total of 1302 genomes after filtering based on genome length. Phenotype data

include isoniazid, rifampicin, streptomycin, ethambutol, ofloxacin, kanamycin and ethion-

amide resistance status. Except for the last three drugs, phenotype data are available for more

than a thousand genomes. We reconstruct MDR and XDR phenotypes based on the WHO

definition [66]. XDR phenotype could only be defined for 689/1302 strains as it required data

for at least 4 drugs. Information on how phenotype data and genome assemblies were obtained

is available on the PATRIC website.

SA panel. S. aureus is a human pathogen causing life-threatening infections. It is subject

to HGT and many plasmids, mobile elements, and phage sequences have been described in its

genome. However, this does not affect the species’ genome size, which is always close to 3 Mbp

[69]. Most antibiotic resistance mechanisms are well determined by known variants, as shown

in a previous study [30]. This study obtained an overall sensitivity of 97% for predicting 12

phenotypes from rules based on antibiotic marker mapping. We use this study panel of 992

strains obtained by merging their derivation and validation sets.

PA panel. P. aeruginosa is a ubiquitous bacterial species responsible for various types of
infections. It is highly adaptable thanks to its ability to exchange genetic material within and

between species [70]. The species accessory genome is particularly important both in terms of

size and diversity, and carries more than half of the genetic determinants already described to

confer resistance to antimicrobial drugs [7, 65, 71]. We use a panel of 282 strains, gathered
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from two collections which mostly include clinical strains: the bioMérieux collection [65]

(n = 219) and the Pirnay collection [72] (n = 63). Genome assemblies and categorical pheno-

types for 9 antibiotics are available [7]. Binarised phenotypes of amikacin resistance are avail-

able on the DBGWAS project page as an example for users.

Phenotype binarisation. Most available phenotypes are categorical, with S, I and R levels,

respectively, for susceptible, intermediary, and resistant. We binarise them by assigning a zero

value to susceptible strains (S) and one to others (I and R).

Large panels. We built large panels for the three species, in order to analyse the computa-

tional performance at a comprehensive scale. To do so, we gathered all genome assemblies of

M. tuberculosis (5,504), S. aureus (9,331), and P. aeruginosa (2,802) available on the NCBI

RefSeq bacterial genome repository [11], and removed poor quality genomes. For each panel,

Table 4. Microbial panels.

Species Genome plasticity Range of genome length Panel name Source Phenotype Number of available genomes

M. tuberculosis very low 4.4 Mbp TB [35] rifampicin 1,197

isoniazid 1,287

ethambutol 1,041

streptomycin 1,166

kanamycin 671

ofloxacin 696

ethionamide 420

MDR 1,211

XDR 689

Large TB [11] random 5,000

S. aureus low 2.7-3.1 Mbp SA [30] methicillin 501

ciprofloxacin 991

erythromycin 991

penicillin 991

tetracycline 991

fusidic acid 991

trimethoprim 323

gentamicin 991

rifampin 991

mupirocin 490

vancomycin 501

Large SA [11] random 9,000

P. aeruginosa high 5.8-7.6 Mbp PA [65] amikacin 280

levofloxacin 117

meropenem 280

piperacillin 280

colistin 164

polymyxin B 117

chloramphenicol 103

cefepime 280

fosfomycin 113

Large PA [11] random 2,500

We selected 3 bacterial species with distinct levels of genome plasticity, and with antibiotic resistance phenotypes available for several drugs. For each species, we also

created large datasets by computing random phenotypes for all available genome assemblies from NCBI RefSeq.

https://doi.org/10.1371/journal.pgen.1007758.t004
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we generated random binary phenotypes. For a detailed time and memory assessment, we

built several sub-panels from these three large panels at size points of 100, 250, 500, 1,000,

2,500, 5,000 and 9,000 genomes. To build these sub-panels, we sampled genomes uniformly

from the panels. To take into account the variability among subsamplings, each sub-panel was

randomly built 10 times.

Resistome-based association studies

We benchmarked DBGWAS against a targeted approach to ensure its ability to retrieve all

expected resistance determinants. We thus performed association studies under the same

model, using as input a collection of known causal resistance SNPs and genes, defining the

resistome.

In this validation study, we used bugwas with the same phenotypes and population struc-

ture matrixW, so the resistome-based analyses and DBGWAS only differ by their input vari-

ant matrix (unitigs versus SNPs or genes presence/absence).

For P. aeruginosa resistome, we use a variant matrix previously described [7], which

includes presence/absence of known resistance gene variants, as well as the SNPs called against

these reference gene variants. ForM. tuberculosis resistome, we built the variant matrix using

the same approach as for P. aeruginosa [7]: we called the SNPs from a list of 32 known resis-

tance genes and promoters [34, 67, 73]. The time and memory usage required for the complete

analysis (from the mapping of the resistance genes and positions on the genome assemblies to

the association study) are provided in Tables 2 and 3.

We sort the annotated features by q-values. S6 and S7 Tables summarise all top variants

using their q-value ranks, while Tables 2 and 3 report the annotations of all variants with a q-

value< 0.05 for P. aeruginosa levofloxacin andM. tuberculosis streptomycin resistance,

respectively.

k-mer-based GWAS

pyseer. We installed pyseer [6, 36] commit ID

(9 commits ahead of pyseer v1.1.1). pyseer pipeline is composed of four

steps: 1) k-mer counting; 2) population structure estimation; 3) running pyseer; 4) down-

stream analysis. To use the correct parameters, we followed the pyseer tutorial (https://pyseer.

readthedocs.io/en/master/tutorial.html). For k-mer counting, we used fsm-lite (https://github.

com/nvalimak/fsm-lite), filtering out all k-mers with a minor allele frequency smaller than 1%.

For population structure estimation, we used Mash v2.0 [74]. To run pyseer, we used 8 cores

and a LRT p-value threshold of 0.05. Downstream analysis involved getting the k-mers

which exceeded the significance threshold (which can be found using the

script), sorting them by LRT p-value, blasting them against the two

databases presented in the Interpretation of significant unitigs (step 3) subsection, and keeping

the best hit for each k-mer. For reproducibility purposes, the scripts we used to run pyseer can

be found at https://gitlab.com/leoisl/DBGWAS_support/tree/master/scripts/pySEER.

HAWK. We firstly ran HAWK [13] v0.9.8-beta, as it allows correcting for population

structure. Unfortunately, it was unable to find the known causal variants reported for P. aeru-
ginosa levofloxacin andM. tuberculosis streptomycin resistances by other methods (see Tables

2 and 3). We therefore kept in our benchmarks an earlier version, HAWK v0.8.3-beta, which

presented better qualitative performance for these two evaluated panels. HAWK pipeline is

composed of five steps: 1) k-mer counting with a modified version of jellyfish [75]; 2) running

HAWK; 3) assembling significant k-mers with ABYSS [76]; 4) getting statistics on the assem-

bled sequences; 5) downstream analysis. The first four steps were performed as described in
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HAWK’s github page. However, in the first step, we had to remove the lower-count cutoff in

(parameter - ), since we are working with contigs and not reads. The last

step was performed similarly as the one described for pyseer. For reproducibility purposes, the

scripts we used to run HAWK v0.8.3-beta can be found at https://gitlab.com/leoisl/DBGWAS_

support/tree/master/scripts/HAWK_0_8_3_beta.

Supporting information
S1 Fig. Alignment to a reference (when possible), cDBG, and k-mers obtained for similar

(A) and very polymorphic genomes (B). In the first case, the 3 loci represented as polymor-

phic in the alignment lead to 3 bubble patterns in the cDBG, and numerous redundant k-

mers. In the second case, genomes are so polymorphic that an alignment is not possible. The

cDBG summarizes well the common regions and the links between them, while the collection

of unique k-mers still contains redundancy.

(PDF)

S2 Fig. Effect of SFF on the top subgraphs generated for S. aureus ciprofloxacin resistance.

Annotation of the first subgraphs is strictly conserved (red for parC, green for gyrA, yellow for

norA promoter region, blue for noncoding between glmM and fmtB and violet for transposase

flanking regions).

(PDF)

S3 Fig. Effect of SFF on the top subgraphs generated for S. aureusmethicillin resistance.

Only one subgraph, containing themecA gene (highlighted in red) is generated for lower SFF
values. Then several regions of the SCCmec cassette appear for SFF = 70, and are aggregated

into a single subgraph for SFF� 150. Green subgraphs do not concern themecAMGE.

(PDF)

S4 Fig. Effect of SFF on the top subgraphs generated for S. aureus penicillin resistance.

Green subgraphs do not concern the blaZMGE. Annotations are ordered by number of nodes

carrying it. Yellow, orange and pink highlight blaZ, blaR1 and blaI, respectively.
(PDF)

S5 Fig. Effect of SFF on the top subgraphs generated for S. aureus erythromycin resistance.

Only one subgraph, describing the ermC and its plasmid is outputted when SFF< 200. Green

subgraphs do not concern the ermCMGE.

(PDF)

S6 Fig. Effect of SFF on the top subgraphs generated for P. aeruginosa amikacin resistance.

Nodes corresponding to aac(6’) gene are shown in a blue frame. When the SFF parameter

increases, these nodes aggregate to others genes found at least once close to aac(6’). The anno-
tation of the following subgraphs are well conserved (same color legend as in S8 Fig).

(PDF)

S7 Fig. Effect of k on the four first subgraphs obtained for TB rifampicin resistance.With a

k value varying between 21 and 41, the first 3 subgraphs always have the same ordering, shape

and annotation, as well as comparable q-values, although smaller q-values are observed for

lower values of k. The number of significant unitigs per subgraph is also well conserved. The

fourth top-rated subgraphs are not always the same: the gyrAmutation appears at a lower rank

when k is smaller.

(PDF)
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S8 Fig. Effect of k on the five first subgraphs obtained for P. aeruginosa amikacin resis-

tance.When k varies, the plasmid (yellow) and the mercury reductase and transposase (blue)

remain among the five top-rated subgraphs. However, k has an effect on the aggregation of

subgraphs corresponding to different genetic events: the mutation on aac(6’) gene (blue
frame) always appears in the first subgraph but is merged with the large mercury reductase

and transposase subgraph for k = 27, 39 and 41. The order of the subgraphs also varies with k:
up to four ranks for some subgraphs, and others leave the top-5 list.

(PDF)

S9 Fig. Large scale analysis on computational resources usage. This figure describes how

DBGWAS scales in terms of time and memory usage for large datasets, containing up to 9,000

genomes. The large panels used here are described in the Large panels subsection of the Meth-

ods section. To understand better DBGWAS performance behaviour, we present performance

curves for each panel at size points of 100, 250, 500, 1,000, 2,500, 5,000 and 9,000 genomes.

The executions were done in a cluster, instead of a single machine, and used 8 cores each. In

order to reduce subsampling and machine heterogeneity problems, each sub-panel was ran-

domly built 10 times and we present the time and memory usage for all these executions.

Although these two measures not only depends on the number of input genomes but also on

their length and complexity, this figure allows estimations of the computational resources

usage on small and large panels with different genome plasticities.

(PDF)

S1 Table. DBGWAS time and maximal memory load on a single core. All runs presented in

this table were executed with the default parameters, without optional steps (lineage effect anal-

ysis nor annotation of subgraphs), on a single Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
core. The datasets are described in the Datasets subsection of the Methods section. DBGWAS

ran in less than 2,5 hours for all experiments in our benchmark. The maximummemory load

(given between parenthesis in the Runtime column) was 11 GB of RAM. The panel size and

genome length (given between parenthesis in the Panel column) did not drive alone the run-

ning performances; the genome complexity played an important role as well. To view the gain

in performance of DBGWAS when running on multiple (8) cores, see S2 Table.

(PDF)

S2 Table. Benchmarking DBGWAS, pyseer and HAWK: Comparison of time and maximal

memory load. The total execution time is presented with the maximal memory consumption

in parenthesis, in order of GBs. For pyseer and HAWK, the time and memory for each step

is also detailed. All tools were ran on a same machine with 8 Intel(R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz cores, 315 GB of RAM and 1 TB of disk space. Each execution used all the 8

available cores. The datasets are described in the Datasets subsection of the Methods section.

