N

N

De novo algorithms to identify patterns associated with
biological events in de Bruijn graphs built from NGS
data

Leandro Ishi Soares de Lima

» To cite this version:

Leandro Ishi Soares de Lima. De novo algorithms to identify patterns associated with biological events
in de Bruijn graphs built from NGS data. Bioinformatics [g-bio.QM]. Université de Lyon; Universita
degli studi di Roma "Tor Vergata” (1972-..), 2019. English. NNT: 2019LYSE1055 . tel-02280110

HAL Id: tel-02280110
https://theses.hal.science/tel-02280110

Submitted on 6 Sep 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-02280110
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LYON

ElR;

N¢ d’ordre NNT : 2019LYSE1055

THESE DE DOCTORAT DE L’UNIVERSITE DE LYON

opérée au sein de
I’Université Claude Bernard Lyon 1

Ecole Doctorale EDO1
E2M2

Spécialité de doctorat : Bioinformatique

Soutenue publiquement le 23/04,/2019, par :
Leandro Ishi Soares de Lima

De novo algorithms to identify
patterns associated with biological
events in de Bruijn graphs built

from NGS data

Devant le jury composé de :

Bonizzoni Paola, Full Professor, Universita Degli Studi di Milano-Bicocca Rapporteure
Igbal Zamin, Senior Researcher, EMBL-EBI Rapporteur

Brochier-Armanet Céline, Full Professor, Université Claude Bernard Lyon 1 Examina-
trice

Foissac Sylvain, Junior Researcher, GenPhySE INRA Toulouse Examinateur
Naldi Maurizio, Associate Professor, Universita di Roma "Tor Vergata" Examinateur
Varré Jean-Stéphane, Full Professor, Université de Lille Examinateur
Sagot Marie-France, Senior Researcher, LBBE, INRIA Rhone-Alpes Directrice de thése
Italiano Giuseppe, Full Professor, Universita di Roma "Tor Vergata" Co-directeur de
these

Lacroix Vincent, Associate Professor, Université Claude Bernard Lyon 1 Co-encadrant
de thése, Invité

UNIVERSITE CLAUDE BERNARD-LYON 1

Président de I’Université M. le Professeur F. FLEURY
Président du Conseil Académique M. le Professeur H. BEN HADID
Vice-Président du Conseil d’Administration M. le Professeur D. REVEL

Vice-président du Conseil Formation et M. le Professeur P. CHEVALIER

Vie Universitaire
Vice-président de la Commission Recherche M. F. VALLEE
Directeur Général des Services M. A. HELLEU

COMPOSANTES SANTE

Faculté de Meédecin Lyon-Est - Claude Directeur: M. le Professeur J. ETIENNE
Bernard

Faculté de Médecine et de Maeutique Directeur: Mme la Professeure C. BURILLON
Lyon Sud Charles Mérieux

Faculté d’Odontologie Directeur: M. le Professeur D. BOURGEOIS
Institut des Sciences Pharmaceutiques Directeur: Mme la Professeure C. VINCIGUERRA
et Biologiques

Institut Techniques de Réadaptation Directeur: M. le Professeur MATILLON
Département de Formation et Centre de Directeur: Mme la Professeure A-M. SCHOTT

Recherche en Biologie Humaine

COMPOSANTES ET DEPARTEMENTS DE SCIENCES ET TECHNOLOGIE

Faculté des Sciences et Technologies Directeur: M. F. De MARCHI

Département Biologie Directeur: M. le Professeur F. THEVENARD
Département Chimie Biochimie Directeur: Mme C. FELIX

Département Génie Electrique et Directeur: M. Hassan HAMMOURI

des Procédés

Département Informatique Directeur: M. le Professeur S. AKKOUCHE
Département Mathématiques Directeur: M. le Professeur G. TOMANOV
Département Mécanique Directeur: M. le Professeur H. BEN HADID
Département Physique Directeur: M. le Professeur J-C PLENET
UFR Sciences et Techniques des Directeur: M. Y.VANPOULLE

Activités Physiques et Sportives

Observatoire des Sciences de ’Univers de Directeur: M. B. GUIDERDONI

Lyon

Ecole Polytechnique Universitaire de Lyon 1 Directeur: M. le Professeur E.PERRIN
Ecole Supérieure de Chimie Directeur: M. G. PIGNAULT

Physique Electronique

Institut Universitaire de Technologie de Directeur: M. le Professeur C. VITON
Lyon 1

Ecole Supérieure du Professorat et de Directeur: M. le Professeur A. MOUGNIOTTE
I’Education

Institut de Science Financiére Directeur: M. N. LEBOISNE

et d’Assurances

Acknowledgements

First and foremost I thank my family for being patient with me on these four years of
PhD. My parents, which had to get used to the distance, as it was not easy for any of
the parties to travel between Brazil and France, and my wife, Heloisa. Heloisa was very
patient to me in some periods, mainly close to deadlines, where I did some working nights
and weekends. Moreover, although the decision to come to France and do a PhD was
a joint one, Heloisa was really kind to move, join, and support me through the whole
PhD. However, I can’t help feeling this was somewhat selfish, as she would not be able
to work and progress in her career in France due to her VISA type. Yet, she was always
by my side, supporting me in the good, bad, and "meh" days of the PhD. She was the
most present person in my whole PhD, although not technically involved in it. It is hard
to put into few words how important and essential you were during all these years, so I
hope a "I love you" is able to express all my feelings!

I am also very grateful to my supervisors, Marie-France Sagot, Giuseppe Italiano, and
Vincent Lacroix. This thesis was possible because of your support and directions. I have
learned a lot through you, not only about how to do research, but also how to collabo-
rate with a diverse range of researchers, ranging from undergraduate students to senior
researchers; coming from different backgrounds, which is essential in bioinformatics. 1
also thank you for all your patience during these four years. I acknowledge that it is not
easy to mentor students. Sometimes I’ve been stubborn, or I would bother you for some
minimal issues, or follow several paths that would not lead to results, in general I was not
very optimistic, etc... This would lead to several meetings, sometimes making you repeat
something that you had mentioned to me previously. So I thank you a lot for all the
patience you had with me during these periods. But that is all about learning how to do
research I guess, which usually does not correspond to a linear and predictable path from
the problem to the results. I am very grateful for the approach you’ve taken to direct
me, as it allowed me to be headed to the right direction, while keeping most of low-level
details for me to solve, and some of the literature for me to explore, research, and find.
I now feel confident to work on research projects due to you and your supervision.

My feeling of gratitude also extends to my non-supervisors collaborators which directed
some works (alphabetical order): Laurent Jacob and Rayan Chikhi, which did not have
the responsibility of mentoring me, but from which I have learned due to their attention
and patience. And also to the other co-first authors in some papers (alphabetical order):
Blerina Sinaimeri, and Magali Jaillard, which was a pleasure to work with, and from who
I learned more about theoretical computer science, statistics, and GWAS. T also thank
all the other collaborators in published works (alphabetical order): Alex van Belkum,

5

Amandine Rey, Audric Cologne, Benjamin Istace, Camille Marchet, Clara Benoit-Pilven,
Corinne Da Silva, Cyril F. Bourgeois, Didier Auboeuf, Emilie Chautard, Gustavo Saco-
moto, Helene Lopez-Maestre, Héléne Touzet, Jean-Baptiste Claude, Jean-Marc Aury,
Louis Dulaurier, Marie-Pierre Lambert, Maud Tournoud, Pierre Mahé, Roberto Grossi,
Romeo Rizzi, Ségoléne Caboche, Sophie Terrone, Vicente Acuna, and Vincent Miele. And
many others with some ongoing works or interesting discussions (alphabetical order):
Alex Digenova, Antoine Limasset, Arnaud Mary, Camille Sessegolo, Gabriela Paludo,
Mariana Ferrarini, Said Sadique Adi, and all the members of the ASTER consortium.
Special thanks to Claire Sauer, Marina da Graca, and Florence Bouheddi for simplifying
a lot the bureaucracy. Of course most of the colleagues I have worked with turned into
dear friends, but I would like also to thank all the other friends I had made during the
PhD (alphabetical order): Alice Julien Laferriére, Carol Quinteros, Catherine Michel,
Cecilia Klein, Christian Baudet, David Parsons, Delphine Parrot, Eric Cumunel, Yishu
(Hélio) Wang, Irene Ziska, Katiane Rocha, Laura Urbini, Laurent Bulteau, Marianne
Borderés, Martin Wannagat, Mattia Gastaldello, Nicolas Homberg, Nina Paffoni, Pe-
dro Lealdino, Ricardo Andrade, Scheila Mucha, Susan Higashi, Taneli Pusa, and Xavier
Domingo.

My deepest thanks to everyone mentioned up to here (I hope I did not forget anyone!),
in particular the ones working in LBBE/Lyon, which composed my second, but most
present family in these four years. Thanks for all the laughs, coffees/teas, nights out,
beers, movies, etc!

[thank Université Claude Bernard Lyon 1, Universita degli Studi di Roma "Tor Vergata",
and the Erable team for accepting me as a PhD student. I would like to thank specially
the Espace Ulys service from Université de Lyon, which made a big difference in my stay
in France. Many bureaucratic issues were solved easily due to Espace Ulys, and they made
us feel very welcome in France, through their actions such as events to understand the
French culture, culinary, habits, etc, as well as events for the PhD students’ families. This
service makes a huge difference in the life of foreigner PhD students, and Espace Ulys did
an awesome job everytime we needed to contact them. T also thank the Pole administratif
LBBE and the Direction de la Recherche et des Etudes Doctorales (D.R.E.D.) for making
the bureaucracy of a PhD less heavy.

Lastly, I would like to thank the "Conselho Nacional de Desenvolvimento Cientifico e
Tecnologico CNPq" and the "Ministério da Ciéncia, Tecnologia e Inovagao - MCTI"
from Brazil, which funded this PhD through the "Ciéncia sem Fronteiras - CsF" program.
I also thank the french people in general for being warm and open to foreigners.

TITRE en francais
Algorithmes de novo pour I'identification de motifs associés a des événements biologiques
dans les graphes de De Bruijn construits a partir de données NGS

RESUME en frangais

L’objectif principal de cette thése est le développement, I'amélioration et I’évaluation de
méthodes de traitement de données massives de séquencage, principalement des lectures
de séquencgage d’ARN courtes et longues, pour éventuellement aider la communauté a
répondre & certaines questions biologiques, en particulier dans les contextes de transcrip-
tomique et d’épissage alternatif.

Notre objectif initial était de développer des méthodes pour traiter les données d’ARN-seq
de deuxiéme génération a ’aide de graphes de De Bruijn afin de contribuer a la littérature
sur ’épissage alternatif, qui a été exploré dans les trois premiers travaux. Le premier
article (Chapitre 3, article [77]) a exploré le probléme que les répétitions apportent aux
assembleurs de transcriptome si elles ne sont pas correctement traitées. Nous avons
montré que la sensibilité et la précision de notre assembleur local d’épissage alternatif
augmentaient considérablement lorsque les répétitions étaient formellement modélisées.
Le second (Chapitre 4, article [11]) montre que "annotation d’événements d’épissage al-
ternatifs avec une seule approche conduit & rater un grand nombre de candidats, dont
beaucoup sont importants. Ainsi, afin d’explorer de maniére exhaustive les événements
d’épissage alternatifs dans un échantillon, nous préconisons 1’utilisation combinée des ap-
proches mapping-first et assembly-first. Etant donné que nous avons une énorme quantité
de bulles dans les graphes de De Bruijn construits a partir de données réelles d’ARN-seq,
qui est impossible a analyser dans la pratique, dans le troisiéme travail (Chapitre 5, ar-
ticles |1,2]), nous avons exploré théoriquement la maniére de représenter efficacement et
de maniére compacte I'espace des bulles via un générateur des bulles. L’exploration et
I’analyse des bulles dans le générateur sont réalisables dans la pratique et peuvent étre
complémentaires aux algorithmes de 1’état de I'art qui analysent un sous-ensemble de
I’espace des bulles.

Les collaborations et les avancées sur la technologie de séquengage nous ont incités a tra-
vailler dans d’autres sous-domaines de la bioinformatique, tels que: études d’association
a I’échelle des génomes, correction d’erreur et assemblage hybride. Notre quatriéme tra-
vail (Chapitre 6, article [48]) décrit une méthode efficace pour trouver et interpréter des
unitigs fortement associées a un phénotype, en particulier la résistance aux antibiotiques,
ce qui rend les études d’association & l'échelle des génomes plus accessibles aux panels
bactériens, surtout ceux qui contiennent des bactéries plastiques. Dans notre cinquiéme
travail (Chapitre 7, article |76]), nous évaluons dans quelle mesure les méthodes exis-
tantes de correction d’erreur ADN a lecture longue sont capables de corriger les lectures
longues d’ARN-seq & taux d’erreur élevé. Nous concluons qu’aucun outil ne surpasse
tous les autres pour tous les indicateurs et est le mieux adapté a toutes les situations, et
que le choix devrait étre guidé par l'analyse en aval.

Les lectures longues d’ARN-seq fournissent une nouvelle perspective sur la maniére
d’analyser les données transcriptomiques, puisqu’elles sont capables de décrire les séquences
complétes des ARN messagers, ce qui n’était pas possible avec des lectures courtes dans

plusieurs cas, méme en utilisant des assembleurs de transcriptome de I'état de I’art. En
tant que tel, dans notre dernier travail (Chapitre 8, article [75]), nous explorons une
méthode hybride d’assemblage d’épissages alternatifs qui utilise des lectures a la fois
courtes et longues afin de répertorier les événements d’épissage alternatifs de maniére
compléte, grace aux lectures courtes, guidé par le contexte intégral fourni par les lectures
longues.

MOTS-CLEFS en francais

ARN-seq, Lectures courtes, Lectures longues, Epissage alternatif, Graphes de De Bruijn,
Bulles, Etudes d’association a 1'échelle des génomes, Correction d’erreurs, Assemblage
hybride.

Title in english
De novo algorithms to identify patterns associated with biological events in de Bruijn
graphs built from NGS data

Abstract in english

The main goal of this thesis is the development, improvement and evaluation of methods
to process massively sequenced data, mainly short and long RNA-sequencing reads, to
eventually help the community to answer some biological questions, especially in the
transcriptomic and alternative splicing contexts.

Our initial objective was to develop methods to process second-generation RNA-seq data
through de Bruijn graphs to contribute to the literature of alternative splicing, which
was explored in the first three works. The first paper (Chapter 3, paper [77]) explored
the issue that repeats bring to transcriptome assemblers if not addressed properly. We
showed that the sensitivity and the precision of our local alternative splicing assembler
increased significantly when repeats were formally modeled. The second (Chapter 4,
paper [11]), shows that annotating alternative splicing events with a single approach
leads to missing out a large number of candidates, many of which are significant. Thus,
to comprehensively explore the alternative splicing events in a sample, we advocate for
the combined use of both mapping-first and assembly-first approaches. Given that we
have a huge amount of bubbles in de Bruijn graphs built from real RNA-seq data, which
are unfeasible to be analysed in practice, in the third work (Chapter 5, papers [1,2]),
we explored theoretically how to efficiently and compactly represent the bubble space
through a bubble generator. Exploring and analysing the bubbles in the generator is
feasible in practice and can be complementary to state-of-the-art algorithms that analyse
a subset of the bubble space.

Collaborations and advances on the sequencing technology encouraged us to work in
other subareas of bioinformatics, such as: genome-wide association studies, error correc-
tion, and hybrid assembly. Our fourth work (Chapter 6, paper [48]) describes an efficient
method to find and interpret unitigs highly associated to a phenotype, especially an-
tibiotic resistance, making genome-wide association studies more amenable to bacterial
panels, especially plastic ones. In our fifth work (Chapter 7, paper [76]), we evaluate
the extent to which existing long-read DNA error correction methods are capable of cor-
recting high-error-rate RNA-seq long reads. We conclude that no tool outperforms all
the others across all metrics and is the most suited in all situations, and that the choice

should be guided by the downstream analysis.

RNA-seq long reads provide a new perspective on how to analyse transcriptomic data,
since they are able to describe the full-length sequences of mRNAs, which was not possible
with short reads in several cases, even by using state-of-the-art transcriptome assemblers.
As such, in our last work (Chapter 8, paper [75]) we explore a hybrid alternative splicing
assembly method, which makes use of both short and long reads, in order to list alter-
native splicing events in a comprehensive manner, thanks to short reads, guided by the
full-length context provided by the long reads.

Keywords in english
RNA-seq, Short reads, Long reads, Alternative splicing, de Bruijn graphs, Bubbles,
Genome-wide association studies, Error-correction, Hybrid assembly.

Resumé en francais

L’objectif principal de cette thése est le développement, I’amélioration et 1’évaluation de
méthodes de traitement de données massives de séquencage, principalement des lectures
de séquencgage d’ARN courtes et longues, pour éventuellement aider la communauté a
répondre & certaines questions biologiques, en particulier dans les contextes de transcrip-
tomique et d’épissage alternatif. Bien que 'objectif soit le développement de méthodes
basées sur les graphes de De Bruijn (Chapitres 3, 6 et 8, articles [48,75,77]), la con-
ception ou 'amélioration de telles méthodes est également liée a des études théoriques
(Chapitre 5, articles [1,2]) et a des analyses méthodologiques détaillées (Chapitres 4 et
7, articles [11,76]). Les études théoriques permettent d’améliorer les méthodes en four-
nissant de nouveaux résultats, sous forme de théorémes, d’algorithmes ou de structures
de données, qui peuvent étre directement appliqués ou adaptés & des problémes pra-
tiques. Les analyses de méthodes permettent d’évaluer de maniére critique les méthodes
actuelles, identifier leurs points forts et faibles, fournir a la communauté des informations
détaillées sur le fonctionnement de chaque outil et sur les problémes a résoudre.

Notre objectif initial était de développer des méthodes pour traiter les données d’ARN-seq
de deuxiéme génération a I’aide de graphes de De Bruijn afin de contribuer a la littérature
sur I'épissage alternatif. En tant que tel, le premier article (Chapitre 3, article [77]) mon-
tre que, bien que les répétitions soient moins nombreuses et plus courtes dans les données
d’ARN-seq que dans les données d’ADN-seq, elles peuvent toujours créer des problémes
pour les assembleurs de transcriptome si elles ne sont pas traitées correctement. Les
assembleurs de transcriptome peuvent donc étre améliorés en modélisant explicitement
et formellement les répétitions. Nous introduisons un modéle formel pour représenter les
répétitions dans les données d’ARN-seq et exploitons ses propriétés pour déduire une car-
actéristique combinatoire de sous-graphes associés aux répétitions. Nous montrons que
la sensibilité et la précision de notre assembleur local d’épissage alternatif augmentent
considérablement lorsque les répétitions ont été formellement modélisées, avec un algo-
rithme qui les évite implicitement. De plus, nous montrons également que I’exploration
de la topologie du sous-graphe autour d'un transcript peut donner des indications sur
son niveau de confiance, sa qualité, la difficulté de 1’assemblage, etc. Ces informations
peuvent étre aussi utiles que des informations de lecture et de couverture pour les as-
sembleurs et les évaluateurs de transcriptome. Le deuxiéme travail (Chapitre 4, arti-
cle [11]) montre que I'annotation de ’épissage alternatif avec une seule approche conduit
a rater un grand nombre de candidats, dont beaucoup sont exprimés différentiellement
selon deux conditions et qui ont pu étre validés expérimentalement. Ces événements ne
doivent pas étre exclus de I'analyse car ils peuvent jouer un role central dans la ques-

11

tion biologique étudiée. Nous avons donc plaidé en faveur de I'utilisation combinée des
approches mapping-first et assembly-first pour I’annotation et 'analyse différentielle de
I’épissage alternatif & partir de jeux de données RNA-seq.

Aprés ces deux premiers travaux, nous avons eu plusieurs idées sur la facon d’améliorer
notre méthode actuelle. Parmi ces différentes idées, certaines n’ont pas fonctionné comme
prévu et ont été abandonnées, certaines sont encore en cours de développement en collab-
oration avec d’autres membres de ’équipe (celles-ci sont exposées dans les perspectives
de la thése), et certaines ont été publiées. Dans ce manuscrit, nous ne décrirons que les
travaux que nous avons pu publier ou que nous sommes sur le point de soumettre. Un
de ces travaux (Chapitre 5, articles [1,2]) décrit un résultat théorique sur la maniére de
représenter efficacement et de maniére compacte I'espace des bulles via un générateur des
bulles. Ce générateur peut étre trouvé en temps polynomial et nous montrons également
que nous pouvons décomposer n’importe quelle bulle du graphe en bulles du générateur
en un nombre polynomial d’étapes. L’exploration et ’analyse des bulles dans le généra-
teur sont réalisables dans la pratique et peuvent étre complémentaires aux algorithmes
de I'état de 'art qui analysent un sous-ensemble de l'espace des bulles. Pour le moment,
ce travail reste en grande partie théorique, mais nous avons quelques preuves de con-
cepts suggérant qu’il peut avoir une bonne application biologique, bien que des travaux
supplémentaires soient nécessaires sur cette partie.

Par ailleurs, les collaborations et les avancées sur la technologie de séquencage nous ont
incités a travailler dans d’autres sous-domaines de la bioinformatique, tels que: études
d’association a I’échelle des génomes, correction d’erreur et assemblage hybride. Nous
avons collaboré avec Magali Dancette et Laurent Jacob, et combiné notre expérience sur
les graphes de De Bruijn et le développement méthodologique avec leurs connaissances sur
I’association génotype a phénotype sur des populations bactériennes, afin de concevoir
une méthode efficace pour trouver et interpréter des unitigs fortement associés & un
phénotype, en particulier la résistance aux antibiotiques (Chapitre 6, article [48]). Notre
méthode rend les études d’association a 1’échelle des génomes plus facile & utiliser pour
les panels bactériens, surtout ceux qui contiennent des bactéries plastiques. Ces génomes
peuvent étre trop différents pour étre alignés sur une référence, méme au sein d’une seule
espéce, rendant difficile la description de leur variation génétique. Au lieu de travailler
avec des k-mers comme les approches précédentes, nous travaillons avec des unitigs, des
descripteurs aussi polyvalents que les k-mers, et qui permettent de capturer des variants
génétiques allant de polymorphismes locaux aux insertions de longs éléments génétiques
mobiles, mais pas redondants et plus faciles a interpréter. Nous proposons un framework
graphique afin de réduire I’écart d’interprétabilité entre les approches basées sur les k-
mers, et les approches basées sur les SNPs et les génes.

En outre, nous avons suivi les communautés génomiques et transcriptomiques, et nous
avons déplacé notre attention vers les technologies de séquencage de troisiéme génération
(lectures longues), en réfléchissant aux moyens d’évaluer et d’intégrer ce type de données
dans nos modeéles. L’un des principaux problémes du séquencage a lecture longue est
qu’il est actuellement freiné par les taux d’erreur élevés qui affectent les analyses telles
que 'identification des isoformes, les frontiéres des exons, les cadres de lecture ouverts et
la création de catalogues de génes. En collaboration avec les membres du projet ASTER,
un projet visant a développer des algorithmes et des logiciels d’analyse des données de

séquencage de troisiéme génération, nous avons commencé par analyser a quel point les
méthodes actuelles, généralement adaptées a la génomique, peuvent corriger les données
de Nanopore RNA-seq (Chapitre 7, article [76]). Nous évaluons donc neuf outils de
correction d’erreur d’ADN hybrides et non-hybrides de I’état de I'art dans le contexte de
la correction de lectures de séquencage d’ARN longues. Nous rapportons non seulement
les métriques classiques de correction d’erreur, mais également l'effet de la correction
sur les familles de génes, la diversité des isoformes, le biais vers l'isoforme principal et
la détection du site d’épissage. Nous trouvons que les outils de correction d’erreur a
lecture longue développés a l'origine pour ’ADN conviennent également a la correction
des données de séquencage d’ARN, notamment en termes d’augmentation de la précision
des paires de bases. Cependant, les chercheurs doivent étre avertis que le processus de
correction perturbe la taille des familles de génes et la diversité des isoformes. Ce travail
fournit des indications sur les outils de correction d’erreur & utiliser (ou non), en fonction
du type d’application.

Nous pouvons dire que les lectures longues permettent d’étudier les transcripts intégrale-
ment, car elles peuvent les séquencer du début a la fin, alors que les lectures courtes
conviennent mieux aux approches d’assemblage local. En effet, les lectures longues pour-
raient également étre utilisées pour étudier des événements locaux, tels que l'épissage
alternatif. Cependant, cette approche présente deux problémes principaux: son cott
élevé, qui fait qu’uniquement une fraction du transcriptome, principalement les isoformes
hautement exprimés, sont couverts par de lectures longues, et son taux d’erreur élevé.
Bien que le séquencage a lecture longue soit actuellement peu profond et pas aussi com-
plet que le séquencage a lecture courte pour décrire les événements d’épissage alternatif,
ils sont capables de décrire la structure compléte des ARNs messagers, ce qui est difficile
ou impossible, dans certains cas, avec des lectures courtes. Le séquencage complet d'un
transcript donné fournit un guide pour assembler les événements d’épissage autour du
transcript. Dans ce dernier travail (Chapitre 8, article [75]), nous explorons une méth-
ode hybride d’assemblage d’épissage alternatif qui utilise des lectures a la fois courtes et
longues afin de répertorier les événements d’épissages alternatifs de maniére compléte,
grace aux lectures courtes, guidé par le contexte intégral fourni par les lectures longues.
Nous attirons I'attention sur le fait que ce travail est toujours en préparation.

Globalement, le fil principal que nous avons suivi au cours de cette thése a été le
développement et ’amélioration de méthodes de traitement de données séquencées a
I’aide de graphes de De Bruijn afin de contribuer a la littérature sur ’épissage alternatif
(Chapitres 3 et 8, articles [75,77]). Nous avons également abordé ce probléme général a
partir d’une perspective théorique (Chapitre 5, articles |1,2|) et analytique (chapitre 4,
article [11]). Les collaborations (Chapitres 6 et 7, articles [48,76]) nous ont dévié de ce
fil principal, mais nous avons toujours eu au moins un aspect principal en commun. Je
crois qu’avoir des déviations par rapport au fil principal dans un doctorat est vraiment
sain, car il permet aux étudiants de doctorat, qui sont introduits a la science, d’acquérir
une connaissance d’autres domaines, ce qui pourrait aider & ouvrir des portes dans la
période post-doctorale.

En ce qui concerne la période post-doctorale, mon point de vue général sur le contexte
scientifique dans lequel cette thése est placée est que, sauf si un probléme spécifique
nécessite des lectures courtes, la communauté scientifique concentrera ses efforts sur le

14

traitement des lectures longues afin de résoudre les questions biologiques. Je crois que les
lectures longues finiront par prendre la reléve, et ’assemblage de transcriptomes pourrait
méme ne plus étre nécessaire, et ’assemblage de génomes sera simplifié avec des lectures
plus longues et plus précises. Cependant, il faudra quelques années pour que les tech-
nologies a lecture longue atteignent cet état, donc a court terme (5-10 ans, ou méme
plus), je pense que les méthodes capables d’utiliser efficacement les lectures courtes et
longues définissent I’état de 'art. En ce qui concerne 1’épissage alternatif et les variations
transcriptomiques en général, il est trés utile de pouvoir décrire complétement la struc-
ture d’un transcript par une lecture longue, puisque les exons peuvent étre parfaitement
phasés. L’identification précise des isoformes, des limites d’exons et des cadres de lec-
ture ouverts peut encore poser probléme avec le taux d’erreur élevé, mais des protocoles
comme PacBio Iso-seq traitent déja cela de maniére native, et créent des Reads of Insert
trés précis. Certainement, le taux d’erreur et le cotit de Nanopore et de PacBio vont
diminuer, et le débit va augmenter dans les prochaines années, permettant ainsi de telles
applications. Le protocole de séquencage d’ARN direct de Nanopore permettra égale-
ment d’étudier les variations transcriptomiques sans les biais et les artefacts créés par
I'étape de syntheése de ’ADN complémentaire, permettant une meilleure compréhension
de la variation transcriptomique réelle dans une cellule.

Un autre scénario possible est que le séquencage Illumina reste trés compétitif méme
aprés plusieurs années, principalement en réduisant le cotit par base et en augmentant
le débit, justifiant ainsi son utilisation méme lorsqu’une question biologique peut étre
résolue en ne séquencant que des lectures longues. Cela impliquera des ensembles de
données encore plus grands que ceux que nous avons aujourd’hui, et la demande de
méthodes hybrides efficaces qui utilise des structures de données succinctes augmentera,
avec une large fraction étant probablement basée sur des graphes de De Bruijn ou de ses
variantes.

Une opinion plus générale sur la bioinformatique a l'issue de cette thése est que ce do-
maine nécessite des compétences diverses, difficiles & maitriser, allant des mathématiques
et de l'informatique théorique, jusqu’a la biologie et les techniques expérimentales. La
modélisation mathématique, les analyses critiques, 'implémentation efficace de logiciels
et la manipulation correcte des techniques expérimentales ne sont pas des taches faciles,
et je crois que des collaborations efficaces sont essentielles pour produire de bons travaux
et apprendre de nouveaux concepts.

Contents

1 Introduction 17
Introduction 17
1.1 Aim and development of this thesis 17
1.2 Publications 19

1.2.1 Playing hide and seek with repeats in local and global de novo
transcriptome assembly of short RNA-seq reads 19

1.2.2 Complementarity of assembly-first and mapping-first approaches
for alternative splicing annotation and differential analysis from

RNAseqdata 21
1.2.3 On Bubble Generators in Directed Graphs 22

1.2.4 A fast and agnostic method for bacterial genome-wide association
studies: bridging the gap between k-mers and genetic events 24

1.2.5 Comparative assessment of long-read error-correction software ap-
plied to RNA-sequencing data, 25

1.2.6 Assemblying local alternative splicing events from short reads guided

by accurate long reads Lo o Lo 26
1.3 Outline 28
2 Background 31
2.1 Biology 31
2.1.1 DNA, RNA and proteins 31
2.1.2 Organization of the genetic material inacell 35
2.1.3 Genomic and transcriptomic variations 35
2.2 Computer Science 40
2.2.1 Algorithms 40
222 Stringso 44
223 Graphs 44
2.3 Bioinformatics 49
2.3.1 DNA and RNA sequencing 49
2.3.2 Processing of 2GS and 3GS data 53

3 Playing hide and seek with repeats in local and global de novo tran-
scriptome assembly of short RNA-seq reads 67

16

CONTENTS

4 Complementarity of assembly-first and mapping-first approaches for
alternative splicing annotation and differential analysis from RNAseq
data 89

5 On Bubble Generators in Directed Graphs 105

6 A fast and agnostic method for bacterial genome-wide association stud-
ies: bridging the gap between k-mers and genetic events 125

7 Comparative assessment of long-read error-correction software applied
to RN A-sequencing data 155

8 Assemblying alternative splicing events from short reads guided by ac-
curate long reads 171

9 Conclusions and Perspectives 189

Conclusions and Perspectives 189
9.1 Technical Perspectives 189

9.1.1 KisSplice 189

9.1.2 Bubble generatoro oo 191

9.1.3 DBGWAS 191
9.1.4 Mapping of high-error-rate long RNA-seq reads to DBGs built from

short RNA-seqreads 192

9.1.5 The B value for flagging repeats in RNA-seq data 192

9.1.6 Complex alternative splicing events enumeration 195

9.2 Personal Perspectiveso 198

Bibliography 199

Chapter 1

Introduction

The objective of this chapter is to give the reader a complete, but succinct overview of
the works performed during this thesis. We start by describing, in Section 1.1, the aim of
this thesis. We then proceed by presenting, in Section 1.2, the most important points of
the papers produced in this thesis. We finish the description of each paper with its main
messages. The objective of this section is to help the readers to decide which chapters
might interest them. As such, we want to be concise, giving only an overview of each
paper, but we also try to be more detailed than the paper’s abstract. For the sake of
brevity, and since the focus of this chapter is to describe the produced papers, we are
skipping here the basic definitions in biology, computer science and bioinformatics. The
formal, comprehensive, and detailed definitions can be found in Chapter 2. Sometimes,
the text in the papers also assumes that the readers know beforehand some definitions,
as papers are occasionally not self-contained, since their focus are a specific extension of
the literature. We therefore advise the readers to check out Chapter 2 also in search of
definitions not properly defined in the papers. We further take the liberty of considering
as publications works that are not yet peer-reviewed, i.e., still submitted or under review
(those correspond to Chapter 7, paper [76]). We also note that one of the works here
presented, Chapter 8, paper [75], is still in preparation, although sometimes we use the
term paper or publication to refer to it. We finish by describing the outline of this thesis
in Section 1.3.

1.1 Aim and development of this thesis

The main goal of this thesis is the development, improvement and evaluation of methods
to process massively sequenced data, mainly short and long RNA-sequencing reads, to
eventually help the community to answer some biological questions, especially in the
transcriptomic and alternative splicing contexts. Although its focus is the development
of methods based on de Bruijn graphs (Chapters 3, 6 and 8, papers [48,75,77]), the con-
ception or improvement of such methods is also related to theoretical studies (Chapter 5,
papers [1,2]|) and comprehensive method analyses (Chapters 4 and 7, papers [11, 76]).
Theoretical studies allow the improvement of methods by providing new results, in form
of theorems, algorithms, or data structures, that can either be directly applied or adapted

18 Introduction

to fit the model of a practical problem. Method analyses allow to critically evaluate cur-
rent methods, identifying their strong and weak points, providing the community details
on how each tool performs and which problems should be further addressed.

Our initial objective in this thesis was to develop methods to process second-generation
RNA-seq data through de Bruijn graphs to contribute to the literature of alternative
splicing. As such, the two first papers I got involved in this PhD contributed to a bet-
ter understanding, from my part, of the state-of-the-art on alternative splicing events
identification, from an algorithmical (Chapter 3, paper [77]) and an analytical (Chap-
ter 4, paper [11]) point-of-view. Although this first contact was tough for me, mainly
because I had a computer science background, and just an introduction to bioinformatics
and biology, I was fortunate enough to work with people that would patiently teach me
(sometimes basic) concepts in biology and bioinformatics. Working on [77] allowed me
to understand better the history and the current state of KisSplice, a method developed
in our team to find alternative splicing events from RNA-seq data without a reference
genome by enumerating bubbles in a de Bruijn graph, which has been conceived some
years before the start of this PhD [14,107 109]. In complement to this, I was also work-
ing on [11] as a second author, which provided me a more practical view of the field:
how KisSplice and other tools, implementing different approaches, can be combined to
annotate and analyse alternative splicing events from RNA-seq datasets.