However, for the three large panels (Large TB, Large SA, and Large PA), here we just chose a

random 2,500-genome sub-panel. Moreover, DBGWAS was ran with the default parameters,

without optional steps (lineage effect analysis nor annotation of subgraphs). The parameters

for pyseer and HAWK were the ones described in the k-mer-based GWAS subsection of the

Methods section. We did not consider the time and memory consumed in the last step for

these two tools (downstream analysis). The runs taking more than 5 days to finish were inter-

rupted and are shown as Timeout. The runs that exceeded 1 TB of disk space were interrupted

and are shown as DQE (Disk Quota Exceeded).

(PDF)

S3 Table. DBGWAS results forM. tuberculosis resistance to antibiotics. For each antibiotic,

top subgraphs were reported with their rank, the q-value of the unitig with the lowest q-value
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(minq), the corresponding estimated effect (estimated of the linear model) and the number

of susceptible (resp. resistant) strains harbouring this unitig (count per phenotype). The type

of event represented by the subgraph, its annotation and some comments and references on

this annotation were also provided. Comments were coloured if the annotation was previously

described in antibiotic resistance literature: in green if this description concerned the tested

antibiotic, in orange otherwise.

(XLS)

S4 Table. DBGWAS results for S. aureus resistance to antibiotics. For each antibiotic, top

subgraphs were reported with their rank, the q-value of the unitig with the lowest q-value

(minq), the corresponding estimated effect (estimated of the linear model) and the number

of susceptible (resp. resistant) strains harbouring this unitig (count per phenotype). The type

of event represented by the subgraph, its annotation and some comments and references on

this annotation were also provided. Comments were coloured if the annotation was previously

described in antibiotic resistance literature: in green if this description concerned the tested

antibiotic, in orange otherwise.

(XLS)

S5 Table. DBGWAS results for P. aeruginosa resistance to antibiotics. For each antibiotic,

top subgraphs were reported with their rank, the q-value of the unitig with the lowest q-value

(minq), the corresponding estimated effect (estimated of the linear model) and the number

of susceptible (resp. resistant) strains harbouring this unitig (count per phenotype). The type

of event represented by the subgraph, its annotation and some comments and references on

this annotation were also provided. Comments were coloured if the annotation was previously

described in antibiotic resistance literature: in green if this description concerned the tested

antibiotic, in orange otherwise.

(XLS)

S6 Table. Resistome-based association study results forM. tuberculosis resistance to antibi-
otics. For each antibiotic, the 10 first features most associated to the phenotype were reported,

with their rank, q-value, and estimated effect (estimated of the linear model). The type of tar-

geted variant, with its gene annotation were also provided. Comments were coloured if the

annotation was previously described in antibiotic resistance literature: in green if this descrip-

tion concerned the tested antibiotic, in orange otherwise. The last column presents the corre-

sponding subgraphs found by DBGWAS, with their rank and minq.

(XLS)

S7 Table. Resistome-based association study results for P. aeruginosa resistance to antibi-
otics. For each antibiotic, the 10 first features most associated to the phenotype were reported,

with their rank, q-value, and estimated effect (estimated of the linear model). The type of tar-

geted variant, with its gene annotation were also provided. Comments were coloured if the

annotation was previously described in antibiotic resistance literature: in green if this descrip-

tion concerned the tested antibiotic, in orange otherwise. The last column presents the corre-

sponding subgraphs found by DBGWAS, with their minq.

(XLS)

S8 Table. Number of subgraphs generated using different significance thresholds. This

table shows the number of subgraphs generated when defining the significant unitigs as the

ones with the 100 lowest q-values (default SFF = 100, ‘top 100’) or when using a 5% false dis-

covery rate (FDR) threshold (SFF = 0.05, ‘5% FDR’). Different datasets lead to different q-val-

ues, even by several orders of magnitude. For instance, a single FDR threshold leads to
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selecting a large number of unitigs generating several hundreds subgraphs for SA (S. aureus)
panel.

(PDF)

S1 Appendix. Evaluation of association models.

(PDF)
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Abstract

Motivation: Long-read sequencing technologies offer promising alternatives to high-throughput short
read sequencing, especially in the context of RNA-sequencing. However these technologies are currently
hindered by high error rates that affect analyses such as the identification of isoforms, exon boundaries,
open reading frames, and the creation of gene catalogues. Due to the novelty of such data, computational
methods are still actively being developed and options for the error-correction of RNA-sequencing long
reads remain limited.
Results: In this article, we evaluate the extent to which existing long-read DNA error correction methods
are capable of correcting cDNA Nanopore reads. We provide an automatic and extensive benchmark
tool that not only reports classical error-correction metrics but also the effect of correction on gene
families, isoform diversity, bias toward the major isoform, and splice site detection. We find that long
read error-correction tools that were originally developed for DNA are also suitable for the correction of
RNA-sequencing data, especially in terms of increasing base-pair accuracy. Yet investigators should be
warned that the correction process perturbs gene family sizes and isoform diversity. This work provides
guidelines on which (or whether) error-correction tools should be used, depending on the application type.
Benchmarking software: https://gitlab.com/leoisl/LR_EC_analyser
Key words: Long reads, RNA-sequencing, Nanopore, Error correction, Benchmark

1 INTRODUCTION
Recent advances in long-read sequencing technology have enabled

the sequencing of RNA molecules, using either cDNA-based or

direct RNA protocols from Oxford Nanopore (referred to as ONT or

Nanopore) and Pacific Biosciences (PacBio). The Iso-Seq protocol

from PacBio consists in a size selection step, sequencing of cDNAs,

and finally a set of computational steps that produce sequences

of full-length transcripts. ONT has three different experimental

protocols for sequencing RNA molecules: cDNA transformation

with amplification, direct cDNA (with or without amplification),

and direct RNA.

Long-read sequencing is increasingly used in transcriptome

studies (Sedlazeck et al., 2018; Wang et al., 2016; Byrne

et al., 2017; Oikonomopoulos et al., 2016) as they better

describe exon/intron combinations (Sedlazeck et al., 2018).

For instance the Iso-seq protocol has been used for isoform

identification, including transcripts identification (Wang et al.,
2016), de novo isoform discovery (Li et al., 2017) and fusion

transcript detection (Weirather et al., 2015). Nanopore has recently

been used for isoform identification (Byrne et al., 2017) and

quantification (Oikonomopoulos et al., 2016).

The sequencing throughput of long-read technologies is

significantly increasing over the years. It is now conceivable to

sequence a full eukaryote transcriptome using either only long

reads, or a combination of high-coverage long and short (Illumina)

reads. Unlike the Iso-Seq protocol that requires extensive in silico
processing prior to primary analysis (Sahlin et al., 2018), raw

Nanopore reads can in principle be readily analyzed. Direct RNA

reads also permit the analysis of base modifications (Workman et al.,
2018), unlike all other cDNA-based sequencing technologies. There

also exist circular sequencing techniques for Nanopore such as INC-

Seq (Li et al., 2016) which aim at reducing error rates, at the expense

of a special library preparation. With raw long reads, it is up to the

primary analysis software (typically a mapping algorithm) to deal

with sequences that have significant per-base error rate, currently

around 13% (Weirather et al., 2017).

In principle, a high error rate complicates the analysis of

transcriptomes especially for the accurate detection of exon

boundaries, or the quantification of similar isoforms and paralogous

genes. Reads need to be aligned unambiguously and with high
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base-pair accuracy to either a reference genome or transcriptome.

Indels (i.e. insertions/deletions) are the main type of errors produced

by long-read technologies, and they confuse aligners more than

substitution errors (Sović et al., 2016). Many methods have been

developed to correct errors in RNA-seq reads, mainly in the short-

read era (Tong et al., 2016; Song and Florea, 2015). They no longer

apply to long reads because they were developed to deal with low

error rates, and principally substitutions. However, a new set of

methods have been proposed to correct genomic long reads. There

exist two types of long-read error-correction algorithms, those using

information from long reads only (self or non-hybrid correction),

and those using short reads to correct long reads (hybrid correction).

In this article, we will report on the extent to which state-of-the-

art tools enable to correct long noisy RNA-seq reads produced by

Nanopore sequencers.

Several tools exist for error-correcting long reads, including ONT

reads. Even if the error profiles of Nanopore and PacBio reads are

different, the error rate is quite similar and it is reasonable to expect

that tools originally designed for PacBio data to also perform well

on recent Nanopore data. There is, to the best of our knowledge,

very little prior work that specifically addresses error-correction of

RNA-seq long reads. A notable exception is the PBcR tool, which

is mainly designed for genomes but is also evaluated on a Iso-Seq

transcriptome (Koren et al., 2012). Here we will take the standpoint

of evaluating DNA long-read error-correction tools on RNA-seq

data, an application that was likely not considered by the respective

tools authors.

We evaluate the following DNA hybrid correction tools:

LoRDEC (Salmela and Rivals, 2014), NaS (Madoui et al., 2015),

PBcR (Koren et al., 2012), proovread (Hackl et al., 2014); and

the following DNA self-correction tools: Canu (Koren et al., 2017),

daccord (Tischler and Myers, 2017), LoRMA (Salmela et al., 2016),

MECAT (Xiao et al., 2017), pbdagcon (Chin et al., 2013). A

majority of hybrid correction methods employ mapping strategies

to place short fragments on long reads and correct long read regions

using the related short read sequences. But some of them rely on

graphs to create a consensus that is used for correction. These

graphs are either k-mer graphs (de Bruijn graphs), or nucleotide

graphs resulting from multiple alignments of sequences (partial

order alignment). For self-correction methods, strategies using the

aforementioned graphs are the most common. LSCPlus, a RNA-

seq correction tool designed for PacBio reads, was not evaluated

as the software webpage was unreachable (Hu et al., 2016). We

have selected what we believe is a representative set of tools but

there also exist other tools that were not evaluated in this study,

e.g. HALC (Bao and Lan, 2017), Falcon sense (Chin et al., 2016),

HG-Color (Morisse et al., 2018), HECIL (Choudhury et al., 2018),

MIRCA (Kchouk and Elloumi, 2016), Jabba (Miclotte et al., 2016),

nanocorr (Goodwin et al., 2015), nanopolish (Loman et al., 2015),

and Racon (Vaser et al., 2017).

Other works have evaluated error correction tools in the context

of DNA sequencing. LRCStats evaluates error-correctors in a

simulated framework, without the need to align corrected reads (La

et al., 2017). A technical report from Bouri and Lavenier

(2017) provides an extensive evaluation of PacBio/Nanopore error-

correction tools, in the context of de novo assembly. Perhaps the

closest work to ours is the AlignQC software (Weirather et al.,
2017), which provides a set of metrics for the evaluation of RNA-

sequencing long-read dataset quality. In Weirather et al. (2017)

a comparison is provided between Nanopore and PacBio RNA-

sequencing datasets in terms of error patterns, isoform identification

and quantification. While Weirather et al. (2017) did not compare

error-correction tools, we will use and extend AlignQC metrics for

that purpose.

In this article, we will focus on the qualitative and quantitative

measurements of error-corrected long reads, with transcriptomic

features in mind. First we examine basic metrics of error-correction,

e.g. mean length, base accuracy, homopolymers errors, and

performance (running time, memory) of the tools. Then we ask

several questions that are specific to transcriptome applications: (i)

how is the number of detected genes, and more precisely the number

of genes within a gene family, impacted by read error correction?

(ii) Can error correction significantly change the number of reads

mapping to genes or transcripts, possibly affecting downstream

analysis based on these metrics? (iii) Do error-correction tools

perturb isoform diversity, e.g. by having a correction bias towards

the major isoform? (iv) What is the impact of error correction on

identifying splice sites? To answer these questions, we provide

an automatic framework (LC EC analyser, see Methods) for the

evaluation of transcriptomic error-correction, that we apply to nine

different error-correction tools.

2 RESULTS
2.1 Error-correction tools
Tables 1 and 2 present the main characteristics of respectively the

hybrid and non-hybrid error-correction tools that were considered

in this study. For the sake of reproducibility, in the Supplementary

Material Section S1 are described all the versions, dependencies,

and parameters. Note that these error-correction tools were all

tailored for DNA-seq data except for PBcR. PBcR was ran only in

hybrid mode, as the authors suggest using Canu over the non-hybrid

mode.

2.2 Evaluation datasets
Our evaluation dataset consists of a single 1D Nanopore run using

the cDNA preparation kit of RNA material taken from a mouse

brain. We obtained 1,256,967 Nanopore 1D reads representing

around 2 Gbp of data with an average size of 1650 bp and a N50

of 1885 bp. An additional Illumina dataset containing 58 million

paired-end 151 bp reads was generated using a different cDNA

protocol. The Nanopore and Illumina reads from the mouse RNA

sample are available in the ENA repository under the following

study: PRJEB25574.

2.3 Error-correction improves base accuracy and
affects the number of detected genes

Tables 3 and 4 show an evaluation of error-correction based on

AlignQC results, for the hybrid and non-hybrid tools, respectively.

The per-base error rate is 13.7% in raw reads, 0.3-4.5% for reads

corrected using hybrid methods and 2.9-6.4% with self-correctors.

As expected the correction rate is better for hybrid correctors leading

to a per-base error rate lower than 1% (except for LoRDEC and

Proovread/untrimmed, which was equal to 4.5% and 2.6% resp.)

because they use additional information from short Illumina reads

2
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Table 1. Main characteristics of the hybrid error correction tools considered in this study

LoRDEC NaS PBcR Proovread

Reference Salmela and Rivals (2014) Madoui et al. (2015) Koren et al. (2012) Hackl et al. (2014)

Context DNA DNA mRNA or DNA DNA

Technology PacBio or ONT ONT PacBio or ONT PacBio

Main

algorithmic

idea

Construction of short read dBG,

path search between k-mers in

long reads

Recruitment of short reads

by alignment to long reads,

assembly of short reads to

correct the long reads

Alignment of short reads to long

reads and consensus.

Alignment of short reads to long

reads and consensus.

Table 2. Main characteristics of the non-hybrid (self) error correction tools considered in this study

Canu daccord LoRMA MECAT pbdagcon

Reference Koren et al. (2017) Tischler and Myers (2017) Salmela et al. (2016) Xiao et al. (2017) Chin et al. (2013)

Context DNA DNA DNA DNA DNA

Technology PacBio or ONT PacBio PacBio or ONT PacBio or ONT PacBio

Main

algorithmic

idea

All-versus-all read

overlap, filtering,

alignment, DAG from

the alignments, highest

weight path search.

Multiple dBGs built from

overlapping window of

long reads alignments,

consensus per window

Path search in dBG and

multi-iterations.

k-mer based read

matching, pairwise

alignment between

matched reads, alignment-

based consensus calling

on trivial regions, local

POG-based consensus

calling on complicated

regions.

Align long reads to

”backbone” sequences,

correction by iterative

directed acyclic graph

consensus calling from

the multiple sequence

alignments.

to correct the long reads. The error rate is around 4-6% for self-

correction algorithms, except for LoRMA that reached 2.91%. A

detailed error-rate analysis will be carried in Section 2.4.

In terms of number of reads after the correction step, LoRDEC,

Proovread/untrimmed, daccord/untrimmed, and pbdagcon returned

a number of reads similar to that of the uncorrected (raw) reads. All

other softwares split and/or discard reads, likely because full-length

error-correction was deemed impossible in some reads. PBcR and

LoRMA tend to split reads into two or more shorter reads during

the correction step, as they return ∼2x more reads after correction

that are also shorter (mean length of respectively 776bp and 497bp,

versus 2011bp in raw reads) and overall have significantly less

bases in total (loss of respectively 298Mbp and 553Mbp). Canu

and MECAT mostly discarded reads (30-33%) resulting in 14-25%

less bases in total, with comparable mean length to other tools.

Apart from LoRDEC, Proovread/untrimmed, and daccord (trimmed

and untrimmed) for which only 85-94% of reads were mapped,

corrected reads from all the other tools were mapped at a rate

of 98.2-99.4%, showing a significant improvement over raw reads

(mapping rate of 83.5%).

Apart from Canu, tools with high mean read length (i.e.
LoRDEC, Proovread/untrimmed, daccord/untrimmed) showed the

lowest percentages of mapped reads, indicating that trimming,

splitting or discarding reads seems necessary in order to obtain

shorter but overall less error-prone reads. A similar conclusion can

be reached by comparing the results of trimmed and untrimmed

versions of the same tool: reads corrected with Proovread and

daccord in trimmed versions showed higher numbers of mapped

reads and bases, and lower per-base error rates. However trimmed

reads become 300-600 bases shorter on average, and around 2,000

genes are no longer detected. Therefore it is unclear whether

trimming should always be performed by error-correctors in a

transcriptomic context.

An important observation is that almost all tools, except for

LoRDEC and Proovread/untrimmed, lost at least 1,000 genes

after correction. Moreover, three of the tools that have the

3
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Table 3. Statistics of hybrid error correction tools on the 1D run RNA-seq dataset. To facilitate the readability of this table and the next ones, we

highlighted values that we deemed satisfactory in green colour, borderline in brown, and unsatisfactory in red, noting that such a classification is

somewhat arbitrary.

Raw LoRDEC NaS PBcR Proovread Proovread trimmed

nb of reads 741k 741k 619k 1321k 738k 626k

mapped reads 83.5% 85.5% 98.7% 99.2% 85.5% 98.9%

mean length 2011 2097 1931 776 2117 1796

nb of bases 1313M 1394M 1179M 1015M 1400M 1112M

mapped

basesa
89.0% 90.6% 97.5% 99.2% 92.4% 99.5%

per-base error

rateb
13.72% 4.50% 0.38% 0.67% 2.65% 0.33%

nb of detected

genes

16.8k (33.9%) 16.8k (33.9%) 15.0k (30.2%) 15.6k (31.4%) 16.6k (33.4%) 14.6k (29.5%)

aAs reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in unmapped reads

are not counted.
bAs reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

Table 4. Statistics of non-hybrid error correction tools on the 1D run RNA-seq dataset.

Raw Canu daccord daccord trimmed LoRMA MECAT pbdagcon

nb of reads 741k 519k 675k 840k 1540k 495k 778k

mapped reads 83.5% 99.1% 92.5% 94.0% 99.4% 99.4% 98.2%

mean length 2011 2193 2102 1476 497 1995 1473

nb of bases 1313M 1126M 1350M 1212M 760M 980M 1137M

mapped

basesa
89.0% 92.0% 92.5% 94.7% 99.2% 96.9% 97.0%

per-base error

rateb
13.72% 6.43% 5.20% 4.12% 2.91% 4.49% 5.65%

nb of detected

genes

16.8k (33.9%) 12.4k (24.9%) 15.5k (31.3%) 13.9k (28.1%) 6.8k (13.7%) 10.4k (20.9%) 13.2k (26.5%)

aAs reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in unmapped reads are not

counted.
bAs reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

highest number of detected genes (LoRDEC, Proovread/untrimmed,

daccord/untrimmed) also have the lowest percentage of mapped

reads, hinting that error correction might reduce gene diversity in

favor of lower error-rate. It is noteworthy that for some tools (e.g.

Canu, MECAT, LoRMA), the number of detected genes can drop by

26%-59% compared to the number of genes reported in raw reads.

Overall, no correction tool outperforms the others across all

metrics. We note that a reasonable balance appears to be achieved

by NaS and Proovread/trimmed, and that overall, hybrid correctors

tend to outperform self-correctors.

2.4 Detailed error-rate analysis
The high error-rate of transcriptome long reads significantly

complicates their primary analysis (Križanović et al., 2018). While

Section 2.3 presented a general per-base error rate, this section

breaks down sequencing errors into several types and examines how

each error-correction tool deals with them. The data presented here

is a compilation of AlignQC results. Note that AlignQC computed

the following metrics only on reads that could be aligned, thus

unaligned reads are not counted, yet they may possibly be the most

erroneous ones. AlignQC also subsampled aligned reads to around

1 million number of bases to calculate the presented values.

2.4.1 Deletions are the most problematic sequencing errors
Table 5 shows the error rate in the raw reads and in the corrected

reads for each tool. In raw reads, deletions are the most prevalent

type of errors (7.4% of bases), closely followed by subsitutions

(5.1%), then insertions (1.2%). LoRDEC is the least capable of

correcting mismatches (2% of them remaining), even though it

is a hybrid tool. This is possibly related to the large amount

of uncorrected reads in its output, 90k reads out of 741k (12%,

as computed by exactly matching raw reads to corrected reads).

The other hybrid tools result in less than 1% of substitution

errors. Surprisingly, the non-hybrid tools also presented very low

mismatches rates: all of them showed rates lower than 1%, except

for Canu (1.33%) and daccord/untrimmed (1.1%). This suggests

that the rate of systematic substitution errors in ONT data is low,

as self-correctors were able to achieve results comparable to the
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Table 5. Error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

Raw LoRDEC NaS PBcR Proovread Proovread

trimmed

Canu daccord daccord

trimmed

LoRMA MECAT pbdagcon pbdagcon

trimmed

Error

rate

13.72% 4.50% 0.38% 0.67% 2.65% 0.33% 6.43% 5.20% 4.12% 2.91% 4.49% 5.65% 5.71%

Mismatch 5.11% 2.04% 0.20% 0.18% 0.93% 0.13% 1.33% 1.10% 0.67% 0.37% 0.35% 0.50% 0.49%

Deletion 7.40% 2.15% 0.09% 0.30% 1.51% 0.18% 4.82% 3.82% 3.27% 2.51% 4.08% 5.06% 5.17%

Insertion 1.20% 0.32% 0.08% 0.19% 0.22% 0.03% 0.28% 0.28% 0.19% 0.03% 0.06% 0.09% 0.05%

Table 6. Homopolymer error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

Raw LoRDEC NaS PBcR Proovread Proovread

trimmed

Canu daccord daccord

trimmed

LoRMA MECAT pbdagcon pbdagcon

trimmed

Homop.

deletion

2.96% 0.77% 0.02% 0.10% 0.46% 0.04% 2.46% 2.14% 2.05% 1.82% 2.05% 2.26% 2.26%

Homop.

insertion

0.38% 0.08% 0.01% 0.02% 0.06% 0.01% 0.08% 0.06% 0.03% 0.01% 0.01% 0.02% 0.01%

hybrid ones, even without access to Illumina reads. Still, the three

best performing tools were all hybrid (Proovread/trimmed, PBcR

and NaS), which should therefore be preferred for applications that

require very low mismatch rates.

The contrast between self and hybrid tools is more visible

on deletion errors. All hybrid tools outperformed the non-

hybrid ones. Although in the hybrid ones, LoRDEC (2.15%)

and Proovread/untrimmed (1.51%) still showed moderate rates of

deletions, NaS, Proovread/trimmed and PBcR were able to lower

the deletion error rate from 7.4% to less than 0.3%. All non-hybrid

tools presented a high rate (3% or more) of deletion errors, except

LoRMA (2.51%). This comparison suggests that ONT reads exhibit

systematic deletions, that cannot be corrected without the help of

Illumina data. The contribution of homopolymer errors will be

specifically analyzed in Section 2.4.2. Considering insertion errors,

all tools performed equally well. It is worth noting that more non-

hybrid tools (LoRMA, pbdagcon/untrimmed, pbdagcon/trimmed

and MECAT) achieved sub-0.1% insertions than hybrid tools (NaS

and Proovread/trimmed).

Overall, hybrid tools outperformed non-hybrid ones in terms of

error-rate reduction. However, the similar results obtained by both

types of tools when correcting mismatches and insertions, and the

contrast in correcting deletions, seem to indicate that the main

advantage of hybrid correctors over self-correctors is the removal

of systematic errors using Illumina data.