After these two first works, we had several ideas on how to improve our current
method. Among these different ideas, some did not work as expected and were aban-
doned, some are still being developed in collaboration with other members of the team
(those are exposed in the perspectives of the PhD), and some were published. In this
manuscript, we shall describe only the works that we were able to publish, or that we
are close to submitting. One such work (Chapter 5, papers [1,2]) describes how to better
explore the set of all bubbles in a de Bruijn graph in search of alternative splicing events
that are hard to find (i.e. unfeasible in practice) by the current KisSplice algorithm. For
now, this work remains largely theoretical, but we have some proofs of concepts hinting
that it can have a nice biological application, although further work on this part has to
be done. Personally, it was enriching for me to work on a purely theoretical paper after
the two first papers. I can say that these three first works were a nice introduction to
the diverse competences a mixed field such as bioinformatics requires, as they covered
methodological development, methods analyses, and theoretical studies.

Further, collaborations and advances on the sequencing technology encouraged us to
work in other subareas of bioinformatics, such as: genome-wide association studies, error
correction, and hybrid assembly. We collaborated with Magali Dancette and Laurent Ja-
cob, and combined our experience on de Bruijn graphs and methodological development
with their knowledge on genotype-to-phenotype association on bacterial populations, to
conceive an efficient method to find and interpret unitigs highly associated to a phe-
notype, especially antibiotic resistance (Chapter 6, paper [48]). I am grateful for this
collaboration, as it introduced me to genome-wide association studies and antibiotic re-
sistance, which can be a possible direction to follow in future works.

Next, we followed the genomic and transcriptomic communities, and shifted our
attention to third generation (long reads) sequencing technologies, thinking on ways to
evaluate and integrate this type of data in our models. In collaboration with members

1.2 Publications 19

of the ASTER project, a project with the purpose of developing algorithms and software
for analysing third-generation sequencing data, we started by analysing how well current
methods, usually tailored for genomics, can correct Nanopore RNA-seq data (Chapter 7,
paper [76]). I believe this is an important question to answer, as this type of data is
becoming widely used, but the high error rate affects downstream analyses, and options
for the error-correction of RNA-seq long reads remain very limited.

Moreover, we also started to develop a method to explore PacBio Iso-seq and Illumina
data in order to integrate long and short reads in the search for alternative splicing events
in a reference-free context (Chapter 8, paper [75]). When alternative splicing events are
of interest, sequencing only long reads might not be enough, as these technologies are
currently unable to dig as deep in the transcriptome as short reads. As such, this is a
first step on working on a hybrid alternative splicing assembler, but this paper is still in
preparation.

Overall, the main thread we followed during this thesis was developing and improving
methods to process sequenced data using de Bruijn graphs to contribute to the alternative
splicing literature (Chapters 3 and 8, papers [75,77]). We tackled this general problem
also from a theoretical (Chapter 5, papers [1,2]) and an analytical (Chapter 4, paper [11])
perspective. Collaborations deviated us from this main thread, but we always had at
least one main aspect in common (Chapter 6, paper [48] describes a method based on de
Bruijn graphs, and Chapter 7, paper [76], describes an evaluation of methods to correct
RNA-seq long reads). I do believe that having some deviations from the main thread in
a PhD is really healthy, as it allows PhD students, who are being introduced to science,
to have a knowledge of other fields and areas, which might help to open doors in the
post-PhD period.

1.2 Publications

In the following, we introduce the papers and manuscripts produced in this PhD.

1.2.1 Playing hide and seek with repeats in local and global de novo
transcriptome assembly of short RNA-seq reads

The first paper [77]| explored the fact that repeats are an underestimated problem in
de novo transcriptome assembly, creating ambiguities and confusing assemblers if not
addressed properly. This happened in the method developed in our team, KisSplice
[107], conceived to enumerate alternative splicing (AS) events in a de-novo context. The
KisSplice algorithm was improved in [14], and later in [108|. However, even the improved
algorithm is not able to enumerate all bubbles corresponding to AS events in a de Bruijn
graph. There are certain complex regions in the graph, likely containing repeat-associated
subgraphs but also real AS events, where it takes a huge amount of time. In practice, the
enumeration is halted after a given timeout. The bubbles trapped inside these regions
are thus missed.

To address this issue, we first introduce a simple, but realistic enough, model for
representing high copy-number and low-divergence repeats in RNA sequencing data.
We then exploit its properties to infer that repeat-associated subgraphs contain few

20 Introduction

compressible arcs (or many branching vertices). Based on this, we formulate the repeat
identification problem in RNA-seq data, whose objective is to find for large enough
subgraphs that do not contain many compressible arcs, which would correspond to repeat-
associated subgraphs. We show that this problem is NP-complete for directed graphs
with total degree (maximum number of in- and out-arcs in a vertex) bounded by d > 3,
including, in particular, de Bruijn graphs, so an efficient algorithm for it is unlikely.
However, in the specific case of a local assembly of AS events, we can implicitly avoid
repeat-associated subgraphs based on our previous characterisation. More precisely, it
is possible to find bubbles corresponding to AS events in a de Bruijn graph that are
not contained in a repeat-associated subgraph, by restricting the search to bubbles with
few branching vertices. We provide a polynomial-delay algorithm to enumerate such
bubbles, and we show, through simulated datasets, that this new algorithm is significantly
more sensitive and precise than the previous version of KisSplice [108], Trinity [38], and
Oases [114], for the specific task of calling AS events.

Finally, we turn our focus to full-length transcriptome assembly. We argue that:
i) most transcriptome assemblers are based on de Bruijn graphs and have no clear and
explicit model for repeats in RNA-seq data, relying instead on heuristics to deal with
them; ii) the most commonly used protocol to extract RNA yields pre-mRNA fractions
around 5%. Thus, more introns than expected are sequenced, generating problems to
transcriptome assemblers, particularly when several introns span members of a specific
repeat family.

Within the complex parts of the graph generated by repeats, any assembler will
have to choose the “right” path(s) among the many present. If the assembler decides to
guess a path, it may erroneously extend a contig and create a chimeric transcript. It can
also choose to be conservative by not choosing any path in complicated regions of the
de Bruijn graph, and instead truncating the transcript. Although this strategy can lead
to an accurate assembly, it will produce a very fragmented one, which is not desirable.
Whatever the strategy (conservative or permissive), the resulting assembled transcript
may be erroneous (chimeric or truncated).

It is hence important to be able to identify low-confidence transcripts, which are
the ones traversing complex regions of a de Bruijn graph, in order to know that the
solution presented is the result of a “difficult” choice and therefore may not be the right
one. To identify such transcripts, we introduce the concept of Branching Measure of a
transcript ¢, which is able to indicate if ¢ traversed a hard-to-assemble region (i.e. a
region with many branching vertices) in the de Bruijn graph. We then show a proof of
concept of this measure by providing two examples where it was able to flag a chimeric
and a truncated transcripts assembled by Trinity on real RNA-sequencing data. Finally,
we show that this simple Branching Measure gives better results than Rsem-Eval [67]
and TransRate [117] on both real and simulated datasets for detecting chimeras, and
therefore is able to capture assembly errors missed by these methods.

Main message

The main message of this work is that, although fewer and shorter repeats are present
in RNA-seq data than in DNA-seq data, they can still create problems for transcriptome

1.2 Publications 21

assemblers if not addressed properly. Transcriptome assemblers can thus be improved
by explicitly and formally modeling repeats. Moreover, we also show that exploring the
topology of the subgraph around a transcript can give some hints about its confidence
level, quality, assembly hardness, etc. This information can be as valuable as read and
coverage information for transcriptome assemblers and evaluators.

1.2.2 Complementarity of assembly-first and mapping-first approaches
for alternative splicing annotation and differential analysis from
RNAseq data

While the first paper explored a limitation of current de novo RNA-seq assembly methods,
the second [11] focused on showing that such methods can also be applied even when a
high-quality reference genome and annotations are present.

In general, there are two approaches to assemble transcripts or alternative splicing
(AS) from RNA-seq data [84]. The mapping-first approaches first map the reads to the
reference genome and the mapped reads are then assembled into exons and eventually
transcripts. In contrast, assembly-first approaches first assemble the reads based on their
overlaps. The assembled sequences (corresponding to sets of exons) are then aligned to
the reference genome.

Mapping-first approaches have been the most used so far, essentially because they
were the first to be developed and they initially required less computational resources.
De novo assembly methods were also thought to be restricted to non-model species,
where no (good) reference genome is available, and they seemed to be inadequate when
an annotated reference genome is available.

Recent progress in de novo transcriptome assembly is clearly changing this view,
and the argument of the heavier computational burden does not hold anymore. The
application of de novo assembly to human RNA-seq datasets however still remains rare,
although some studies have already shown its potential to detect novel biologically rel-
evant splicing variants [25,33]. The generalization of de novo assembly approaches for
studying splicing in human seems to be mostly impeded by the lack of a clear evaluation
of its potential interest in comparison to more traditional mapping-based approaches. In
this paper, we fill this gap by performing a systematic evaluation of an assembly-first
and a mapping-first approach on two RNA-seq datasets.

As a first step, we compared pipelines that we developed in parallel, namely KisSplice
and FaRLine, because we could easily control their parameters. Any difference between
the predictions that is solely due to a parameter setting could be fixed easily, which
enabled us to obtain a precise understanding of the irreducible differences between the
two approaches. Overall, we developed and adapted jointly these two pipelines in order
to minimize the discrepancies that could complicate the comparison.

We found out that the mapping-first approach predicts a much larger number of
events. This difference in sensitivity is due to the fact that while mapping-first approaches
require that each exon junction is covered by at least one read, assembly-first approaches
require overlapping reads across the entire skipped exon. Therefore, it can be anticipated
that low abundant isoforms, that are covered by few reads, will be reported by mapping,
but not by the assembly-first approach.

22 Introduction

Having clarified that rare variants are better handled by the mapping-first approach,
we decided to filter them out, in order to analyse other differences between the two
approaches. After this filtering, approximately 70% of the predicted skipped exons were
found by both approaches. We highlight also that some isoforms are systematically
missed by one approach. Mapping-first approaches miss AS events involving: i) novel
exons or novel combinations of existing exons; ii) recent paralog genes. Assembly-first
approaches miss AS events involving: i) repeats; ii) complex AS events.

In a second step, we confirmed the generality of our findings by benchmarking our
methods against Cufflinks [126], MISO [53] and Trinity [38]|, which are widely used
pipelines. Overall, we found that the vast majority of AS events were predicted by FaR-
Line, MISO and Cufflinks, showing that the differences between mapping- and assembly-
first approaches reported above are not limited to one mapping-first approach. Finally,
we also verified that KisSplice is significantly more sensitive than the most widely used
de novo full-length transcriptome assembler, namely Trinity.

Main message

The main message of this work is that annotating alternative splicing with a single ap-
proach leads to missing out a large number of candidates, many of which are differentially
regulated across conditions and that we were able to validate experimentally. Such AS
events should not be discarded from the analysis, as they may play a central role in
the studied biological question. We therefore advocate for the combined use of both
mapping-first and assembly-first approaches for the annotation and differential analysis
of alternative splicing from RNA-seq datasets.

1.2.3 On Bubble Generators in Directed Graphs

As mentioned earlier, KisSplice models alternative splicing (AS) events as bubbles in
a de Bruijn Graph (DBG) built from the input reads. Theoretically, the number of
bubbles in a graph can grow exponentially on the size of the graph. In practice, DBGs
built from real datasets tend to be huge, usually containing millions of vertices and a
prohibitively large amount of bubbles. Any algorithm that tries to be exhaustive, listing
and analysing a big part of the bubble space, will certainly spend a prohibitive amount
of time in real data graphs and will not be applicable. As such, algorithms that deal
with bubbles in such huge graphs will either simplify the graph by removing them, or
just analysing a small subset of the bubble space. KisSplice algorithms, for example,
only lists bubbles with predefined constraints, which was shown to be usually associated
to AS events [77,107 109]. Such subsets may, however, not be the best representatives
of the bubble space. More worrying is the fact that all the relevant events described by
bubbles not satisfying the predefined constraints are lost.

In this third work [1], we thus explored some mathematical properties of the bubble
space in order to find an efficient and compact description of all bubbles in a graph G,
called bubble generator G(G). Our intuition is that the bubble generator is a suitable
compressed representation of the bubble space, and exploring it might allow us to retrieve
information that is lost when only a subset of the bubble space is analysed. We first define
a constrained symmetric difference operator A, such that, given two bubbles, By and Bs,

1.2 Publications 23

B1ABj is defined if and only the subgraph induced by the arcs of (A(B;) U A(Ba)) \
(A(B1)NA(Ba)) is a bubble; otherwise, we say that B1ABs is undefined. If B = BiABs,
then we say that we can combine By and By into B, or that B can be decomposed into By
and By. We show that any bubble in a graph G can be described as the combination of
two or more bubbles from the generator G(G). Moreover, for any given directed graph G,
we also introduce an algorithm to find, in polynomial time, such generator set of bubbles
G(G), with |G(G)| < nm, where n and m are the number of vertices and arcs of G,
respectively. Indeed, |G(G)| is polynomial on the size of the graph, but we also highlight
that our generator is not minimal, i.e. there may be bubbles b € G(G) which can be
obtained by combining bubbles in G(G) — b through A. Finding a minimal generator is
left as open problem.

Finally, we prove that, given a graph G, any bubble B in G can be represented as
a sum of O(n?) bubbles belonging to G(G). This decomposition can be found in a total
of O(n3) time. This decomposition algorithm can be applied when one needs to know
how to decompose a bubble into its elementary parts, which are the bubbles in G(G),
e.g. when identifying and decomposing complex AS events [112] into several elementary
AS events. The link between the bubble generator and the set of such elementary AS
events, however, has still to be further studied.

This theoretical work was presented in the 43rd International Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2017), and published in LNCS [1]. We
further extended this paper, by applying it in two different directions in the analysis of
a real RNA-seq dataset. First, we employed the generator as a preprocessing step to
algorithms that find bubbles, by “cleaning” from the graph all unnecessary arcs (i.e. arcs
that do not belong to any bubble). In a sample dataset, we were able to reduce the
size of the graph by around 40%. Second, we use it to find AS events in a reference-
free context. In particular, in one experiment, 18.5% of the putative events from our
bubble generator are hard to find using the KisSpLICE algorithm. Moreover, 10% of
these bubbles correspond to true AS events that are missed by KISSPLICE, showing the
applicability of the generator. However, this application should still be seen just as a
proof-of-concept on the practical potential of the bubble generator or as complementary
to current methods, since it remains limited for the exhaustive enumeration of AS events.
The latter would require a non-trivial procedure to enumerate AS-associated bubbles by
combining generator bubbles, which we still did not explore. The extension [2] has been
submitted to the journal Algorithmica, and is presented in Chapter 5.

Main message

The main theoretical result of this work is an improvement on the literature on how to
efficiently and compactly represent the bubble space through a bubble generator. This
generator can be found in polynomial time, and we also show that we can decompose
any bubble in the graph into bubbles of the generator in a polynomial number of steps.
Exploring and analysing the bubbles in the generator is feasible in practice and can be
complementary to state-of-the-art algorithms that analyse a subset of the bubble space.

24 Introduction

1.2.4 A fast and agnostic method for bacterial genome-wide associa-
tion studies: bridging the gap between k-mers and genetic events

In this fourth work [48], we changed our context from transcriptomics to genomics, but
we still kept the same theoretical framework, using de Bruijn Graphs (DBGs) to model
the data contained in a set of sequences. Here, we applied DBGs to Genome-Wide Asso-
ciation Studies (GWAS). GWAS aim at identifying associations between genetic variants
and a phenotype observed in a population, and rely on a representation of the genomic
variation as numerical factors. The most common approaches are based on single nu-
cleotide polymorphisms (SNPs), defined by aligning all genomes of the studied panel
against a reference genome or against a pangenome built from all the genes identified by
annotating the genomes, and on gene presence/absence, using a pre-defined collection
of genes. The use of a reference genome becomes unsuitable when working on bacterial
species with a large accessory genome — the part of the genome which is not present in
all strains. On the other hand, methods focusing on genes are unable to cover variants
in noncoding regions, including those related to transcriptional and translational regu-
lation. Moreover, some poorly studied species still lack a representative annotation. To
circumvent these issues, recent studies have relied on k-mers. The presence of k-mers in
genomes can account for diverse genetic events such as the acquisition of SNPs, (long)
insertions/deletions and recombinations. While k-mers can reflect any genomic variation
in a panel, they do not themselves represent biological entities. A k-mer representation
often loses in interpretability what it gains in flexibility, and the best way to encode the
genomic variation in bacterial GWAS is not yet clearly defined. Moreover, translating
the result of a k-mer-based GWAS into meaningful genetic variants is not trivial.

The approach developed in the fourth work [48], coined DBGWAS, bridges the gap
between, on the one hand, SNP- and gene-based representations lacking the right level
of flexibility to cover complete genomic variations, and, on the other hand, k-mer-based
representations which are flexible but not readily interpretable. In this work, we relied on
compacted DBGs (¢cDBGs) to eliminate local redundancy, reflect genomic variations, and
characterise the genomic environment of a k-mer at the population level. More precisely,
we build a single cDBG from all the genomes included in the association study. From
this ¢cDBG, we build a variant matrix which represents patterns of presence/absence of
unitigs (vertices of the cDBG) in each genome of the population. Each variant is then
tested for association with the phenotype using a linear mixed model, adjusting for the
population structure. The unitigs found to be significantly associated to the phenotype
are then localised in the cDBG, and their neighbourhood are used as a proxy for their
genomic environment at the population level. Subgraphs induced by such neighbourhoods
are extracted, and they often provide a direct interpretation in terms of genetic events
through the integration of three types of information: 1) the topology of the subgraph,
reflecting the nature of the genetic variant, 2) the metadata represented by vertex size
and colour, allowing us to identify which vertices in the subgraph are associated to a
particular phenotype status, and 3) an optional sequence annotation helping to detect
unitigs mapping to — or near — a known gene.

We show how such subgraphs output by DBGWAS can be read as genetic events
using several antibiotic resistance phenotypes within three bacterial species of various
degrees of genome plasticity: Mycobacterium tuberculosis, Staphylococcus aureus and

1.2 Publications 25

Pseudomonas aeruginosa. By interpreting such subgraphs, we were able to identify, in
the aforementioned panels, biological events such as mobile genetic element insertions,
local polymorphisms in core and accessory genes, and also in non-coding regions, which
corresponded to known and unknown resistance markers.

We compared DBGWAS results to those obtained by applying the same association
model to a collection of known resistance genes and SNPs [27,49], and to two other recent
k-mer-based methods: pyseer |64,65], and HAWK [100]. DBGWAS recovers known vari-
ants, while suggesting novel candidates out of the range of the resistome-based approach.
It is also more computationally efficient and provides more interpretable outputs than
the other k-mer-based methods. We also verified that DBGWAS is scalable, being able to
process large panels of 5000 clonal bacterial strains, such as Mycobacterium tuberculosis,
in half a day, and 2500 plastic bacterial strains, such as Pseudomonas aeruginosa, in one
day using 8 cores.

Main message

The main message of this paper is that DBGWAS makes GWAS more amenable to bac-
terial panels, especially plastic ones. These genomes can be too different to be aligned
against a reference, even within a single species, making the description of their ge-
netic variation challenging. Instead of working with k-mers as previous approaches, we
work with unitigs, which are descriptors as versatile as k-mers, allowing to capture ge-
netic variants ranging from local polymorphisms to insertions of large mobile genetic
elements, but not redundant and easier to interpret. We provide a computationally
efficient and user-friendly implementation, enabling non-bioinformaticians to carry out
GWAS on thousands of isolates in a few hours. Moreover, we offer a graphical frame-
work which helps interpret GWAS results, narrowing the interpretability gap between
k-mer-based, and SNP- and gene-based approaches.

1.2.5 Comparative assessment of long-read error-correction software
applied to RNA-sequencing data

Advances on the sequencing technology resulted on the maturity of third generation se-
quencers, e.g. PacBio and Oxford Nanopore. On the RNA context, these technologies
are being increasingly used as they better describe exon/intron combinations, and fre-
quently sequence full-length transcripts, thus usually eliminating the assembling step and
its related problems.

However, these technologies are currently hindered by high error rates that affect
analyses such as the identification of isoforms, exon boundaries, open reading frames, and
the creation of gene catalogues. Due to the novelty of such data, computational methods
are still actively being developed. Many methods have been conceived to correct errors
in RNA-seq short reads. They no longer apply to long reads because they were developed
to deal with low error rates, and mainly substitutions. A new set of methods have been
proposed to correct genomic long reads. There is, however, a lack of error-correctors that
are specifically designed for RNA-sequencing long reads.

In this fifth work |76], we report on the extent to which state-of-the-art tools enable
the correction of long noisy cDNA Nanopore reads. We take the standpoint of evaluating

26 Introduction

DNA long-read error-correctors on RNA-seq data, an application that was likely not
considered by the authors of the respective tools. There exist two types of long-read
error-correction algorithms, those using information from long reads only (self or non-
hybrid correction), and those using short reads to correct long reads (hybrid correction).
We extensively benchmark four DNA hybrid correction tools: LoORDEC [110], NaS [82],
PBcR [58], proovread [43]; and five DNA self-correction tools: Canu [59], daccord [123],
LoRMA [111], MECAT [131], pbdagcon [22].

We first examine basic and classical metrics of error-correction, such as number of
output and mapped reads, mean reads length, number of output and mapped bases,
error rate, number of detected genes, running time and memory usage. We then con-
centrate on the error-rate analysis, breaking it down to evaluating the different types
of errors: substitutions, insertions and deletions. Since homopolymer errors are system-
atic in Nanopore sequencing in particular, we further investigate these separately. We
then ask several questions that are specific to transcriptome applications, which are the
main contribution of this work to the literature. In a first step, we investigate if error-
correction perturbs the number of reads mapping to the genes and transcripts, which
can affect downstream RNA-sequencing analyses relying on these numbers for quan-
tification, differential expression, etc. We then verify if error-correction truncates the
transcriptome, by perturbing gene family sizes and isoform diversity. We find that error-
correctors do not strictly preserve the sizes of gene families, and that multi-isoform genes
tend to lose lowly-expressed isoforms after correction, and minor isoforms are corrected
toward major isoforms. The latter is more prevalent when the variation is not long,
e.g. when alternative exons are small. We also conclude that hybrid error correction
tools present a clear advantage over the non-hybrid ones for allowing correct splice sites
detection. We also provide a software that enables automatic benchmarking of long read
RNA-sequencing error-correction tools, in the hope that future error-correction methods
will take advantage of it to avoid biases.

Main message

Current long reads RNA-sequencing technologies are hindered by high error rates that
affect several transcriptomic analyses. There is a lack of error-correctors that are specifi-
cally designed for correcting such reads. We thus evaluate nine state-of-the-art hybrid and
non-hybrid DNA error-correction tools on the context of correcting long RNA-sequencing
reads. Overall, hybrid tools outperform non-hybrid ones, mainly because they also have
access to accurate and massive Illumina datasets. However, no tool outperforms all the
others across all metrics and is the most suited in all situations. The choice should be
guided by the downstream analysis, and we provide recommendations to some applica-
tions, such as quantification, isoform identification, and splice site detection.

1.2.6 Assemblying local alternative splicing events from short reads
guided by accurate long reads

As explored in Subsection 1.2.1, assembling full-length transcripts from short reads with-
out a reference genome is challenging. A recent solution to this problem is through the

1.2 Publications 27

full-length transcripts sequencing provided by long reads. However, in many applica-
tions, the focus can be restricted to the exon level. Identifying which exons can be
alternatively spliced is already very valuable. It has been shown that local assembly of
AS events is more sensitive and precise than global assembly strategies from short read
data [11,77,107]. Therefore, we can say that long reads enable the study of full-length
transcripts, while short reads are more appropriate for local assembly approaches. In-
deed, long reads could also be used to study local events, like AS. However, we have
two main issues with this approach: its high cost, which results in only a fraction of
the transcriptome, mostly the highly expressed isoforms, being covered by long reads,
and its high error rate. Although long-read sequencing is currently shallow and not as
comprehensive as short-read sequencing to describe AS events, they are able to describe
the complete structure of mRNAs, which is hard or impossible, in some cases, with short
reads. The full-length sequencing of a given transcript provides a backbone or a guide
to assemble AS events around the transcript. In this work, we therefore explore a hybrid
AS assembly method, which makes use of both short and long reads, in order to list
AS events in a comprehensive manner, thanks to short reads, guided by the full-length
context provided by the long reads. We call attention to the fact that this work is still
in preparation, and we shall improve some points of it for the publication.

Our described method is composed of four main steps. The first, hybrid DBG
construction, builds a hybrid bicoloured DBG from both the short and long reads. We
first build a DBG Gg from the short reads while removing potential sequencing errors. We
then build a DBG G, from the long reads. However, we do not perform any sequencing
error removal procedures on G, due to the shallowness of the long reads. Our method is
thus primarily designed for perfect or low error-rate long reads, which can be obtained
using PacBio SMRT Iso-Seq sequencing [104]|, or Nanopore INC-Seq sequencing [68],
or through error-correction algorithms. Finally, we build a hybrid compressed DBG
C in which we merge both graphs Gg and Gr. In the second step of exact mapping
of long reads to the hybrid DBG, we map each long read [to C' by retrieving a walk
w(l) € C spelling out I. The third step, Unitig Linking Graph (ULG) construction, builds
the ULG, an abstraction of the cDBG where the complex parts of the graph, usually
associated to repeats, are removed and the remaining parts are connected using the read
information. This structure is a follow-up of our paper [77]. The ULG allows to solve
repeats larger than k, but shorter than the reads’ length. The ULG shares similarities
with several approaches that were conceived to add the read information back to the DBG
in a reference-free context, e.g. multi-k DBG |[8,69,90,97,98|, and to approaches that
encode the read information directly into the graph [45,106,127]. The main difference
between the ULG and these approaches is that the ULG removes the complex, highly
branching parts of the graph, and connects only the well-assembled unitigs through the
read information, while the others work on the whole graph. The ULG U is built from a
cDBG C'. The vertices in U are the trustful unitigs, i.e. unitigs that are considered well
assembled, have a low branching concentration, and are thus not induced by repeats. We
remove non-trustful unitigs, and connect the trustful ones through the read information.
We do so by mapping the short reads back to C', and creating arcs between two trustful
unitigs if there is a read traversing them. The label of the arcs is precisely the sequence
spelled by the read to traverse from one trustful unitig to the other. Finally, in the

28 Introduction

last step, alternative splicing events enumeration, we enumerate the AS events that are
present in the short reads and absent in the long reads, making use of the ULG and the
read information it contains. We do so by iterating through the mapping of each long
read [, and finding alternative paths in the ULG flanked by two unitigs stemming from
[. The delay of our AS enumeration algorithm is O(n * (m + nlogn)), where n and m
are the number of vertices and arcs of the ULG, respectively.

Moreover, we show some preliminary results of the application of the described
method to some simulated datasets. Our first test case is a dataset composed of a
single human gene, NEU1, which contains five transcripts. In this simple case, our
method found all the AS events described by these five transcripts. Our next benchmark
comprised a simulated dataset on the whole human chromosome 1. We currently obtain
a recall of 99.6% and a precision of 88.7% in this larger test. We plan to improve our
method with this benchmark by clarifying the 11.3% false positive events we currently
have.

We finish this in-preparation paper by describing its perspectives, which we plan to
develop in order to publish it, which include improving some points of the method, and
benchmarking it on samples sequenced with both PacBio Iso-seq and Illumina.

1.3 Outline

This thesis is outlined as follows. Chapter 2 presents the biological, computer science,
and bioinformatics concepts used in all the other chapters. Chapters 3 to 8 present
each one paper, orderly from the first to the sixth. All these chapters follow the same
simple structure. We first present a preamble, listing its key points, status (published,
accepted, submitted or in preparation), and my contribution, along with the paper itself
in its current state. Finally, Chapter 9 presents our concluding remarks and perspectives.

We realize that a text in a mixed field like bioinformatics will hardly interest all
readers. Thus, in order to further help the reader to pick which chapters might inter-
est her/him, we provide in Figure 1.1 an overview of the main content of this thesis,
characterized by their keywords.

1.3 Outline 29

-
p NI

<P
Directed Graphs chapter 8 De Bruijn Graphs
Bubbles Chapter 5 \ Assemblying local Long Reads
Bubble Generator On Bubbl alternative splicing -
Decomposition 1 SUbBIE I events from short Alternative
Algorithm CEmaEas M I Splicing
Alternative \ Directed Graphs rea sg": r v Enumeration
accurate lon .
Splicin reads & Algorithm
-
___ %
<> @0{
2 N
Chapter 3 R Chapter4 °(
Playing hide and 4 Complementarity ¥,
U g of assembly-first "
seek with repeats " and mapping-first n
in local and global " |
de nove T approaches for n
i W alternative splicing y
transcriptome o
assembly of short “\\ alngiEiem 2l A
RNA-sey e »_ differential analysis 'z,'
a > from RNAseq data 2
s 27
De Bruijn Graphs Alternative
Bubbles Splicing
Repeat.s Assembly-first
Altervn?tlve Mapping-first
Splicing Methods
Enumeration Comparison
Algorithm
lec Chapter6‘ <> Chapter 7
Genome-wide A fast and agnostic R .
- omparative
Association Study me.thod o assessment of Long Reads
—— bacterial genome- n
Antibiotic N . long-read error- Error correction
Resistance wide association correction Methods
De Bruijn Graphs studies: bridging software applied Comparison
Reference-free il D e "
Interpretability Remer et g . R'NA-d ii
sequencing data
events

Legend

General field

@ Genomics

O Graph Theory
O Transcriptomics

Main Result

[T1Theorethical study
Methodological development
gg% Analysis

Contribution

O First Author

Q© First Author (shared)
£ Alphabetical order
'quecond Author

Figure 1.1: Main content of this thesis, characterized by their keywords.

The vertices of the graph
represent each paper.

The vertice colour represent the general field the work is inserted on; the vertice icon
represent its main result; the vertice border represent the author contribution; the information attached to the

vertices list their keywords. The width of the edges denote the relationship between the papers — the larger, the
more related.

Icons sources:

"software development by Chunk

software-development/581057/);

Icons from

the Noun Project"; (https://thenounproject.com/term/

"Book by Curve from the Noun Project" (https://thenounproject.com/search/?q=theory&i=623325);
"analysis by Nibras@design from the Noun Project" (https://thenounproject.com/search/?q=analysis&i=1961823).

30

Introduction

Chapter 2

Background

In this chapter, we introduce the concepts, definitions, and notations necessary to un-
derstand the main content of this thesis. Although we try to be complete and detailed
in some concepts, we are unable to exhaustively cover here all the material with enough
detail to make this thesis self-contained. Making this would not only be an extremely
laborious task, but it would also put too much weight and attention on this chapter,
which is not a result per se, i.e. this chapter contains no improvement to the literature.

The first two sections introduce biological and computer science concepts, respec-
tively, while the third is devoted to bioinformatics. The two first fields are far more
established than bioinformatics, which is a more recent area. Thus, for these two, the
main concepts presented here will follow the two books I have used as reference for
years, [3] and [23|. The main structure of these first two sections are therefore excerpts
reproduced, combined or adapted from these two main books. We abstracted the text
in both books so that details or concepts that are not relevant to this thesis are either
removed or are described in a very succinct way. Although these books present a good
part of the concepts, we also rely on other sources, when needed. For bioinformatics, on
the other hand, we do not follow a single reference text.

2.1 Biology

We start with some biological concepts. Many of them are excerpts reproduced, combined
or adapted from [3]. As such, when a concept is described and no reference is explicitly
given, the reader can assume |[3] as reference.

2.1.1 DNA, RNA and proteins

All living cells store their hereditary information in the form of double-stranded molecules
of DNA, i.e. long unbranched paired polymer chains, formed by nucleotides. Each nu-
cleotide (or base pair (bp)) consists of two parts: a sugar (deoxyribose) with a
phosphate group attached to it, and a base, which may be either adenine (A), guanine
(G), cytosine (C) or thymine (T) (Figure 2.1A). Each sugar is linked to the next via

32 Background

the phosphate group, creating a polymer chain composed of a repetitive sugarphosphate
backbone with a series of bases attached to it. A DNA strand is a polymer chain of nu-
cleotides (Figure 2.1B). DNA is synthesized on a template formed by a preexisting DNA
strand. Through templated polymerization, the sequence of nucleotides in a preexisting
DNA strand controls the sequence in which nucleotides are joined together in a new
DNA strand. The new strand has a nucleotide sequence complementary to that of the
old strand. The bases protruding from the existing strand bind to bases of the strand
being synthesized, according to a strict rule defined by the complementary structures
of the bases: A binds to T, and C binds to G (Figure 2.1C). This base-pairing holds
fresh nucleotides in place and thereby controls the selection of which one of the four
nucleotides shall be added to the growing strand next. In this way, a double-stranded
structure is created, consisting of two exactly complementary sequences of As, Cs, Ts,
and Gs (Figure 2.1D). The two strands twist around each other, forming a double helix
(Figure 2.1E).

(A) building block of DNA (D) double-stranded DNA
phosphate

sugar
\oZ
a +l —
sugar base
phosphate

nucleotide

(B) DNA strand

sugar-phosphate hydrogen-bonded

l T I l l l l T l l backbone base pairs

(E) DNA double helix
T
L)
e

Figure 2.1: DNA and its building blocks. (A) A nucleotide and its composition; (B) A
single strand of DNA consists of nucleotides joined together by sugarphosphate linkages;
(C) Templated polymerization of new strand; (D) A normal DNA molecule consists of
two such complementary strands; (E) The two strands twist around each other to form
a double helix a robust structure that can accommodate any sequence of nucleotides
without altering its basic structure. Figure reproduced from |[3].

(C) templated polymerization of new strand

nucleotide

;’r ‘*

Cells perform protein synthesis to transform the information stored in DNA molecules
into protein molecules. Proteins are long unbranched polymer chains formed by chain-
ing together amino acids, the monomers of proteins. Proteins are essential to organisms
and have many functions. They can bind with high specificity to other molecules and

2.1 Biology 33

act as enzymes to catalyze reactions that make or break covalent bonds. In this way,
they direct the vast majority of chemical processes in the cell. They can also maintain
structures, generate movements, sense signals, and so on.

DNA molecules are generally very large, containing the specifications for thousands
of proteins. However, only 1.5% of the human DNA corresponds to protein-coding genes.
A gene is usually defined as a segment of DNA that contains the instructions for making
a particular protein. A (very) simplified structure of an eucaryotic gene can be seen
in Figure 2.2. This structure was purposely abstracted to present only the components
relevant to this thesis. By no means it is a complete description of the structure of a
gene. We will refer to this structure in the next paragraph.

5’ UTR Start codon Stop codon 3’ UTR

ExorIl I Intron 1 l Exon 2 I Intron 2 l Exon]3 l

Transcription Start Site \ ’ ' / Transcription Termination Site

3’ Splice Site 5’ Splice Site

5’ Splice Site 3’ Splice Site

Figure 2.2: A (very) simplified structure of an eucaryotic gene with three exons and two
introns.

In eucaryotes, the protein synthesis process begins with a templated polymerization
called transcription, in which genes are used as templates for the synthesis of shorter
molecules of the closely related polymer ribonucleic acid, or RNA. RNA is a linear poly-
mer made of four different types of nucleotide subunits linked together by phosphodiester
bonds. It differs from DNA chemically in two respects: (1) the nucleotides in RNA are
ribonucleotides that is, they contain the sugar ribose (hence the name ribonucleic acid)
rather than deoxyribose; (2) like DNA, RNA contains the bases adenine (A), guanine
(G), and cytosine (C), it contains the base uracil (U) instead of the thymine (T) in DNA.
Since U, like T, can base-pair by hydrogen-bonding with A, the complementary base-
pairing properties described for DNA apply also to RNA (in RNA, G pairs with C, and
A pairs with U). The transcription start site is a regulatory region of the gene where
the enzyme RNA polymerase starts the transcription of the gene to a RNA molecule. It
finishes at the transcription terminator site. The RNA molecule resulting from the
transcription process is termed primary RINA transcript or pre-mRNA | which is a
reverse-complemented copy of the gene. The pre-mRNA is composed by alternating cod-
ing and non-coding sequences, called exons and introns, respectively. The boundaries
between exons and introns are termed splice sites. The splice sites are in fact part of
the intron, and the two first nucleotides of an intron are called 5’ splice or donor site,
denoting the end of an exon and the start of an intron. The last nucleotides of an intron
are called 3’ splice or acceptor site, denoting the end of an intron and the start of
an exon. Before it can be translated into protein, the two ends of the preemRNA are
modified by capping the 5’ end and by polyadenylation of the 3’ end, and the introns are

34 Background

removed by RINA splicing. After all these processes take place, the resulting molecule
is called messenger RNA or mRNA. We shall also widely use the terms isoform or
transcript to refer to mRNAs in this thesis. Only when and if the RNA processing
is completed successfully, the mRNA is transported from the nucleus to the cytoplasm
through the nuclear pore complexes, where it can be translated into protein. However,
just a part of the mRNA is translated. The untranslated regions (5” UTR and 3’ UTR)
are not translated — these are regulatory regions. The translation process builds an amino
acid chain, 7.e. a protein, based on the codons (triplets of bases) of the mRNA. The start
codon (AUG) indicates where the cell machinery should start the translation process,
and the stop codon (UAA, UAG or UGA) denotes where it should finish. We observe
that the start codon is translated into an amino acid, but not the stop codon. We should
also note that the 61 non-stop codons are translated into 20 amino acids, so some codons,
known as synonymous codons, translate into the same amino acid. Much more can
be said about the translation process, but since we do not focus on this mechanism in
this thesis, we will not describe it further. Figure 2.3 summarizes the steps leading from
DNA to protein in eucaryotes.

cytoplasm
nucleus
introns exons
DNA
[E—1] - -
[E— = s = -

transcription unit
. . lTRANSCRIPTION
"primary RNA transcript”

= [- -
5’ CAPPING
RNA SPLICING
3’ POLYADENYLATION

RNA cap
\ \
mRNA (u— AAAA

EXPORT

A
mRNA (e— AAAA
lTRANSLATION
protein

Figure 2.3: Summary of the steps leading from DNA to protein in eucaryotes. Figure
adapted from [3].

2.1 Biology 35

2.1.2 Organization of the genetic material in a cell

In eucaryotes, the DNA in the nucleus is composed by a set of different chromosomes.
A chromosome is a single, long linear DNA molecule containing not only genes, but
also a considerable amount of interspersed DNA between the genes, called intergenic
regions. A big part of intergenic regions is composed of repeated sequences, or repeats.
Repeats are patterns of nucleic acids that occur in multiple copies throughout the
genome, and can be classified into two broad classes: tandem repeats, when the copies
of a segment of DNA are adjacent to one another, and interspersed repeats, when
the copies are dispersed throughout the genome. Repeat copies evolve independently.
Recent copies will be very similar to each other, while older copies will differentiate
more, due to the accumulation of many mutations, mainly if the copies are not functional.
This allows for the classification of repeats into families, and subfamilies, according to
the similarity between their copies. There are many other details about repeats: some
have been associated with regulatory and structural roles, and their replication and
insertion mechanisms are complex and interesting. However, these details are out of
the scope of this thesis. Finally, a genome is the totality of the genetic information
belonging to a cell or an organism, i.e. the set of chromosomes. Figure 2.4 shows
an overview of the organization of the genome of a cell. The classical definition of a
transcriptome is the set of mRNAs expressed by an organism. We should note, however,
that this definition does not describe the highly dynamic nature of the transcriptome of
an organism. In most species, the genome is essentially the same across all cells at any
given time, and it is expected to just slightly change during the life of an organism. In
contrast, the transcriptome, i.e. the set of expressed transcripts, from cells belonging to
different tissues can be very distinct. Even cells from the same tissue can have remarkable
differences if they are in distinct conditions, caused by e.g. different developmental stages,
or diseases, or external factors, etc. Figure 2.5 shows some of the human transcriptome
complexity across several tissues.

2.1.3 Genomic and transcriptomic variations

We have mentioned that the RNA and, to a far less extent, the DNA molecules of an
organism are not constant, immutable objects. They are dynamic entities that change in
response to different conditions, creating a large number of variations. In this subsection,
we will describe only a part of them, relevant to this thesis.

Some cells contain only one set of chromosomes, and are called haploid. However,
many others contain more than one set: diploid cells contain two sets, triploid cells
contain three sets, and so on. All sets of chromosomes represent the same genetic in-
formation, 4.e. the sets are only duplications of a single set, but they also present some
expected genomic variations. Humans cells, for example, are diploid. The specialized
cells that carry out sexual reproduction, however, are haploid. In the final step of sexual
reproduction, a haploid cell of one parent fuses with a haploid cell of the other, mix-
ing the two genomes and restoring the diploid state. The genomes of both parents are
similar, but not identical, thus a gene can have more than one version. Such alternative

36 Background

Figure 2.4: Overview of the organization of the genome, chromosome, genes and inter-
genic regions of a cell. Figure reproduced from |74].

versions are called alleles. The most common allelic variations are Single Nucleotide
Polymorphisms (SNPs) and indels. Single Nucleotide Polymorphisms (SNPs), as
the name suggests, is when a specific nucleotide is different between the alleles. Indels,
a short for insertion/deletions, is when the difference between the alleles are a (generally
small) number of inserted or deleted nucleotides. Longer variations are also possible.
Recombinations occur when either two chromosomes exchange a chunk of DNA, or
one chromosome copies a chunk from another [81]. Genomic variations can also be ac-
quired due to accidents during cell duplication, 7.e. when cells are duplicating, a SNP
can be created by accidentally mutating one base into another different nucleotide. If
this mutation provides the organism a competitive advantage, it is probable that this
variation will be transferred to its offsprings. This mechanism, called vertical gene
transfer, is central to the evolution of eucaryotes. Bacteria, on the other hand, are
able to acquire (long) genetic material, e.g. genes, from other species of bacteria, from
its host or environment, by means other than reproduction or cell duplication, through
horizontal gene transfer (HGT). While the mechanisms of HGT are complex and
interesting, describing them in details is out of the scope of this thesis. Further, other
occasional flaws during cell duplication, can also result in the inappropriate duplication
of just part of the genome, with retention of original and duplicate segments in a single
cell, generating other types of variations. Once a gene has duplicated in this way, one of
the two gene copies is free to mutate and may specialize to perform a different function
within the same cell. Repeated rounds of this process of duplication and divergence,
over many millions of years, have enabled one gene to give rise to a family of genes
that may all be found within a single genome. Genes in two separate species that derive
from the same ancestral gene in the last common ancestor of those two species are called
orthologs. Related genes that have resulted from a gene duplication event within a

2.1 Biology 37

0.75 H Protein coding gene M Pseudogene

B Mitochondrion gene [IncRNA

XTI

,/ Pancreas
Blood
Kidney
Heart
Muscle
Liver
Brain
Stomach
Colon
Adrenal gland
Pituitary
Esophagus
Skin
Prostate [N I
Adipose
Ovary
Vagina
Artery
Breast
Fibroblasts
Thyroid
Uterus
Lung
Testis
Nerve

!
!
I

1.00 = =

0.754

Fraction of total transcriptional output

1 Blood
1 Heart
3 Muscle
Brain
1 Skin
Adipose
3 Artery
=3 Thyroid
7 Testis
Nerve

0.501

0.254

1 100 10,000
Number of genes

Figure 2.5: Human transcriptome complexity across several tissues. Top: Biological type
and relative contribution to total transcription of the hundred most expressed genes.
Height of the bars is proportional to the fraction that these genes contribute to total
transcription. Bottom: Cumulative distribution of the average fraction of total tran-
scription contributed by genes when sorted from most-to-least expressed in each tissue
(x axis). Lines represent mean values across samples of the same tissue, and lighter-
color surfaces around the mean represent dispersion calculated as the standard deviation
divided by the cumulative sum of all means. Figure and caption adapted from [85].

single genome, and are likely to have diverged in their function, are called paralogs.

In Subsection 2.1.1, we introduced the process of RNA Splicing, in which the introns
are removed from the pre-mRNA in one of the stages of mRNA production. However, the
splicing machinery of a cell can splice the pree-mRNAs in different ways, by recognizing

38 Background

different splice sites. This process is called alternative splicing (AS), and allows the
same gene to produce a corresponding set of different proteins. In higher eucaryotes, AS
is not the exception, but the rule: it is estimated that more than 90% of genes in humans
undergo AS [93,129]. The most common pattern of AS is exon skipping. By skipping
some exons, a eucaryotic gene with n exons could, in theory, produce an exponential
number (on n) of different mRNAs, although generally only a fraction of these forms are
experimentally observed. Figure 2.6 shows how AS can produce alternative proteins and
Figure 2.7 explains the different patterns of AS. In the same way that different splice
site choices can produce alternative transcripts from a same gene, so can alternative
transcription sites. More specifically, this means that different transcription start or
termination sites can cause a gene to produce a different protein. Such variations are
termed transcriptional variations.

Exon Exon Exon Exon Exon

Transcription

F Alternative splicing

~=ve K IEHIENIEEEE BEHENEEESE ENENESES
R ——

)

Translation Translation Translation

Protein A Protein B Protein C

Figure 2.6: Alternative splicing creates different proteins. In the top, a gene is shown with
coding regions (exons) in black and numbered, and non-coding regions in grey. In the
middle, we have the pre-mRNA, which can generate different mRNAs and, consequently,
proteins, through the process of alternative splicing. In this case, only exon skipping
events take place: Proteins B and C skip exons 3 and 4, respectively. Figure reproduced
from [113].

Variation identification and analyses are valuable because they might be linked to
important phenotypes or conditions. Such analyses can be done in two contexts: genomic

2.1 Biology 39

(A) Cassette alternative exon [I:D:I
(B) Alternative 5’ splice sites

(€) Alternative 3’ splice sites

(D) Intron retention

”/\DAD—<:

Mutually exclusive alternative exons

wgﬂ

Figure 2.7: The different patterns of alternative splicing. Exons are shown as boxes
and introns as straight lines. The zig-zag lines represent the removal (splicing) of a
region. A gene (on the left) produces two different transcripts (on the right) in each
subfigure. Constitutive exons (i.e. that are always included) are shown in yellow and
alternative exons in blue. Red lines denote included introns. (A) Cassette alternative
exon or exon skipping event: a full exon is skipped; (B) Alternative 5’ splice (or donor)
site: the endpoint of an exon is modified; (C) Alternative 3’ splice (or acceptor) site:
the start of an exon is modified; (D) Intron retention: a full intron is retained; (E)
Mutually exclusive alternative exons: whenever exon (1) is retained, exon (2) is spliced
and vice-versa. Figure adapted from [15].

and transcriptomic. Genome-wide association studies (GWAS) can identify which
variations in a set of genomes are possibly linked to given phenotypes through a statistical
framework, giving a measure of confidence on the inferences. As a concrete example,
in one of the works in this thesis [48], we explore which genetic variants between a
population of bacterial strains are highly associated with specific antibiotic resistance
phenotypes, thus suggesting which mutations or horizontal gene transfers provide the
resistance. In another context, transcriptomic analyses usually include the identification
and quantification of gene expression, i.e. identifying which genes are being expressed
and at which quantity. As we have seen, in all cells, the expression of individual genes is

40 Background

regulated: instead of manufacturing its full repertoire of possible proteins all the time,
the cell adjusts the rate of transcription and translation of different genes independently,
according to its need. Given two or more conditions, finding a set of genes such that
their expression are fairly contrasted between the conditions usually provides clues to
understand the differences between the given conditions, e.g. such genes or their regulator
genes can be directly related to the conditions. Such studies are termed differential
gene expression analyses. In this thesis, however, we are more concerned with a finer-
grained transcriptome variation analysis by studying differential AS expression analyses.
This could provide clues on which AS events might be related to a given condition or
phenotype.

2.2 Computer Science

We proceed by introducing computer science concepts. Many of them are excerpts re-
produced, combined or adapted from [23]. As such, when a concept is described and no
reference is explicitly given, the reader can assume [23] as reference.

2.2.1 Algorithms

An algorithm is a well-defined computational procedure that takes some value, or set of
values, as input and produces some value, or set of values, as output. An algorithm is thus
a sequence of computational steps that transform the input into the output. Algorithms
are conceived to solve problems. We will usually call the input to a particular problem
an instance of that problem. A classical example are sorting algorithms, which solve
the sorting problem:

Sorting problem

Input: A sequence of n numbers aq,as,...,a,.

Output: A permutation (reordering) a},d), ..., al, of the input sequence such that af <
/ /

ay < ... < a,.

A data structure is a way to store and organize data in order to facilitate data access
and modifications. Algorithms make use of data structures to solve complex problems
efficiently. From a mathematical point-of-view, data structures can be seen as dynamic
sets of elements, that can grow, shrink, or otherwise change over time. Algorithms may
require several different types of operations to be performed on data structures. Such
operations can be grouped into two categories: queries, which simply return information
about the set (e.g. searching for an element, retrieving the minimum or maximum el-
ement), and modifying operations, which change the set (e.g. inserting or deleting an
element).

Analyzing an algorithm consists in predicting the resources that it requires. In this
thesis, we will generally analyze the running time of algorithms, and, in some cases, the
memory usage, under a generic one-processor, random-access machine model of com-
putation. The running time of an algorithm is the number of primitive operations
executed, and we will describe it as a function of the size of its input. We will usually

2.2 Computer Science 41

concentrate on finding only the worst-case running time, that is, the longest running
time for any input of size n. We will also be just interested in the order of growth of the
running time, usually only on the asymptotic upper bound, denoted by the O-notation.
For a given function g(n), O(g(n)) = {f(n) : 3 positive constants ¢ and ng such that
0 < f(n) < cg(n) for all n > np}. The O-notation gives an upper bound on a function,
to within a constant factor. We define an algorithm as efficient if its worst-case running
time is polynomial, i.e. O(n¥), where n is the size of the input and k is a constant.

Complexity

Problems can be categorized into different classes. Class P consists of problems that are
solvable in polynomial time. Class N P consists of those problems that are verifiable in
polynomial time, i.e. if we were given a certificate of a solution, then we could verify
that the certificate is correct in time polynomial in the size of the input to the problem.
Class NPC, or NP-complete, contains the problems that are in NP and are as "hard"
as any problem in NP. Many problems of interest are optimization problems, in which
each feasible solution has an associated value, and we wish to find a feasible solution with
the best value. NP-completeness applies directly not to optimization problems, but to
decision problems, in which the answer is simply yes or no. However, we usually can
cast a given optimization problem as a related decision problem by imposing a bound on
the value to be optimized. If we can provide evidence that a decision problem is hard,
we also provide evidence that its related optimization problem is hard. If the decision
version of a problem is shown to be NP-complete, we say that its optimization version is
NP-hard.

Let us consider a decision problem A, which we would like to solve in polynomial
time. Now suppose that we already know how to solve a different decision problem B in
polynomial time. Finally, suppose that we have a procedure that transforms any instance
« of A into some instance 8 of B with the following characteristics:

e The transformation takes polynomial time;

e The answers are the same. That is, the answer for « is yes if and only if the answer
for 8 is also yes.

We call such procedure a polynomial-time reduction algorithm and, as Figure 2.8
shows, it provides us a way to solve problem A in polynomial time:

1. Given an instance « of problem A, use a polynomial-time reduction algorithm to
transform it to an instance S of problem B;

2. Run the polynomial-time decision algorithm for B on the instance ;
3. Use the answer for 8 as the answer for a.

To prove the NP-completeness of a decision problem B, we follow a similar frame-
work. We develop a polynomial-time reduction of a known NP-complete problem A into

42 Background

instance o | _| polynomial-time instance B | polynomial-time | Y5 >1> yes
ofA | 7| reduction algorithm of B~ | algorithm to decide B [H5—>{ > no

polynomial-time algorithm to decide A

Figure 2.8: Using a polynomial-time reduction algorithm to solve a decision problem A
in polynomial time, given a polynomial-time decision algorithm for another problem B.
In polynomial time, we transform an instance « of A into an instance § of B, we solve B
in polynomial time, and we use the answer for 8 as the answer for a.. Figure reproduced
from [23].

B. If we can solve B in polynomial time, then we can solve A in polynomial time and
also all problems in class N PC. However, as these problems are unlikely to be solved in
polynomial time, B is also unlikely. Since many problems have been proven to be NP-
complete (a compendium can be found, for example, in [36]), this task can sometimes be
simplified by choosing a "close" NP-complete problem.

Although we will introduce graphs and their related problems only in Subsection 2.2.3,
we will take the liberty here of exemplifying the previous concepts with a graph problem.
It is well known that the shortest path problem in directed graphs with non-negative
arc weight is solvable in polynomial time [28]. More specifically, given a directed graph
G = (V, A) with non-negative arc weight, finding a shortest path from a source s to a
target ¢t can be done in polynomial time. A change to this problem, which seems to be
"slight" at a first glance, produces an NP-hard problem. Let us say now that we want
to find the longest path from s to ¢ in G. Formally:

Longest path problem (LPP)

Input: A directed graph G = (V, A) with non-negative arc weight, and two vertices s
and t¢.

Output: The length of a longest simple path between s and ¢.

The first step to proving that the LPP is NP-hard involves conceiving a decision version
for it, such as:

Longest path problem decision version (LPPD)

Input: A directed graph G = (V, A) with non-negative arc weight, two vertices s and ¢,
and an integer k.

Output: Is there a simple (s-t)-path p € G such that the length of p is > k?

There is a polynomial-time reduction from the Hamiltonian path problem to the LPPD
[36]. The Hamiltonian path problem can be defined as follows:

Hamiltonian path problem (HPP)

Input: A directed graph G = (V, A), and two vertices s and t.

Output: Is there a (s-t)-path p € G such that every vertex v € G is traversed exactly

once?
A proof of the NP-completeness of the HPP can be found in [36]. To reduce the HPP to

the LPPD, we transform G = (V, A) into a weighted directed graph G’ = (V’, A’) such

2.2 Computer Science 43

that each arc a € A’ has weight 1, and we set k = |V’'| — 1. G’, k and the original s and ¢
vertices given as input to the HPP will compose our input to the LPPD. Finally, it is not
hard to see that there exists a simple (s-t)-path p’ € G’ with length |V’| — 1 if and only
if there exists a (s-t)-path p € G such that every vertex v € GG is traversed exactly once.
Thus we complete the proof, showing that the LPPD is NP-complete and, consequently,
that its optimization version, LPP, is NP-hard.

The practical motivation of proving that a problem B is NP-Complete or NP-Hard
is having a strong indication that it cannot be solved by a polynomial time algorithm. In
other words, we can say that numerous very talented algorithm designers already tried for
years to solve problems as equally hard as B, but were unable to do so. Thus, we can focus
on searching for alternative solutions to the problem. Indeed, showing NP-completeness
is usually not the end of the story, since many problems are too important to abandon
merely because we do not know how to find an optimal solution in polynomial time.
There are several ways to get around NP-completeness: i) if the actual inputs are small,
an algorithm with exponential running time may be perfectly satisfactory; ii) we may be
able to isolate important special cases that we can solve in polynomial time; iii) we might
come up with approaches to find "good" solutions in polynomial time (approximation
algorithms or heuristics). Succinctly, an approximation algorithm guarantees to find,
in polynomial time, a solution to an instance of an optimization problem whose cost is
within a pre-defined ratio in relation to the optimal cost. In other words, approximation
algorithms guarantee to find solutions with a pre-specified quality in polynomial time.
Much more can be said about approximation algorithms and their approximation ratios,
but since the works in this thesis did not make use of such algorithms, we chose to not
develop further. Heuristics, on the other hand, are criteria, methods and principles
used to choose a path, among several, which is believed to be the most adequate in the
search for an objective [96]. Heuristic-based algorithms are usually developed through
the detailed study of problems, in order to acquire specialized knowledge which generally
leads to good solutions. Although heuristics guarantees the output of feasible solutions,
no restrictions are satisfied regarding execution time, or solution quality.

The theory of NP-completeness is much richer than our succinct presentation in the
last paragraphs. The interested reader can find a comprehensive definition of this theory
in a mathematically rigorous way in the book of Garey and Johnson [36].

Enumeration algorithms

Given an enumeration problem P and a set of constraints C', an enumeration algo-
rithm A finds all feasible solutions for an instance I of P, i.e. all solutions satisfying
C. For instance, given a directed graph G = (V, A), listing all paths in G whose length
is smaller than a constant k is considered an enumeration problem. An enumeration al-
gorithm to this problem can be found in [103]. Usually, the number of feasible solutions
for an instance I of an enumeration problem P can be exponential on the size of I and,
as such, the complexity classes described in Subsection 2.2.1 cannot be applied to such
problems, as they deal only with problems having polynomial-sized outputs. Johnson et

al. in [52] thus defined new complexity classes to address such cases. In this thesis, we

44 Background

are only interested in compact polynomial delay enumeration algorithms. A polynomial
delay enumeration algorithm satisfies three properties: i) the time elapsed to output
the first solution is polynomial on the input size; ii) the time elapsed between any two
consecutive solutions is polynomial on the input size; iii) the time elapsed between the
output of the last solution and the termination of the algorithm is polynomial on the in-
put size. Fukuda et al. in [34] further defines that a compact enumeration algorithm
is one whose space complexity is polynomial in the input size. We define here compact
polynomial delay enumeration algorithms' as enumeration algorithms having both
the properties from polynomial delay and compact enumeration algorithms.

2.2.2 Strings

An alphabet Y is a finite set of characters. In this thesis, we always assume Y =
{A,C,T,G}, unless otherwise stated. A string s is a finite sequence of elements from an
alphabet, e.g. AATTCTGTA is a string over 3. ¥* is the set of all strings over . Given
a string s, we denote its size by |s|. In the case that |s| = 0, then s is an empty string,
also denoted by e. The concatenation of two strings s and ¢, denoted by st, has length
|s| + |t| and consists of the characters from s followed by the characters from ¢. A string
u is a prefix of a string s if s = uw for some v € ¥*. Similarly, a string w is a suffix of
s if s = zw for some x € ¥*. Given a string s € ¥*, s[i] denotes the i-th element of s,
for any 1 <14 <|s|, and sli, j| the substring s[i]s[i + 1]...s[j] for any 1 <1i < j < |[s].
There are several ways to formalize the notion of distance between two strings. Given
two equal-length strings s and ¢, their Hamming distance, denoted by dg(s,t), is the
number of positions ¢ for which s[i] # t[i] [77]. Another formalization is the edit distance,
which focuses on transforming (or editing) one string into the other by a series of edit
operations on individual characters [40]. The permitted edit operations are insertion of
a character into the first string, the deletion of a character from the first string, or the
substitution (or replacement) of a character in the first string with a character in the
second string. The edit distance between two strings s and ¢ is defined as the minimum
number of edit operations — insertions, deletions, and substitutions — needed to transform
the first string into the second. Note that matches are not counted [40]. The appropriate
string distance measure to use depends on the studied problem. If only substitutions need
to be modeled, then the Hamming distance can be an option. Otherwise, if insertions and
deletions should also be taken into account, then the edit distance is more appropriate.

2.2.3 Graphs

A directed graph G is a pair (V, A), where V is a finite set and A is a binary relation
on V. The set V is called the vertex set of GG, and can also be referenced as V(G). The
set A is called the arc set of G, and can also be referenced as A(G). In an undirected
graph G = (V, E), the edge set E consists of unordered pairs of vertices, rather than

1We note that this definition is not present in the literature. A similar concept can be found in [34],
(strongly) P-enumeration algorithms, which are compact enumeration algorithms whose time complexity
is linear in the output size.

2.2 Computer Science 45

ordered pairs. Many definitions for directed and undirected graphs are the same, although
certain terms have slightly different meanings in the two contexts. If (u,v) is an arc in a
directed graph G = (V, A), we say that (u,v) is incident from or leaves vertex u and
is incident to or enters vertex v. In the undirected case, we simply say that (u,v) is
incident on the vertices u and v. If (u,v) is an arc in a directed graph G, we say that
vertex v is adjacent to vertex u. When the graph is undirected, the adjacency relation
is symmetric. Given a directed graph G = (V, A) and a vertex v € V, we denote its
out-neighbourhood (resp. in-neighbourhood) by N*(v) = {u € V | (v,u) € A}
(resp. N~ (v) = {u € V | (u,v) € A}), and its out-degree (resp. in-degree) by
dt(v) =|N*(v)] (d~(v) = [N~ (v)|). The degree of v is defined as d(v) = d™ (v)+d~ (v).
In undirected graphs, the out- and in-neighbourhood coincides, and we have only the
definition of neighbourhood of a vertex v, N(v) = {u € V | (v,u) € E}, and its
degree, d(v) = |N(v)|. A vertex v is branching if d*(v) > 1 or d”(v) > 1 in directed
graphs, or d(v) > 2 in undirected graphs. An example of an undirected and a directed
graph can be seen in Figure 2.9.

(a)

Figure 2.9: Examples of graphs. (a) A complete undirected graph with five vertices.
Edge a is incident to vertices 1 and 2. All vertices have a degree of 4. (b) A directed
graph. Vertex 6 has in-degree 2 and out-degree 1.

We say that a graph G’ = (V/, E') is a subgraph of a graph G = (V,E) if V' CV
and E/ C E. Given a subset of vertices V' C V, the subgraph of G induced by
V', denoted by Gy, has V' as vertex set and contains all edges of G that have both
endpoints in V/. Given a subset of edges E/ C E, the subgraph of G induced by FE’,
denoted by Gg/, has E' as edge set and contains all vertices of G that are endpoints
of edges in E’. Given a subset of vertices V! C V and a subset of edges E' C E,
we denote by G \ V' the graph induced by V \ V/ and by G \ E’ the graph induced
by E\ E’. Given two graphs G and H, their union G U H is the graph F for which

46 Background

V(F)=V(G)UV(H) and E(F) = E(G)UE(H). Their intersection G N H is the graph
F for which V(F)=V(G)NV(H) and E(F) = E(G)NE(H).

An undirected graph G = (V, E) is weighted if there is a function w : F — R,
associating a weight (or cost) to every edge in the graph. In unweighted graphs, we
do not have a weight associated to edges. However, most algorithms on unweighted
graphs behave equivalently on the weighted version of the graph, where the weight of
each edge is 1. We will assume this and, to simplify, we then associate a function
w : F — 1 to unweighted graphs. The concepts of weighted and unweighted graphs
also apply to directed graphs. A path from a vertex vy to a vertex vg in an undirected
graph G = (V, E) is a sequence vg,v1,...,v, of vertices such that (v;_1,v;) € E for
i=1,2,...,k. The length of p is |p| = Zez(viihvi)epw(e). We assume there is always a
0-length path from w to u. If there is a path p from u to v, we say that v is reachable from
u. A path is simple if all vertices in the path are distinct. All paths considered here will
be simple, unless otherwise stated. A subpath of path p = vg, vy, ..., v is a contiguous
subsequence of its vertices. We say that the subpath p1 = vo...,v; (p2 = vj,...,vk)
is a prefix (suffix) of p for some 0 < i < k (0 < j < k). A path in a directed graph
is called a directed path, and all previous definitions on paths can also be applied to
directed paths. An undirected graph is connected if every vertex is reachable from all
other vertices. The connected components of an undirected graph are its maximal
connected subgraphs. A directed graph is strongly connected if every two vertices
are reachable from each other. The strongly connected components of a directed graph
are its maximal strongly connected subgraphs. As examples, the graph in Figure 2.9a is
connected and thus contains only one connected component. The graph in Figure 2.9b is
not strongly connected, and its strongly connected components are: {1,2,3}, {4}, {5,6}.

In a directed graph, a path p = vg, v1,...,v; forms a directed cycle if vy = v and
the path contains at least one arc. The directed cycle is simple if, in addition, v, ..., vk
are distinct. All directed cycles considered here will be simple, unless otherwise stated.
Given a directed graph G and two distinct vertices s,t € V(G), an (s, t)-bubble consists
of two (s,t)-simple-directed-paths that are internally vertex disjoint. Vertex s is the
source and ¢ is the target of the bubble. In two of our papers [1,2], we allow some cases
where s = t. In such cases, one of the paths of the bubble has length 0, and therefore B
corresponds to a directed cycle. We then say that B is a degenerate bubble. Unless
explicitly stated, the term bubbles reference only bubbles themselves, not degenerate
bubbles. A cycle in an undirected graph G is a subgraph of G such that all its vertices
have even degree. Note that our definition of cycles and directed cycles are very different,
1.e. a cycle can even be a disconnected graph, whereas a directed cycle is connected by
definition. We chose this alternative definition for cycles in undirected graphs in order
to be compatible with the definition adopted by the community of cycle basis, since
in two papers of this thesis [1, 2], we work with this specific definition of undirected
cycles. A cycle that is connected and for which all the vertices have degree 2 is called an
elementary cycle. An elementary cycle is similar to directed cycles, but in undirected
graphs. Figure 2.10 exemplifies cycles, elementary cycles, directed cycles and bubbles.

A tree is a connected, acyclic, undirected graph. If an undirected graph is acyclic

2.2 Computer Science 47

)
() &))
O—@
(D—)
() (2)
O
(c)

Figure 2.10: Examples of cycles, elementary cycles, directed cycles and bubbles. (a) A
cycle with three elementary cycles: (1, 2, 3, 4), (4, 5, 6, 7), (8, 9, 10). (b) A directed
cycle. (¢) A bubble.

but possibly disconnected, it is a forest. A rooted tree is a tree in which one of the
vertices is distinguished from the others. We call the distinguished vertex the root of
the tree. In this thesis, when we refer to rooted trees, we usually direct its arcs from
the parents to their children. An orientation of an undirected graph G is a directed
graph G’ such that G’ is a copy of G with oriented edges. Given a directed graph G,
the underlying undirected graph G of G’ is a copy of G’ without the orientation
of the arcs. A biconnected undirected graph G is a connected graph such that, for
any v € V(G), G — v is connected. A biconnected component (BCC) is a maximal
biconnected subgraph of a graph G. Figure 2.11 exemplifies all these concepts.

Given a set of elements &, representing an element space, an addition (or combi-
nation) operator O : E X E — E | and a subset G of &, the set of all elements that can
be generated using O starting from elements in G is called the span of G. If G spans &,
then G is called a generator. Further, if G is minimal, i.e. there is no element e € G
which can be obtained by adding elements in G — e, then G is called a basis. We can
apply these notions to cycles. Given an undirected graph G = (V| E), we can combine
two cycles C1 and Cs of G through the symmetric difference operator, denoted as
+. The symmetric difference operator applied to C; and Cy produces a subgraph Cj
induced by the edges of (E(C1) U E(C2)) \ (E(C1) N E(Cy)), which is again a cycle [39].
The cycle space C of G is the set of all cycles of G. The cycle space is thus closed under
the symmetric difference operator, as C1 + Cy always results in a cycle, for any C; € C
and Cy € C, and can be represented as a vector space over Z%, where Z¥ is the field of

48 Background

O O O O OGO O
(b)

O
() © ()
OO n0 ONNOENO0 &)
o (c) o o (d)

O O

Figure 2.11: Examples of BCCs, tree, rooted tree, oriented graph and underlying undi-
rected graph. (a) An undirected graph G. (b) The three BCCs of G. (c¢) A tree of G. (d)
A rooted tree T' of G with root r = 4. (e) A directed graph G’, which is an orientation
of G. G is also the underlying undirected graph of G’. Note that T is also an oriented
tree of G'.

two elements indexed by E' [54]. Given a cycle C, the vectorial representation V' of C' is
such that V. = 1 if and only if e € C. The addition and the multiplication by a scalar of
cycles represented as vectors can be defined as the addition and the multiplication by a
scalar of integer vectors taken modulo 2. An intuitive way of finding a cycle basis is to
represent the cycle space as a vector space. As such, the vector basis of the corresponding
cycle space is a cycle basis. In informal terms, cycle bases are a compact description of
the set of all cycles of a graph. Figure 2.12 shows the combination of two cycles through
the symmetric difference operator, and the cycle basis of a graph G.