2.4.2 Homopolymer insertions are overall better corrected than
deletions In this section we further analyze homopolymers indels,

i.e. insertion or deletion errors consisting of a stretch of the same

nucleotide. Table 6 shows that homopolymer deletions are an

order of magnitude more abundant in raw reads than homopolymer

insertions. It is worth noting that, by comparing the values for the

raw reads in Tables 5 and 6, homopolymers are involved in 40% of

all deletions and 31% of all insertions.

A closer look at Table 6 reveals that hybrid error correctors

outperform non-hybrid ones, as expected, mainly as homopolymer

indels are likely systematic errors in ONT sequencing. Hybrid

correctors correct them using Illumina reads that do not contain

such biases. Moreover, all tools performed well on correcting

homopolymer insertions, reducing the rate from 0.38% to

less than 0.1%. In particular, the hybrid tools NaS and

Prooovread/trimmed, as well as the non-hybrid ones LoRMA,

MECAT and pbdagcon/trimmed reached 0.01% homopolymer

insertion error rate. Regarding homopolymer deletions, hybrid

tools return less than 0.5% of them, except LoRDEC (0.77%).

Non-hybrid tools performed more pooly, returning 1.8-2.4% of

homopolymers deletion errors – a small improvement over the raw

reads.

NaS and Proovread/trimmed showed the best reduction of

homopolymers indels. It is also worth noting that hybrid correctors

are able to correct homopolymer deletions even better than non-

homopolymer deletions. For instance the ratio of homopolymer

deletions over all deletions is 40% in raw reads, and decreases

for all hybrid correctors, dropping to 20.2% for NaS and

25.6% for Proovread/trimmed, but increases to at least 43.8%

(pbdagcon/trimmed) up to 72.6% (LoRMA) in non-hybrid tools (see

Supplementary Material Section S3).

2.5 Error-correction perturbs the number of reads
mapping to the genes and transcripts

Downstream RNA-sequencing analyses typically rely on the

number of reads mapping to each gene and transcript for

quantification, differential expression analysis, etc. In the rest of

the paper, we define the coverage of a gene or a transcript as the

5

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint.http://dx.doi.org/10.1101/476622doi:bioRxiv preprint first posted online Nov. 23, 2018; 



Lima et al.

Fig. 1. Number of reads mapping to genes (CG) before and after correction for each tool. The genes taken into account here were expressed in either the raw

dataset or after the correction by the given tool.

number of reads mapping to it. For short we will refer to those

coverages as CG and CT , respectively. In this section we investigate

if the process of error correction can perturb CG and CT , which in

turn would affect downstream analysis. Note that error correction

could potentially slightly increase coverage, as uncorrected reads

that were unmapped can become mappable after correction. Figure 1

shows the CG before and after correction for each tool. PBcR is the

only hybrid corrector that significantly inflates CG, probably due

to read splitting (see Section 2.3). Among self-correctors, LoRMA

also inflates this value (also due to read splitting), while MECAT

presents the lowest correlation and a significant drop in CG. Besides

these three tools, all the others present good correlation and the

expected slight increase in CG due to better mapping. All tools

systematically presented a similar trend and lower correlation values

on CT (see Supplementary Material Figure S1), in comparison to

CG. This is expected, as it is harder for a tool to correct a read into

its true isoform than into its true gene. The behaviour of the tools in

the isoform level are in coherence with their behaviour in the gene

level (CG): PBcR and LoRMA inflates CT ; MECAT deflates; and

all the others present a slight increase.

2.6 Error-correction perturbs gene family sizes
Tables 3 and 4 indicate that error correction results in a lower

number of detected genes. In this section we explore the impact

of error-correction on paralogous genes. By paralogous gene
family, we denote a set of paralogs computed from Ensembl (see

Section 4.3). Figure 2 represents the changes in sizes of paralogous

gene families before and after correction for each tool, in terms

of number of genes expressed within a given family. Overall,

error-correctors do not strictly preserve the sizes of gene families.

Correction more often shrinks families of paralogous genes than

it expands them, likely due to erroneous correction in locations

that are different between paralogs. In summary, 36-86% of gene

families are kept of the same size by correctors, 1-12% are expanded

and 6-61% are shrunk. Supplementary Material Figure S2 shows the

magnitude of expansion/shrinkage for each gene family.

2.7 Error-correction perturbs isoform diversity
We further investigated whether error-correction introduces a bias

towards the major isoform of each gene. Note that AlignQC does

not directly address this question. To answer it, we computed the
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Fig. 2. Summary of gene family size changes across error-correction tools.

Fig. 3. Histogram of genes having more or less isoforms after error-correction.

following metrics: number of isoforms detected in each gene before

and after correction by alignment of reads to genes, coverage of lost

isoforms in genes having at least 2 expressed isoforms, and coverage

of the major isoform before and after correction.

2.7.1 The number of isoforms varies before and after correction
Figure 3 shows the number of genes that have the same number of

isoforms after correction, or a different number of isoforms (-3, -2,

-1, +1, +2, +3). In this Figure, only the genes that are expressed

in both the raw and the corrected reads (for each tool) are taken

into consideration. The negative (resp. positive) values indicate that

isoforms were lost (resp. gained). We observe that a considerable

number of genes (1k-3k) lose at least one isoform in all tools,

which suggests that current methods reduce isoform diversity during

correction. NaS and MECAT tend to lose isoforms the most, and

PBcR identifies the highest number of new isoforms after correction.

It is however unclear whether these lost and new isoforms are real

(present in the sample) or due to mapping ambiguity. For instance,

PBcR splits corrected reads into shorter sequences that may map

better to other isoforms.

Overall, the number of isoforms is mostly unchanged in

daccord/untrimmed, LoRDEC and Proovread/untrimmed. We

observe that, counter-intuitively, trimming has a slight effect on the

number of detected isoforms for Proovread and daccord but not for

pbdagcon.

2.7.2 Multi-isoform genes tend to lose lowly-expressed isoforms
after correction Figure 4 explores the relative coverage of

isoforms that were possibly lost after correction, in genes having

two or more expressed isoforms. The relative coverage of a

transcript is the number of raw reads mapping to it over the number

of raw reads mapping to its gene in total. Only the genes that are

expressed in both the raw and the error-corrected reads (for each

tool) are taken into consideration here. We anticipated that raw

reads that map to a minor isoform are typically either discarded

by the corrector, or modified in such a way that they now map to

a different isoform, possibly the major one. The effect is indeed

relatively similar across all correctors, except for MECAT that tends

to remove a higher fraction of minor isoforms, and LoRDEC that

tends to be the most conservative. This result suggests that current

error-correction tool overall do not conservatively handle reads that

belong to low-expression isoforms.

2.7.3 Coverage of the major isoform before and after correction
To follow-up on the previous subsection, we investigate whether

the coverage of the major isoform, i.e. the isoform with the

highest expression in the raw dataset, increased after correction.

In Figure 5, We observe that the coverage of the major isoform

generally slightly increases after correction, except for MECAT,

where its coverage decreases, likely due to a feature of MECAT’s

own correction algorithm. This indicates that error-correction tools
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Fig. 4. Histogram of isoforms that are lost after correction, in relation to their relative transcript coverage, in genes that have 2 or more isoforms. The y axis

reflects the percentage of isoforms lost in each bin. Absolute values can be found in the Supplementary Material Figure S3.

tend to correct reads towards the major isoform, but the effect is

not pronounced. This is expected as the sum of expression of minor

isoforms is, by nature, a small fraction of the total gene expression.

Apart from LoRMA, MECAT and PBcR, where the correlations

of the major isoform coverages are spurious (r2 ¡ 0.77), other

correctors tend to preserve this coverage after correction (r2=0.90-

0.96), with LoRDEC and Canu showing the highest correlations

(96%). It is noteworthy that correction biases with respect to the

major isoform do not appear to be specific to self correctors nor

to hybrid correctors, but an effect that happens in both types of

correctors.

2.7.4 Correction towards the major isoform is more prevalent
when the alternative exon is small In order to observe if particular

features of alternative splicing have an impact on error-correction

methods, we designed a simulation over two controlled parameters:

skipped exon length and isoform relative expression ratio. Using

a single gene, we created a mixture of two simulated alternative

transcripts: one constitutive, one exon-skipping. Several simulated

read datasets were created with various relative abundances between

major and minor isoform (in order to model a local differential in

splicing isoform expression), and sizes of the skipped exon. Due to

the artificial nature and small size of the datasets, many of the error-

correction methods could not be run. We thus tested these scenarii

on a subset of the correction methods.

In Figure 6, we distinguish results from hybrid and self-

correctors, presented with respectively 100x coverage of short

reads and 100x coverage of long reads, and only 100x coverage

of long reads. Results on more shallow coverage (10x) and

impact of simulation parameters on corrected reads sizes are

presented in Supplementary Material Sections S7 and S8. Overall,

hybrid correctors are less impacted by isoform collapsing than

self-correctors. LoRDEC shows the best capacity to preserve

isoforms in presence of alternatively skipped exons. However

with less coverage, e.g. due to low-expressed genes and rare

transcripts, all tools tend to mis-estimate the expression of isoforms

(see Supplementary Material). Self-correctors generally have a

minimum coverage threshold (only daccord could be run on the

10x coverage dataset of long reads, with rather erratic results,

see Supplementary Material). Even with higher coverage, not

all correctors achieve to correct this simple instance. Among all

correctors, only LoRDEC seems to report the expected number of

each isoforms consistently in all scenarios. We could not derive

any clear trend concerning the relative isoform ratios, even if the

90% ratio seems to be in favor of overcorrection towards the major

isoform. Skipped exon length seems to impact both hybrid and self

correctors, small exons being a harder challenge for correctors.

2.8 Error-correction affects splice site detection
The identification of splice sites from RNA-seq data is an important

but challenging task (Kaisers et al., 2017). When mapping reads

to a (possibly annotated) reference genome, mapping algorithms

typically guide spliced alignments using either a custom scoring

function that takes into account common splices sites patterns (e.g.

GT-AG), and/or a database of known junctions. With long reads,

the high error rate make precise splice site detection even more

challenging, as indels (see Section 2.4) confuse aligners, shifting

predicted spliced alignments away from true splice sites.

In this section, we evaluate how well splice sites are detected

before and after error-correction. Figure 7 shows the number

of correctly and incorrectly mapped splice sites for the raw and

corrected reads, as computed by AlignQC. One would expect that

a splice site is correctly detected when little to no errors are present

in reads mapping around it. Thus, as expected, the hybrid error

correction tools present a clear advantage over the non-hybrid ones,

as they better decrease the per-base error rate. In the uncorrected

reads, 27% of the splice sites were incorrectly mapped, which is

brought down to between 0.28% (Proovread/trimmed) and 2.43%

(LoRDEC) with hybrid correction tools. Among non-hybrid tools,

LoRMA presented the lowest proportion of incorrectly detected

splice sites (3.04%), however it detects 3.5-7x less splice sites

(280k) than the other tools (which detect around 1-2 million splice

sites). The other non-hybrid tools incorrectly detected splice sites

at a rate between 5.61% (daccord/trimmed) and 11.95% (Canu). A

detailed analysis of the incorrectly mapped splice sites can be found

in the Supplementary Material Section S9.

8

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint.http://dx.doi.org/10.1101/476622doi:bioRxiv preprint first posted online Nov. 23, 2018; 



Comparative assessment of long-read error-correction software applied to RNA-sequencing data

Fig. 5. Coverage of the major isoform of each gene before and after error-correction. The x-axis reflects the number of reads mapping to the major isoform of

a gene before correction, and the y-axis is after correction.

2.9 Running time and memory usage of
error-correction tools

Table 7 shows the running time and memory usage of all evaluated

tools, measured using GNU time. The running time shown is the

elapsed wall clock time (in hours) and the memory usage is the

maximum resident set size (in gigabytes). All tools were ran with

32 threads. Overall, all tools were able to correct the dataset within

0.3-7 hours except for PBcR, NaS and Proovread, which took 63-

116 hours, but also achieved the three lowest post-correction error

rates in Table 3. In terms of memory usage, all tools required

less than 10 GB of memory except PBcR, proovread and LoRMA,

which required 53-166 GB. It is worth noting, however, that hybrid

error correctors have to process massive Illumina datasets, which

contributes to them taking higher CPU and memory usage for

correction.