As with cycle bases in undirected graphs, we can also define a symmetric difference
operator, but whose operands are bubbles. Given two bubbles By and Bs, the constrained
symmetric difference operator A is such that B1ABs is defined if and only if the subgraph
induced by the arcs of (A(B1) U A(B2)) \ (A(B1) N A(B2)) is a bubble. Otherwise, we
say that B1ABs is undefined. Since not all pairs of bubbles of G are combinable (e.g.
a trivial example is two disjoint bubbles), the bubble space is not closed under A, and

2.3 Bioinformatics 49

() (2) o () (2)
> 0‘0‘
(b)
(1)) () OO G Q@)
O | = + = ® = O
F—0 OO0 00 0
(c)

Figure 2.12: Cycle basis and cycle combinations. (a) An undirected graph G. (b)
The cycles ci-c4 compose the basis of the cycle space of G. (c) A cycle ¢5 of G is
the combination of cycles ¢o and ¢4. During the combination, the edges to be removed
(present in both ¢y and ¢4) are highlighted in red, and the edges to be kept (present in
either co or ¢4) are highlighted in green.

therefore it does not form a vector space over ZQE . Thus, as the bubbles space cannot be
represented by a vector space, the techniques used to find a basis of a vector space cannot
be applied to find a basis of the bubble space. New techniques must be developed, and
we explore some of these in two papers in this thesis [1,2].

2.3 Bioinformatics

The last section of this chapter introduces bioinformatics concepts. The definitions here
described will make use of those contained in both Sections 2.1 and 2.2.

2.3.1 DNA and RNA sequencing

DNA sequencing is the process of obtaining the DNA sequence from a set of cells. Like-
wise, RNA sequencing is the process of obtaining the sequences of the mRNAs that are
being expressed by a set of cells. More precisely, mRNAs are extracted and complemen-
tary DNA (cDNA) chains are synthesized by the reverse transcriptase enzyme from some
template mRNAs, which are then sequenced. Although it is also possible to sequence
mRNAs directly [35,92], in this thesis whenever we refer to RNA sequencing, we mean
c¢DNA sequencing, unless otherwise stated. DNA and RNA sequencing are fundamental
inputs to many bioinformatics problems: many projects and studies take sequenced data
as the starting point to answer complex biological questions. The output of sequencing
is a set of strings called reads, which are substrings of the nucleotide sequence of the

50 Background

chromosomes, in the case of DNA, or of the mRNAs (¢cDNAs), in the case of RNA. We
will not describe how these sequencing technologies work, since this can be very technical
and out of the scope of this thesis. We will mainly focus on the characteristics of their
output, and on their cost. The interested reader can find more details in [116] and [37].
We can define three major breakthroughs in sequencing technology: Sanger Sequencing,
Second generation sequencing (2GS) and Third generation sequencing (3GS).

Sanger Sequencing

The Sanger Sequencing was the first practical sequencing technology. It is mainly used
in two contexts: shotgun de novo sequencing and targeted resequencing. In shotgun de
nowvo sequencing, DNA is randomly fragmented and then cloned into a high-copy-number
plasmid. In targeted resequencing, PCR amplification is carried out with primers that
flank the target. The output of both approaches is an amplified template, which then goes
through two other processes (abstracted in this text, but details can be found in [116])
until the final sequences. Sanger sequencing can achieve read-lengths of up to 1,000 bp,
and per-base raw accuracies as high as 99.999% [116]. The main problem with Sanger
Sequencing is its cost. As highlighted in [116], Sanger sequencing might require expen-
sive reagents, processing of multiple samples in 96- or 384-well formats, maintenance of
capillary-based sequencers, extensive bioinformatics infrastructure to handle the flow of
data and dedicated support staff to maintain complicated equipment. In an informal
survey done by Shendure et al. in [116], the overall cost to conventionally sequence the
DNA sequences of 100 genes from 100 samples, assuming each gene has an average of 10
exons, ranged from $300,000 to over $1,000,000. Shendure and Ji [116] estimate that the
cost of Sanger sequencing is on the order of $500,000 per Gbp. This cost is beyond the
range of most individual laboratories.

Second generation sequencing (2GS)

The Second generation sequencing (2GS) was conceived to i) reduce the per-base
cost of sequencing by several orders of magnitude, and ii) reduce the infrastructure re-
quirements for sequencing. However, this improvement also comes with some disadvan-
tages: 2GS reads are a lot shorter than Sanger reads, and their error-rate is higher.
Therefore, the focus of genomic studies have changed. Before, the hardest task was to
generate data. Due to the low cost of 2GS, many research institutions and laboratories
were able to sequence DNAs at an affordable cost. 2GS also popularised transcriptomic
studies with RNA sequencing. As such, 2GS was heavily employed in several applica-
tions other than de novo genome assembly, such as: large-scale and targeted polymor-
phism discovery, discovery of inherited and acquired structural variation, quantification
of gene expression and alternative splicing, microRNA profiling, genome-wide mapping
of protein-DNA interactions, etc (see [116]). The low cost of 2GS data and their wide
application resulted in innumerous 2GS datasets being produced and made available to
the community. The huge amount of data sequenced in each experiment and the fact
that 2GS reads are shorter and less accurate than Sanger reads motivated the develop-

2.3 Bioinformatics 51

ment of a plethora of algorithms and methods to efficiently process this type of data.
2GS approaches fall under two broad categories: sequencing by ligation and sequencing
by synthesis [37]. To keep this section succinct, we will skip the 2GS technical details
and focus in one specific sequencing by synthesis technology: Tllumina. This choice is
supported by a practical motivation: the large majority of available 2GS datasets in the
literature is Illumina data, as are all the 2GS datasets in the works performed in this
thesis. It is worth observing that in this sequencing technology, DNA /RNA molecules are
also fragmented into millions of pieces, and the fragments’ ends are sequenced. Although
the Illumina instruments are unable to sequence reads as long as Sanger sequencing,
they can provide paired-end reads, i.e. a pair of reads coming from both ends of
one specific fragment. Further, it is also possible to know the approximate distance be-
tween paired-end reads, which can help algorithms and methods to process such data.
We note that fragments are obtained through random breakage, and although we can
select a range of fragment length (by migrating on a gel), fragment length cannot be
precisely chosen. However, fragment lengths follow a normal distribution, with a mean
usually in the selected range. Current common Illumina sequencers, like [llumina HiSeq
4000, are able to sequence 150-bp paired-end reads, with a throughput of 650-750 Gbs,
a 0.1% substitution error-rate, with an approximate cost of $22 per Gb [37]. There are,
however, several models of Illumina sequencers, like the less powerful benchtop series
(iSeq, MiniSeq, MiSeq, NextSeq), and the new NovaSeq series, which outperforms the
HiSeq series [47]. However, we will assume Illumina HiSeq 4000 as the default 2GS se-
quencing instrument (in this thesis, custom 2GS sequencing involved a Illumina HiSeq
2500 in [11] and Illumina HiSeq 4000 in |76]). 2GS sequencers present two characteristic
disadvantages when compared to Sanger sequencing: i) 2GS read length is shorter? (the
Mlumina instruments reach a maximum of 300 bps compared to 1000 bps from Sanger);
ii) 2GS error rate can be 100-fold higher than the Sanger’s error rate (0.1% compared to
0.001%) [37]. However, these disadvantages are overcome by its two main advantages:
i) more than 20,000 times cheaper (Illumina HiSeq 4000 costs around $22 per Gb, while
Sanger sequencing around $500,000 per Gb); ii) far simpler infrastructure requirements
for sequencing.

Third generation sequencing (3GS)

Many complex genomes contain several long repetitive elements, copy number alterations
and structural variations. In many cases, these elements are so long that 2GS reads
are insufficient to resolve them (this issue will be further explored in Subsection 2.3.2).
Third generation sequencing (3GS) are recent sequencing technologies producing
reads with several kilobases, allowing for the resolution of these large structural features.
Such long reads can span complex or repetitive regions with a single continuous read,
thus eliminating ambiguity in the positions or size of genomic elements. Long reads
can also be useful for transcriptomic research, as they are capable of spanning entire

2454 pyrosequencing reached up to 1000 bps, 700 on average, but their very high cost was not
competitive, and, as such, these sequencers are not available anymore [37].

52 Background

mRNAs,; allowing researchers to identify the precise connectivity of exons and discern
gene isoforms |37].

There are two main 3GS technologies: single-molecule real-time sequencing (SMRT)
and synthetic approaches. The latter rely on 2GS technologies to produce long reads in
silico. In this thesis, we will describe only the former, SMRT sequencing, since it is only
the type of 3GS technology explored in this thesis (in [75,76]).

The two dominant SMRT sequencing approaches are Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT). The main problem of both technologies are: i)
high error rate, from 10 to 15%; ii) cost higher than Illumina (1 to 2 orders of magnitude);
iii) lower throughput than Illumina. It is not easy to keep track of the technological
improvements of both these technologies. They are evolving so fast that a review from
2016 [37], for example, could be considered outdated nowadays. Therefore, we will not use
papers to refer to the characteristics of the PacBio and ONT sequencing instruments, but
communications from the companies themselves. Although this can provide an updated
source of information, it can also be biased.

In PacBio sequencing, the high error rate can be dropped down, even to the level
of Mlumina error rate. A sensitive parameter to produce highly accurate PacBio reads
is the size-selection, which will select which target sequences will be sequenced based on
their size. The shorter a target sequence is, the lower its error rate will be. Skipping
details, before sequencing takes place, the target sequence is transformed in a circular
sequence. This circular sequence can be sequenced over and over again if the read length
exceeds the target length. For example, if the current read being produced will have
around 50kb, and the target sequence is 5kb long, then the raw PacBio read, called
continuous long read (CLR), will contain around 10 copies of the target sequence.
Each such copy is called subread, and the consensus of all subreads is a Read of Insert
(ROI). However, if a target sequence is too long to be sequenced multiple times, only a
(partial) single subread is generated. A nice feature of PacBio sequencing is the absence
of systematic sequencing errors: errors are randomly distributed. Therefore, if a CLR
contains enough copies of a target sequence, its ROI will represent a fragment of DNA of
several kbs and low error rate (>99% accuracy can be reached with 15 copies [31,102]).
As expected, longer target sequences yield fewer copies in a CLR, and therefore produce
less accurate ROIs. In a PacBio communication [13], it is shown that the most recent
PacBio instrument (PacBio Sequel) outputs reads (CLRs) with an average length of 30kb.
In one experiment, by size-selecting target DNAs with more than 20kb, half of the output
base pairs are in reads with more than 45kb (also known as N50 > 45kb), and the length
of the 5% longest reads exceeds 150kb. If the size-selection procedure targets sequences
with less than 20kb, N50 > 190kb, and the length of the 5% longest reads exceeds 280kb.

ONT sequencing has, theoretically, no instrument-imposed limitation on the size
of reads that can be generated [62]. However, recent results show similar read lengths
as PacBio’s. Ultralong reads protocols, such as the one described in [51], achieved an
average read length of 24kb and N50 around 100kb. However, ONT also achieved the
first ever >1 Mbp read in December 2017 [121]. The main advantages of ONT in relation
to PacBio are: i) portability — one of the ONT instruments, MinION, weighs under

2.3 Bioinformatics 53

100g, and plugs into a PC or laptop, no additional computing infrastructure is required,
thus its usage is not constrained to a laboratory environment; ii) lower instrument cost;
iii) ability to sequence RNA directly. The main disadvantages are: i) unlike PacBio,
ONT presents systematic indel sequencing errors in homopolymer runs (sequences of
consecutive bases, in practice, runs with more than 6 bases can already be problematic);
ii) ONT’s 1D? protocol reduces errors by sequencing a target DNA twice (similar to
PacBio’s ROIs). However, it is unable to lower the error rate to the PacBio level due
to systematic sequencing errors and the number of copies being too small (maximum of
two).

Main differences between DNA and RNA sequencing

While DNA and RNA sequencing share a lot of similarities, they also present striking
differences. In DNA sequencing, all sequencing technologies explained in the previous
subsections generally achieve an almost uniform coverage of the genome, i.e. at any
given position of the genome there is an average number of reads covering it (e.g. on a
50x sequencing, we have on average 50 reads covering any position of the genome). In
RNA sequencing, we do not have a uniform read coverage of the expressed transcripts,
due to the different levels of isoform expression. Some transcripts are highly expressed,
and therefore highly covered, while others are lowly expressed and thus lowly covered.
Sequencing errors derived from reads from a highly expressed transcript may be more
abundant than correct bases derived from reads from a transcript that is not highly
expressed [38]. Therefore, dealing with errors in RNA sequencing is more complicated
than in the DNA context. Moreover, read coverage may be uneven across the transcript’s
length, owing to sequencing biases [38]. The mRNA can also be degraded when collected
to be sequenced, which results in partial transcript sequencing, mostly observed with
3GS (staircase effect). Further, the most commonly used protocol to extract RNA yields
pre-mRNA fractions between 5 and 15% [122]. This small mix of pre-mRNA can cause
issues on processing the data, if not addressed correctly [77]. While 3GS has the power
to provide the full transcript structure, the large majority of mRNAs do not exceed a
few kilobases. Therefore, having the ability to sequence very long reads might not be
as useful as in the DNA scenario. However, PacBio takes advantage of sequencing reads
longer than transcripts by having several copies of a target mRNA in a single CLR,
creating very accurate ROIs, even for poorly expressed genes. Size selection is however
an issue, as it favours some transcripts over others, and produces biased quantifications.

2.3.2 Processing of 2GS and 3GS data

In this section, we describe some means to process 2GS and 3GS data. We will restrict
ourselves only to the methods and analysis pipelines in the scope of this thesis.

54 Background

References

A reference genome is a set of strings that try to represent the nucleotide sequences of
an organism’s chromosomes. The reference genome is usually the best assembled genome
for a given species, normally built using high-quality data from different sequencing ma-
chines and several assembly methods, validated by post-assembly analyses. However, it
is still an haploid version of the genome of a single random individual, and does not
represent the polymorphisms present in this individual, and in population from which
this individual was extracted. In many applications, the value of the genome is only as
good as its annotation [118]. Genome annotation is the process of taking the raw
DNA sequence produced by the genome-sequencing projects and adding layers or tracks
with biological information and interpretation about specific fragments of DNA [118]. A
concrete example is taking a newly sequenced genome and identifying which segments
of the DNA sequence correspond to genes, and repeats, for instance. In addition, the
genes can be further annotated by identifying novel transcription and splice sites, and
the function of each alternative transcript. Repeats can be classified into different fam-
ilies, based on their similarity. Finally, the aim of high-quality annotation is to identify
the key features of the genome: genes, splicing sites, alternative transcripts, non-coding
RNAs, regulatory regions, repetitive elements, variations, etc [118]|. A reference tran-
scriptome is the set of known mRNA sequences of an organism. It can be obtained
from the genome annotation.

Read mapping or read alignment

Read mapping or read alignment is the process of determining the most likely source
within a reference genome sequence for the observed sequencing read, given the knowledge
of which species the read has come from. In the absence of a reference genome for the
studied species, sequencing reads may also be aligned to other genomes, assuming the
evolutionary distance between the genomes is appropriate |[32|. Genomic read mapping
algorithms aim at determining the fragments of a genome that are very similar to a given
read, i.e. the edit distance between the read and such fragments must be small, bounded
by a function on the species polymorphism rate and the sequencing technology error rate
[32]. In one situation, aligning DNA and RNA-sequencing reads to a reference genome
can be very different. This happens when a RNA-sequencing read spans two or more
exons. In this case, the mapping algorithm must be aware that a read can be mapped in a
genome with long gaps, which represent the introns between the spanned exons. Methods
implementing such algorithms are known as splice-aware mappers. In some works of
this thesis, we make use of such mappers to align 2GS and 3GS RNA sequencing reads.
Among the most appropriate splice-aware mappers, we can cite: BBMap [18], gmap [130],
Hisat2 [56], minimap2 [71], STAR [29], and Tophat2 [57].

Transcriptome and genome assembly from 2GS data

Transcriptome (genome) assembly is the task of assembling the original transcrip-
tome (genome) from a set of sequenced reads. There are two approaches for transcriptome

2.3 Bioinformatics 55

(genome) assembly: reference-based and de novo. Here we will focus mainly on de novo
transcriptome assembly from 2GS data. Assembling transcriptomes from short reads
is not a trivial task. Grabherr et al. 38| highlight some of these difficulties: (i) some
transcripts have low coverage, whereas others are highly expressed; (ii) read coverage
may be uneven across the transcript’s length, owing to sequencing biases; (iii) reads with
sequencing errors derived from a highly expressed transcript may be more abundant than
correct reads from a transcript that is not highly expressed; (iv) transcripts encoded by
adjacent loci can overlap and thus can be erroneously fused to form a chimeric tran-
script; (v) data structures need to accommodate multiple transcripts per locus, owing
to alternative splicing; and (vi) sequences that are repeated in different genes introduce
ambiguity.

A reference-based transcriptome assembly algorithm uses alignments of reads
to the genome to identify clusters of reads that represent potential transcripts. It then
builds transcript assemblies from these alignments. If paired-end reads are available,
they improve the ability of the assembler to link together exons belonging to the same
transcript [99]. Some advantages of reference-based strategies are: i) very high sen-
sitivity, since a few reads mapping to a known isoform can be enough evidence for its
identification; ii) performance, since the underlying algorithms of such methods are aided
by high-quality references, usually translating into faster methods. Their disadvantages
include: i) the resulting assemblies might be biased towards the used reference, and true
variations might be discarded in favour of known isoforms; ii) unsuitable for samples
with a partial or missing reference genome [38]; iii) such methods depend on correct
read-to-reference alignment, a task that is complicated by splicing, sequencing errors,
polyploidism, multiple read mapping, mismatches caused by genome variation, and the
lack or incompleteness of many reference genomes [38,105]; iv) sometimes, the model
being studied is sufficiently different from the reference because it comes from a differ-
ent strain or line such that the mappings are not altogether reliable [114]|. Some of the
state-of-the-art methods for reference-based transcriptome assembly are: Cufflinks [126],
MISO [53], Scallop [115], Scripture [41], StringTie [99], Traph [124], and Traphlor [60].
De novo transcriptome assembly, on the other hand, uses only the information
from the reads, being agnostic to any additional external information. Some advantages
of de novo strategies are: i) they do not require any read-reference alignments, important
when the genomic sequence is not available, is gapped, highly fragmented or substantially
altered, as in cancer cells [38]; ii) the fact that they are applicable to the discovery of tran-
scripts that are missing or incomplete in the reference [42]. The disadvantages include: i)
the assembly of short reads is itself difficult, and only the most abundant transcripts are
likely to be fully assembled [42]; ii) reconstruction heuristics are usually employed, which
may lead to missing infrequent alternative transcripts while highly similar transcripts are
likely to be assembled into a single transcript [84]; iii) de novo methods usually require far
more computational power than reference-based strategies. Some of the state-of-the-art
methods for de novo transcriptome assembly are: Oases [114], SOAPdenovo-Trans [132],
Trans-ABySS [105] and Trinity [38].

Reconstructing full-length transcripts from short reads in a de novo context is chal-

56 Background

lenging. The outcome of this process could lead to misassemblies, like chimeric or trun-
cated transcripts. An assembled chimeric transcript is an artificial isoform composed
of parts from two or more real isoforms. Chimerism usually happens when assemblers
try to infer the correct assembly, despite not having enough information to do so. Even
with perfect reads and uniform coverage across the transcripts, alternative splicing might
induce ambiguities in the assembly process that short reads data are incapable to solve.
This is particularly true when two transcripts have similar expression. A small example
of full-length transcriptome assembly difficulty, which can lead to chimerism, can be seen
in Figure 2.13. Sometimes, some assemblers choose the alternative to be conservative, i.e.
not extending the assembled sequence due to the risk of creating chimeric transcripts, but
then producing truncated transcripts. An assembled truncated transcript is a partial
isoform of a real isoform. Although such conservative strategy can lead to an accurate
assembly, it will produce a very fragmented one, which is not desirable. Transcript trun-
cation can be observed mainly when transcripts share inter-gene repeats, i.e. repeats
present in several unrelated genes. In such cases, the choice an assembler has to make is
far more complicated than the theoretical situation depicted in Figure 2.13, occasionally
leading to the assembler making no choice and thus truncating the transcript. As a real
example, Figure 2.14 shows a transcript assembled by Trinity [38] in a real dataset whose
end was truncated due to a high-copy-number repeat. Many factors contribute to the
hardness of full-length transcriptome assembly. The main issue is certainly that reads are
short, and can therefore be ambiguously assigned to multiple transcripts. In particular,
in the case of alternative splicing, reads stemming from constitutive exons can be as-
signed to any alternative transcript containing this exon. Finding the correct transcript
is often not possible given the short read data, and any choice will be arguable [107].

The issue presented in Figures 2.13 and 2.14 is not specific to transcriptomics. We
have a similar scenario in genomics, when sequencing reads (or fragments) are shorter
than repeats. This short read/long repeat issue is an old problem that has been around
since the first algorithms for genome assembly. Even though the problems repeats cause
in both DNA and RNA contexts are similar, they have also some characteristics that
are specific to each. In genome assembly, repeats tend to be longer and present in more
copies. In transcriptome assembly, constitutive exons between different isoforms from a
same gene can be regarded as repeated sequences connecting unique regions. Paralog
genes compose a special case, which can affect both contexts. Such genes can indeed be
seen as genomic repeats, and if more than one copy of a paralogous family is expressed, it
can also cause repeat-related issues to transcriptome assembly. Further, genomic repeats
can also be located within genes, although they tend to be shorter and in fewer copies.
This is specially true when genes host transposable elements within their introns, and
less frequently but still present, within their UTRs and also as exons (e.g. exonised
repeats). Even if a repeat-containing intron is spliced out in the splicing phase, this
intron, and consequently the repeat, can still be present in RNA-seq data. The most
commonly used RNA extraction protocol yields pre-mRNA fractions around 5% [122].
Thus, more introns than expected are sequenced, generating problems for transcriptome
assemblers, particularly when such introns contain several members of a specific repeat

2.3 Bioinformatics 57

(A) GENE G

—' A |—| B |—| c |—| D H E l—w

(B) TRANSCRIPTS

TRANSCRIPT 1 | A | B | D I Ei m
[¢]

TRANSCRIPT 2 I A | C | D | E

L_a [8 | o [e [Jef

(D) ASSEMBLY GRAPH

s]
. 5 :

(E) POSSIBLE ASSEMBLIES

{ L a |
Correct
LA |
{ L a |
Chimeric
LA |

Figure 2.13: A theoretical scenario showing a small example of full-length transcriptome
assembly difficulty, which can potentially lead to chimerism. (A) A gene G with its exons
represented as boxes and introns as lines (this example is not realistic since normally
introns are way longer than exons, but we will take the liberty of drawing very short
introns due to illustration purposes); (B) The two expressed transcripts from G; (C) A
perfect paired-end sequencing of both transcripts: error-free, uniform, and deep read
coverage through the transcripts; (D) Any de novo assembler, be it based on graphs
or other models, will eventually have to make decisions which are equivalent on how
to assemble paths in the depicted assembly graph. Observe that the vertices’ colouring,
which allows us to differentiate which vertices are common and unique to each transcript,
are not available to assemblers; (E) The possible assemblies can be correct or chimeric.
Since the length of the fragments is shorter than the common region (exons D and E) of
both transcripts that connects their unique regions (exons B, C, F, and G), there is no
read information connecting exons B and G or exons C and F. In this situation, assemblers
might use the coverage information to distinguish unique regions from both transcripts
and try to correctly assemble them. However, even in this simple example, if transcripts
have similar expression, it is unclear how to differentiate the correct assemblies from the
chimeric ones. In real datasets, heterogeneity of coverage across the transcripts makes
this task even harder.

&

(o]
o
m
-n

(g}

o

m
o]

w
o
m

Kl

58 Background

chr19+:53066195-53066841

AluSq - SINE/AlU #

oy

e m'\%

K

Low assemblability Region

|
§

Figure 2.14: A real scenario in a human dataset where a transcript was truncated due
to a short interspersed repeat, an Alu, which is present over one million times in the
human genome. This small neighbourhood view around the transcript already shows
how complex it is to make a decision. Transcriptome assemblers will usually employ
techniques to remove paths that are unlikely to be correct, but the decision is still far from
being trivial and error-prone. Thus, some assemblers decide to truncate the transcript.

2.3 Bioinformatics 59

family. Therefore, we can say that alternative splicing, paralogy and genic repeats causes
issues and complicates the transcriptome assembly task.

Some strategies have been employed by the vast number of assemblers developed
in the last years to try to cope with the short read/long repeat issue. One of the most
well known is Myers’ A-statistics [87,89]. It uses the coverage of a sequence to discrim-
inate contigs that correspond to repeats, as the coverage is related to the copy-number
of the repeat in the genome. However, in the RNA context, the coverage of a gene re-
flects mostly its expression level. RNA-seq specificities complicate the application of a
genomic repeat-solving strategy to the transcriptomic context. Although some strategies
managed to be successful in some scenarios, this issue can only be reliably solved with the
read information. As such, many complex and repeat-dense regions a genome are being
correctly assembled only in the recent years, with the advent of 3GS, which is able to
span far longer repeats than 2GS. In the case of transcriptome assembly, 3GS reads are
usually able to sequence full-length transcripts directly, thus eliminating the assembly
step altogether. Such long reads are able to completely describe the isoforms’ structure,
revealing previously unknown distant exon couplings.

De novo assembly using de Bruijn Graphs

The two main approaches for de novo assembly are based on the Overlap-Layout-Consensus
strategy and on de Bruijn graphs. In short, the Overlap-Layout-Consensus (OLC)
strategy, as the name suggests, is composed by three phases. The first phase, overlap,
computes all the overlaps between all pair of reads in order to find significant prefix-suffix
overlaps (which can be inexact). In this phase, some optimizations can take place in or-
der to avoid computing fruitless overlaps, and an overlap is considered significant if it
exceeds a score or length threshold. The overlap graph OG = (V| E) is then built, where
V is the set of reads and (ri,72) € E if there is a significant overlap between a suffix
of r1 and a prefix of r. As the overlap graph can be complex and tangled, the layout
phase simplifies it, with the goal of linearizing it. The most common simplification in this
step is the transitive reduction [86]. In the last phase, consensus, paths are enumerated
which theoretically correspond to the original sequenced molecules. The OLC strategy
is fit for sequencing technologies that produce longer but fewer reads, and is able to han-
dle a high-rate of sequencing errors through inexact overlaps. Thus it was successfully
applied to Sanger data, and now it is making a comeback due to the characteristics of
3GS reads [19]. The computational burden of the overlap phase restricted a bit its use
on 2GS reads, due to the fact that such reads are short and massively produced, but
it was still appropriate for processing 454 data. As such, the OLC strategy has been
applied to several Sanger and 2GS assemblers, e.g. CAP3 [46], Celera [87], Edena [44],
Newbler [83], etc. More recently, it has also been applied to 3GS reads, e.g. Canu [12],
Miniasm [70], LQS? [78], etc. However, as this thesis does not focus on OLC strategies,
we will not develop further on this approach.

The majority of the works in this thesis is based on de Bruijn graphs. Here, we

3This assembly pipeline does not have a proper name, LQS are the initials of its authors’ names.

60 Background

describe this data structure. Given a string s, a k-mer is a substring of s of length k.
Given an integer k and a set S of strings each of length n > k, we define span(S, k)
as the set of all distinct k-mers in S. The (directed) de Bruijn graph (DBG) of a
set S of strings with order k is the graph Gg(S) = (V, A) where V = span(S, k) and
(u,v) € A if and only if u[2, k] = v[1,k — 1]. Informally, DBGs are directed graphs that
efficiently represent much of the information contained in a set of sequences. Vertices
represent all the unique k-mers, and arcs represent (k-1)-exact-overlaps between k-mers.
See Figure 2.15A-B for an example of a DBG.

(A) DBG representsoverlaps between strings
= DBG with k=4

51 ..CCTTCGC..
CCTTCG

= ~—GTT—(T

All strings of length k=4 are considered Overlaps of length k-1=3 are represented by edges in the graph

52 .

—_—

(B) A point mutation issummarized asa bubbleinthe graph

51 ..CCTTCGCTAGTA.. e TCGC—>CGCT—> GCTA— CTAG~
[TIIT1 (11 5 =—CCTT—CTTC—TTC TAGT —AGTA—>
s2 .CCTTCGATAGTA.. L T

(C) DBG can be compacted

DBG with k=4 TCGC—*CGCT—'GCTA—’CTAG\- compacted DBG (CDW‘“<TCGCTAG\

CCTT— CTTC— TTCG< G TAGT — AGTA > CCTTCE _JTAGTA
TCGA— CGAT—GATA—ATAG TCGATAG

Figure 2.15: Compacted DBG construction over a set of sequences differing by a single
point mutation. In this example, two sequences s; and s of length 12 differ by a single
letter. (A) All k-mers (k = 4) present in these sequences are listed. A link is drawn
between two k-mers when the £ — 1 = 3 last nucleotides of the first k-mer equal the
3 first nucleotides of the second k-mer; (B) The bubble pattern represents the SNP C
to A; each branch of the bubble represents an allele; (C) Linear paths of the graph are
compacted; the compacted DBG of the example only contains four vertices (unitigs) and
represents the same variation as the original DBG, which contained 13 vertices (k-mers).
Figure reproduced from [48|.

The abundance of a vertex v € Gi(95), denoted by a(v), is the number of times its
associated k-mer appears in S. The relative out-abundance (in-abundance) of an
arc e = (s,t) € Gi(9) is ra™(e) = a(t)/ Yo pen+s av) (ra”(e) = a(s)/ X ,en-) alv)).
An arc (u,v) € A is called compressible if d*(u) = 1 and d~(v) = 1. The intuition
behind this definition comes from the fact that every path passing through u should
also pass through v. It should therefore be possible to "compress"’ or contract this arc
without losing any information. A compressed de Bruijn graph (¢cDBG) (some
authors also use the term compacted de Bruijn graph) can be obtained from a de
Bruijn graph by replacing, for each compressible arc (u,v), the vertices u,v by a new
vertex z, where N~ (z) = N~ (u), N*(z) = N*(v) and the label is the concatenation of
the k-mer of u and the k-mer of v without the overlapping part (see Figure 2.16). This

2.3 Bioinformatics 61

process is repeated until no compressible arc remains. An alternative similar approach
to create cDBGs is by merging linear paths (sequences of vertices not linked to more
than two other vertices) of the DBG into a single vertex, with the label of this vertex
being the sequence spelled by the linear path. The vertices of cDBGs are called unitigs.
Figure 2.15C shows an example of constructing a cDBG.

ACT GAT |ACT| | GAT|
CTG TGA
il Fct] [cag]
(a) (b)

Figure 2.16: Example of compressible arc in a DBG. (a) The arc (CTG, TGA) is the
only compressible arc in the given DBG (k = 3). (b) The result of compressing the arc.
Figure reproduced from [77].

DBGs were extensively used in processing Illumina reads, due to some reasons. The
first one is efficiency. Usually, the first step in building a DBG is breaking reads into
k-mers it is far more efficient computationally to work on the set of unique k-mers than
on the set of Illumina reads. The information lost due to breaking reads into k-mers is
not a severe issue when working with Illumina data, since such reads are shorter than
Sanger and 3GS reads, and not so longer than the k-mer size. Further, DBGs can be
efficiently implemented through data structures that allow fast (amortized) insert and
query operations, as it can be viewed as a set of elements (k-mers). As such, DBGs can
be efficiently implemented through specialized structures, such as hash tables [23], bloom
filters |21, 30], FM-indexes [10,81], etc. Therefore, DBG construction avoids altogether
the expensive all-pairs read overlap of the OLC approach, being more suitable to the
massive [llumina datasets. A second reason lies on the fact that Illumina reads have low
error-rate and very high throughput. Thus, the probability of having error-free parts
of short reads covering a region is very high, and therefore the issue that DBGs do not
model inexact overlaps is minimized. Further, in some applications, like searching for
small genomic variations, such as SNPs and small indels, explicitly representing each
base from the input reads can be an advantage. We should expand, however, on one
of the biggest flaws of modeling sequences through DBGs: the fact that DBGs lose the
information that a set of k-mers came from the same read, which can be valuable. As
an example, it might not be possible to correctly assemble two different transcripts that
share a common substring s with |s| = k, if the read information is lost. However, as
the read length is normally larger than k, the resolution of such short repeats is possible
using the read information. When the length of the reads becomes larger, and the read
information becomes more valuable, then the use of the classical DBG is arguable, with
approaches utilizing the full read length, like OLC, maybe performing better.

DBG-based assemblers usually present a common set of steps. The first is, as ex-

62 Background

pected, building the DBG from the set of raw reads. The second is graph simplification,
where bubbles, tips (short dead-ends), arcs and vertices likely corresponding to sequenc-
ing errors are removed and the graph becomes smaller and more linear. In general, global
assemblers are usually not interested in small genomic variations, and thus remove bub-
bles induced by true SNPs/indels. Assemblers can differentiate sequencing error artifacts
from true variations using coverage. In a diploid genome, for example, both paths of a
bubble due to a SNP are expected to have similar coverage, while in a sequencing-error-
induced bubble, the erroneous base would spell a very low coverage path. Sequencing
errors removal is trickier in the RNA context due to: i) errors in highly expressed genes
generating k-mers sometimes more frequent than correct k-mers in non-highly expressed
genes; ii) SNPs in poorly expressed genes may be mistaken for sequencing errors due to
the low number of reads supporting each allele; iii) transcripts exhibit a 5 to 3’ hetero-
geneity of coverage due to technical sequencing reasons. Genome assemblers are usually
more aggressive than transcriptome assemblers in this step, since their goal is to assemble
the reads into few sequences, and they can rely on an almost uniform coverage across
the genome. Transcriptome assemblers cannot afford to be so aggressive, since they
risk removing true variations due to alternative splicing and transcription. The linear
paths obtained after such simplifications are called contigs. Transcriptome assemblers
normally include an additional step responsible for partitioning the graph into gene com-
ponents. Finally, the last step involves finding the most likely set of paths that describes
the original chromosomes or isoforms.

Local assembly of alternative splicing events

This subsection is heavily based on [107].

We have explored in the previous subsections how hard and error-prone full-length
transcriptome assembly from short reads can be. Although current full-length transcrip-
tome assemblers do a great job, many transcripts remain hard to be fully assembled,
mainly due to the short length of 2GS reads. This could impact downstream analyses,
which are biased towards well-assembled isoforms. Further, assemblers apply heuristics
to produce longer sequences, such as tip and bubble removal, which could result in a loss
of information that could be relevant to study variations in transcriptomic data. There-
fore, it is not always necessary or desirable to aim at the difficult goal of assembling
full-length molecules. For the study of alternative splicing, for example, assembling only
the variable parts between the isoforms can be already very valuable.

If we represent the raw reads data through DBGs, the variable parts between two
isoforms due to alternative splicing will be flanked by invariable parts, thus composing a
bubble in the DBG. In general, any pattern asb and as’b in the input sequences, with a,
b, s, s € ¥* |a| > k,|b| > k, and s and s’ not sharing any k-mer, creates a bubble in the
DBG. We note that i) transcriptional events do not compose bubbles but forks; ii) other
types of events, besides alternative splicing, can compose bubbles, e.g. genomic SNPs or
indels, recombinations, repeats, etc. Figure 2.17 shows two transcripts with alternative
start and termination sites (transcriptional variations) and with two alternative splicing
events, and the structures these variations induce in a DBG.

2.3 Bioinformatics 63

(A) GENE G AND TWO TRANSCRIPTS

Bubble 2

Figure 2.17: Two transcripts 7’1 and 72 from a same gene GG with transcriptional and
alternative splicing variations, and the structures these variations induce in a DBG.
(A) The gene G and the two transcripts 71 and T2. Variable parts are highlighted
in red, constitutive (invariable) parts are shown in grey. AT stands for Alternative
Transcription event, and AS for Alternative Splicing event. (B) The DBG from 71 and
T2. For simplification purposes, we are not representing junction k-mers (i.e. k-mers
having bases stemming from two consecutive exons, e.g. in the arc from exon B to C
in Bubble 1, in reality, we have k-mers that make the junction of exons B and C). This
specific alternative transcription start site does not induce any structure in the DBG,
but the alternative splicing events induce bubbles that are flanked by constitutive parts
(grey regions) and composed by variable parts (red regions). Alternative transcriptions
can, however, induce fork structures, like the alternative transcription end depicted here.
Bubble 1 represents an alternative 3’ splice site of exon B, and Bubble 2 represents the
skipping of exon D.

KisSplice [107] is a method for assembling alternative splicing events through the
enumeration of bubbles in DBGs built from short RNA-sequencing reads. It is composed
of seven main steps:

1. DBG construction. Construction of the cDBG from short RNA-sequencing
reads. To deal with sequencing errors, k-mers present less than ¢ (default 2) times
in the read set are removed;

2. Relative error removal. The absolute threshold applied in the previous step
normally does not work on highly expressed genes, where an error can be present
more than c times due to deep coverage. In this step, a relative error removal
procedure is applied, by removing the arcs e € Gg|ra™(e) < ramin or ra=(e) <
TQpmin, Where 7a, is the minimum relative abundance threshold (defaults to 0.05);

64

Background

3. Biconnected component (BCC) decomposition. BCCs of an undirected

graph form a partition of the edges with two important properties: every cycle
is contained in exactly one BCC, and every edge not contained in a cycle forms a
singleton BCC. All singleton BCCs are then discarded, since they cannot contain
any bubble. This step reduced a lot the memory footprint and the computation
time of the pipeline;

. Four-vertices compression. Single substitution events (SNPs, sequencing er-

rors) generate a large number of cycles themselves included into bigger ones, cre-
ating a combinatorial explosion of the number of possible bubbles. This step com-
presses bubbles such that both of its paths are composed by only one non-branching
vertex, and the sequences of these vertices differ by only one mismatch. It does not
compress all the SNPs, but a part of them;

. Bubble enumeration. Bubbles are listed in this step. This step is critical for

performance and has been improved in several works. The first algorithm used a
backtracking procedure augmented with two pruning criteria [107]. Birmelé et al.
in [14] describe the first linear delay algorithm to enumerate all bubbles with a
given source. However, these two algorithms have two big issues: (i) the bubble
space is huge in real data, so exploring a big part of it is costly; (ii) not all bubbles
are interesting — some constraints can be applied to filter out the majority of non-
interesting bubbles. Clearly, such filters can always be applied to post-process
the output of a bubble enumeration algorithm, but this does not translate into
faster running times. Further, observing that AS events are usually not so long,
in [108] the authors proposed the first polynomial-delay algorithm to list bubbles
with maximum length constraints in a weighted directed graph. Formally, the
algorithm described in [108] enumerates (s,t, a1, ag)-bubbles, i.e. bubbles with
source s and target ¢ such that the paths p; and py of the bubbles satisfy |p1| <
ap and |pa2] < ag. Some AS events are systematically missed by this algorithm,
such as intron retention events (can be several kbs long), and multi exon splicing
events (can also be on the order of kbs), but in many species these are not the
common AS events. Even so, there were still certain complex regions in the graph,
likely containing repeat-associated subgraphs, but also real AS events, where the
most improved algorithm would still take a huge amount of time. In practice, the
enumeration is halted after a given timeout and the bubbles trapped inside these
regions were thus missed. A study on the subgraphs induced by repeats showed
that enumerating all bubbles with at most b branching vertices (b = 5 by default) in
each path allowed the algorithm to implicitly avoid repeat-containing regions during
the assembly, and thus be able to enumerate even bubbles trapped inside repeat-
induced subgraphs (if their paths do not traverse repeats). Of course, all AS events
containing repeats (e.g. exonised exons and many intron retentions) are missed
due to this filtering, but the advantage is that the non-repeat-containing bubbles
are efficiently and exhaustively enumerated, enabling a better understanding of the
AS events in datasets of many species. Chapter 3 explores in detail this algorithm;

2.3 Bioinformatics 65

6. Results filtration and classification. By comparing and aligning both paths of
a bubble, the latter can be classified into putative: (i) SNPs; (ii) AS events; (iii)
small indels; (iv) repeats; (v) undefined.

7. Read coherence and coverage computation. Reads from each input dataset
are mapped to each path of the bubble. If at least one nucleotide of a path is
covered by no read, the bubble is said to be not read-coherent and is discarded.
The coverage of each position of the bubble corresponds to the number of reads
overlapping this position.

KisSplice enables to tackle the problem of finding AS events without a reference
genome and without assembling full-length transcripts, which may be time consuming
and uses heuristics that may lead to a loss of information. It was the first software
to tackle the problem of exploring variations in RNA-sequencing data through a local
assembly perspective. It not only constitutes an important software to study AS events,
but also a useful complement to general purpose transcriptome assemblers.

Other relevant processing tasks of 2GS and 3GS data

Differential expression analyses. Differential expression analyses always come asso-
ciated to a biological question. In most cases, this question is inferring which genes or
transcripts are differentially expressed between two or more pathological or physiological
conditions. This would allow one to know the genes or transcripts that are inhibited in
one condition and activated in another condition, or vice-versa, giving clues that such
features are related to the studied condition. To find differentially expressed genes or
transcripts, we first need to know their expression levels. We usually do not have access
to such information, but it can be estimated by two main approaches. The first maps the
reads to a reference genome or transcriptome, and post-processes the mapping output to
estimate the quantification, using tools such as Cufflinks/Cuffquant [126], eXpress [104],
RSEM [66], featureCounts [73], etc. The mapping process is a rather computation-
ally expensive task. As such, other approaches avoid this step, using alignment-free or
pseudo-alignment algorithms, such as Sailfish [95], Kallisto [17], and Salmon [94]. Finally,
assessing if a gene or transcript is differentially expressed boils down to verifying if their
estimated expression levels significantly changes across conditions. This can be tested
using a variety of methods such as DESEQ2 [80], Cufflinks/Cuffdiff [125], NOISeq [120],
etc.

It is also possible to be more fine-grained in differential expression analysis by verify-
ing if there are differential AS events between two or more experimental conditions. This
could be more appropriate than gene or transcript differential analyses to answer some
biological questions, like inferring if the spliceosome acts differently in the studied con-
ditions, or more generally if there is a differential exon usage across conditions. In some
cases, where only the variable regions between isoforms are of interest, a differential AS
events analysis can be more appropriate, as it could be easier to assemble and more reli-
able to quantify such events than full-length transcripts, especially in a de novo context
with Illumina reads. The methodological principle is the same: first the AS events are

66 Background

quantified, and then a statistical method retrieves those that are differentially expressed.
Differential AS events can be found by tools such as KisSplice [107] (quantification) +
kissDE [11,79] (statistical method), Leafcutter [72], DEXSeq [4], etc.

Error correction. FError correction is the task of correcting sequencing errors from
reads. It is not a crucial task for 2GS reads, as the sequencing error rate of common Illu-
mina datasets is around 0.1%. but it can be seen as essential for some applications with
3GS data, where the error rate ranges from 10 to 15%. There exist two types of 3GS error-
correction algorithms, those using information from long reads only (self or non-hybrid
correction), and those using short reads to correct long reads (hybrid correction).
The output of such correction approaches can be classified into three types: full-length,
trimmed and split. Usually, due to methodological reasons, the ends of long reads are
harder to correct. As an example, hybrid corrections based on mapping short to long
reads and calling the consensus from the mapping have difficulties aligning short reads
to the ends of long reads. As such, some methods output trimmed error-corrected
reads, i.e. error-corrected reads such that their uncorrected ends were removed. Exam-
ples of methods producing this type of output are HALC |9], LoRDEC [110], LSC |[6],
proovread [43], daccord [123], and pbdagcon [22]. Sometimes, internal parts of long
reads can also be hard to correct, due to a lack of coverage of short reads, or due to
a very high variation rate, for example. Some algorithms thus output split error-
corrected reads, splitting one long read into several well-corrected fragments, such as
HALC [9], LoRDEC [110], PBcR [58], and LoRMA [111]. Finally, some tools decide to
not trim or split the original reads, outputting full-length error-corrected reads. Exam-
ples include HALC [9], LoRDEC [110], LSC [6], proovread [43], canu [59], daccord [123],
MECAT [131], and pbdagcon [22]. As can be noted, some tools produce more than one
type of output, sometimes all the three types.

Chapter 3

Playing hide and seek with repeats

1n

local and global de novo

transcriptome assembly of short
RNA-seq reads

Preamble

Key points

In opposition to the general consensus, repeats are an underestimated problem in
de novo transcriptome assembly, creating ambiguities and confusing assemblers.
Their presence are mainly due to the 5-15% of pre-mRNA fraction in common
RNA extraction protocols;

We introduce a simple, but realistic enough, formal model for representing high
copy-number and low-divergence repeats in RNA-seq data;

In the specific case of local assembly of alternative splicing events, we can avoid
processing repeats. This led us to lose all events containing repeats, but also
to significantly increase the sensitivity and the precision, outperforming previous
versions of KiSplice [107,108], Trinity [38], and Oases [114];

We show a proof of concept that exploring the topology of the subgraph around a
transcript can give some hints about its confidence level, quality, assembly hardness,
etc. This information can be as valuable as read and coverage information for
transcriptome assemblers and evaluators;

Transcriptome assemblers can be improved by explicitly and formally modeling
repeats.

Chapter 3. Playing hide and seek with repeats in local and global de novo
68 transcriptome assembly of short RINA-seq reads

Status
Published in journal Algorithms for Molecular Biology [77].

Author contributions

The first authorship is shared between L. and B. Sinaimeri. This paper is a journal
extension of the conference paper [109]. The conference paper focused only on local
transcriptome assembly. Here, we turn our focus also to global transcriptome assembly.

The main improvement regarding [109] is that we introduce a measure that can
be viewed as a proof of concept that exploring the topology of the subgraph around a
transcript can give some hints about its confidence level, quality, assembly hardness, etc.
More specifically, we explore a very simple characteristic of the topology of DBGs, based
on the observation that repeats create complicated regions, and we show that it is able
to flag chimeric and very fragmented transcripts built by Trinity [38], a state-of-the-art
transcriptome assembler, on real data. Furthermore, we compared the performance of our
simple measure with state-of-the-art transcriptome evaluation methods, Rsem-Eval |67]
and TransRate [117], on identifying assembled chimeric transcripts on two simulated and
two real datasets. Our simple measure outperforms both methods by a large margin in all
tests. Rsem-Eval and TransRate failed to flag chimeric transcripts stemming from genes
with similar expression levels, hinting that they rely heavily on coverage information. We
therefore show that the topology of assembly graphs should be taken into consideration
by both assemblers and evaluators.

Lima et al. Algorithms Mol Biol (2017) 12:2

DOI 10.1186/513015-017-0091-2 Algorith ms for
Molecular Biology

RESEARCH Open Access

Playing hide and seek with repeats @
in local and global de novo transcriptome
assembly of short RNA-seq reads

Leandro Lima'?"", Blerina Sinaimeri'?", Gustavo Sacomoto'?, Helene Lopez-Maestre'?, Camille Marchet?,
Vincent Miele?, Marie-France Sagot'? and Vincent Lacroix'

Abstract

Background: The main challenge in de novo genome assembly of DNA-seq data is certainly to deal with repeats
that are longer than the reads. In de novo transcriptome assembly of RNA-seq reads, on the other hand, this problem
has been underestimated so far. Even though we have fewer and shorter repeated sequences in transcriptomics, they
do create ambiguities and confuse assemblers if not addressed properly. Most transcriptome assemblers of short
reads are based on de Bruijn graphs (DBG) and have no clear and explicit model for repeats in RNA-seq data, relying
instead on heuristics to deal with them.

Results: The results of this work are threefold. First, we introduce a formal model for representing high copy-number
and low-divergence repeats in RNA-seq data and exploit its properties to infer a combinatorial characteristic of
repeat-associated subgraphs. We show that the problem of identifying such subgraphs in a DBG is NP-complete.
Second, we show that in the specific case of local assembly of alternative splicing (AS) events, we can implicitly avoid
such subgraphs, and we present an efficient algorithm to enumerate AS events that are not included in repeats.
Using simulated data, we show that this strategy is significantly more sensitive and precise than the previous ver-
sion of KisSpiice (Sacomoto et al. in WABI, pp 99-111, 1), Trinmy (Grabherr et al. in Nat Biotechnol 29(7):644-652, 2), and
Onses (Schulz et al. in Bioinformatics 28(8):1086-1092, 3), for the specific task of calling AS events. Third, we turn our
focus to full-length transcriptome assembly, and we show that exploring the topology of DBGs can improve de novo
transcriptome evaluation methods. Based on the observation that repeats create complicated regions in a DBG, and
when assemblers try to traverse these regions, they can infer erroneous transcripts, we propose a measure to flag
transcripts traversing such troublesome regions, thereby giving a confidence level for each transcript. The originality
of our work when compared to other transcriptome evaluation methods is that we use only the topology of the DBG,
and not read nor coverage information. We show that our simple method gives better results than Rsem-Eval (Li et al.
in Genome Biol 15(12):553, 4) and TransRaTe (Smith-Unna et al. in Genome Res 26(8):1134-1144, 5) on both real and
simulated datasets for detecting chimeras, and therefore is able to capture assembly errors missed by these methods.

Keywords: Transcriptome assembly, RNA-seq, Repeats, Alternative splicing, Formal model for representing repeats,
Enumeration algorithm, De Bruijn graph topology, Assembly evaluation

*Correspondence: leandro.ishilima@gmail.com

"Leandro Lima and Blerina Sinaimeri contributed equally to this work

2 CNRS, UMR5558, Université Claude Bernard Lyon 1, 43, Boulevard du 11
Novembre 1918, 69622 Villeurbanne, France

Full list of author information is available at the end of the article

- © The Author(s) 2017.This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

() Biomed Centra| (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lima et al. Algorithms Mol Biol (2017) 12:2

Background

Transcriptomes can now be studied through sequenc-
ing. However, in the absence of a reference genome, de
novo assembly remains a challenging task. The main
difficulty certainly comes from the fact that sequencing
reads are short, and repeated sequences within tran-
scriptomes could be longer than the reads. This short
read/long repeat issue is of course not specific to tran-
scriptome sequencing. It is an old problem that has been
around since the first algorithms for genome assembly.
Even though the problems repeats cause in both contexts
are similar, they have also some characteristics that are
specific to each. In genome assembly, repeats tend to
be longer and present in more copies. In transcriptome
assembly, repeats are located within genes and tend to
be shorter and in fewer copies. However, in this last case,
coverage cannot be applied to discriminate contigs that
correspond to repeats, as it can be in genomics by using
e.g. Myers’ A-statistics [6, 7], since the coverage of a gene
does not only reflect its copy-number in the genome,
but also and mostly its expression level. Some genes are
highly expressed and therefore highly covered, while
most genes are poorly expressed and therefore poorly
covered. Such specificities complicate the application of
a genomic repeat-solving strategy to the transcriptomic
context.

Initially, it was thought that repeats would not be a
major issue in RNA-seq, since they are mostly in introns
and intergenic regions. However, the truth is that many
regions which are thought to be intergenic are tran-
scribed [8] and introns are not always already spliced out
when mRNA is collected to be sequenced [9]. Repeats,
especially transposable elements, are therefore very pre-
sent in real samples and cause major problems in tran-
scriptome assembly, if not addressed properly.

Most, if not all current short-read transcriptome
assemblers are based on de Bruijn graphs. Among the
best known are OAsgs [3], TRINITY [2], and to a lesser
degree TRANS-ABYss [10] and IDBA-TRAN [11]. Com-
mon to all of them is the lack of a clear and explicit model
for repeats in RNA-seq data. Heuristics are thus used
to try and cope efficiently with repeats. For instance,
in Oasks short vertices are thought to correspond to
repeats and are therefore not used for assembling genes.
They are added in a second step, which hopefully causes
genes sharing repeats not to be assembled together.
In TRINITY, there is no attempt to deal with repeats by
explicitly modelling them. The first module of TRINITY,
Inchworm, will try and assemble the most covered con-
tig which hopefully corresponds to the most abundant
alternative transcript. Then alternative exons are glued
to this major transcript to form a splicing graph. The last
step is to enumerate all alternative transcripts. If repeats

Page 2 of 19

are present, their high coverage may be interpreted as a
highly expressed link between two unrelated transcripts.
Overall, assembled transcripts may be chimeric or
spliced into many sub-transcripts.

In the method we had previously developed, KisSpLICE,
which is a local transcriptome assembler [12], repeats are
less problematic since the goal is not to assemble full-
length transcripts. KisSPLICE instead aims at finding
variants in transcriptomes (SNPs, indels and alternative
splicings). However, as we reported in [12], KisSpLICE
was not able to deal with large portions of a de Bruijn
graph containing subgraphs associated to highly repeated
sequences, e.g. transposable elements, the so-called com-
plex Biconnected Components.

Here, we try and achieve three goals: (1) give a clear
formalisation of the notion of repeats with high copy-
number in RNA-seq data, (2) apply it on local transcrip-
tome assembly by giving a practical way to enumerate
bubbles that are lost because of such repeats, and (3)
apply it on global transcriptome assembly by showing
that the topology of the subgraph around a transcript can
give some hints about its confidence level. Recall that we
are in a de novo context, so we assume that neither a ref-
erence genome/transcriptome nor a database of known
repeats, e.g. REPBASE [13], are available.

First, we formally introduce a model for represent-
ing high copy-number repeats and exploit its properties
to infer that repeat-associated subgraphs in a de Bruijn
graph contain few compressible arcs. However, we show
that the problem of identifying, in a de Bruijn graph, a
subgraph corresponding to repeats according to such
characterisation is NP-complete. A polynomial time
algorithm is therefore unlikely to exist.

Second, we show that in the specific case of a local
assembly of alternative splicing (AS) events, by using a
strategy based on the compressible-arc characterization,
we can implicitly avoid such subgraphs. More precisely,
it is possible to find the structures (i.e. bubbles) corre-
sponding to AS events in a de Bruijn graph that are not
contained in a repeat-associated subgraph (see Fig. 3 for
an example). While there has been great efforts in the lit-
erature to solve repeats, there has been almost no explo-
ration on how to avoid them. This is explained by the fact
that most efforts in assembly concentrate on full-length
genome and transcriptome assembly, in which avoid-
ing repeats is not an option, and the performance of an
assembler can be narrowed down to how well it solves
repeats. However, in our case, repeat-avoidance can be
an effective technique. Indeed, this fact was confirmed by
our experiments, where using human simulated RNA-seq
data, we show that the new algorithm improves signifi-
cantly the sensitivity of KisSpLicE, while also improv-
ing its precision. We further compared our algorithm to

Lima et al. Algorithms Mol Biol (2017) 12:2

two of the best transcriptome assemblers, namely TRIN-
1TY [2] and OAsEs [3], in the specific task of calling AS
events, and we show that our algorithm is more sensitive
than both tools, while also being more precise. In addi-
tion, our results show that the advantage of using the new
algorithm proposed in this work is more evident when
the input data contains high pre-mRNA content or the
AS events of interest stem from highly-expressed genes.
Moreover, we give an indication of the usefulness of our
method on real data.

Third, we show that the method described can also
be applied in the context of full-length transcriptome
assembly. We introduce a measure based on the pro-
posed model to identify low-confidence transcripts,
which are the ones that traverse complex regions in
the de Bruijn Graph. Within these complex parts of the
graph generated by repeats, any assembler will have to
choose the “right” path(s) among the many present. This
choice is not simple and may lead to incorrect solutions
(e.g. chimeric or truncated transcripts). It is therefore
important to be able to identify the transcripts com-
ing from such complex regions in order to know that
the solution presented is not the only one, and further-
more may not be the right one. We compared our meas-
ure against two state-of-the-art methods for de novo
transcriptome evaluation, namely RseM-EvaL [4] and
TRANSRATE [5], for the specific task of identifying chi-
meric transcripts in both real and simulated datasets. We
show that our measure provides good results despite the
fact that it uses only the graph topology, and not cover-
age, nor read information. The results obtained thus sug-
gest that exploring the topology of the subgraph around
a transcript, an information that is currently disregarded
by transcriptome evaluation methods, can be useful to
infer some of the transcript’s properties, such as confi-
dence level, quality, assembly hardness, etc. Therefore,
our measure can improve the state-of-the-art methods
for de novo transcriptome evaluation, since it is able to
capture assembly errors missed by these tools.

Preliminaries
Let ¥ be an alphabet of fixed size 0. Here we always
assume X ={A4,C,T,G}. Given a sequence (string)
s e X% let |s| denote its length, s[i] the ith element
of 5, and s[i, j] the substring s[i]s[i + 1]...s[j] for any
1<i<j<|s|

A k-mer is a sequence s € XX, Given an integer k and
a set S of sequences each of length n > k, we define
span(S, k) as the set of all distinct k-mers that appear as
a substring in S.

Definition 1 Given a set of sequences (reads) R C X*
and an integer k, we define the directed de Bruijn graph

Page 3 0of 19

Gr(R) = (V,A) where V = span(R, k) and (u,v) € A if
and only if u[2, k] = v[1,k — 1].

Given a directed graph G = (V,A) and a vertex
veV, we denote its out-neighbourhood (resp. in-
neighbourhood) by NT(v) ={u € V| (v,u) € A} (resp.
N=(v) ={uec V| (uv) e A}), and its out-degree (resp.
in-degree by d*(v) = INT(v)| (d~(v) = I[N~ (v)). A (sim-
ple) path w = s ~~ t in G is a sequence of distinct vertices
s =1vp,...,v; = tsuch that, for each0 < i < [, (v;, viy1)is
an arc of G. If the graph is weighted, i.e. there is a func-
tion w: A — Qs¢ associating a weight to every arc in
the graph, then the length of a path 7 is the sum of the
weights of the traversed arcs, and is denoted by |7 |.

Anarc (u,v) € Ais called compressible if d* (1) = 1and
d~ (v) = 1. The intuition behind this definition comes
from the fact that every path passing through u should
also pass through v. It should therefore be possible to
“compress” or contract this arc without losing any infor-
mation. Note that the compressed de Bruijn graph [2, 3]
commonly used by transcriptomic assemblers is obtained
from a de Bruijn graph by replacing, for each compress-
ible arc (u, v), the vertices u, v by a new vertex x, where
N~ (x) =N"(u), NtT(x) = Nt () and the label is the
concatenation of the k-mer of u and the k-mer of v with-
out the overlapping part (see Fig. 1).

Repeats in de Bruijn graphs

Given a de Bruijn graph G (R) generated by a set of reads
R for which we do not have any prior information, our
goal is to identify whether there are subgraphs of Gy (R)
that correspond each to a set of high copy-number
repeats in R. To this end, we identify and then exploit
some of the topological properties of the subgraphs that
are induced by repeats. Starting with a formal model for
representing repeats with high-copy number, we show
that the number of compressible arcs, which we denote
by y, is a relevant parameter for such a characterisa-
tion. This parameter will play an important role in the
algorithm of “Bubbles “drowned” in repeats” section.

[GAT] [AcT] [GAT]

\4
/

[TcT] [GAG]|

[GAG]
a b

Fig. 1 Example of compressible arc in a de Bruijn graph. a The arc
(CTG, TGA) is the only compressible arc in the given de Bruijn graph
(k = 3). b The corresponding compressed de Bruijn graph

Lima et al. Algorithms Mol Biol (2017) 12:2

However, we also prove that, for an arbitrary de Bruijn
graph, identifying a subgraph G’ with bounded y (G’) is
NP-complete.

Simple uniform model for repeats

We now present the model we adopted for representing
high copy-number repeats, e.g. transposable elements, in
a genome or transcriptome. First, we would like to clarify
that our model is a simple one and, as such, should be
seen as only a first approximation, yet realistic enough,
of what may happen in reality. We consider here that
sequencing errors can be successfully removed. Indeed,
there are several techniques to remove the big majority of
the sequencing errors in RNA-seq data. In KisSpLICE, for
example, we prune the de Bruijn graph using an absolute
and a relative cut-off based on the k-mer coverage. The
absolute cut-off enables us to remove sequencing errors
in general, and the relative one is tailored to deal with
highly-expressed genes (more details can be found in
[14]). Furthermore, while we realise that there is room for
improvement, in practice, the sequencing-error-removal
procedure in KisSPLICE seems to be effective, as most
sequencing errors are removed at the expense of losing
some rare genomic variants [14].

Basically, our model consists of several “similar”
sequences, each generated by uniformly mutating a fixed
initial sequence. In particular, it enables to model well
recent invasions of transposable elements which often
involve high copy-number and low divergence rate (i.e.
divergence from their consensus sequence). Consider
indeed as an example the recent subfamilies AluYa5 and
AluYb8 with 2640 and 1852 copies respectively, which
both present a divergence rate below 1% [15] (see [16]
for other subfamilies with high copy-number and low
divergence).

The model is as follows. First, due to mutations, the
sequences si,...,Sy that represent the repeats are not
identical. However, provided that the number of such
mutations is not high (otherwise the concept of repeats
would not apply), the repeats are considered “similar”
in the sense of having a small pairwise Hamming dis-
tance between them. We recall that, given two equal
length sequences s and s" in X7, their Hamming distance,
denoted by dp(s,s’), is the number of positions i for
which s[i] # s'[i]. Indels are thus not considered in this
model.

The model has then the following parameters: %, the
length n of the repeat, the number m of copies of the
repeat, an integer k (for the length of the k-mers consid-
ered), and the mutation rate, ¢, i.e. the probability that a
mutation happens in a particular position. The sequences
$1,...,Sm are then generated by the following process.
We first choose uniformly at random a sequence sy € X”.

Page 4 of 19

At step i < m, we create a sequence s; as follows: for each
position j, s;[j] = solj] with probability 1 — &, whereas
with probability « a value different from s[j] is chosen
uniformly at random for s;[j]. We repeat the whole pro-
cess m times and thus create a set S(m, n, @) of m such
sequences from sg (see Fig. 2 for a small example). The
generated sequences thus have an expected Hamming
distance of an from s.

Topological characterisation of the subgraphs generated
by repeats

Given a de Bruijn graph Gy (R), if a is a compressible arc
labelled by the sequence s = s ...s¢y1 then, by defini-
tion, a is the only outgoing arc of the vertex labelled by
the sequence s[1, k] and the only incoming arc of the ver-
tex labelled by the sequence s[2, k 4+ 1]. Hence the (k — 1)
-mer s[2, k] appears as a substring in R, always preceded
by the symbol s[1] and followed by the symbol s[k + 1].
We refer to such (k — 1)-mers as being boundary rigid.
It is not difficult to see that the set of compressible arcs
in a de Bruijn graph G (R) stands in a one-to-one corre-
spondence with the set of boundary rigid (k — 1)-mers in
R.

We now calculate and compare among them the
expected number of compressible arcs in G = Gr(R)
when R corresponds to a set of sequences that are gener-
ated: (1) uniformly at random, and (2) according to our
model. We show that y is “small” in the cases where the
induced graph corresponds to similar sequences, which
provides evidence for the relevance of this parameter.

Claim 1 Let R be a set of m sequences randomly chosen
from E". Then the expected number of compressible arcs
in Gi(R) is © (mn).

Proof 'The probability that a sequence of length k — 1
occurs in a fixed position in a randomly chosen sequence
of length n is (1/4)k=1. Thus the expected number of

€Ci €2 €3 €4 C5 Cg Cr Cg Cg Cio

A A ¢ T G T A T C ¢C S0
A S Cc T G T A G C C S1
G A Cc T C A A T C C S
A A Cc T C T A T C C S3
A A C A G T A T C A 84
A A T T G T A G C C S5
A ;. C T G T A T C A Sg
A A G T G A A T C C S20

Fig.2 Anexample of a set of repeats 5(20, 10, 0.1)

Lima et al. Algorithms Mol Biol (2017) 12:2

appearances of a sequence of length kK — 1 in a set of
m randomly chosen sequences of length # is given by
mn—k+2)(1/4)% L If mm—k+2) <451 then
this value is upper bounded by 1, and all the sequences
of length k — 1 are expected to be boundary rigid (as a
sequence is expected to appear once). The claim follows
by observing that there are m(n — k + 2) different (k — 1)
-mers. O

We consider now y(Gi(R)) for R = S(m,n,a). We
upper bound the expected number of compressible arcs
by upper bounding the number of boundary rigid (k — 1)
-mers.

Theorem 1 Given integers k, n, m with k < nand a real
number 0 < a < 3/4, the de Bruijn graph G (S(m, n,a))
has o(nm) expected compressible arcs.

Proof Let sy be a sequence chosen randomly from £”.
Let S(m, n,«) be the set {sy,...,s;,} of m repeats gener-
ated according to our model starting from sp. Consider
now the de Bruijn graph G = Gy (S(m,n,«)). Recall
that the number of compressible arcs in this graph is
equal to the number of boundary rigid (k — 1)-mers
in S(m, n,«). Let X be a random variable representing
the number of boundary rigid (k — 1)-mers in G. Con-
sider the repeats in S(m, n,) in a matrix-like ordering
as in Fig. 2 and observe that the mutations from one
column to another are independent. Due to the sym-
metry and the linearity of the expectation, E[X] is given
by m(n —k +2) (the total number of (k — 1)-mers)
multiplied by the probability that a given (k — 1)-mer is
boundary rigid.

The probability that the (k — 1)-mer § = s[i,i + k — 2]
is boundary rigid clearly depends on the distance from
the starting sequence S0 = soli, i + k — 2]. Let d be the
distance dy (5, $o).

Observe that if the (k — 1)-mer s[i]...s[i + kK — 2]is not
boundary rigid then there exists a sequence y in S(m, n, @)
such that y[j] =s|j] for all i <j <i+k — 2 and either
yli+k—-1]#sli+k—1] or yli —1]#s[i—1] It is
not difficult to see that the probability that this happens
is lower bounded by (2o — 4/3a?®)(1 — &)X~ 1=%(a/3)%.
Hence we have:

Pr[5 is boundary rigid|d (S, So) = d]
-1
< (1 — (Qa —4/3a®)(1 — a)k—l—d(a/g)d)m .

By approximating the above expression we therefore have
that:

Page 5 of 19
k—1
EX]<(n—k-— l)mZPr[ﬁ is boundary rigid|d (5, 50) = d]
d=0
< (n—k — Dyme~(m=DCa=4/3)/(5) W

For a sufficiently large number of copies <e.g.m = (akk) >

and using the fact that (akk) > (1/a)*k, we have that

E[X] is o(mn). This concludes the proof. O

The previous result shows that the number of com-
pressible arcs is a good parameter for characterising a
repeat-associated subgraph.

Identifying a repeat-associated subgraph

As we showed, a subgraph due to repeated elements has
a distinctive feature: it contains few compressible arcs.
Based on this, a natural formulation to the repeat iden-
tification problem in RNA-seq data is to search for large
enough subgraphs that do not contain many compress-
ible arcs. This is formally stated in Problem 1. In order
to disregard trivial solutions, it is necessary to require a
large enough connected subgraph, otherwise any set of
disconnected vertices or any small subgraph would be a
solution. Unfortunately, we show that this problem is NP-
complete, so an efficient algorithm for the repeat identifi-
cation problem based on this formulation is unlikely.

Problem 1 [Repeat Subgraph] INSTANCE: A directed
graph G and two positive integers m, t.

DECIDE: 1If there exists a connected subgraph
G’ = (V',E'), with |V’| > m and having at most ¢ com-
pressible arcs.

In Theorem 2, we prove that this problem is NP-com-
plete for all directed graphs with (total) degree, i.e. sum
of in and out-degree bounded by 3. The reduction is
from the Steiner tree problem which requires finding a
minimum weight subgraph spanning a given subset of
vertices. It remains NP-hard even when all arc weights
are 1 or 2 (see [17]). This version of the problem is
denoted by STEINER(1, 2). More formally, given a
complete undirected graph G = (V, E) with arc weights
in {1,2}, a set of terminal vertices N C V and an integer
B, it is NP-complete to decide if there exists a subgraph
of G spanning N with weight at most B, i.e. a connected
subgraph of G containing all vertices of N.

We specify next a family of directed graphs that we
use in the reduction. Given an integer x, we define the
directed graph R(x) as a cycle on 2x vertices numbered
in a clockwise order and where the arcs have alternating

Lima et al. Algorithms Mol Biol (2017) 12:2

directions, i.e. for any i < x, (v2;, v2i+1) is an arc. Observe
that in R(x), all vertices in even positions, i.e. all vertices
vo;, have out-degree 2 and in-degree 0, while all vertices
v2i+1 have out-degree 0 and in-degree 2. Clearly, none of
the arcs of R(x) is compressible.

Theorem 2 The Repeat Subgraph Problem is NP-com-
plete even for directed graphs with degree bounded by d,
for any d > 3.