3 DISCUSSION
This work shed light on the versatility of long-read DNA error-

correction methods, which can be successfully applied to error-

correction of RNA-sequencing data as well. In our tests, error rates

can be reduced from 13.7% in the original reads down to as low

as 0.3% in the corrected reads. This is perhaps an unsurprising

realization as the error-correction of RNA-sequencing data presents

similarities with DNA-sequencing data, however this comes with

a collection of caveats that we described in the Results section.

Most importantly, the number of genes detected by alignment of

corrected reads to the genome was reduced significantly by most

error-correction methods. Furthermore, depending on the method,

error-correction results have a more or less pronounced bias towards

correction to the major isoform for each gene, jointly with a loss

of the most lowly-expressed isoforms. We provided a software

that enables automatic benchmarking of long-read RNA-sequencing

error-correction software, in the hope that future error-correction

methods will take advantage of it to avoid biases.

The summary statistics of error-corrected data (number of

corrected reads, mean length, percentage of mapped reads, per-base

error rate, number of detected genes) reveal that no tool outperforms
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Fig. 6. Mapping of simulated raw and error-corrected reads to two simulated isoforms, and measurements of the percentage of reads mapping to the major

isoform. The two isoforms represent an alternatively skipped exon of variable size: 10 bp, 50 bp, 100bp. Left: isoform structure conservation using 100X short

reads coverage and 10X long reads, using three error-correction programs, one per row: LoRDEC, PBcR, proovread. Right: same with three self-correctors

and 100X long reads: daccord, LoRMA and pbdagcon. Columns are alternative exon sizes. Bars are plots for each isoform ratio (50%; 75% and 90%) on the

x-axis. On the y-axis, the closer a bar is to its corresponding ratio value on the x, the better. For instance, the bottom left light blue bar corresponds to a 50%

isoform ratio with an exon of size 10, and we do not retrieve a 50% ratio after correction with Proovread (the bar does not go up to 50% on the vertical axis,

but around 75% instead). The same layout applies to the right plot, where self-correctors are presented.

Fig. 7. Statistics on the correctly and incorrectly mapped splice sites (abbreviated SSs) for the uncorrected (raw) and corrected reads.

the others across all metrics, yet a reasonable balance is achieved

by NaS and Proovread/trimmed, and that hybrid correction tools

generally outperformed the self-correctors.

Detailed error-rate analysis showed that while hybrid correctors

have lower error rates than self-correcters, the latter achieved

comparable performance to the former in correcting substitutions

and insertions. Deletions appear to be caused by systematic

sequencing errors, making them fundamentally hard (or even

impossible) to address in a self-correction setting. Moreover PBcR,

NaS, and Proovread are the most resource-intensive error-correction

tools, but also are the only correctors able to reduce base error rate

below 0.7%.

We note that LoRDEC, PBcR, Proovread/untrimmed, daccord/untrimmed,

and to a lower extent NaS, were able to preserve the number

of detected genes better than other correctors. Among those,

LoRDEC, Proovread/untrimmed and daccord/untrimmed appear to
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Table 7. Running time and memory usage of error-correction tools on the 1D run RNA-seq dataset

LoRDEC NaS1 PBcR2 Proovread Canu daccord3 daccord

trimmed3
LoRMA4 MECAT pbdagcon3 pbdagcon3

trimmed

Running

time

2.4h 63.2h 116h 107.1h 0.7h 6.9h

(7.4h)

6.6h

(7.1h)

3.4h 0.3h 5.7h

(6.2h)

5.6h

(6.1h)

Memory

usage

5.6GB 3GB 166.5GB 53.6GB 2.2GB 6.9GB

(27.2GB)

6.8GB

(27.2GB)

79GB 9.9GB 6.4GB

(27.2GB)

6.4GB

(27.2GB)

1NaS was ran in batches on a different system (TGCC cluster) than other tools; total running time was estimated based on subset of batches.
2PBcR was ran on a machine different from the others.
3daccord and pbdagcon need DAZZ DB and DALIGNER to be ran before performing their correction. DAZZ DB execution time and memory usage was disregarded due to being

negligible. DALIGNER, however, took 0.5h and 27.2Gb of RAM. The runtime in parenthesis denotes the runtime of the tool + DALIGNER. The memory usage in parenthesis denotes

the maximum memory usage between the tool and DALIGNER.
4LoRMA was using more than its allocated 32 cores in some (short) periods of time during the run.

also better preserve the number of detected isoforms better than

other correctors. All tools tend to lose lowly-expressed isoforms

after correction. This is expected, as these tools were mainly tailored

to process DNA data where heterogeneous coverage is not expected.

Furthermore, hybrid correctors outperformed self-correctors in the

correction of errors near splice site junctions.

As a result, we conclude that no evaluated corrector is the

most suited in all situations, and the choice should be guided

by the downstream analysis. For quantification, we have shown

that error-correction introduces undesirable coverage biases, as per

Section 2.5, therefore we would recommend avoiding this step

altogether. For isoform detection, LoRDEC, Proovread/untrimmed

(hybrid) and daccord/untrimmed (non-hybrid) appear to be the

methods of choice as they result in the the highest number of

detected genes in Tables 3 and 4 and also preserve the number

of detected isoforms as per Section 2.7. For splice site detection,

we recommend using hybrid correctors, preferably NaS, PBcR or

Proovread, as per Section 2.8. The same three tools (however,

Proovread should be in trimmed mode) are also recommended if

downstream analyses require very low general error rate. Finally

for all other applications, NaS and Proovread/trimmed achieve a

reasonable balance across all metrics.

In our analysis, we used a single mapping software (GMAP) to

align raw and error-corrected reads, as in previous benchmarks (Weirather

et al., 2017; Križanović et al., 2018). We note that other long-read

mapping software have since been published, e.g. minimap2 (Li,

2018), which may increase the percentage of mapped read across

all methods.

Furthermore, we only focused our evaluation on a single data

type: 1D cDNA Nanopore data, using Illumina data for hybrid

correction. While it would be natural to also evaluate PacBio data,

we note that data from the PacBio Iso-Seq protocol is of different

nature as the reads are pre-corrected by circular consensus.

As a side note, AlignQC reports that raw reads contained 1% of

chimeric reads, i.e. either portions of reads that align to different

loci, or to overlapping loci. The number of chimeric reads after

error-correction remains in the 0.7%-1.3% range except for PBcR

(0.1%), Proovread/trimmed (0.1%), MECAT (0.1%) and LoRMA

(0.04%), which either correctly split reads or discarded chimeric

ones.

In the evaluation of tools, we did not record the disk space used

by each method, yet we note that it may be a critical factor for some

tools (e.g. Canu) on larger datasets. We note also that genes that have

low Illumina coverage are unlikely to be well corrected by hybrid

correctors. Therefore our comparison does not take into account

differences in coverage biases between Illumina and Nanopore

data, which may benefit self-correctors. Finally, transcript and gene

coverages are derived from the number of long reads aligning to a

certain gene/transcript. This method enables to directly relate the

results of error-correction to transcript/gene counts, but we note that

in current RNA-seq analysis protocols, transcript/gene expression is

still generally evaluated using short reads.

4 METHODS

4.1 Nanopore library preparation and sequencing
RNA MinION sequencing cDNA were prepared from 4 aliquots (250ng

each) of mouse commercial total RNA (brain, Clontech, Cat# 636601),

according to the Oxford Nanopore Technologies (Oxford Nanopore

Technologies Ltd, Oxford, UK) protocol ”1D cDNA by ligation (SQK-

LSK108)”. The data generated by MinION software (MinKNOW 1.1.21,

Metrichor 2.43.1) were stored and organized using a Hierarchical Data

Format. FASTA reads were extracted from MinION HDF files using

poretools (Loman and Quinlan, 2014).

4.2 Illumina library preparation and sequencing
RNA-Seq library preparations were carried out from 500 ng total RNA

using the TruSeq Stranded mRNA kit (Illumina, San Diego, CA, USA),

which allows mRNA strand orientation (sequence reads occur in the same

orientation as anti-sense RNA). After quantification by qPCR, each library

was sequenced using 151 bp paired end reads chemistry on a HiSeq4000

Illumina sequencer. Reads were filtered in silico to remove mtRNA and

rRNA using BLAT and est2genome.

4.3 Reference-based evaluation of long read error
correction

A tool coined LR EC analyser, available at https://gitlab.com/
leoisl/LR_EC_analyser, was developed using the Python language

to analyze the output of long reads error correctors. The required

arguments are the BAM files of the raw and corrected reads aligned

to a reference annotated genome, as well as the reference genome in
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Fasta file format and the reference annotation in GTF file format. A file

specifying the paralogous gene families can also be provided if plots on

gene families should be created. The main processing involves running

the AlignQC software (Weirather et al., 2017) (https://github.com/
jason-weirather/AlignQC) on the input BAMs and parsing its

output to create custom plots. It then aggregates information into a HTML

report. For example, Tables 3 − 6 are compilations from AlignQC results,

as well as Figure 7. Figures 1 − 5 were created processing text files built

by AlignQC called ”Raw data” in their output. In addition, an in-depth gene

and transcript analysis can be performed using the IGV.js library (https:
//github.com/igvteam/igv.js). In this paper, we did not include

all plots and tables created by the tool. To visualise the full latest reports, visit

https://leoisl.gitlab.io/LR_EC_analyser_support/ .

More specifically, in this work we aligned the raw and corrected reads

to the Ensembl r87 Mus Musculus unmasked reference genome using the

GMAP software (version 2017-05-08 with parameters -n 10) (Wu and

Watanabe, 2005). The GMAP parameters map those from the original

AlignQC publication (Weirather et al., 2015). Gene families were computed

by selecting all paralogs from Ensembl r87 mouse genes with 80%+ identity.

Note that paralogs from the same family may have significantly different

lengths, and no threshold was applied with respect to coverage. The complete

selection procedure is reported here: https://gitlab.com/leoisl/
LR_EC_analyser/blob/master/GettingParalogs.txt.

4.4 Simulation framework for biases evaluation
In the simulation framework of Section 2.7.4, exons length and number were

chosen according to resemble what is reported in eukaryotes (Sakharkar

et al., 2004) (8 exons, 200 nucleotides). A skipped exon, whose size can

vary, was introduced in the middle of the inclusion isoform. Skipped exon

can have a size of 10, 50 or 100 nt. We also allowed the ratio of minor/major

isoforms (M/m) to vary. For a coverage of C and a ratio M/m, the number

of reads coming from the major isoform is MC and the number of minor

isoform reads is mC. We chose relative abundances ratios for the inclusion

isoform as such: 90/10, 75/25 and 50/50. All reads are supposed to

represent the full-length isoform. Finally for hybrid correction input, short

reads of length 150 were simulated along each isoform, with 10X and 100X

coverage.

During the simulation, we produced two versions of each read. The

reference read is the read that represents exactly its isoform, without errors.

The uncorrected read is the one in which we introduced errors. We used

an error rate and profile that mimics observed R9.4 errors in ONT reads

(total error rate of ∼13%, broken down as ∼5% of substitutions, ∼1% of

insertions and ∼7% of deletions). After each corrector was applied to the

read set, we obtained a triplet (reference, uncorrected, corrected) read that

we used to assess the quality of the correction under several criteria.

We mapped the corrected reads on both exclusion and inclusion reference

sequences using a fast Smith-Waterman implementation (Zhao et al., 2013),

from which we obtained a SAM file. It is expected that exclusion corrected

reads will map on exclusion reference with no gaps, and that a deletion of

the size of the skipped exon will be reported when mapping them to the

inclusion. For each read, if it could be aligned to one of the two reference

sequences in one block (according to the CIGAR), then we assigned it to

to this reference. If more blocks were needed, we assigned the read to the

reference sequence with which the cumulative length of gaps is the loweest.