Proof Given a complete graph G = (V,E), a set
of terminal vertices N and an upper bound B, i.e. an
instance of STEINER(1, 2), we transform it into an
instance of the Repeat Subgraph Problem for a graph
G’ with degree bounded by 3. Let us first build the
graph G’ = (V',E’). For each vertex v in V\ N, add a
corresponding subgraph r(v) = R(]V|) in G’ and for
each vertex v in N, add a corresponding subgraph
r(v) = R(E| +|V|2+ 1) in G'. For each arc (&, v) in E
with weight w € {1, 2}, add a simple directed path com-
posed by w compressible arcs connecting r(u) to r(v)
in G'; these are the subgraphs corresponding to z and
v. The first vertex of the path should be in a sink of
r(u) and the last vertex in a source of r(v). By construc-
tion, there are at least | V| vertices with in-degree 2 and
out-degree 0 (sink) and |V| vertices with out-degree
2 and in-degree 0 (source) in both r(v) and r(u). It is
clear that G’ has degree bounded by 3. Moreover, the
size of G’ is polynomial in the size of G and it can be
constructed in polynomial time.

In this way, the graph G’ has one subgraph for each ver-
tex of G and a path with one or two (depending on the
weight of the corresponding arc) compressible arcs for
each arc of G. Thus, there exists a subgraph spanning N in
G with weight at most B if and only if there exists a sub-
graph in G’ with at least m = 2|N| + 2|E||N| + 2|V |?|N]|
vertices and at most ¢ = |B| compressible arcs. This fol-
lows from the fact that any subgraph of G’ with at least
m vertices necessarily contains all the subgraphs r(v),
where v € N, since the number of vertices in all r(v), with
v e V\ N, is at most |[E| 4+ 2|V|? and the only compress-
ible arcs of G’ are in the paths corresponding to the arcs
of G.[]

We can obtain the same result for the specific case of
subgraphs of de Bruijn graphs. The reduction is more
technical but follows similarly.

Theorem 3 The Repeat Subgraph Problem is NP-com-
plete even for subgraphs of de Bruijn graphs on |X| = 4
symbols.

Page 6 of 19

Bubbles “drowned” in repeats

In the previous section, we showed that an efficient algo-
rithm to directly identify the subgraphs of a de Bruijn
graph corresponding to repeated elements according
to our model (i.e. containing few compressible arcs), is
unlikely to exist since the problem is NP-complete. How-
ever, in this section we show that in the specific case of
a local assembly of alternative splicing (AS) events based
on the compressible-arc characterisation of “Topological
characterisation of the subgraphs generated by repeats”
section, we can implicitly avoid such subgraphs. More
precisely, it is possible to find the structures (i.e. bubbles)
corresponding to AS events in a de Bruijn graph that
are not contained in a repeat-associated subgraph, thus
answering to the main open question of [12].

KisSpLIcE [12] is a method for de novo calling of AS
events through the enumeration of so-called bubbles, that
correspond to pairs of vertex-disjoint paths in a de Bruijn
graph. The bubble enumeration algorithm proposed in [12]
was later improved in [1]. However, even the improved
algorithm is not able to enumerate all bubbles correspond-
ing to AS events in a de Bruijn graph. There are certain
complex regions in the graph, likely containing repeat-asso-
ciated subgraphs but also real AS events [12], where both
algorithms take a huge amount of time. Figure 3 shows an
example of a complex region with a bubble corresponding
to an AS event. In practice, the enumeration is halted after
a given timeout. The bubbles drowned (or trapped) inside
these regions are thus missed by KisSpLICE.

In “Repeats in de Bruijn graphs” section, the repeat-asso-
ciated subgraphs are characterised by the presence of few
compressible arcs. This suggests that in order to avoid repeat-
associated subgraphs, we should restrict the search to bub-
bles containing many compressible arcs. Equivalently, in a
compressed de Bruijn graph (see “Preliminaries” section), we
should restrict the search to bubbles with few branching ver-
tices. We recall that a branching vertex is a vertex of in-degree
or out-degree strictly at least 2. Indeed, in a compressed de
Bruijn graph, given a fixed sequence length, the number of
branching vertices in a path is inversely proportional to the
number of compressible arcs of the corresponding path in the
non-compressed de Bruijn graph. We thus modify the defini-
tion of (s, £, a1, z)-bubbles in compressed de Bruijn graphs
(Def. 1 in [1]) by adding the extra constraint that each path
should have at most b branching vertices.

Definition 2 Given a weighted directed graph
G = (V,E) and two vertices s,t € V, an (s,t,a1,a2,b)
-bubble is a pair of vertex-disjoint s¢-paths 71, o with
lengths bounded by o,y each containing at most b
branching vertices.

Lima et al. Algorithms Mol Biol (2017) 12:2

Page 7 of 19

& WX@. _n.
B e 7
W

Fig. 3 An alternative splicing event in the SCN5A gene (human) [22] trapped inside a complex region, likely containing repeat-associated sub-
graphs, in a de Bruijn graph. The alternative isoforms correspond to a pair of paths shown in red and blue

N
Wy ,\\\"t&‘ v 7 1 ‘
‘.‘"’q‘\"ﬂh‘* A1

91165
by Y/

N4

By restricting the search to bubbles with few branching
vertices, we are able to enumerate them in complex regions
implicitly avoiding repeat-associated subgraphs. Indeed,
in “Experimental results” section we show that by consider-
ing bubbles with at most b branching vertices in KisSPLICE,
we increase both its sensitivity and precision. This supports
our claim that by focusing on (s, ¢, a1, @2, b)-bubbles, we
avoid repeat-associated subgraphs and recover at least part
of the bubbles trapped in complex regions.

Enumerating bubbles avoiding repeats

In this section, we modify the algorithm of [1] to enumer-
ate all bubbles with at most b branching vertices in each
path. Given a weighted directed graph G = (V,E) and
a vertex s € V, let B;(G) denote the set of (s, *, a1, oy, b)
-bubbles of G. The algorithm recursively partitions the
solution space Bs(G) at every call until the considered
subspace is a singleton (contains only one solution), and
in that case it outputs the corresponding solution. In
order to avoid unnecessary recursive calls, it maintains
the invariant that the current partition contains at least
one solution. The algorithm proceeds as follows.

Invariant At a generic recursive step on vertices u1, uy
(initially, u; = ug =), let 71 = s ~> U1, w3 = s ~» Uy be
the paths discovered so far (initially, 71, 72 are empty).
Let G’ be the current graph (initially, G’ := G). More pre-
cisely, G’ is defined as follows: remove from G all the ver-
tices in 71 and 7y but #; and 3. Moreover, we also main-
tain the following invariant (INV): there exists at least
one pair of paths 71 and 775 in G’ that extend 71 and 73 so
that 7 - 71 and 73 - 7wy belong to Bs(G).

Base case When u; = uy = u, output the (s, u, o1, o2, b)
-bubble given by 71 and 7.

Recursive rule Let Bg(mi, 72, G) denote the set of
(s,%, a1, 02, b)-bubbles to be listed by the current recur-
sive call, i.e. the subset of Bs(G) with prefixes 7y, mo. It is
the union of the following disjoint sets:

« The bubbles of Bs(mi,m3,G’) that use e, for
each arc e = (u1,v) outgoing from u;, that is
Bs(r1 - e, 2, G' — u1), where G’ — uy is the subgraph
of G’ after the removal of u; and all its incident arcs.

+ The bubbles that do not use any arc from #;, that is
By (71, w2, G”), where G” is the subgraph of G’ after
the removal of all arcs outgoing from u.

The same holds for #5 instead of u.

In order to maintain the invariant (INV), we only per-
form the recursive calls when B(m; - e, 72, G’ — u) or
Bs (1, w2, G”) are non-empty. In both cases, we have to
decide if there exists a pair of (internally) vertex-disjoint
paths T = u; ~~ tyand Ty = uy ~» ty, such that|7;| < o},
|7To| < o/2, and 71, Tp have at most by, by branching verti-
ces, respectively. Since both the length and the number
of branching vertices are monotonic properties, i.e. both
are smaller for a prefix instead of for the full path, we can
drop the vertex-disjoint condition. Indeed, let 771 and 72 be
a pair of paths satisfying all conditions but the vertex-dis-
joint one. The prefixes 7} = u1 ~» t* and 7} = uy ~ %
where ¢* is the first intersection of the paths, satisfy all
conditions and are internally vertex-disjoint.

Moreover, using a dynamic programming algorithm,
we can obtain the following result.

Lemma 1 Given a non-negatively weighted directed
graph G = (V,E) and a source s € V, we can compute the
shortest paths from s using at most b branching vertices in
O(b|E|) time.

Lima et al. Algorithms Mol Biol (2017) 12:2

Proof Let d[B,t] denote the distance from s to ¢ using
at most B branching vertices (s is never counted as a
branching vertex, even if it is branching). The recurrence
to calculate d[f,t], for0 < B < bandt € Vis:

Initialisation step:

d[0,s] = 0;
dl0,t] = |(s,t)| if (s,t) € Eand t is not branching;
d[B,t] = +oo ifd[B,t] was not initialised.

Main recurrence:

d[B, 1] = min(minyen-{d[B — Lvl+ |(v, DI}, d[B — 1,t),
7 | min(minyen-p {dB, v+ [(v, D)}, d[B — 1, £]),

Page 8 of 19

introns, and less frequently but still present, within their
UTRs and also exons (e.g. exonised repeats). Even if a
repeat-containing intron is always spliced out in the splic-
ing phase, this intron, and consequently the repeat, can
still be present in RNA-seq data. The fraction of introns
present in the sequenced data depends on the cell com-
partment that is sampled (nucleus, cytoplasm or both)
and the protocol to remove rRNA (ribo-0 or polydT
primers). As estimated in [9], the level of pre-mRNA can
be assumed to vary between 2 and 22%. The true level of
pre-mRNA may however be in practice higher, because

if t is branching
if t is not branching.

This recurrence works only on compressed graphs, i.e.
it requires that the neighbours of simple vertices are
branching. However, since the graph compression proce-
dure described in “Preliminaries” section can be applied
to general graphs, this recurrence is also applicable to
general graphs. The calculation order for d[B,¢] in the
main recurrence must be by increasing value of 8 and,
for a fixed B, the branching vertices must be processed
before the non-branching ones. Moreover, the short-
est paths themselves can be constructed by a traceback
procedure.

Finally, since the calculation of each value d[B,¢]
takes O(IN~(¢)|) time, the algorithm runs in
O ey INT(t)]) = O(DIE|) time. We can guarantee
that this algorithm runs in time polynomial in the length
of the input by upper-bounding b by | V]| (if b > |V, we
simply set b = | V). O

As a corollary of Lemma 1, we can decide if
Bs(m1, w2, G) is non-empty in O(b|E|) time. Now, using
an argument similar to [1], i.e. the leaves of the recursion
tree and the solutions are in one-to-one correspondence
and the height of the recursion tree is bounded by 45, we
obtain the following theorem.

Theorem 4 The (s, *, o1, ay, b)-bubbles can be enumer-
ated in O(b?|E||Bs(G)|) time. Moreover, the time elapsed
between the output of any two consecutive solutions (i.e.
the delay) is O(b?|E|).

Measuring the confidence of a transcript

in full-length transcriptome assemblers
Reconstructing full-length transcripts from reads is a chal-
lenging task because two transcripts, even from different
genes, may very well share subsequences that are longer
than the sequenced reads, or even longer than the frag-
ments in case of paired-end sequencing. This is specially
true when genes host transposable elements within their

the methods used for estimating it are mapping-based and
therefore deal poorly with reads stemming from repeated
regions. Besides, the upper bound given in [9] corresponds
to extraction protocols which are harder to obtain. In this
work, we considered the most commonly used extraction
protocol to extract RNA, and assumed that they yielded
pre-mRNA fractions between 5 and 15%. Thus, more
introns than expected are sequenced, generating problems
to transcriptome assemblers, particularly when they span
several members of a specific repeat family.

Most transcriptome assemblers are based on de Bruijn
graphs and have no clear and explicit model for repeats
in RNA-seq data, relying instead on heuristics to deal
with them. Within the complex parts of the graph gen-
erated by repeats, any assembler will have to choose the
“right” path(s) among the many present. Even with hints
given by (paired-end) reads, assemblers can still have
several arguable options to extend a contig (see Fig. 4).
This problem gets harder if the (paired-end) reads do not
span the repeat entirely, thereby not giving the assembler
any reliable information on how to connect the unique
regions. If the assembler decides to guess a path, it may
erroneously extend a contig and create a chimeric tran-
script. It can also choose to be conservative by not choos-
ing any path in complicated regions of the de Bruijn
graph, and instead truncating the transcript. Although
this strategy can lead to an accurate assembly, it will
produce a very fragmented one, which is not desired.
Whatever the strategy (conservative or permissive), the
resulting assembled transcript may be erroneous (chi-
meric or truncated).

It is hence important to be able to identify low-confi-
dence transcripts, which are the ones traversing complex
regions of a de Bruijn graph, in order to know that the
solution presented is the result of a “difficult” choice and
therefore may not be the right one. To identify such tran-
scripts, we introduce the concept of Branching Measure
of a transcript. Consider the set of transcripts 7 output

Lima et al. Algorithms Mol Biol (2017) 12:2

Page 9 of 19

TRANSCRIPTOME TRANSCRIPT 1

TRANSCRIPT 2

LA | ®r | 8

| Lec |l ® | o |

ASSEMBLY GRAPH

POSSIBLE

ASSEMBLIES

>
o
@

Fig.4 A theoretical scenario showing some problems repeats cause to assemblers. On the top of the figure, we can see two real transcripts con-
taining each one a member of a repeat R. When building the assembly graph, the two copies of R may collapse into a single region of the graph,
and connect the unique regions of both transcripts. The only correct assemblies are ARB and CRD, but the assembly graph also allows for the
generation of the chimeric transcripts ARD and CRB, or truncated transcripts, in case the assembler chooses to be conservative

by a full-length transcriptome assembler starting from a
set of reads R. We construct the de Bruijn graph Gy (R),
and map back each transcript ¢ € 7 to the graph by iden-
tifying each of its k-mers. Given a positive integer w, let
W be a w-sized window (or substring) with the largest
number of branching k-mers in . We define the Branch-
ing Measure of a transcript t, B(t), as the proportion of
branching k-mers in W. By looking at B(%), it is possible
to infer if ¢ traversed a hard-to-assemble region in the
de Bruijn graph, and this can be used as a measure of its
confidence, i.e. the higher B(%) is, the lower is the confi-
dence of t.

As a proof of concept, in the following we show two
examples of the application of the Branching Measure to
transcripts assembled by TRINITY on RNA-seq data from
the GEUVADIS project [18].

The first example (Fig. 5) is the chimeric transcript
¢12400_g1_il that aligns to the gene MOB1A in chromo-
some 2 and also to the gene PEBP1 in chromosome 12, in
which the fusion of these genes is due to a small identi-
cal region shared between two different repeats present
in their UTR regions. Figure 5a shows the alignment of
the transcript ¢12400_g1_il to reference hg38, visualised
using the UCSC Genome Browser. The alignment on the
top shows that the built transcript aligns almost perfectly

to an isoform of gene MOBI1A in chromosome 2. Due to
the repeats inside the red circles, the alignment is trun-
cated in the 3'-UTR of MOBIA, and continued on the
5-UTR of gene PEBP1 in chromosome 12 (alignment
on the bottom). Thus, here we have a chimeric tran-
script. Figure 5b zooms in the regions where both align-
ments intersect the repeats that cause the chimerism.
The main reason of the junction between the two genes
is due to a stretch of 18 As shared between the A-tail
of a SINE AluY in the 3’-UTR of MOBI1A and a Simple
Repeat A(n) in the 5-UTR of PEBP1. Even though this
repeated region is short, it was enough to cause prob-
lems to TrRINITY, which had access to 76-bp paired-end
reads, with an average insert size of 158 bp. In Fig. 5¢ we
mapped all reads back to transcript ¢12400_gl_il and
visualised them using IGV [19]. As we can see, there are
no single or paired-end reads traversing the small repeat.
This shows that this chimera is not an in vitro or a bio-
logical one, but indeed an assembly mistake by TRINITY.
Figure 5d conveys a local visualisation of the subgraph
induced by the k-mers of transcript c12400_gl il at
the junction point which causes the chimerism (the full
graph can be accessed at http://kissplice.prabi.fr/bm/
graph_chimera.html). We can see that this is a complex
region since the transcript (red path) traverses a region

Lima et al. Algorithms Mol Biol (2017) 12:2 Page 10 of 19

_] Scate 1o Kkbf T hass
chr2: 74,185, 00| 74,168, 000 74,188, 068| 74,170, 808| 74,178, o0l
= Your Séquence from Blat Search
| c12400_91_i1 5 3 i 4
Repeating Elenents by Repeathasker
| repeatmasker @ EEEmEE N NN SN SR 6§ NS BN NS NN ————
efseq Genes
BOLAS-AST €Y
BoLAS-AS1 Kl
HoB1A ¥ 4 + »
woBin H 4 H H -
oB1A H H H -
o Hos1n #+ + + #]
Scale 2 K ha3s
chr12; I 118,137, 88| 118,138, 890| 118,139, eoe| 118,149, 800 118,141, 808| 118, 142, 008| 118,143, 808| 118, 144, 008 118, 145, 890|
I Your Sequence from Blat Search
[claeoeoi_it - -
] Repeat ing Elenents bu Repeatasker
Reneatiasker Il L] - Sl== e 1 ®
J o RefSeq Genes

a

20 F { he3s
chrai | 74,154,180 74,154,185 74,154,190] 74,154,195| 74,154,200 74,154,205 74,154,210 74,154,215| 74,154,220] 74,154,225]
5’A6AGTGAGACTCTGTCTCARARAARARRARNARARARNRARARARGAT T TGATTITCGT CARARACT
Your Sequence from Blat Search

c12400_91_i1
Repeat ing Elements by RepeatMasker

RefSeq Genes

EQ F 1 ng3s

chr12: | 118,145,160] 118,145,165] 118,145, 170] 118,145,175| 115,145,180] 118,145,185 118,145,190] 118,145,195| 118,145,200] 118,145,205

Sy RtRE e BT YR WA R A A AR A A AR ARAARARNGAT TGO T TEECETETECETT
vour Seauence fron Blat Search

c12400_91_11 S ke ey e S e

Repeat ing Elements by RepeatMasker
RepeatMasker =)

RefSeq Genes

[1|] |
L

[

€12400_g1_il.fa v||lca2a00. g1 1 |v|c12400 g1 1:3.0603.183 Go it @0 x| Brrorral®

12abp
Gop S0s0bp >1008p 210y a0k 60t a08p
| ¥ 1 L 1 |

LU

=
c
@
@
Tr
< v
<
<
< =
[
<
© T

agped,reads sortad barn T

b

T

=

=

T

© T

v

v

T

=

) = |[[CCTTCCTGAGT TGGCTAGAGEGCCAACCTTTGATAACAGTTTGACGAAATCAATCTTTTTITTTTTTTITTTTTTAAACCTCCCTTAAAGATTCTTTGATGCTTTGGTCTATCACTGTIAGACCTY

/|

T I T T T I—...
M c12400_g1_i1 \

B NM_001317110.1 (gene MOB1A) ettt ® & & & & & & 8 & |

B NM_002567.3 (gene PEBP1)

d
Fig. 5 The chimeric transcript c12400_g1_i1 that aligns to the gene MOB1A in chromosome 2 and also to the gene PEBP1 in chromosome 12, in
which the fusion of these genes is due to a small identical region shared between two different repeats present in their UTR regions (see “Measuring
the confidence of a transcript in full-length transcriptome assemblers” section for details of each panel). a The alignment of the transcript ¢12400_
g1_i1 to reference hg38, visualised using the UCSC Genome Browser. b The regions where both alignments intersect the repeats that cause the
chimerism. ¢ The mapping of all reads to transcript c12400_g1_i1 visualised using IGV. d A local visualisation of the subgraph induced by the k-mers
of transcript c12400_g1_i1 at the junction point which causes the chimerism

Lima et al. Algorithms Mol Biol (2017) 12:2

having 11 branching k-mers in a window of 12, and could
thus be flagged by the Branching Measure. There is no
other such complex region in this transcript, i.e. this is
the only hard-to-assemble region that this transcript goes
through. We can also see in the picture the correct exten-
sion which should have been followed as the reference
transcripts (the green and blue paths). Observe that even
the reference transcripts could also have been flagged by
our method since they traverse regions containing a con-
centration of branching vertices due to the repeated ele-
ments presented in Fig. 5a, b.

Page 11 0f 19

The second case, depicted in Fig. 6, shows a mis-assem-
bly of the last exon of gene SLC35F2, in which TRINITY
assembled several truncated transcripts instead of the
full exon. Figure 6a shows, on the 3’ — 5 orientation
(reverse strand), the three truncated short transcripts:
€65590_g1_i1, c64_gl_il, and c14482_g2_il. The trunca-
tion points were cause caused by repeats, where the first
split is due to a simple repeat (A(n)) and the second is due
to 2 consecutive Alus (AluJo and AluSz). Figure 6b dis-
plays a schematic global view on how the last exon of gene
SLC35F2 was assembled by TrINITY and how the three

B Last exon of gene SLC35F2 in hg38
¢65590_g1_i1
M c64_g1_i1

M Last exon of gene SLC35F2 in hg38
M c64 g1 it

W c14482_g2 i1

B Last exon of gene SLC35F2 in hg38 e

ing the confidence of a transcript in full-length transcriptome assemblers” sec

the three next figures are connected in the full graph drawing. € A local visual

J crs::l‘. 107,791, 000 X ‘r‘"'”l‘s"l bk b i‘:;?;ia,s“l rod ol
B THE S —————————ST e e
] RepeatMasker [EEEG—— Repeat ‘f;-!g‘l:-:nts by RepeatMasker &
_] sLcIsr2 RefSeq Genes g
a
— w— — — — —.
| ™ -
M Last exon of gene SLC35F2 in hg38 LT b=l [
€65590_g1_il Fig 3(c) Fig 3(d) Fig 3(e)
mc64_gl il
W cl4482 g2 il b

e A N

=T

T . T S S S T — e T TS ==,

Fig. 6 A mis-assembly of the last exon of gene SLC35F2, in which Trinmy assembled several truncated transcripts instead of the full exon (see “Measur-
€65590_g1_i1,c64_g1_i1,and c14482_g2_i1. b A schematic global view on how the last exon of gene SLC35F2 was assembled by Triniry and how

due to a simple repeat. d A local view of the region that traverses the repeat AluJo, and where the assembler has chosen to truncate the transcript
c64_g1_i1.e Alocal view of the region that traverses the repeat AluSz, and where the assembler has chosen to truncate the transcript c14482_g2_i1

tion for details of each panel). a The three truncated short transcripts:

isation of the truncation point between c65590_g1_i1 and c64_g1_il

Lima et al. Algorithms Mol Biol (2017) 12:2

next figures are connected in the full graph drawing. This
figure and the next assume the 5° — 3’ orientation. Fig-
ure 6¢ conveys a local visualisation of the truncation point
between ¢65590_gl_il and c64_gl_il due to a simple
repeat. We can see that TRINITY mis-assembled the very
end of ¢65590_g1_il (only the last base) and truncated the
transcript. The yellow path is accurate although truncated
and does not go through a complicated region (one hav-
ing a concentration of branching vertices). Even though
the reference exon path in this region has 11 consecutive
branching vertices and would be flagged by the Branch-
ing Measure, this method is unable to flag ¢65590_g1_il
since it is truncated too early, before entering the com-
plex region. Figure 6d shows a local view of the region
that traverses the repeat AluJo, and where the assembler
has chosen to truncate the transcript c64_gl_il. We can
see that TRINITY mis-assembled the last 29 bases of c64._
gl_il and truncated it. At the end of ¢64_gl_il, we have
23 branching vertices in a window of 34 vertices, so this
truncated transcript can be flagged by our method, as it
is deeply enough plunged into a complex region. Finally,
Fig. 6e displays a local view of the region that traverses
the repeat AluSz, and where the assembler has chosen to
truncate the transcript ¢14482_g2 il. Again, the Branch-
ing Measure is not able to flag this transcript since it is
not deeply enough plunged into a complex region. The
full graph of Fig. 6b—e can be accessed at http://kissplice.
prabi.fr/bm/graph_truncated.html.

Experimental results

Local assembly: experimental setup

To evaluate the performance of our method, we simu-
lated RNA-seq data using the FLUXSIMULATOR version
1.2.1 [20]. We generated 100 million reads of 75 bp using
its default error model. We used the RefSeq annotated
Human transcriptome (hgl9 coordinates) as a reference
and we performed a two-step pipeline to obtain a mix-
ture of mRNA and pre-mRNA (i.e. with introns not yet
spliced). To achieve this, we first ran the FLUXSIMULA-
TOR with the Refseq annotations. We then modified the
annotations to include the introns and re-ran it on this
modified version. In this second run, we additionally con-
strained the expression values of the pre-mRNAs to be
correlated to the expression values of their corresponding
mRNAs, as simulated in the first run. Finally, we mixed
the two sets of reads to obtain a total of 100M reads. We
tested two values, namely 5 and 15% for the proportion
of reads from pre-mRNAs. Those values were chosen so
as to correspond to realistic ones (see “Measuring the
confidence of a transcript in full-lengthtranscriptome
assemblers” section).

Page 12 of 19

On these simulated datasets, we ran KisSpLICE [12] ver-
sions 2.1.0 (Ks_2.1.0) and 2.2.0 (Ks_2.2.0, with a maximum
number of branching vertices set to 5) and obtained lists of
detected bubbles that are putative alternative splicing (AS)
events. We also ran the full-length transcriptome assemblers
TRINITY version r2013_08_14 and OASES version 0.2.09 on
both datasets, obtaining a list of predicted transcripts, from
which we then extracted a list of putative AS events. For
OASES, there was one locus in each dataset for which we
were not able to extract the putative AS events. A manual
inspection revealed that they were mostly composed of sub-
parts of introns or UTRs flanked by repeats, usually copies
of ALUs. The presence of such high copy-number repeats
in these transcripts induced the clustering of all these unre-
lated sequences into one complex locus. More precisely, in
the dataset containing 5% of the reads from pre-mRNAs,
the largest locus that OAses predicted comprised 20,769
transcripts, while the second largest contained only 139
transcripts. In the other simulated dataset, the largest locus
comprised 39,389 transcripts, and the second largest con-
tained only 205 transcripts. This indicates that OASES faces
similar issues to Ks_2.1.0. For fairness of comparison, we
did not post-process these complex loci, and we were then
unable to retrieve the potential AS events that they could
describe. It is worth mentioning though, that the majority of
the transcripts inside these loci corresponded to subparts of
introns or UTRs, and not to full introns or exons, and there-
fore could not describe AS events.

In order to assess the precision and the sensitivity of
our method, we compared our set of found AS events to
the set of true AS events. Following the definition of AsT-
ALAVISTA, an AS event is composed of two sets of tran-
scripts, the inclusion/exclusion isoforms respectively. We
consider that an AS event is true if at least one transcript
among the inclusion isoforms and one among the exclu-
sion isoforms is present in the simulated dataset with at
least 5 reads per kilobase (RPK). The rationale for add-
ing this threshold is that very rare events are considerably
hard, or even impossible, to detect by all methods.

To compare the results of KisSpLICE with the true AS
events, we propose that a true AS event is a true positive
(TP) if there is a bubble such that one path matches the
inclusion isoform and the other the exclusion isoform. If
there is no such bubble among the results of KisSpLICE,
the event is counted as a false negative (FN). If a bubble
does not correspond to any frue AS event, it is counted
as a false positive (FP). To align the paths of the bubbles
to transcript sequences, we used the BLAT aligner [21]
with 95% identity and a constraint of 95% of each bubble
path length to be aligned (to account for the sequencing
errors simulated by FLUXSIMULATOR). We computed the

Lima et al. Algorithms Mol Biol (2017) 12:2 Page 13 of 19

Overall Sensitivity Overall Precision
70 100
98 98
65
95 9o
60 $
%0
55 < 55
s 85
as 4 80
79
4
36
35
4 70
30
2 65
20 60
5% pre-mRNA 15% pre-mRNA 5% pre-mRNA 15% pre-mRNA
—Ks_2.1.0 Ks_2.2.0 Trinity ——Oases —Ks_2.1.0 Ks_2.2.0 Trinity ——Oases
a b
5% pre-mRNA 15% pre-mRNA
<] e |
T | o ks210 T 0 Ks 2.1.0
Ks_2.2.0 Ks_2.2.0
Trinity Trinity
o | |* Oases o | x Oases
o o

> o / > < |
s ° =
= - =
g .| /%/ B 3 | /
° °)><$
<l T T T T T T °l T T T T T
1.0 15 2.0 25 3.0 3.5 1.0 15 2.0 25 3.0
RPK (log scale) RPK (log scale)
c d

Fig. 7 The overall values for sensitivity and precision, and the detailed sensitivity by expression levels of Ks_2.1.0, Ks_2.2.0, Trinmy and Oasts on the
two simulated datasets. a Overall sensitivity of the four methods on the two simulated datasets. b Overall precision of the four methods on the two
simulated datasets. ¢ Detailed sensitivity by expression levels of the four methods on the 5% pre-mRNA dataset. d Detailed sensitivity by expres-
sion levels of the four methods on the 15% pre-mRNA dataset. The expression levels in € and d represent several classes of expression of the minor
isoform. Each class (i.e. point in the graph) contains the same number of AS events. It is therefore an average sensitivity on a potentially broad class
of expression

sensitivity TP/(TP+FN) and precision TP/(TP+FP) for b, respectively. A first look reveals that Ks_2.2.0 outper-
each simulation case and we report their values for vari- forms the other three methods in both measures and
ous classes of expression of the minor isoform. Expres- datasets.

sion values are measured in RPK. A closer look at Fig. 7a shows that both versions of
KisSpLICE had better sensitivity than both transcriptome
Local assembly: results assemblers in the 5% pre-mRNA dataset. However, due

The overall sensitivity and precision of Ks_2.2.0, to its inability to deal with repeat-associated regions, the
Ks_2.1.0, TRINITY and OASEs can be found in Fig. 7a, performance of Ks_2.1.0 drops substantially, from 46 to

Lima et al. Algorithms Mol Biol (2017) 12:2

33%, when a higher rate of 15% of pre-mRNA is present
in the data. The same happened with OAasEs. Ks_2.2.0 and
TRINITY, on the other hand, were able to slightly improve
their sensitivity from the 5 to the 15% pre-mRNA data-
set. It is however worth mentioning that the sensitivity of
Ks_2.2.0 is substantially higher than the one of TRINITY
in the 15% pre-mRNA dataset. In summary, we can say
that Ks_2.2.0 is substantially more sensitive than all the
other three methods. This reflects the fact that most prob-
lematic repeats are in introns. A small unspliced mRNA
rate leads to few repeat-associated subgraphs, so there
are not many AS events drowned in them. In this case,
the advantage of using Ks_2.2.0 is less obvious, whereas
a large proportion of pre-mRNA leads to more AS events
drowned in repeat-associated subgraphs which are identi-
fied by Ks_2.2.0 and usually missed by the other methods.
In Fig. 7b we can see that Ks_2.2.0 and TRINITY pre-
sented the highest precision (98%) of all methods in the
5% pre-mRNA dataset. Although Ks_2.1.0 is ranked
third, it still presents a very high precision (95%), while
OasEes presented a moderate value (80%). Nevertheless,
the most important aspect to be observed in Fig. 7b is
that Ks_2.2.0 kept the same high precision even when a
higher rate of 15% of pre-mRNA is present in the data.
TRINITY, on the other hand, dropped significantly from
98 to 79%. This drop in precision is actually mostly due
to the prediction of a large number of intron retentions,
since TRINITY assembles both the mRNA and the pre-
mRNA. Ks_2.1.0 dropped slightly from 95 to 91%, and
Oasks dropped moderately, from 80 to 70%. In summary,
we can say that both versions of KisSpLICE are more
precise than both transcriptome assemblers, except that
TRINITY shows comparable precision if a small rate of
pre-mRNA is present in the data, and, more specifically,
that Ks_2.2.0 outperformed all the other three methods.
The high precision we obtain indicates that we have very
few false positives. Those mostly correspond to repeat-
induced bubbles mistakenly identified as AS events.
Finally, Fig. 7c, d present the detailed sensitivity by
expression levels of the four methods on both datasets,
allowing for a better understanding of their performance.
As we can see, Ks_2.2.0 presented the best sensitivity in
practically all expression levels in both datasets, while the
other three methods were worse, but comparable between
themselves. We can also observe that the gap between the
sensitivity of Ks_2.2.0 and the sensitivity of the other meth-
ods tends to increase as the expression levels of the genes
increase, especially in the 15% pre-mRNA dataset. Since
highly-expressed genes tend to present higher levels of pre-
mRNA content, they bring several repeat copies in their
introns, and thus some parts of their associated graphs are
complex and repeat-induced. Therefore, AS events inside
such genes tend to be trapped in troublesome regions of

Page 14 of 19

the graph, making them harder to find. As Ks_2.2.0 is able
to avoid such complex regions and retrieve the AS events
deeply plunged into them, it presents better sensitivity than
the other methods, especially in highly-expressed genes
and datasets with high rate of pre-mRNAs.

As was already reported in [12], KisSpLICE (i.e. both
Ks_2.2.0 and Ks_2.1.0) is faster and uses considerably less
memory than TRINITY and OASEs. For instance, on these
datasets, KisSPLICE uses around 5 GB of RAM, while
TRINITY uses more than 20 GB, and OASEs, around 18 GB.
However, it should be noted that both these latter methods
try to solve a more general problem than KisSpLICE, that is
reconstructing the full-length transcripts.

To conclude, our results show that Ks_2.2.0 is signifi-
cantly more sensitive and precise than Ks_2.1.0, TRIN-
1TY and OAsEs for the task of identifying AS events. The
advantage of using Ks_2.2.0 over the other three methods
is more evident when the input data contains high pre-
mRNA content or the AS events of interest stem from
highly-expressed genes.

On the usefulness of Ks_2.2.0 on real data

In order to give an indication of the usefulness of our
repeat-avoiding bubble enumeration algorithm with real
data, we also ran Ks_2.2.0 and Ks_2.1.0 on the SK-N-
SH Human neuroblastoma cell line RNA-seq dataset
(wgEncodeEH000169, total RNA). In Fig. 8, we have an
example of a non-annotated exon skipping event not
found by Ks_2.1.0. Observe that the intronic region
contains several transposable elements (many of which
are Alu sequences), while the exons contain none. This
is a good example of a bubble (exon skipping event)
drowned in a complex region of the de Bruijn graph.
The bubble (composed by the two alternative paths)
itself contains no repeated elements, but is surrounded
by them. In other words, this is a bubble with few
branching vertices that is surrounded by repeat-associ-
ated subgraphs. Since Ks_2.1.0 is unable to differentiate
between repeat-associated subgraphs and the bubble, it
spends a prohibitive amount of time in the repeat-asso-
ciated subgraph and fails to find the bubble.

Global assembly

To test our hypothesis that the Branching Measure is able
to identify problematic transcripts, we evaluated it on the
transcripts assembled by TRINITY on the two simulated
RNA-seq datasets described in “Local assembly: results”
section, and on two other real RNA-seq datasets: one
from the GEUVADIS project [18]' and one from a neuro-

! This dataset can be found at the ArrayExpress database (http://www.ebi.
ac.uk/arrayexpress/) under the accession number E-GEUV-6, and we used
the individual named NA06994, extract name “NA06994.2.M_111215_7
extract”.

Lima et al. Algorithms Mol Biol (2017) 12:2 Page 15 of 19

LINE

chr1s (q15.1) [FEICNIEE ESEI 120 B 15014 B W21 (a2 . 3] 1] HE B EN B
Scale S kb { haie
chris: 42,590, 008| 42,595, sl
’7 Your Sequence from Blat Search
er_path_lengath_75
r_path_length_124 } +
RefSeq Genes
J GANC Kt } |
Repeating Elements by RepeatMasker
‘ SINE e | | |

|
B m I e
Fig. 8 One of the bubbles found only by Ks_2.2.0 with the corresponding sequences mapped to the reference human genome and visualised
using the UCSC Genome Browser. The first two lines correspond to the sequences of, respectively, the shortest (exon exclusion variant) and longest
paths (exon inclusion variant) of the bubble mapped to the genome. The blue line is the Refseq annotation. The last line shows the annotated SINE

and LINE sequences (transposable elements)

blastoma SK-N-SH cell line (ENCODE) differentiated or
not using retinoic acid.” Even though our method is ref-
erence-free, we have chosen to evaluate it under a model
species so that we could make use of annotated reference
genomes to assess if our predictions are correct. We
compared our measure against two state-of-the-art
methods for de novo transcriptome evaluation, RSEM-
EvaL [4] and TRANSRATE [5], on the specific task of
identifying chimeric transcripts in TRINITY’s assemblies
on all four described datasets. In all our tests, we used
the contig impact score of RSEM-EVAL as a measure of
contig correctness. Formally, the contig impact score is a
statistical measure that compares the hypothesis that a
particular contig (i.e. transcript) is a true contig with the
null hypothesis that the reads composing the contig actu-
ally represent the background noise [4]. In other words,
the contig impact score determines the relative contribu-
tion of each transcript to explaining the assembly. Well-
assembled transcripts should therefore have a high contig
impact score, and badly assembled transcripts, including
chimeras, should have a low contig impact score. TRAN-
SRATE [5], on the other hand, allowed us to work with a
specific metric representing the probability that a contig
is derived from a single transcript. This metric denotes
the probability that the read coverage of a transcript is
best modelled by a single Dirichlet distribution, rather
than two or more distributions, and it corresponds to the
field sCsEQ of TRANSRATE’s output file CONTIGS.CSV.

As was shown before, one of the main errors that
transcriptome assemblers do is to build chimeric tran-
scripts. We compared the performances of the Branching

2 This dataset can be found at http://genome.crg.es/encode RNA_dash-
board/hg19/, and is also accessible with the following accession numbers:
ENCSRO00CPN—SRA: SRR315315, SRR315316 and ENCSROOOCT T—SRA:
SRR534309, SRR534310. For cell lines treated by retinoic acid, the reads
were 76nt long, while they were 100nt long for the non treated cells. Hence
we trimmed all reads to 76nt.

Measure, RseM-EvaL, and TRANSRATE on identifying
chimeric transcripts. In order to have our ground truth,
we first identified which assembled transcripts are chi-
meric with respect to a reference genome by using Algo-
rithm 1. In total, 253 out of 18,706 transcripts (1.3%) in
the 5% pre-mRNA dataset, 376 out of 26,407 transcripts
(1.4%) in the 15% pre-mRNA dataset, 375 out of 99,591
transcripts (0.3%) in the GEUVADIS dataset, and 2830
out of 457,383 transcripts (0.6%) in the SKNSH dataset
were classified as chimeric. Figure 9 depicts four ROC
curves showing the performance of the three methods
on all datasets. We can observe that the Branching Meas-
ure outperforms both RSEM-EvAL and TRANSRATE by a
large margin in all tests and, with a high-value threshold,
is also able to flag a majority of the chimeric transcripts
while keeping a low false positive rate. These experiments
show that, in the provided datasets, chimeric transcripts
could be well captured by the Branching Measure. Our
false positives include well-assembled transcripts tra-
versing high copy-number low divergence repeats, and
our false negatives include chimeric transcripts that did
not go through a complex region. The main issue with
RseM-EvaL and TRANSRATE, on the other hand, is that
both methods failed to find chimeric transcripts assem-
bled from genes with similar expression levels. These
chimeras had low scores and corresponded to the false
negatives at the end of the ROC curves for RsEeM-EvaL
and TRANSRATE. As a side effect of this misclassifica-
tion, many well-assembled transcripts had higher scores
than several real chimeras, and were mistakenly flagged
as chimeras.

Lima et al. Algorithms Mol Biol (2017) 12:2

Page 16 of 19

o_| o_| .
— - 7
o
© ©
ST 2
Q .9 /
T © | © o |
=) (=]
2 2
3 @
8 g
< (O
g3 | =
= ‘ =
Legend Legend
o - — BM-5 o | BM-5
e — BM-20 e BM-20
—— BM-40 BM-40
—— RSEM-EVAL RSEM-EVAL
Transrate Transrate
o o
S o
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
a b
o_| o]
© ©
S 2
©]
T ©_| C o |
= o (=]
2 2
3 2
g 2
(0]
g 3 S 3
= =
Legend Legend
| — BM-5 o | — BM-5
e — BM-20 e — BM-20
—— BM-40 —— BM-40
—— RSEM-EVAL —— RSEM-EVAL
Transrate Transrate
o _| o] !
o o -
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate

Cc

d

Fig. 9 The performance of the Branching Measure, Rsem-Eval, and TransRATE on identifying chimeric transcripts on the four datasets described in
“Global assembly” section. BM-x stands for Branching Measure using a window of size x. In this test, the 10% leftmost and rightmost parts of the
transcripts were disregarded in the Branching Measure calculation. a Simulated dataset with 5% pre-mRNA. b Simulated dataset with 15% pre-
mMRNA. ¢ GEUVADIS dataset. d SKNSH dataset

Lima et al. Algorithms Mol Biol (2017) 12:2

Page 17 of 19

Algorithm 1: GetChimericTranscripts(7, G)

Definition 1: An alignment a(¢,G) of ¢ to G is a good alignment if it aligns

more than 80% of ¢ with matches;

Definition 2: An alignment a(¢,G) of ¢t to G is a potential chimeric

alignment if it aligns at least 100 bases, but less than 80% of ¢ with matches;

Definition 3: If we have two alignments a; and as such that the largest covers

at least 80% of the smallest, we can merge a; and ay into an alignment a,,,,

where the start position of a,, is the leftmost start position between a; and as

and the end position of a,, is the rightmost end position between a; and as.

Data: Set of transcripts 7 and a reference genome G

Result: Set of chimeric transcripts C

Map each t € T to G (e.g. using BLAT);

C « 0;
foreach t € 7 do

alignments then

until convergence;

if | MMPCA| > 2 then
LC—CuUt

return C

if t has no good alignments and t has 2 or more potential chimeric

Let M PC A be all maximal potential chimeric alignments of ¢;
Let MM PCA be a set obtained by merging all alignments in M PC A

Concluding remarks and perspectives

Although transcriptome assemblers are now commonly
used, their way to handle repeats is not satisfactory, argu-
ably because the presence of repeats in transcriptomes
has been underestimated so far. Given that most RNA-
seq datasets correspond to total mRNA extractions,
many introns are still present in the data and their repeat
content cannot be simply ignored. Although repeats in
transcriptomic and genomic data cause similar problems
to assemblers, the specificities of each mean that a suc-
cessful strategy in one context may fail in the other. It is
thus essential for transcriptome assemblers to formally
address the repeats problem.

In this paper, we first proposed a simple formal model
for representing high copy-number repeats in RNA-seq
data. Exploiting the properties of this model, we estab-
lished that the number of compressible arcs is a rel-
evant quantitative characteristic of repeat-associated
subgraphs. We proved that the problem of identifying
in a de Bruijn graph a subgraph with this characteris-
tic is NP-complete. However, this characteristic drove

the design of an algorithm for efficiently identifying AS
events that are not included in repeated regions. The new
algorithm was implemented in KisSPLICE version 2.2.0,
and by using simulated RNA-seq data, we showed that it
improves significantly the sensitivity of the previous ver-
sion of KisSpLIcE, while also improving its precision. In
addition, we compared our algorithm to TRINITY and
Oasks, and showed that for the specific task of calling
AS events, our algorithm is significantly more sensitive
while also being more precise. Our results also showed
that the advantage of using KisSpLICE version 2.2.0 is
more evident when the input data contains high pre-
mRNA content or the AS events of interest stem from
highly-expressed genes. Moreover, we gave an indication
of the usefulness of our method on real data. Finally, we
explored the proposed model in the context of full-length
transcriptome assembly by introducing the Branch-
ing Measure, which is able to flag the transcripts that go
through a complex region in the de Bruijn graph. Even
though one should not directly consider low-confidence
transcripts as erroneous ones since they could have been
correctly assembled despite the hardness, the described

Lima et al. Algorithms Mol Biol (2017) 12:2

measure is useful from a user’s point-of-view since it ena-
bles to flag the transcripts that result from a “difficult”
choice during the assembly, no matter which assembler
is used. We showed that this measure can indeed cap-
ture assembly errors in real cases and, when compared
to RsEM-EVAL [4] and to TRANSRATE [5] on the specific
task of identifying chimeric transcripts, the measure we
propose outperformed the ones used by Rsem-EvaL and
TRANSRATE by a large margin. The originality of our
work, when compared to other methods for transcrip-
tome assembly evaluation, is that we use only the topol-
ogy of the graph. Despite the successful application of the
Branching Measure in global transcriptome assembly, it
remains a simple method, and in particular, we would
like to emphasise that it must be seen as a proof of con-
cept that exploring the topology of the subgraph around
a transcript can give some hints about its confidence
level, quality, assembly hardness, etc. The method pro-
posed is not a full-fledged one for assessing transcripts in
a de novo context. It could however be a promising direc-
tion to improve transcriptome assembly evaluation, espe-
cially when combined with statistical and read-mapping
approaches (e.g. RSEM-EVAL [4] or TRANSRATE [5]).

As concerns the local transcriptome assembly of
variations, the most interesting open problem which
currently remains is how to efficiently enumerate
AS events whose variable region (e.g. skipped exon,
retained intron) traverses repeats. Although the appli-
cation of the proposed model enabled to retrieve sev-
eral AS events that were previously missed, the current
algorithm is still only able to avoid repeats, not to
solve them. The presence of repeats in RNA-seq data
shows that transcriptome assemblers should formally
address the repeats issue, as is generally the case of
genome assemblers, preferably by solving them. Even
if repeats are less frequent in transcriptomic data and
are thus easier to solve than in the genomic context,
the complexity and ambiguity they add are enough to
cause problems if not addressed properly. If this is not
done, it will impact the assembly of full-length tran-
scripts or variants, leading to either erroneous or frag-
mented ones, especially in regions that are more prone
to contain repeats, such as introns, UTRs, and exonised
repeats.

As concerns future works, our repeats model could be
improved. One direction would be to employ a tree-like
structure to take into account the evolutionary nature of
repeat (sub)families. Variability in the sizes of the copies
of a repeat family would also enable to model more real-
istically the true nature of families of transposable ele-
ments (the type of repeats which cause most trouble in
assembly). Another example would be to explicitly model
sequencing errors in Theorem 1. Although, in practice,

Page 18 of 19

assemblers like KisSplice [1] employ a sequencing error
removal module, it remains unclear how to distinguish
the structures created by sequencing errors from the
ones induced by a lowly-expressed member of a highly-
expressed family of repeats, or by infrequent allelic dif-
ferences in pool-seq. The difficulty increases in regions
that are highly expressed or that present sequencing
error bias. In practice, error removal strategies may be
too stringent and erroneously remove SNPs and repeats.
Taking into account the sequencing errors in the model
would make it applicable even without any pre-process-
ing of the data, and would thus be more sensitive for find-
ing repeats if such errors are correctly modeled. Finally,
the Branching Measure could also be extended to identify
truncated transcripts and isoforms stemming from par-
alogous genes.

Authors’ contributions

BS, GS, MFS and VL developed the model for repeats. LL, BS, GS, MFS devel-
oped and implemented the algorithms. LL, HLM, CM, VM performed the
experiments. Part of this material appeared in WABI 2014. All authors read and
approved the manuscript.

Author details

"Inria Grenoble, 655, Avenue de I'Europe, 38334 Montbonnot, France.

2 CNRS, UMR5558, Université Claude Bernard Lyon 1, 43, Boulevard du 11
Novembre 1918, 69622 Villeurbanne, France. > IRISA Inria Rennes Bretagne
Atlantique; GenScale Team, Université Rennes 1, 263, Avenue Général Leclerc,
35042 Rennes, France.

Acknowledgements
LL acknowledges CNPq/Brazil for the financial support. This work was per-
formed using the computing facilities of the CC LBBE/PRABI.

Competing interests
The authors declare that they have no competing interests.

Funding

LL was funded by the Brazilian Ministry of Science, Technology and Innova-
tion (in portuguese, Ministério da Ciéncia, Tecnologia e Inovagéao - MCTI)
through the National Counsel of Technological and Scientific Develop-

ment (in portuguese, Conselho Nacional de Desenvolvimento Cientifico e
Tecnoldgico - CNPg), under the Science Without Borders (in portuguese,
Ciéncias Sem Fronteiras) scholarship grant process number 203362/2014-4. VL
was funded by the Agence Nationale de la Recherche ABS4NGS ANR project
(ANR-11-BINF-0001-06) and Action n3.6 Plan Cancer 2009-2013. This work
was also funded by the Agence Nationale de la Recherche ANR-12-BS02-0008
(Colibread) with grants to LL, BS, GS, HL-M, CM, M-FS, and VL. This work was
also funded by the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7 /2007-2013)/ERC Grant Agree-
ment No. [247073]10. with grants to BS, GS, M-FS, and VL.

Received: 27 July 2016 Accepted: 27 January 2017
Published online: 22 February 2017

References

1. Sacomoto G, Lacroix V, Sagot M-F. A polynomial delay algorithm for the
enumeration of bubbles with length constraints in directed graphs and
its application to the detection of alternative splicing in RNA-seq data. In:
WABI, pp. 99-111 (2013).

2. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit |, Adiconis
X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke
A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman

Lima et al. Algorithms Mol Biol (2017) 12:2

N, Regev A. Full-length transcriptome assembly from RNA-Seq data
without a reference genome. Nat Biotechnol. 2011;29(7):644-52.

Schulz M, Zerbino D, Vingron M, Birney E. Oases: robust de novo RNA-seq
assembly across the dynamic range of expression levels. Bioinformatics.
2012;28(8):1086-92.

Li B, Fillmore N, Bai'Y, Collins M, Thomson J, Stewart R, Dewey C. Evalua-
tion of de novo transcriptome assemblies from RNA-Seq data. Genome
Biol. 2014;15(12):553.

Smith-Unna R, Boursnell C, Patro R, Hibberd J, Kelly S. TransRate: reference
free quality assessment of de novo transcriptome assemblies. Genome
Res. 2016;26(8):1134-44.

Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz
SA, Mobarry CM, Reinert KHJ, Remington KA, Anson EL, Bolanos RA, Chou
H-H, Jordan CM, Halpern AL, Lonardi S, Beasley EM, Brandon RC, Chen L,
Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng X, Rubin
GM, Adams MD, Venter JC. A whole-genome assembly of Drosophila.
Science. 2000,287(5461):2196-204.

Novék P, Neumann P, Macas J. Graph-based clustering and characteriza-
tion of repetitive sequences in next-generation sequencing data. BMC
Bioinform. 2010;11(1):378.

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer
A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams
BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto
T, Antoshechkin |, Baer MT, Bar NS, Batut P, Bell K, Bell |, Chakrabortty S,
Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Dut-
tagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Full-
wood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha
S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud

K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See L-HH,
Shahab A, Skancke J, Suzuki AMM, Takahashi H, Tilgner H, Trout D, Walters
N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M,
Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan

Y, Wold B, Carninci P, Guigd R, Gingeras TR. Landscape of transcription in
human cells. Nature. 2012;489(7414):101-8.

Tilgner H, Knowles D, Johnson R, Davis C, Chakrabortty S, Djebali S,
Curado JA, Snyder M, Gingeras T, Guigé R. Deep sequencing of subcel-
lular RNA fractions shows splicing to be predominantly co-transcriptional
in the human genome but inefficient for INcRNAs. Genome Res.
2012;22:1616-25.

Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall

K, Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard

T, Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu
A-L, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJM, Hoodless
PA, Birol I. De novo assembly and analysis of RNA-seq data. Nat Methods.
2010;7(11):909-12.

. Peng ¥, Leung H,Yiu S, Lv M, Zhu X, Chin F. IDBA-tran: a more robust de

novo de Bruijn graph assembler for transcriptomes with uneven expres-
sion levels. Bioinformatics. 2013;29(13):i326-34.

Sacomoto G, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot M-F, Peter-
longo P, Lacroix V. KISSPLICE: de-novo calling alternative splicing events
from RNA-seq data. BMC Bioinform. 2012;13(5-6):5.

Bao W, Kojima KK, Kohany O. Repbase update, a database of repetitive
elements in eukaryotic genomes. Mobile DNA. 2015;6(1):11.
Lopez-Maestre H, Brinza L, Marchet C, Kielbassa J, Bastien S, Boutigny

M, Monnin D, El Filali A, Carareto CM, Vieira C, et al. SNP calling from
RNA-seq data without a reference genome: identification, quantification,
differential analysis and impact on the protein sequence. Nucl Acids Res.
2016;44(19):148.

20.

21.

22.

Page 19 of 19

. Carroll ML, Roy-Engel AM, Nguyen SV, Salem A-H, Vogel E, Vincent B,

Myers J, Ahmad Z, Nguyen L, Sammarco M, Watkins WS, Henke J, Maka-
lowski W, Jorde LB, Deininger PL, Batzer MA. Large-scale analysis of the

Alu Ya5 and Yb8 subfamilies and their contribution to human genomic
diversity. J Mol Biol. 2001;311(1):17-40.

. Jurka J, Bao W, Kojima K. Families of transposable elements, population

structure and the origin of species. Biol Direct. 2011;6(1):44.

. Bern M, Plassmann P.The steiner problem with edge lengths 1 and 2. Inf

Process Lett. 1989,32(4):171-6.

. LappalainenT, Sammeth M, Friedlander MR. /'t Hoen, PAC, Monlong J,

Rivas MA, Gonzalez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann
M, Wieland T, Greger L, van Iterson M, Almlof J, Ribeca P, Pulyakhina I,
Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M,
Lizano E, Buermans HPJ, Padioleau |, Schwarzmayr T, Karlberg O, Ongen
H, Kilpinen H, Beltran S, Gut M, Kahlem K, Amstislavskiy V, Stegle O,
Pirinen M, Montgomery SB, Donnelly P, McCarthy MI, Flicek P, Strom TM,
Consortium TG, Lehrach H, Schreiber S, Sudbrak R, Carracedo A, Antona-
rakis SE, Hasler R, Syvanen A-C, van Ommen G-J, Brazma A, Meitinger T,
Rosenstiel P, Guigo R, Gut IG, Estivill X, Dermitzakis ET. Transcriptome and
genome sequencing uncovers functional variation in humans. Nature.
2013;501(7468):506-11.

. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES,

Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol.
2011,29(1):24-6.

Griebel T, Zacher B, Ribeca P, Raineri E, Lacroix V, Guigd R, Sammeth M.
Modelling and simulating generic RNA-seq experiments with the flux
simulator. Nucl Acids Res. 2012;40(20):10073.

Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res.
2002;12:656-64.

Freyermuth F, Rau F, Kokunai Y, Linke T, Sellier C, Nakamori M, Kino Y,
Arandel L, Jollet A, Thibault C, Philipps M, Vicaire S, Jost B, Udd B, Day JW,
Duboc D, Wahbi K, Matsumura T, Fujimura H, Mochizuki H, Deryckere

F, Kimura T, Nukina N, Ishiura S, Lacroix V, Campan-Fournier A, Navratil

V, Chautard E, Auboeuf D, Horie M, Imoto K, Lee K-Y, Swanson MS, de
Munain AL, Inada S, Itoh H, Nakazawa K, Ashihara T, Wang E, Zimmer T,
Furling D, Takahashi MP, Charlet-Berguerand N. Splicing misregulation of
SCNS5A contributes to cardiac-conduction delay and heart arrhythmia in
myotonic dystrophy. Nat Commun. 2016;7:11067.

Submit your next manuscript to BioMed Central
and we will help you at every step:

® We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal
* We provide round the clock customer support

¢ Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central

Chapter 3. Playing hide and seek with repeats in local and global de novo
88 transcriptome assembly of short RINA-seq reads

Chapter 4

Complementarity of assembly-first
and mapping-first approaches for
alternative splicing annotation and
differential analysis from RNAseq
data

Preamble

Key points

Tools for de novo assembly of alternative splicing events allow to discover novel
variants even when a good reference genome and annotations are available;

Assembly-first approaches can better detect events that: i) involve novel exons or
novel combinations of existing exons; ii) stem from paralogous genes;

Mapping-first approaches can better detect events that: i) are lowly-expressed; ii)
contain repeats; iii) are complex;

No approach is exhaustive. Mapping-first and assembly-first approaches each sys-
tematically misses some types of alternative splicing events. Furthermore, many
events that were found only by one approach are differentially regulated across con-
ditions. As such, these events should not be discarded from the analysis. Therefore,
the diversity of splicing variants can be better explored by a combination of both
approaches;

Better methods are needed for the detection of events that: i) are lowly-expressed;
ii) are exonized repeats; iii) are complex splicing variants; iv) stem from paralogous
genes.

Complementarity of assembly-first and mapping-first approaches for
90 alternative splicing annotation and differential analysis from RNAseq

Status
Published in journal Scientific Reports [11].

Author contributions

The first author is Clara Benoit-Pilven. L. is second author and was involved in the tasks
of:

e Improving the scalability of KisSplice;
e Comparing the two pipelines and classifying the instance types;

e Developing the supporting webpage.

www.nature.com/scientificreports

SCIE

OPEN :

Received: 15 September 2017
Accepted: 30 January 2018
Published online: 09 March 2018

NTIFIC REP{{}:}RTS

Complementarity of assembly-first
and mapping-first approaches for
alternative splicing annotation and
differential analysis from RNAseq
data

Clara Benoit-Pilven?, Camille Marchet?, Emilie Chautard™?, Leandro Lima?, Marie-Pierre Lambert?,
Gustavo Sacomoto?, Amandine Rey?, Audric Cologne?, Sophie Terrone?, Louis Dulaurier?,
Jean-Baptiste Claude?, Cyril F. Bourgeois?, Didier Auboeuf! & Vincent Lacroix?

Genome-wide analyses estimate that more than 90% of multi exonic human genes produce at least

" two transcripts through alternative splicing (AS). Various bioinformatics methods are available to

analyze AS from RNAseq data. Most methods start by mapping the reads to an annotated reference
genome, but some start by a de novo assembly of the reads. In this paper, we present a systematic
comparison of a mapping-first approach (FARLINE) and an assembly-first approach (KisSPLICE). We
applied these methods to two independent RNAseq datasets and found that the predictions of the two
pipelines overlapped (70% of exon skipping events were common), but with noticeable differences. The
assembly-first approach allowed to find more novel variants, including novel unannotated exons and
splice sites. It also predicted AS in recently duplicated genes. The mapping-first approach allowed to find
more lowly expressed splicing variants, and splice variants overlapping repeats. This work demonstrates

. thatannotating AS with a single approach leads to missing out a large number of candidates, many of
* which are differentially regulated across conditions and can be validated experimentally. We therefore

advocate for the combined use of both mapping-first and assembly-first approaches for the annotation
and differential analysis of AS from RNAseq datasets.

In the last 10 years, the prevalence of alternative splicing has been completely re-evaluated. Recent reports claim
that more than 90% of multi-exon genes produce at least two splicing variants?. The depth at which transcrip-
tomes can be sampled with next generation sequencing techniques opens the possibility not only to annotate
splicing variants in various conditions, but also to detect which transcripts are differentially spliced across patho-

logical and physiological conditions.

This growing interest in splicing both as a fundamental process and because of its implication in pathologies’>

© hasbeen accompanied by an increasing number of methods aiming at analyzing RNAseq datasets®~. The ultimate

goal of these methods is to identify and quantify full-length transcripts from short sequencing reads. This task is

particularly challenging and recent benchmarks show that all methods still make a lot of mistakes’. The difficulty

of reconstructing full-length transcripts (isoform-centric approaches) also prompted a number of authors to

focus on identifying exons that are differentially included within transcripts (exon-centric approaches) %1,
Whether they are exon- or isoform-centric, methods to study splicing from RNAseq data can further be

divided in two main categories'’. The mapping-first approaches first map the reads to the reference genome and

IUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory
of Biology and Modelling of the Cell, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France. 2Université de
Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622,
Villeurbanne, EPI ERABLE - Inria Grenoble, Rhdne-Alpes, France. ?IRISA Inria Rennes Bretagne Atlantique CNRS UMR
6074, Université Rennes 1, GenScale team, Rennes, 263 Avenue Général Leclerc, Rennes, France. Correspondence
and requests for materials should be addressed to D.A. (email: Didier.auboeuf@inserm.fr) or V.L. (email: Vincent.
lacroix@univ-lyonl.fr)

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 1

www.nature.com/scientificreports/

the mapped reads are then assembled into exons and eventually transcripts. In contrast, assembly-first approaches
first assemble the reads based on their overlaps. The assembled sequences (corresponding to sets of exons) are
then aligned to the reference genome.

Mapping-first approaches have been the most used so far, essentially because they were the first to be devel-
oped and because they initially required less computational resources. De novo assembly methods were also
thought to be restricted to non-model species, where no (good) reference genome is available, and they seemed
to be inadequate when an annotated reference genome is available.

Recent progress in de novo transcriptome assembly is clearly changing this view, and the argument of the
heavier computational burden does not hold anymore.

The application of de novo assembly to human RNAseq datasets however still remains rare, although some
studies have already shown its potential to detect novel biologically relevant splicing variants'>'°.

The generalization of de novo assembly approaches for studying splicing in human seems to be mostly impeded
by the lack of a clear evaluation of its potential interest in comparison to more traditional mapping-based
approaches.

This is the gap we aim at filling with the work presented here.

To achieve this goal, we performed a systematic evaluation of an assembly-first and a mapping-first approach
on two RNAseq datasets.

As a first step, we compared pipelines that we developed in parallel, namely KisSpLicE and FARLINE, because
we could easily control their parameters. Any difference between the predictions that is solely due to a parameter
setting could be fixed easily, which enabled us to obtain a precise understanding of the irreducible differences
between the two approaches.

In a second step, we confirmed the generality of our findings by benchmarking our methods against Cufflinks®,
MISO" and Trinity'’, which are widely used pipelines.

A significant part of our work has been to manually dissect a number of cases found by only one of the two
methods. This enabled us to go beyond a simple qualitative description and provide the community with a precise
understanding of which cases are overlooked by each type of method, and where new methods are needed.

All the software and step-by-step protocols presented in this work are freely available at http://kissplice.prabi.
fr/pipeline_ks_farline. This should facilitate the reproducibility of our work, and applications to other datasets.

From a general point of view, the combination of approaches we propose should enable to improve
splicing-related transcriptomic analyses in physiological and pathological situations.

Results

KisSpPLICE and FARLINE. Figure 1 presents schematically the two pipelines that we developed and com-
pared. A detailed description of each step is given in the Methods section. In the assembly-first approach, a De
Bruijn graph is built from the reads. Alternative splicing events, which correspond to bubbles in this graph are
enumerated and quantified by KisSpLICE. Each path is then mapped on the reference genome using STAR and the
event is annotated by KisSPLICE2REFGENOME, using the EnsEMBL r75 annotations as an evidence. Importantly,
exons not present in the annotations can be identified by this approach. In the mapping-first approach, reads
are aligned to the reference genome using TopHat2. Mapped reads are then analyzed by FARLINE, using the
EnsEMBL r75 annotations as a guide.

We also tested STAR instead of TopHat2 for the mapping-first pipeline, and found that our main results were
essentially unchanged (see Methods).

Quantification of splicing variation is performed similarly in the two pipelines. Only junction reads are con-
sidered. Exonic reads are not considered, for reasons exposed in Methods. For the inclusion isoform, there are
two junctions to consider. We calculate the mean of the counts of these two junctions.

The differential analysis is performed by a common method for the two approaches: k1ssDE, which tests if the
relative abundance of the inclusion isoform has changed significantly across conditions.

Overall, we developed and adapted jointly these two pipelines in order to minimize the discrepancies that
could complicate the comparison.

The majority of frequent isoforms are identified by both approaches. Applying KisSpLicE and
FARLINE to the same RNAseq datasets generated by the ENCODE consortium (SK-N-SH cell lines treated or
not with retinoic acid), we noticed that 68% of the alternatively skipped exons (ASE) identified by KisSpLICE
were also identified by FARLINE and that 24% of ASEs identified by FARLINE were also identified by KisSpLICE
(Fig. 2A). This observation highlights that the mapping-first approach predicts a much larger number of events.
This difference in sensitivity is due to the fact that while mapping-first approaches require that each exon junction
is covered by at least one read, assembly-first approaches require overlapping reads across the entire skipped exon.
Therefore, it can be anticipated that low abundant isoforms, that are covered by few reads, will be reported by
mapping, but not by the assembly-first approach. Supporting this prediction, we observed that for ASEs reported
only by FARLINE, the number of reads supporting the minor isoform is much lower than in the other categories
(Fig. 2 B). The same results were obtained using another RNAseq dataset representing MCF-7 cells expressing or
not the DDX5 and DDX17 splicing factors (Supplementary Figure S1).

Having clarified that rare variants are better handled by the mapping-first approach, we decided to filter them
out, in order to analyse other differences between the two approaches. Experimental validations by RT-PCR that
we performed on rare variants stratified by read support enabled us to clarify that both an absolute and a relative
cutoff on the number of reads are required to discriminate variants which can be validated from those which
cannot. Indeed, out of the 48 tested cases, we were able to validate 41 (Supplementary Figure S9). The non vali-
dated cases indeed corresponded to cases supported by fewer reads. However, what really departed them from
the validated cases was their lower relative abundance (Supplementary Figure S10, Supplementary Table 1). In the

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 2

www.nature.com/scientificreports/

Assembply, events |
Identitication and |
Bubble in the quantitication | Mapping
de Bruin Graph (KIsSplice) | (TopHat2)
|
|
Assembled events | |
I I Mapped reads
|
Mapping |
(STAR) |
' Event dentication,
— . = Mapped events | | annotation and
R s Em ! unon
1 (FaRLine)
1
Eventannotation |
(Kiss2RetGenome) | 55D
|
150 ¢ ! Annotated and
1 quantified events
Annotated and I 10 10
quantified events 1
10 10 |
\ :

Ditterentlal analysis (KISSDE)

Signiticants events

150/50

10/100 10/100

Condition 1 Condition 2

Figure 1. The two pipelines compared in this study: KisSpLicE and FARLINE. The first step of KISSPLICE is to
assemble the reads and extract the splicing events. These events are then mapped back to the reference genome
and classified by event type. The annotated and quantified events are then used for the differential analysis
between the biological conditions. In contrast, the first step of FARLINE is to map the reads on the reference
genome. From this mapping, annotated and quantified events are extracted. Finally, the differential analysis is
done with the same method as in the KisSPLICE pipeline.

remaining of our work, we chose to use both criteria and we filtered variants supported by less than 5 reads, and
less than 10% compared to the major isoform.

As expected, the proportion of candidates reported simultaneously by both methods increased significantly.
Approximately 70% of predicted skipped exons were indeed found by both approaches after filtering lowly
expressed isoforms. (Fig. 2C, Supplementary Figure S1C).

Furthermore, the estimation of their inclusion rates was consistent across the two approaches (R? > 0.9)).

Beyond the overall concordance of the two approaches in detecting common splicing events, a number of
candidates remained reported by only one approach. Since many of them have a highly-expressed minor isoform
(supported by more than 100 reads) (Fig. 2D, Supplementary S1D), the failure of one approach to detect them is
likely not due to a lack of coverage.

For events only found by one approach, we patiently dissected the reasons why they could have been missed
out by the other approach. This enabled us to define 4 main categories which cover 70% of the cases (Fig. 3A) The
remaining 30% of cases did not fit into clearly defined biological categories. We however classified them using
methodological criteria. The full list of categories is presented in Supplementary Table 2. For each of the 4 main
categories, we selected cases to validate experimentally. All 34 RT-PCR validations were successful and are pre-
sented in Supplementary Figure S11 confirming that these events are not false positives.

Some isoforms are systematically missed by one approach. The first category corresponds to cases
that were missed out by the mapping-first approach and corresponds to alternative splicing events involving novel
exons or novel combinations of existing exons.