We also reported the ratio between corrected reads size of each isoform kind

and the real expected size of each reference isoform.

KEY POINTS
• Long-read transcriptome sequencing is hindered by high error

rates that affect analyses such as the identification of isoforms,

exon boundaries, open reading frames, and the creation of gene

catalogues.

• This review evaluates the extent to which existing long-read

DNA error correction methods are capable of correcting cDNA

Nanopore reads.

• Existing tools significantly lower the error rate, but they also

significantly perturb gene family sizes and isoform diversity.
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Križanović, K., Echchiki, A., Roux, J., and Šikić, M.
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Assemblying alternative splicing events from short reads
guided by accurate long reads
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1 Introduction and background

Alternative splicing (AS) is an essential process in eukaryotic organisms, as evidenced by 90%
of human multi-exonic genes undergoing it [31,49]. The study of AS can help to understand the
transcriptome diversity expressed in a given set of cells in a particular condition, helping on the
comprehension of diseases, development stages, stress-response mechanisms, etc. Despite its impor-
tance, AS remains underestimated, even in model species [49,43].

The most commonly used technique to study transcriptomes, and consequently AS, is through
RNA sequencing. Many tools were developed to process RNA-seq reads when a reference genome
or transcriptome is available. As examples, we can cite: i) splice-aware mappers [6,50,19,25,8,20];
ii) reference-based assemblers [47,45,15,36]; iii) reference-based algorithms to estimate expression
levels [38,22,33,5,32].

The context this work is inserted in, however, concerns non-model species, where reference
genomes or transcriptomes are not available. In this case, most de novo pipelines try to identify and
quantify full-length isoforms by assembling RNA-seq reads, such as Oases [44], SOAPdenovo-Trans
[51], Trans-ABySS [39] and Trinity [13]. The main advantages of de novo methods over reference-
based methods are: i) they do not require any read-reference alignments and can therefore be applied
when the genomic sequence is not available, is gapped, highly fragmented or substantially altered,
as in cancer cells [13]; ii) they enable to discover transcripts that are missing or incomplete in the
reference [16]. Their disadvantages include: i) the assembly of short reads is itself difficult, and only
the most abundant transcripts are likely to be fully assembled [16]; ii) reconstruction heuristics
are usually employed, which may lead to missing infrequent alternative transcripts while highly
similar transcripts are likely to be assembled into a single transcript [29,27]; iii) they require more
computational power than reference-based strategies.

As described, assembling full-length transcripts from short reads without a reference genome is
challenging. Indeed, when the sequenced reads are short, and two transcripts have similar expression
levels with a long enough constitutive region (longer than the fragments’ length) flanked by two
variable regions, the reads do not provide enough information to phase the two variable regions
reliably, and any choice could be arguable. A recent solution to this problem was conceived due to
advances in the sequencing technology. Such advances resulted in the maturity of third generation
sequencers, e.g. PacBio and Oxford Nanopore, capable of sequencing long reads. In the RNA context,
these technologies are being increasingly used as they better describe exon/intron combinations,
and frequently sequence full-length transcripts, thus usually eliminating the assembly step and its
related problems.

However, in many applications, the focus can be restricted to the exon level. Identifying which
exons can be alternatively spliced is already very valuable. It has been shown that local assem-
bly of AS events is more sensitive and precise than global assembly strategies from short read

� Authors list is provisional and is subject to modifications before the submission of this work.
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data [43,27,4], due to the fact that assembling only the local variations between mRNAs is eas-
ier than assembling full-length transcripts, which requires discriminating very similar expressed
transcripts, due to AS and expression of paralogous genes.

Therefore, we can say that long reads enable the study of full-length transcripts, while short
reads are more appropriate for local assembly approaches. Indeed, long reads could also be used
to study local events, like AS. However, there are two main issues with this approach. The first
is that the cost of sequencing a long read is orders of magnitude higher than sequencing a short
read. As such, usually just a fraction of the transcriptome, mostly the highly expressed isoforms,
are covered by long reads. Nevertheless, a comprehensive AS study requires a deep sequencing
in order to capture non-highly expressed mRNAs, and to correctly quantify all identified events.
Short-read sequencing can dig deeper in the transcriptome, describing AS events not present in
the long reads. The shallowness of long reads sequencing can be alleviated through special library
preparations, such as normalization of the RNA libraries, to reduce over-represented transcripts [21].
Moreover, degradation of mRNA targets selected to be sequenced can be eliminated through 5’-cap
selection, thus guaranteeing the sequencing of full-length mRNAs. Such techniques might decrease
the throughput, but will better describe the transcriptome diversity in a set of cells. Even so, short
reads are still able to dig deeper in the transcriptome. The second issue with using long reads to
study AS is that third generation sequencing is currently hindered by high error rates that affect the
identification of isoforms, exon boundaries, open reading frames, and the creation of gene catalogues.
Although error-correction in long RNA-seq datasets is possible with correction algorithms tailored
for the genomic context, such methods usually tend to truncate the transcriptome, an undesirable
side effect [26]. However, accurate long reads can still be obtained natively, mainly through Pacific
Biosciences (PacBio) SMRT Iso-Seq sequencing [38]. An alternative to Iso-seq data is to employ
circular sequencing techniques for Nanopore, such as INC-Seq [23].

Although long-read sequencing is currently shallow and not as comprehensive as short-read
sequencing to describe AS events, they are able to describe the complete structure of mRNAs,
which is hard or impossible, in some cases, with short reads. The full-length sequencing of a given
transcript provides a backbone or a guide to assemble AS events around the transcript. In this
work, we therefore explore a hybrid AS assembly method, which makes use of both short and long
reads, in order to list AS events in a comprehensive manner, thanks to short reads, guided by the
full-length context provided by the long reads. Hybrid assembly of both types of RNA-seq reads in
a de novo context has already been explored. Trinity [13] v2.0.2 release onwards improves the last
step of assembly, the Butterfly algorithm, to better integrate long read support and to improve on
the assembly of complex isoforms, particularly those containing internally repetitive sequences [14].
IDP-denovo [12] first assembles short reads into short-reads scaffolds (SR-scaffolds) through existing
de novo assemblers of short read data only, then align long reads to SR-scaffolds to extend and fill
potential gaps between the latter. Unaligned long reads are not discarded, but grouped into gene
clusters. The extended SR-scaffolds and the gene clusters are used to create a pseudo-reference of
exonic regions, i.e. a reference containing only the expressed regions for each gene, allowing the
identification of alternative exon usage and splice sites. Finally, isoform abundance estimation is
performed using IDP [2]. However, as previously shown in [43,27,4], the local assembly of AS events
is more sensitive and precise than full-length transcriptome assembly strategies, when the input is
only short reads. Therefore, we expect that this remains true also in the hybrid assembly scenario.
By focusing on the specific goal of assembling only AS events, and not full-length transcripts, we
predict that the method here described will be faster, more sensitive and precise than methods that
focus on the hybrid global assembly of short and long RNA-seq reads, such as Trinity and IDP.
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2 Methods

Our method receives as input shallow long reads, and deep short reads (both in Fasta or Fastq
formats), and outputs local alternative splicing events that are described in the short reads, but not
in the long reads, in Fasta format. It is composed by four main steps: 1) hybrid DBG construction;
2) exact mapping of long reads to the hybrid DBG; 3) Unitig Linking Graph construction; 4)
alternative splicing events enumeration. The next sections explain each step in detail. We start
however by providing some basic definitions.

2.1 Basic definitions

The next sections use the following basic definitions. Given a graph G, and a vertex v ∈ G, the
out-neighbours (in-neighbours) of v in G are denoted by N+

G (v) (N−
G (v)). We shall usually simplify

all the notations by omitting the graph argument, when this is clear from the context. As such, the
previous notations can be simplified to N+(v) and N−(v). In a DBG G built with a given value of k,
the k-mer represented by the vertex v ∈ G is denoted by kmer(v). The abundance of a vertex v ∈ G,
denoted by a(v), is the number of times kmer(v) appears in the reads datasets used to build G. The
relative out-abundance (in-abundance) of an arc e = (s, t) ∈ G is ra+(e) = a(t)/

∑
v∈N+(s) a(v)

(rc−(e) = a(t)/
∑

v∈N−(t) a(v)). A compressed de Bruijn graph (cDBG) C is obtained from a DBG
G by replacing all the linear paths p in G by a vertex u such that the sequence associated to u
(denoted by seq(u)) in C is the sequence spelled by p in G. The vertices of C are called unitigs. The
size of a unitig u, denoted by |u|, equals the size of seq(u). Observe that G and C encode the same
information, but in practice the latter can be more efficiently stored in memory and algorithms
usually run faster. A walk w = v1, v2, ..., vk of k vertices in a graph G is a sequence of vertices of G
such that (vi, vi+1) ∈ G for 1 ≤ i ≤ k − 1. A path is a walk with no repeated vertices.

2.2 Hybrid DBG construction

We now detail how we build a hybrid bicoloured DBG from both the short and long reads. We start
by building a DBG GS from the deep short reads. We assume that these reads contain few errors,
e.g. 0.1%, which is common in the Illumina technology, the most used second-generation sequencer.
We deal with sequencing errors by using two cut-offs. As commonly done in genomics, we first
remove from the graph the non-solid k-mers. Solid k-mers are the vertices v ∈ GS |a(v) ≥ amin,
where amin is the minimum abundance solidity threshold (parameter -min abundance, defaulting
to 2), representing a counting floor for the k-mers that are believed to be correctly sequenced (i.e.
does not include a sequencing error). The second cut-off is a relative one, which is commonly applied
in tools processing second generation RNA-seq reads, such as Trinity [13] and KisSplice [43]. The
objective of the relative cut-off is to remove errors in highly-expressed transcripts. We do so by
detecting and removing the arcs e ∈ GS |ra+(e) < ramin or ra−(e) < ramin, where ramin is the
minimum relative abundance threshold (parameter -rel cutoff, defaulting to 0.02). By default,
we apply low values for both cutoffs so that we do not miss infrequent isoforms.

Next, we build the DBG GL from the long reads. However, we do not perform any sequencing
error removal procedures on GL. The main reason is that the sequencing is much more shallow,
and applying the same cutoffs as in short reads would result in losing out many reads (i.e. many
transcripts are supported by only one read). Our method is primarily designed for perfect long
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reads. We discuss later how sequencing errors in long reads are expected to affect the performance
of the method.

Finally, we build a hybrid DBG G in which we merge both graphs GS and GL. To do so, we first
retrieve the unitigs of GS and GL, and then we build G by using such unitigs as input. Moreover, we
colour each vertex v ∈ G with the colour red, if it stems from the short reads, blue if it stems from
the transcripts, or purple if it stems from both datasets. Finally, in order to be computationally
efficient in the downstream steps, we compress the DBG G into the cDBG C by replacing its linear
paths by unitigs. During this compression, we also associate each k-mer of G to the unitig it belongs
to in C, using a vector kmer2Unitig (more specifically, we associate each k-mer identifier to a unitig
identifier). This will allow us to map a sequence to C efficiently in the next two steps.

We observe that if there are too many sequencing errors in the long reads, i.e. one at every k
bases, both graphs GS and GL will hardly have common regions, and thus the merging of these
graphs will not be appropriate. Therefore, our method works optimally for error-free long reads.
Moreover, it is assumed to work partially (to be demonstrated) when the error rate is below 1 error
every k bases, which can obtained using PacBio SMRT Iso-Seq sequencing [38], or Nanopore INC-
Seq sequencing [23], or through error-correction algorithms [26]. In any case, the high-error-rate
issue of long reads is being actively addressed by the community, through error-correction methods,
special library preparation protocols, and advances in the sequencing technology. The expectation
is thus that the long reads error rate will decrease significantly in the short future, while Illumina
sequencing will continue to improve on reducing the per read cost to remain competitive. This is
the situation in which this method performs appropriately.

In our implementation, all the aforementioned graphs are built using the GATB library [9].

2.3 Exact mapping of long reads to the hybrid DBG

For each long read l given as input, we map l to C by retrieving a walk w(l) ∈ C spelling out
l. To do so efficiently, we use the implementation of a minimum perfect hash function (MPHF)
on the set of k-mers [28] used to build C. The MPHF allows to retrieve the identifier of a given
k-mer in constant time in most cases1. As such, to map a long read l, we iterate through each
k-mer of l, querying its identifier using the MPHF, and associating the k-mer identifier to its unitig
identifier using the vector kmer2Unitig (in constant time). As we have O(|l|) k-mers in l, this
procedures takes expected O(|l|) time. We note here that, since we assume that the input long
reads are accurate, and thus no sequencing-error-removal procedure was applied when building
GL, we do not need to take into account inexact mappings: there will always exist a walk w ∈ C
spelling out each long read. If few sequencing errors are indeed present in long reads, they will be
interpreted as small variations (e.g. SNPs or indels), or will eventually be simplified in the next
step. However, the vector kmer2Unitig can lead to heavy memory usage. It is possible to store it
more compactly by associating just a sample of the k-mers in each unitig. If such k-mers are spaced
by a constant distance, we have a multiplicative reduction in memory consumption, while keeping
the same asymptotic time for mapping. This simple idea is based on the sampling of suffix array
positions in the FM-index [10], and is also already implemented in the sparse Pufferfish index [1].
For now, our method still lacks the implementation of this feature.

1 The query time of the MPHF described by Limasset et al. in [28] can deteriorate to the query time of
classical hash tables, in the worst case, but this is extremely rare to happen in practice.
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2.4 Unitig Linking Graph construction

The Unitig Linking Graph (ULG) is an abstraction of the cDBG, which removes the complex
parts of the graph, and connects the remaining parts using the read information, adding the range
information given by single-end reads back to the graph, which was lost when cutting the reads into
k-mers. The most complex parts of the graph are often associated to high-copy-number and low-
divergence repeats (i.e. repeats that are present in many copies with very high similarity between
them), which cannot be easily processed by an assembly algorithm(see Figure 1).

The main goal of the ULG is to solve repeats larger than k, but shorter than the reads’ length.
Longer repeats cannot be reliably solved using second generation data, since the read length is not
enough to span such repeats. Observe that since our goal is to find alternative paths that are not
contained in the long reads, we cannot use the long-range information given by long reads to solve
the repeats present in short-read data only.

The ULG shares similarities with several approaches that were conceived to add the read infor-
mation back to the DBG in a reference-free context. The first approaches to do so were based on
using multiple values of k to build a DBG, instead of only one [35,34,3,30,24]. A general framework
for methods based on this strategy is to build contigs using increasing values of k, and to combine
the produced contigs into one final assembly. The inputs to these DBG constructions with different
values of k can be the raw reads, the contigs built with k′ < k or a mixture of both. As k increases,
more read information is integrated into the assembled contigs. More recently, some studies encode
the read information directly into the graph, e.g. [17,41,48]. The main difference between the ULG
and these approaches is that the ULG removes the complex, highly branching parts of the graph,
and connects only the well-assembled unitigs through the read information, while the others work
on the whole graph. As such, the ULG is less general than the aforementioned approaches, and it
is also not an option when its application cannot afford the removal of such complex regions, such
as genomic variant calling in population graphs [48]. On the other hand, it can simplify the down-
stream assembly process, and translate into faster methods, as it is built directly upon a simplified
cDBG, and not on the full DBG.

The ULG U is built from a cDBG C. Figure 2 exemplifies this process. The vertices in U
are the unitigs that are considered trustful. Trustful unitigs are long-enough unitigs so that we
can consider them well assembled. It also means that they have a low branching concentration, as
branches in DBGs split linear paths, thus creating smaller unitigs. The algorithmic choice of trusting
longer unitigs is in accordance to Lima et al. in [27], who show that regions with high branching
concentration in DBGs are related to repeats, and processing them can lead to spurious assemblies.
A strategy to avoid traversing and assembling such regions is to simply use only the long-enough
unitigs. Formally, a unitig u is trustful if u satisfies one of the following conditions: a) u is red and
|u| ≥ k + minred or b) u is purple or blue and |u| ≥ k + minblue, where minred is the minimum
size of a red unitig to be considered trustful (parameter minSizeRedUnitigs, defaulting to 15)
and minblue is the minimum size of a purple or blue unitig to be considered trustful (parameter
minSizeBlueUnitigs, defaulting to 5). In Figure 2(a), we highlight the trustful and non-trustful
unitigs in a cDBG.

Removing the non-trustful unitigs and keeping only the trustful ones will substantially discon-
nect the graph, making any assembly very fragmented. For example, in Figure 2(a), we will have
six isolated unitigs if we do so. This means that trustful unitigs are potentially connected through
complex, repeat-induced regions, which were removed in the ULG. In order to retrieve back the con-
nections, we map the short reads to the cDBG (using the same procedure described in Section 2.3).
An example of such mapping can be seen in Figure 2(b). Given a read r, described by a walk w(r)
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(a)

(b)

Fig. 1. (a) A subgraph in a de Bruijn graph with neighbourhood 5 around an exonized ALU. The correct
assembly is shown as the red path. The complex region is due to the presence of ALUs in transcriptomic
data. ALUs are mainly present in introns, but some have been exonised. They are present in high numbers in
transcriptomic data because some pre-mRNA is sequenced together with mRNAs. Both exonic and intronic
ALUs contribute to the complex structure of the DBG; (b) The UCSC Genome Browser shows that this
region corresponds to an exonized ALU (circled in red) in the CMC2 human gene. The flanking exons are
also shown for a better visualisation. The data used in this figure corresponds to RNA-seq reads from the
MCF7 cell line (with depletion of DDX5 and DDX17) [4].
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in the cDBG, for each pair of consecutive trustful unitigs (u, v) ∈ w(r), we get the substring s in
r connecting u to v and add a s-labeled arc e = (u, v, s) to U . For example, if r maps orderly to
the trustful unitigs u, v, w and x, we shall build arcs between u and v, v and w, and w and x. The
orderly mapping of r to the set of trustful unitigs is denoted by m(r) = u, v, w, x. Furthermore, if
several different reads map to the same pair of consecutive unitigs u and v, we might have several
arcs e = (u, v, s), with different labels s, in U . Constructing these arcs between trustful unitigs
based on short-read mapping is exemplified in Figure 2(c).

Finally, we still might lose some range information by constructing arcs only between consecutive
unitigs, e.g. we lost the information given by the read r that u is connected to x passing through
v and w. In order to recover part of this information, we store for each trustful unitig u a set h(u)
such that v ∈ h(u) ↔ ∃ a read r|u → ... → v → ... ∈ m(r). In other words, h(u) contains the set
of vertices v such that there is at least one read mapping to u and later to v. The information
provided by h(u) can be used as hints and guide the assembly algorithm on how to solve a repeat-
induced region using the range information provided by the short reads. Figure 2(c) shows h(U1)
for the depicted example. In this figure, we can also see how the hints can help to choose the
correct path during assembly in an efficient way. If we start by assembling U1 → U2, the hints from
U1 indicate that it is more reliable to continue the assembly towards U4 and U6. The assembly
a1 = U1 → U2 → U5 should be considered with caution since there are no reads supporting the
link from U1 to U5 (while we have for U4 and U6). Such assembly could be wrong if, for example,
U1 and U2 stem from a gene G1 and U2 and U5 stem from another gene G2 (U2 is a conserved
region in an inter-gene repeat present in G1 and G2). There is also the possibility of a1 being a
correct assembly, and due to a read coverage or read length problem, we have no reads linking U1
to U5. Thus, the usefulness of the hints of a unitig depends on the read coverage and read length.

Observe that there is still an arc coupling problem that is not solved by the ULG. For example,
in assembly a2 = U1 → U2 → U4 in Figure 2, we should choose the green arc (with label ACTTG) to
connect U1 and U2 for a2 to be coherent with Read 1. However, empirical observations in RNA-seq
data suggest that the labels of different arcs between two trustful unitigs differ only by some SNPs
or indels, or represent more complex allelic differences, like tandem satellite repeats with different
copy number2. In our method, since we are not interested in these variations, we further simplified
the ULG by keeping only the most frequent arc between two unitigs.

Extensions of the ULG to represent proper read threading, for example, can be done. Each
element of the hints set can be a path spelled by a read. This would allow for properly spanning
multiple copies of a same repeat, for instance. However, this naive strategy would be heavy in
memory. The approach implemented in the Linked de Bruijn Graph (LdBG), described in [48], in
which h(v) would store only the paths starting in v can be low in memory and enough to represent
the full read information. In fact, the LdBG [48] is more general than the ULG, since it operates
on the full DBGs, and has proper read threading. However, the LdBG can be more costly than the
ULG, as all the complex regions are kept in the graph3.

2 Note to the reviewers: we shall add a section in the Supplementary Material in the full version of the
paper with data to backup this claim.

3 Note to the reviewers: the authors were unaware of [48] during the conception and implementation of the
ULG. It might be more proper to describe the ULG as based on, or as a specialization of, the LdBG.
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(a)

(b)

(c)

Fig. 2. Building the ULG from a cDBG. (a) The cDBG with the trustful and non-trustful unitigs identified;
(b) The mapping of four reads on the cDBG; (c) The construction of the ULG: 1) the non-trustful unitigs
are removed; 2) the trustful unitigs are linked by labelled arcs reflecting the read mapping; 3) the hints for
each vertex v, h(v), is created. In this example, only h(U1) is shown for simplicity.
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2.5 Alternative splicing events enumeration

In order to enumerate the AS events that are present in the short reads and absent in the long
reads, we iterate through the mapping of each long read l, and find alternative paths in the ULG
flanked by two unitigs stemming from l. This section describes in detail this procedure.

Let C be the cDBG (created in Step 1 - see Section 2.2), l a long read, w(l) a walk in C spelling
out t (computed in Step 2 - see Section 2.3), and U the ULG (created in Step 3 - see Section 2.4).
We iterate through the vertices v = wi ∈ w(l), enumerating all (v, u)-alternative paths in U , which
are paths starting in v, following trustful unitigs not belonging to l, and finally reaching a vertex
u = wj ∈ w(l)|i < j, i.e., the index of v in w is smaller than the index of u in w. The main intuition
is that v and u compose (part of) the flanking exons of the alternative splicing event we want to
find. We require v and u to be (i) trustful and (ii) purple. Clearly, (i) has to be satisfied for u and v
to belong to the ULG U . We require (ii) so that the flanking sequences are expressed in both short
and long reads. Moreover, to bound our search space, we do not explore paths longer than a given
threshold, and we halt the enumeration once we’ve listed a good amount of AS events between the
two flanking vertices. Lastly, we make use of the hints of the ULG to guide our assembly.

In order to understand our algorithm in detail, consider the following definitions. Given a unitig
u ∈ U , c(u) denotes the number of k-mers u contains, i.e. c(u) = |u| − k + 1. Given an arc
e = (u, v, s) ∈ U , c(e) denotes the length of the label of e, i.e. c(e) = |s|. In general, the c function
denotes the cost of traversing a given unitig or arc. Given a path p = x → y → ... → z of vertices
of U , c(p) is the cost of all its vertices and arcs, and seq(p) denotes the sequence obtained by
assembling p. ED(s1, s2) denotes the edit (or Levenshtein) distance between two sequences s1 and
s2. SG-ED(s1, s2) denotes the semi-global edit distance between s1 and s2, i.e. we compute the edit
distance between s1 and s2 not penalizing for edit operations in both extremes of s1 and s2. SG-ED
is more appropriate than ED to measure the difference rate between two sequences assuming that
one of them is a lot longer than the other. Finally, d(s, t, U) denotes the length of the shortest path
from s to t in U .

The proposed algorithm is a single-source multi-target path-enumeration algorithm with two
constraints. The first is a length constraint � (� = 2000 by default) on the assembled sequences to
bound the search space. Events longer than � will not be found by the algorithm. The second is
a biologically-motivated constraint on the splicing complexity to further reduce the search space.
During the enumeration algorithm, an alternative path p = u → w → ... → v is defined as a novel
splicing event if: (i) there is no other path p′ ∈ AP (u, v) that is very similar to p, where AP (u, v)
contains all alternative paths found so far between u and v; (ii) p is not contained in any long
read. More specifically, in condition (i) we verify if ED(seq(p), seq(p′))/max(|seq(p)|, |seq(p′)|) >=
minED, for all p′ ∈ AP (u, v), where minED is a minimum edit distance threshold to consider that
two paths represent different splicing events (minED = 0.05 by default). To efficiently implement
condition (ii), we verify if SG-ED(seq(p), l) >= minED, for all long reads l containing at least
one of the flanking unitigs u or v. Finally, for each pair of flanking unitigs u and v, we list at most
SC (SC = 10 by default) splicing events. This constraint is reasonable since we hardly have more
than SC alternative transcripts between two constitutive exons. For instance, human genes have on
average 6.95 transcript variants per gene, and most genes have at most 10 transcript variants [42].
Moreover, the fact that a gene has many transcript variants does not imply it has complex local AS
events: combinations of several local AS events and alternative transcript initiation and termination
sites can contribute multiplicatively to the number of transcript variants. We further note that, in
the current state of this work, these parameters are still being tuned and are under evaluation.
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Furthermore, when exploring the search space of all feasible alternative paths, we make use
of the ULG’s hints, described in Section 2.4, to drive the assembly towards the sequences most
supported by the read information. To do so, when building an alternative path p in our enumeration
algorithm, we keep track of how many times each vertex v ∈ U was included in the hints of each
u ∈ p in a vector HC. In other words, HC(v) =

∑
u∈p |h(u) ∩ {v}|. When faced with the choice of

which unitigs to follow to extend a path p = u → ... → v, we explore the neighbours w such that
HC(w) is the highest. Indeed, this could lead us to miss some lowly covered transcripts, but this
conservative algorithmic choice reduces the number of misassemblies. A more permissive strategy
can be executed by setting a higher value for SC. We observe that this strategy is similar to the
oldest link approach described in the LdBG [48]. However, we are more permissive, since our goal
is to enumerate several alternative paths between two vertices, whereas the LdBG focus on finding
a long linear path explaining the genome.

Finally, Algorithm 1 describes our alternative path enumeration procedure in detail. For the
time analysis of Algorithm 1, consider the following definitions. Let U be a graph, and let n and
m be the number of vertices and arcs in U , respectively. UR is the reverse graph of U , i.e. UR is
a copy of U but with the direction of the arcs reversed. Let ssd(v, U) be the Dijkstra’s Shortest
Path First algorithm [7], that computes the distance from a single source v to all vertices in U
in O(m + n log n) time. In order to simplify this time analysis, we will ignore the time required
to output an alternative path once we reach a target (i.e. we are not taking into account here
the time spent when executing lines 5-19). We will only determine the asymptotic delay of finding
alternative paths. Updating and restoring the HC (in lines 22 and 37, respectively) can be done
in O(n) time with a count vector indexed by the vertices. We can associate a boolean vector to
a path p in order to query the membership of a vertex w in p in O(1) time. Thus the constraint
in line 24 can be done in O(1) time. For the constraint in line 25, we can add an artificial vertex
t′ to UR such that N+

UR(t
′) = T and c(t′, t ∈ T ) = 0, and precompute ssd(t′, UR) before line 24

in O(m + n log n) time. By doing so, ∃t ∈ T |c(p) + c(v, w) + d(w, t, U) ≤ � can be evaluated in
O(1) time, since mint∈T {d(w, t, U)} = d(t′, w, UR), which is already precomputed. Thus, lines 24
and 25 run in O(n) total time, since |N+

U (v)| = O(n), with a O(m + n log n) preprocessing time.
We observe that all vertices w ∈ p should not be in UR at the time of the precomputation of
ssd(t′, UR). It is not hard to see that the other lines in Algorithm 1 take at most linear time, apart
from the recursive call. Since every time we execute Algorithm 1, we add a vertex to the path p
and |p| ≤ n, then the delay to find alternative paths is O(n ∗ (m+n log n)). It is not hard to reduce
the problem of listing bounded length (s, t)-paths in directed graphs [37] to our problem of finding
alternative paths in the ULG. The delay of the most efficient algorithm for this first problem is
also O(n ∗ (m+n log n)) [37], matching our. An improvement in our algorithm would also imply an
improvement on the most efficient algorithm for the single-source K-shortest paths in a directed
graph [52,37], which dates back from the 1970s. As such, we consider that improving even further
the delay of our enumeration algorithm is far from being trivial, and out of the scope of this paper.

3 Preliminary results

In order to check if our method works, we validated it in sample datasets. This also gave us some
good test cases to help solve eventual bugs and direct the development. The results described in
this section will not be part of the final version of this paper. An implementation of our method
can be found in https://gitlab.inria.fr/lishisoa/EYTA, but we warn that it is yet in active
development, not finished, and unstable.
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3.1 Simulated dataset on one gene and five transcripts

We first ran our method on the human gene NEU1, which contains five transcripts. The long reads
set was composed only by one of the five transcripts (ENST00000229725.4), and short reads were
simulated using ART ILLUMINA [18] at 50x coverage for each transcript. In this small example,
there were four intron retentions, one alternative acceptor and one exon skipping event to be found,
which all were. Figure 3 details these results.

Fig. 3. (a) The five transcripts from the human gene NEU1, aligned to the human reference genome and
visualized using the UCSC Genome Browser. The events to be found are in red boxes. IR stands for Intron
Retention, AC for Alternative Acceptor, and ES for Exon Skipping. (b) The output of our method - the
long read and its alternative paths. All events were found in this very simple example.

3.2 Simulated dataset on the whole human chromosome 1

Our next benchmark comprised a simulated dataset on the whole human chromosome 1. We
restricted ourselves to protein-coding, multi-transcript, and non-paralogous genes, obtaining 488
genes. We did not simulate long reads, and we took 10% of the transcripts of each gene as our long
reads set. We then simulated 30x coverage 150-bp single-end short reads from all transcripts using
wgsim [18], with no error-rate. Our ground truth, built using ASTALAVISTA [11], is composed
by all pairwise known AS events in these genes, where only one of the isoforms of the event is in
the aforementioned long reads set. We understand that this setting is unrealistic in some aspects.
First, real datasets contain paralogous genes, and if they are similar enough (i.e. presenting several
common regions with more than k bases), we will confuse the expression of two different paralogous
genes as alternative transcripts of a single gene. Second, our reads are perfectly accurate. Third,
we have a uniform and homogeneous short-read coverage of all transcripts. On the other hand, we
are also overestimating the alternative splicing level of each gene by simulating all of its transcripts
with short reads. Therefore, this simulated dataset is expected to be more complex in this aspect
than real datasets. Nonetheless, this composes a good test dataset to improve our implementation
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and have a first performance check of our method. Should this benchmark be included in the final
version of the paper, we shall improve on these unrealistic characteristics.

Considering this benchmark, we currently obtain a recall (proportion of ASTALAVISTA AS
events found by our method over the total number of ASTALAVISTA AS events) of 99.6% and a
precision (proportion of found events corresponding to ASTALAVISTA AS events over the total
number of found events) of 88.7%. We plan to improve our method with this benchmark by clarifying
the 11.3% false positive events we currently have. We could already verify that many of these
false positive events correspond to misassemblies that happen when we have alternative transcript
termination (or initiation) sites coupled with AS events as shown in Figure 4. Unfortunately, as
short reads are unable to describe the full structure of mRNAs, it is not clear how to avoid such
misassemblies for now.

Fig. 4. A false positive event in human gene RWDD3. The misassembly is due to an alternative transcript
termination site coupled with AS events. The last exon of the transcript that corresponds to the lower path
of the event is part of an internal exon of other transcripts. The event itself is flanked by the first exon
of the gene, and this longer exon. By comparing the transcripts that correspond to the upper and lower
paths of the event, we can see that we do not have a common right flanking exon that would define the
alternative splicing event (the small common region shared between the second exon of the upper path and
the third exon of the lower path is shorter than k, and thus does not induce a right flanking vertex in the
ULG). Unfortunately, as short reads are unable to describe the full structure of mRNAs, it is not clear to
infer that the assembly of the lower path should have stopped earlier. Visualisation done with IGV [40].

4 Perspectives

In this section, we describe our perspectives for this work, which we plan to develop in order to
publish it.

4.1 Methodological perspectives

– Implement paired-end read mode in the ULG;
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– Compare the ULG approach against a multi-k approach and to the LdBG [48];
– Optionally enumerate AS events described uniquely by the long reads;
– Investigate some enumeration techniques to allow for a faster search of novel AS events. One

such idea is attributing a weight to every vertex in the graph, and increasing the weight of the
vertices of an alternative path when it is found. We then prioritize lighter paths in the search
for novel AS events.

4.2 Benchmarking perspectives

We plan to benchmark our method on samples sequenced with both PacBio Iso-seq and Illumina.
We first intend to run it on a human sample, as we can make use of the most complete annotations
available to validate the results of our method. We then plan also to run on a sample containing
a more comprehensive Iso-seq sequencing. A good option that we have found so far is the data
presented in [21], which contains PacBio Iso-seq data from the brain tissue of an adult J-Line
chicken, which was also sequenced using Illumina. More importantly, the long reads RNA library
was normalized in [21] to reduce over-represented transcripts, which appears to have provided a
transcriptome coverage efficiency of more than 5 times that of a previous study [46]. If our method
manages to find novel AS events even on normalized Iso-seq data, then its performance will be even
better than on non-normalized datasets, which is far more commonly used. As the chicken genome
is not as well annotated as the human genome, many events that we find might not have been
described previously. We will then validate our predictions by searching for canonical splice sites.
Finally, we will compare the performance of our method against IDP-denovo [12] and Trinity [13]
in hybrid mode.
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Algorithm 1 Alternative path enumeration algorithm

1: function enumerate alternative paths(ULG U , source u, set of targets T , current unitig v, current path p, length
threshold �, hints counter HC, splicing complexity SC, splicing events splEvs, alternative paths APs, long reads set L,
edit distance threshold minED)

2: p ← p+ v //add v to the end of p

3: //check if we reached a target
4: if v ∈ T then
5: //yes. Check if we still did not list SC (u, v)-alternative-splicing events
6: if |splEvs(u, v)| < SC then
7: //no, we can try to list this one
8: //check if the assembled alternative path compose a new splicing event, i.e. it
9: //has a large enough edit distance with all the previously found (u, v)-alternative-
10: //paths and it is not contained in a long read
11: if alternativePathIsANovelAS(p, U,APs, L) then
12: //novel AS event found between u and v - output the path and its assembly
13: output p and seq(p)
14: splEvs(u, v) ← splEvs(u, v)

⋃{p}
15: end if
16: APs(u, v) ← APs(u, v)

⋃{p} //add p to all alternative paths found between u and v so far
17: end if
18: p ← p− v //remove v from the end of p
19: return
20: end if

21: //here we did not reach a target - keep building the alternative path towards a target
22: update HC due to the addition of v in p

23: //find the set of neighbours N to be explored
24: N ← {w ∈ N+

U (v)| 1) w /∈ p; //path constraint
25: 2) ∃t ∈ T |c(p) + c(v, w) + d(w, t, U) ≤ �} //length constraint
26: Hmax ← maxn∈NHC(n) //Hmax denotes the highest hint
27: N ← {n ∈ N |HC(n) = Hmax} //we update N to ensure an assembly guided by the highest hints
28: if Hmax = 1 then
29: //vertices added to p before v did not give any hints
30: //hardest case in assembly
31: //guide the assembly by the SC-longest unitigs
32: N ← n ∈ N |n is one of the SC-th longest unitigs in N
33: end if

34: //explore each neighbour recursively
35: for n ∈ N do

enumerate alternative paths(U , u, T , n, p, �, HC, SC, splEvs, APs, minED)
36: end for

37: restore HC to the previous state
38: p ← p− v //remove v from the end of p
39: end function
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