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 3

www.nature.com/scientificreports/

A

FaRLine KisSplice 00 .
Mapping-first Assembly-first &
approach approach g i
8
= =)
3 =
w 3
30 577 9918 4676 85
g é 104
52 .
o
E : 7 \
E I =
FaRLinx: com'mon KisS'pIicc
only only
c D :
FaRLine KisSplice i
Mapping-first Assembly-first - 3 .
approach approach 2
£
g€
S8
1663 5699 2562 - 2
85 .
ec
= E
[=]
5 2
o] .
A
F::R'Lm«;- con{mon Kiséplice
only only

Figure 2. Comparison of the ASE identified by the assembly-first and mapping-first pipelines. (A) Venn
diagram of ASEs identified by the two pipelines. FARLINE detected many more events than KisSPLICE. 68% of
ASE found by K1sSpLICE were also found by FARLINE and 24% of ASE detected by FARLINE were also found
by KisSpLICE. (B) Boxplot of the expression of the minor isoform in the 3 categories defined in the Venn
diagram of panel A: ASE identified only by FARLINE, ASE identified by both pipelines and ASE identified only
by KisSpLICE. The number of reads supporting the minor isoform of the ASE identified by FARLINE is overall
much lower. Many isoforms are supported by less than 5 reads. (C) Venn diagram of ASEs identified by the two
pipelines after filtering out the poorly expressed isoforms (less than 5 reads, or less than 10% of the number of
reads supporting both isoforms). The common events represent a larger proportion than before filtering: 77%
of the ASE identified by FARLINE and 69% of the ASE identified by KisSpLicE. (D) Boxplot of the expression of
the minor isoform in the 3 categories defined in the Venn diagram of panel C: ASE identified only by FARLINE,
ASE identified by both pipelines and ASE identified only by KisSpLICE. The distribution of the number of reads
supporting the minor isoform is similar for the 3 categories with highly expressed variants in each category.

There are two reasons to explain why the mapping-first approach does not detect these events. First the map-
per may fail to map the reads, or map them to an incorrect location, as junction discovery using short reads is
a challenging task. Second, even in the case where the mapper succeeds, FARLINE may fail to report the event
because it relies on annotations. Among these 1864 cases, we distinguished 3 sub-categories of errors due to the
annotation. Either the exon is unannotated (30%), one of its flanking exon is unannotated (13%) or both exons
are annotated but no transcript combining them was annotated (57%).

The assembly-first approach, KisSPLICE, does not consider annotations, and an interesting resulting advantage
is that novel junctions have the same chance to be assembled as known junctions. Mapping assembled novel junc-
tions to the genome is indeed less challenging than read mapping because the assembled sequences are longer.

More importantly, the ability of K1sSpLICE to identify novel splicing events comes from the fact that it intro-
duces known annotations as late as possible in its pipeline (see Methods). Annotations are used as an evidence,
not as a filter. AS events involving novel splice sites are clearly identified as such, and can be specifically tested and
experimentally validated. More than 99% of the novel splice sites were canonical splice sites (GT-AG).

As an example, the HIRA gene contains a novel exon, whose inclusion is supported by at least 20 reads on each
junction (Fig. 3B, Supplementary Figure S8A). This case was overseen by the mapping-first approach, FARLINE.

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 4

www.nature.com/scientificreports/

A KisSplice FaRLine
Assembly-first ~ Mapping-first
approach approach
Repeats
Not annotated 1864
Complex
Recently duplicated avenie
genes
B HIRA
97 C RASA4 and RASA4B
168
29 48
329 412
SK-N-SH RA IR ol
=022 ' [E8TEs] SK-N-SH -
' =069 ol

D

SK-N-SH RA (EQez(E5)
=024
(E1Es)

Both

FaRLine

only

|
L

E4 ES E6

Figure 3. (A) Main categories explaining why some exons are detected by only one method. (B) The exon in
intron 8 of the HIRA gene is an example of an exon not annotated in EnsEMBL r75. This event was identified by
KisSpLICE but not by FARLINE. (C) RASA4 and RASA4B are 2 paralog genes. KisSpLICE detected 2 isoforms that
could be produced by these 2 genes. FARLINE did not detect any event in either of these genes. The exon skipped
is exon 18 in RASA4 (corresponding to exon 17 in RASA4B). The third band on the RT-PCR is the inclusion

of another exon in the intron 18 of RASA4. (D) Exon 2 of the RAB5C gene is an example of exon skipping
overlapping an Alu element identified only by FARLINE. The events in panel B to C were validated by RT-PCR.
(E) The RPAIN gene contains a complex event with a lowly expressed isoform. This weakly expressed isoform
was not identified by KisSpLiCE, while the other isoforms were identified by both approaches.

The panel B of the Supplementary Figure S8 shows an example of an ASE not reported by FARLINE because the
included exon was not present in the transcripts.

The second category of splicing events identified by only one approach corresponds to recent gene duplica-
tions. Untangling the relation between alternative splicing and gene duplication is a difficult topic, subject to
debate'®!. It is indeed difficult to assess the amount of alternative splicing that occurs within paralogous genes.
With the mapping-first approach, the reads stemming from recent paralogs are classified as multi-mapping reads.
FARLINE, like the vast majority of mapping-first pipelines, discards these reads for further analysis, as their pre-
cise location cannot be clearly established. This results in silently underestimating alternative splicing in recent
paralog genes. Note that setting the mapper to keep multi-mapping reads in the analysis leads to overestimating
alternative splicing, as all members of the family will be predicted as alternatively spliced. In opposition, de novo
assembly can faithfully state that a family of recent paralogs collectively produce two isoforms that vary in their
sequence. However, whether the two isoforms are produced from the same locus or from different loci remains
undetermined. KisSpLICE detects these cases of putative AS in paralog genes. Figure 3C illustrates the case with

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 5

www.nature.com/scientificreports/

genes RASA4 and RASA4B. Exon 18 in RASA4 (denoted as exon 17 in RASA4B) was detected to be skipped.
The exclusion isoform is supported by 160 reads, while the inclusion isoform is supported by 400 reads. The
mapping-first approach did not detect either of these isoforms at all. Another example from this category is pre-
sented in Supplementary Figure S2C.

The third category of splicing events identified by only one approach corresponds to cases that are missed
out by the assembly-first approach. Out of the 1663 cases belonging to this category, a large fraction (21%) cor-
responds to cases where the skipped exon overlaps a repeat, notably Alu elements. Alu are transposable elements
present in a very large number of copies in the human genome®’. Most of these copies are located in introns and
a number of them have been exonised*"?*. The reason why the mapping-first approach is able to identify these
cases is because even though the reads partially map to repeated sequences, the boundaries of these exons are
unique and annotated. Hence the mapper, if set properly, can map these reads to unique annotated exon junctions
and is not confused by multiple mappings. Importantly, if the annotations are not provided to the mapper, it will
be confused by multiple mappings and will not be able to map the read to the correct location (Supplementary
Figure S7). Figure 3D and Supplementary Figure S2D represent two RT-PCR validated Alu-derived exons identi-
fied by the mapping-first approach. The assembly-based approach fails to detect most of these events. The reason
is that, although they do form bubbles in the DBG generated by the reads, these bubbles are highly branching
(supplementary figure http://kissplice.prabi.fr/sknsh/graph_ RAB5C_distance_3.html23). Enumerating branch-
ing bubbles is computationally very challenging, and may take a prohibitive amount of time. In practice, we
restrict our search to the enumeration of bubbles with at most 5 branches (Supplementary Figure S12A).

The fourth category of splicing events identified by only one approach corresponds to cases where more
than two splicing isoforms locally coexist, and one of them is poorly expressed compared to the others. The
RPAIN gene is a good illustration of such cases (Fig. 3E), as exons 5 and 6 of RPAIN may be skipped and the
intron between exons 4 and 5 may be retained. While both methods successfully reported the skipping of exon
6, with exons 5 and 7 as flanking, FARLINE additionally reported the skipping of the same exon, but with exons
4 and 7 as flanking exons. The reason why KisSpLicE did not report this case is because the junction between
exons 4 and 6 is relatively weakly supported. More specifically, this junction is supported by only 55 reads, which
accounts for less than 2% of the total number of reads branching out from exon 4. Transcriptome assemblers,
like K1sSpLICE, usually interpret such relatively weakly supported junctions as sequencing errors or spurious
junctions in highly-expressed genes, therefore disregarding them in the assembly phase (see Supplementary
Methods). Supplementary Figure S2E shows another example of a complex event not correctly handled by
KisSpLICE because there were locally more than 5 branches.

Comparison of the approaches after differential analysis. Beyond the tasks of identifying exon skip-
ping events, a natural question which arises when two conditions are compared is to assess if the exon inclusion
rate significantly changed across conditions.

In order to test this, we took advantage of the availability of replicates for both the SK-N-SH cell line and the
same cell line treated with retinoic acid. For each detected event, we tested with xk1ssDE?*, whether we could
detect a significant association between one isoform and one condition. Focusing on those condition-specific
events, we again partitioned them in events reported by both methods, by FARLINE only and by KisSpLICE only.
As shown in Fig. 4, the majority of condition-specific events were detected by both approaches. This is the case
for instance of exon 22 of gene ADD3 which is clearly more included upon retinoic acid treatment (Fig. 4C),
with a DeltaPSI of 27%. The estimation of the DeltaPSI is overall very similar across the two approaches (Fig. 4B)
with a correlation of 0.94. The outliers essentially correspond to ASE with several alternative donor/acceptor
sites. K1sSPLICE considers these events as different exons while FARLINE considers them as an unique exon, and
sums up all the incoming (resp. outgoing) junction counts. Hence, the read counts will differ. Supplementary
Figure S8D gives an example.

When focusing on condition-specific events, the proportion of events predicted by only one method
increased, for two main reasons. First, some ASE annotated by both approaches were predicted to be differentially
included only by one method. This is again due to differences in the quantification of the inclusion rate, especially
for ASE with multiple 5" and 3’ splice sites. Second, some of the exons that were missed out by one method at the
identification step happened to be condition specific. This is the case of an exon in NINL intron 5 (Fig. 4D), only
identified by KisSpLICE because it was not annotated. This is also the case of SARIB exon 3 (Fig. 4E), only iden-
tified by FARLINE because it overlaps with an Alu element. The analysis of the MCF-7 RNAseq dataset gave very
similar results (Supplementary Figure S3).

The observation that many of the AS events that were annotated only by one method are differentially regu-
lated across conditions confirms that these AS events should not be discarded from the analysis. Focusing only on
AS events annotated by one approach may lead to miss splicing events which are central in the biological context.

Overlap with other methods. In a first step, we picked FARLINE and KisSPLICE as examples of a
mapping-first and an assembly-first approach respectively. Clearly, there are other published methods in both
categories. MISO is probably the most widely used to annotate AS events. We therefore ran it on the same datasets
to check how its predictions overlapped with ours. As shown in Fig. 5A (SK-N-SH dataset), 77% of predictions
made by MISO were common to both FARLINE and KisSpLICE, 18% were only common with FARLINE, 2% were
only common to KisSpLICE and the remaining 3% were specific to MISO. The overlap between the different
methods was very similar when the MCF-7 RNAseq dataset was used (Supplementary Figure S4A). Overall,
almost all candidates predicted by MISO were also predicted by FARLINE. This large overlap with FARLINE was
expected, because both are mapping-first approaches. This also shows that the differences between mapping- and
assembly-first approaches reported above are not limited to one mapping-first approach.

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 6

www.nature.com/scientificreports/

FaRLine , = 77 <KisSplice ¥ =-0.0061+0.99-x, *=0}044 L
. P 04~ ' . A P
Mapping-first, o3 bly-first e :
approach apptoach 8 o | e c
/ { A\ \ B crrrmmemeeeememeee- e 7 SRS
) 1 \ 1 (g 0o :
226 |61| 587 1270 1252 ¥ R
KD
‘ i ' 2 1) .
L}
C ADD3 AW (FaRLine)
0 — e — p— —
e — Ay i Sknsh rep1
355 Sknsh rep2
% — e ;w‘g_ _;_?"
622 505 Sknsh-ra rep1
[] 1052
— 510 — i Sknsh-ra rep2
ERRL 0 o) Hisns Ry LU et 2t
S EEEEE [DT B

Sknsh rep1
o) 96 l—23
e — . — . ——— — —— .. e e — it = p—
12 Sknsh rep2
8 6
74 Sknsh-ra rep1

Sknsh-ra rep2

e e A
SAR1B
318 —
——— N
8 Skns| fep!

D25, ,

A3 |Skns rep2

a4 nsl»rérepi
e — - 21;*!*"54
™ ﬂknsluarepz
e — AT Trrae T
P — e e —— e e ——— T gd
- =t

Figure 4. (A) Condition-specific variants identified by FARLINE, KisSPLICE or both methods. Within dashed
lines are events identified by both approaches but detected as condition-specific by only one approach. (B)
DeltaPSI as estimated by KisSpLick and FARLINE, for events identified by both methods. The red dots represent
complex events for which KisSpLICE found at least 2 ‘bubbles’ (C) Exon 22 of the ADD3 gene is an example of
regulated ASE identified by both approaches. (D) A new exon in intron 5 of NINL gene is identified only by
KisSprice. The inclusion of this exon is differentially regulated between the 2 experimental conditions. (E)
Because exon 3 of the SARIB gene is an exonised Alu element, only FARLINE identified this event. Moreover
this exon is significantly more included in the treated cells (SK-N-SH RA) compared to the control cells.

Besides exon-centric approaches, which aim at finding the differentially spliced exons, there is also a number
of published methods which are isoform-centric and have the more ambitious goal to reconstruct full-length
transcripts at the expense of underestimating alternative splicing.

The most widely used mapping-first and isoform-centric approach is Cufflinks® that we compared to FARLINE
using the same dataset. As shown in Fig. 5B (and Supplementary Figure S4B), we found that the vast majority of
ASE were predicted by both approaches.

Finally, we compared KisSPLICE to one of the most widely used de-novo transcriptome assembler, Trinity'”.
As shown in Fig. 5D (and Supplementary Figure S4D), most ASE found by Trinity were also found by KisSpLICE.
However, KisSPLICE was significantly more sensitive. The goal of Trinity is to assemble the major isoforms

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 7

www.nature.com/scientificreports/

MISO - KisSplice 134 10 aaiso
1
1012
MISO -
FaRLine MISO -
FaRLine -
4189 KisSplice
B (o] GTF2I
i -
FaRLine Cufflinks W SK-N-SH
event sy —
1332 6030 114 mL e
Cufflinks === Ezles
transcript
D E RFWD2
KisSplice Trinity """ S (ssplice S

event
3938 4 323 1003 S—.__~ \ J/ FEEn)
. I . Trinity (EEED

transcript

Figure 5. (A) 77% of ASE identifed by MISO are also annotated by FARLINE and KisSpLICE. 18% of MISO’s
ASE are also annotated by FARLINE while only 2% of MISO’s ASE are also annotated by KisSpLICE. Finally,
only 3% of these ASEs are only annotated by MISO. (B) Most of the events annotated by Cufflinks are identified
by FARLINE. (C) GTF2I exon 13 is an example of an ASE annotated by FARLINE but not by Cufflinks. Indeed,
Cufflinks only identified the isoform corresponding to the exon inclusion. (D) Most of the events annotated by
Trinity are also annotated by KisSpLicE. But half of the ASE annotated by KisSpLICE are not annotated by the
global assembler Trinity. (E) KisSPLICE annotates an ASE in the RFWD2 gene, while Trinity only identified the
isoform corresponding to the exon inclusion. The events in panels C and E have been validated by RT-PCR.

for each gene, it therefore largely under-estimates alternative splicing, especially inclusion/exclusion of short
sequences.

For completeness sake, we also provide an all-vs-all comparison (Supplementary Figure S5). An interac-
tive version of this Figure is available at http://kissplice.prabi.fr/pipeline_ks_farline/. The list of events found
by any used method can be retrieved from this interactive figure and analysed in IGV; to reproduce the sashimi
plots of the paper. The general conclusions from these comparisons is that there is a clear distinction between
mapping-first and assembly-first approaches, and between exon-centric and isoform-centric approaches, the lat-
ter being less sensitive.

Discussion

De novo assembly is usually applied to non-model species where no (good) reference genome is available. We
show here that even when an annotated reference genome is available, using assembly offers a number of advan-
tages. We named this approach “assembly-first” because it does use a reference genome, but as late as possible in
the process, in order to minimize the a priori on which exons should be identified.

Using this strategy, we identified novel alternatively skipped exons, which were not identified by traditional
read mapping approaches (Fig. 3 and Supplementary Figure S2). While it is believed that the human genome is
fully annotated, it is important to underline that we have not yet established a final map of the parts of the genome
that can be expressed. It can be anticipated that sequencing of single-cells from different parts of the body will
lead to the discovery of a huge diversity of transcripts and that a substantial number of new exons will be dis-
covered. An example is the case of unannotated skipped exons which overlap with repeat elements. We cannot
exclude that this category is currently largely under-annotated.

We also showed that assembly-first approach has the ability to detect splicing variants within recently dupli-
cated genes (Fig. 3 and Supplementary Figure S2). This is because mapping approaches discard reads which map
to multiple genomic locations. Identification of such splicing variants produced from different genomic regions

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 8

www.nature.com/scientificreports/

sharing sequence similarities (e.g. paralog genes, pseudogenes) is however very important, since splicing variants
generated from paralogous genes but also from pseudogenes may have different biological functions®.

Conversely, we showed that some ASE were detected only by the mapping-first approach. As shown in
Fig. 2 (and Supplementary Figure S1), we observed that the mapping-first approach has a better ability to detect
lowly-expressed splicing variants. Although such lowly-expressed splicing variants are often considered as
“noise” or biologically non relevant, caution must be taken with such assumptions for several reasons. First,
mRNA expression level is not necessarily correlated with protein expression level. Second, as observed from
single-cell transcriptome analyses, some mRNAs can be expressed in few cells, within a cell population (e.g.
they are expressed at a specific cell cycle step) and may therefore appear to be expressed at a low level in total
RNAs extracted from a mixed cell population?®. Therefore, computational analysis should not systematically dis-
card lowly-expressed splicing variants and filtering these events should depend on the biological questions to be
addressed.

We also observed that the mapping-first approach better detects exons corresponding to annotated-repeat
elements (Fig. 3 and Supplementary Figure S2). While it has been assumed for a long time that repeat elements
are “junk’, increasing evidences support important biological functions for such elements. For example, repeat
elements like Alu can evolve as exons and the presence of Alu exons in transcripts has been shown to play impor-
tant regulatory functions**’.

When two methods give non-overlapping predictions, the temptation could be to focus on exons found by
both approaches and to discard the others. We argue that this is not the best option, because approach-specific
cases can be validated experimentally, and also because many of them correspond to regulated events, i.e. the
inclusion isoform is significantly up or down regulated depending on the experimental condition.

In conclusion, combining mapping- and assembly-first approaches allows to detect a larger diversity of splic-
ing variants. This is very important towards the in depth characterization of cellular transcriptome although other
approaches are further required to analyze their biological functions.

From a computational perspective, a number of challenges are still ahead. The co-development of two
approaches enabled us to narrow down the list of difficult instances not properly dealt with by at least one
approach, but we cannot exclude that some categories are still missed out by both approaches. The categories of
challenging cases that we defined in Fig. 3: lowly-expressed variants, exonised Alu, complex splicing variants, par-
alogs have been overlooked up to now. Possibly because they are much harder to detect, they have been assumed
to play a minor role in transcriptomes, but more recent studies however argues the opposite.

For exonised ALUs, paralog genes and genes with complex splicing patterns, the possibility to sequence longer
reads with third generation techniques***’ should prove very helpful. The number of reads obtained with these
techniques is however currently much lower than with Illumina, thereby preventing their widespread use for dif-
ferential splicing, for which the sequencing depth, and not so much the length of the reads, is the critical parame-
ter which conditions the statistical power of the tests. In the coming years, methods combining second and third
generation sequencing should enable to obtain significant advances in RNA splicing.

Material and Methods
FaRLine and KisSplice. Figure 1 shows the two pipelines that we are comparing. While STAR and TopHat
are third-party softwares, we developed the other methods ourselves. KisSPLICE was first introduced in Sacomoto
et al.®. The novelty here is that its usage is now possible in the case where a reference genome is available, which
required specific methodological developments implemented in the newly released KisSPLICE2REFGENOME
software. kKissDE was first introduced in Lopez-Maestre et al.** in the context of SNPs for non-model species.
We present here its extension for alternative splicing. FARLINE is a new mapping-first pipeline, that we intro-
duce in this paper. It is the RNAseq pipeline associated to the FasterDB database® and was already successfully
applied to the analysis of the effect of metformin treatment on myotonic dystrophy type I (DM1) with a valida-
tion rate of 95%"'. Specifically, 20 cases of ASE regulated by the metformin treatment were tested, and 19 were
validated. In this paper, we provide additional validations of FARLINE with similar validation rates (36 out of 38),
Supplementary Figure S19.

For the sake of self-containment, we explain all methods here.
KisSplice. K1sSPLICE is a local transcriptome assembler. As most short reads transcriptome assemblers®!'”2, it
relies on a De Bruijn graph (DBG). Its originality lies in the fact that it does not try to assemble full-length tran-
scripts. Instead, it assembles the parts of the transcripts where there is a variation in the exon content. By aiming
at a simpler goal, it can afford to be more exhaustive and identify more splicing events. The key concept on which
Ki1sSpLICE is built is that variations in the nucleotide content of the transcripts will correspond to specific patterns
in the DBG called bubbles (Supplementary Figure S13). KisSPLICE’s main algorithmic step therefore consists in
enumerating all the bubbles in the graph built from the reads. Examples of bubbles in the DBG and explanation
of the parameters used to filter out sequencing errors and repeat-induced bubbles are given in Supplementary
Methods.

Annotating the events with KisSPLICE2REFGENOME. KISSPLICE outputs bubbles in the form of a pair of
fasta sequences. Clearly, such information is insufficient to analyse alternative splicing for model species.
K1sSpLICE2REFGENOME enables to provide for each bubble: the gene name, the AS event type, the genomic coor-
dinates and the list of splice sites used (novel or annotated).

Bubbles found by KisSPLICE are mapped to the reference genome using STAR, with its default settings, which
means that in the case of multi-mappings, STAR reports all equally best matches. The mapping results are then
analysed by KisSPLICE2REFGENOME. Bubbles are classified in sub-types depending on the number of blocks
obtained when mapping each path of the bubble to the genome (Supplementary Figure S14). For exon skipping,

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 9

www.nature.com/scientificreports/

the longer path of the bubble corresponds to 3 blocks, while the lower path corresponds to 2 blocks. The splice
sites are located and compared to the annotations. Events with novel splice sites are reported explicitly as such in
the output of the program.

In the case where the bubble corresponds to a genomic insertion or deletion, it exhibits a specific pattern in
terms of block numbers (one block for one path and two blocks for the other) and is reported separately.

The criterion of the number of blocks is discriminative in most cases. However, there is a possible confusion
between intron retentions and genomic deletions, since in both cases, the longer path will map into one block
and the lower path in two blocks. In this case, we also use the distance between the blocks, and introduce a
user-defined threshold, which we set to 50nt, below which the bubble is classified as a genomic deletion, and
above which it is classified as an intron retention.

In the special case where the exon flanking the AS event is very short (less than k nt), the number of blocks is
increased for both paths, but the difference of number of blocks remains unchanged.

In the special case where there is a genomic polymorphism located less than k nt apart from the AS event,
KisSpLicE will report several bubbles (possibly all combinations of genomic and transcriptomic variants). This
redundancy is removed in KisSPLICE2REFGENOME where the primary focus in on splicing.

In the case where the bubble maps to two locations on the genome, a distinction is made between the case
of exact repeats where both paths map to both locations and inexact repeats where each path maps to a distinct
location (Supplementary Figure S12B). The cases of exact repeats correspond to recent gene duplications.

FaRLine. FasterDB EnsEMBL r75 annotation. FasterDB RNAseq Pipeline, FARLINE, uses the FasterDB-based
EnsEMBL r75 annotation database. FasterDB is a database containing all annotated human splicing variants™.

Each transcripts present in the FasterDB, is composed of a succession of exons, that we call transcript exons
(represented in blue in Supplementary Figure S15). The genomic exons (represented in red in Supplementary
Figure S15) are defined by projecting the transcript exons. First, the transcript exons are grouped by position.
Then each group of exons defines a projected exon with the following rules:

o The start is the leftmost start of the non-first-exon of the group.
o The end is the rightmost end of the non-last-exon of the group that ends before the start of the next group of
exons.

When the most frequent event annotated in the transcripts is an intron retention, the projected genomic exon
is defined as a combination of the two exons flanking the retained intron. In Supplementary Figure S15, the exons
5 and 6 and the intron 5 are considered as one unique exon. As events included within one exon are not tested,
this results in some events being missed.

Mapping. The first step of FARLINE is to map the reads to a reference genome. This step is done using
Tophat-2.0.11°. tophat-min-intron-length 30-max-intron-length 1200000\-p 8 [-solexal.3-quals for Sknsh_rep1
and Sknsh_rep2]\-transcriptome-index

A transcriptome index has been built by TopHat using EnsEMBL r75 annotations in gtf format. When a
transcriptome index is used, the mapping steps are modified: instead of aligning first to the genome, which
is the default behavior, TopHat uses Bowtie to align the reads to the transcript sequences first, then align the
remaining unmapped reads to the genome. Minimal and maximal intron lengths have been modified (default
70 and 500000) to maximize the number of junctions detected, according to the statistics provided by FasterDB
EnsEMBL 175 annotations.

The resulting alignment files have been filtered using samtools 0.1.19%.

Samtools view -F 260 -f 1 -q 10 -b

With this step, only the primary alignments are kept. The minimum read alignment quality was set up so that
multi-mapping reads were removed from the alignment file.

Annotation and quantification of alternative splicing events. For each gene, all the reads with at least one base
overlapping the gene from the start to the end coordinates are retrieved. CIGAR strings are then used to find the
alignments blocks. Junction reads are identified by the presence of at least one’N’ letter in the CIGAR. Junction
reads were filtered if:

o More than 10% of soft-clipping was detected in the alignment (it should not be the case with TopHat).
o Anindel was close to the junction site, as it would make the junction position uncertain.

Junction read alignments are then processed block by block sequentially from left to right. Alignment blocks
under 4 bp on read extremities are removed from the reads as we considered it is not sufficient to identify cor-
rectly the mapping localization. Then each block is compared to FasterDB annotations to check if the block
boundaries correspond to known exons annotated in FasterDB, or to a putative new acceptor or donor site. First
and last alignment blocks for each read must overlap one and only one exon for a read to be considered. For the
inner blocks, if alignment blocks map to a succession of exons and introns, it is considered as an intron retention.
For the acceptors and donors, we also added a supplementary filter. If a new donor is identified within a junction,
we check if the junction also has an acceptor identified of the same length +/—1bp on the other side of the junc-
tion, showing most probably a problem of mapping. Once all the blocks are identified, the block annotations are
used to annotate putative alternative splicing events: alternative skipped exon, multiple exon skipping, acceptor,
or donor sites.

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 10

www.nature.com/scientificreports/

Once all the junction reads are processed, the alternative splicing events identified are pooled and the reads
participating to each event are quantified, as well as the known exon-exon junction. If an exon-exon junction
is annotated with multiple known acceptors and/or donors, all the possible junction reads are quantified and
summed up. To fasten the quantification step, a junction coordinate file with the corresponding read numbers is
produced from the read alignment using the same filters than described above and will be used for all the quanti-
fication tools: junction, exon skipping, acceptor and donor.

A challenge in defining the alternative skipped exon events is to identify the flanking exons. In the first version
of FARLINE, these flankings exons were defined as the closest annotated genomic exons. This rule led to miss a lot
of ASE events. Therefore, to define the flanking exons, we now use the information contained in the transcripts
and in the reads. We consider each junction which skips an exon and is covered by at least one read. If this junc-
tion is annotated in the transcripts, we extract all annotated events containing this junction. Else, we annotate
the event with the longest covered inclusion isoform. It allows FARLINE to be more robust to the incompleteness
of the annotation compared to other methods, like MISO (Supplementary Figure S6). Panel C of Supplementary
Figure S8 gives an example of an ASE reported by FARLINE but not by MISO because the exclusion isoform is not
annotated in the transcripts.

Comparison with STAR. We also mapped the reads with STAR, ran FARLINE on these alignments and compared
the predicted skipped exons with KisSpLicE. The main results are similar to what we found with TopHat. Indeed,
without any filter, 69% of ASE annotated by KisSpLICE are also found by FARLINE and 24% of FARLINE’s event by
KisSpLICE (compared to 68% and 24% respectively for the mapping with TopHat). When we filter out the events
with an unfrequent variant, we show that approximately 70% of predicted ASE are found by both approaches.

Quantification and differential analysis. Both pipelines perform ASE detection and quantification. The quanti-
fication step was done similarly in the two pipelines where only the junction reads were taken into account. To
evaluate if using exonic reads in the quantification could increase the accuracy of our methods, we ran KisSpLICE
on the MCF-7 dataset with the option —exonic reads set to on. In doing so, only the inclusion rate of the AS
events changes. When comparing usage of only junction reads to usage of both junction and exonic reads, we
observed that the p-values calculated strongly correlate as shown in Supplementary Figure S16. We found that
some AS events became significant upon the addition of exonic reads but the opposite also happened. Inspection
of these events revealed that many are borderline cases, where the p-value is close, but slightly above 5%. A man-
ual inspection of the AS events with a very different p-value upon addition of exonic reads revealed that they cor-
respond to exons overlapping alternative first or last exons (see STARD4, Supplementary Figure S17A) or novel
exons located in poorly spliced introns (see PANK2 and PRRC2B, Supplementary Figure S17 B and C). Overall,
we concluded that exonic reads can bring some statistical power in cases where the skipped exon does not overlap
with any other event. In case of more complex events, exonic reads tend to “pollute” the pairwise comparison.

The last step of the pipelines is the differential analysis of the expression levels of the variants. This task is per-
formed using the k1ssDE** R package, which takes as input a table of read counts as in Supplementary Figure S18,
and outputs a p-value and a DeltaPSI (Percent Spliced In).

Our statistical analysis adopted the framework of count regression with Negative Binomial distribution. We
considered a 2-way design with interaction, with isoforms and experimental conditions as main effects. Following
the Generalized Linear Model framework, the expected intensity of the signal was denoted by)\ and was decom-
posed as:

log Ay = 1+ a; + 3, + (ap); (1)

where /1 is the local mean expression of the gene, «; the contribution of splicing variant i on the expression, 3; the
contribution of condition j to the total expression, and («3);; the interaction term. The target hypothesis was
Hy: {(aﬁ)ij = 0} i.e. no interaction between the variant and the condition. If this interaction term is not null, a
differential usage of a variant across conditions occurred. The test was performed using a Likelihood Ratio Test
with one degree of freedom. To account for multiple testing, p-values were adjusted with a 5% false discovery rate
(FDR) following a Benjamini-Hochberg procedure*.

In addition to adjusted p-values, we report a measure of the magnitude of the effect. The measure we provide
is based on the Percent Spliced In (PSI):

counts,, ..
variantl
PSIC =

ondition
Countsvmiantl + countsvariantZ (2)

If counts for a variant are below a threshold, then the PSI is not calculated. This prevents from over-interpreting
large magnitudes derived from low counts. When several replicates are available for a condition, then a PSI is
computed for each replicate, and we calculate their mean.

Finally, we output the DeltaPSI:

DeltaPSI = PSIconditionl - PSIconditianZ (3)

unless one of the mean PSI of a condition could not be estimated. The higher the DeltaPSI, the stronger the effect.
In practice, we consider only DeltaPSI larger than 0.1, a threshold below which it is difficult to perform any exper-
imental validation.

SK-N-SH dataset. We downloaded a total of 959 M reads from http://genome.crg.es/encode_RNA_dash-
board/hg19/35. They correspond to long polyA+ RNAs generated by the Gingeras lab, and are also accessible

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 11

www.nature.com/scientificreports/

with the following accession numbers (ENCSRO00CPN - SRA: SRR315315, SRR315316 and ENCSR0O00CTT
-SRA: SRR534309, SRR534310). For cell lines treated by retinoic acid, the reads were 76nt long, while they were
100nt long for the non treated cells. Hence we trimmed all reads to 76nt.

MCF-7 dataset. MCF-7 were transfected (two biological replicates) with siRNA targeting both DDX5 and
DDX17 RNA helicases, and total RNA were extracted as described previously®*. cDNA synthesis was made
using the TruSeq Stranded Total RNA protocol after Ribo-Zero Gold-mediated elimination of ribosomal RNA
(Beckman Coulter Genomics). High throughput sequencing (2 x 125bp) was carried out on an Illumina HiSeq
2500 platform (Beckman Coulter Genomics), generating between 45 and 50 millions of paired-end pairs of reads.
Raw datasets are available on GEO under the accession number GSE94372.

Reads were trimmed according to standard quality control filters using prinseq®” and adapter were removed
using cutadapt’®. The resulting reads had length between 25 and 125nt. Because MISO is unable to deal with reads
of unequal length, we selected only reads with length larger than 100nt (87% of the reads) and trimmed longer
reads to 100nt.

Computational requirements, software availability and reproducibility of the results. FaRLine
took 45 hours and 10 Go of RAM. The time-limiting step was TopHat2, which took 41 hours, even parallelised on
8 cores. When STAR was tested instead of TopHat2, it took 4 hours, but 30 Go of RAM. K1sSpLICE took 30 hours
and 10 Go of RAM. The RAM-limiting step was STAR which took 30Go of RAM. All the steps of the pipelines can
be reproduced using the following tutorial:

http://kissplice.prabi.fr/pipeline_ks_farline.

Experimental Validation. SK-N-SH cells were purchased from the American Type Culture Collection
(ATCC) and cultured using EMEM medium (ATCC) complemented with 10% FBS (Thermo Fisher Scientific).
Cells were differentiated for 48 h using 6 uM of all-trans retinoic acid (Sigma-Aldrich).

After harvesting, total RNA were extracted using Tripure isolation reagent (Sigma-Aldrich), treated with
DNase I (DNAfree, Ambion) for 30 min at 37 °C and reverse-transcribed (RT) using M-MLV reverse transcriptase
and random primers (Invitrogen). Before PCR, all RT reaction mixtures were diluted at 2.5ng uL of initial RNA.
PCR reactions were performed using GoTaq polymerase (Promega).

MCEF?7 cells were cultured as described in*. RT-PCRs were performed using the same protocol as for SK-N-SH
cells.

References
1. Pan, Q, Shai, O,, Lee, L. J., Frey, B.]. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome

by high-throughput sequencing. Nat Genet 40, 1413-1415 (2008).

Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470-476 (2008).

. Scotti, M. M. & Swanson, M. S. Rna mis-splicing in disease. Nature Reviews Genetics 17, 19-32 (2016).

. Edery, P. et al. Association of tals developmental disorder with defect in minor splicing component u4atac snrna. Science 332,

240-243 (2011).

. David, C.]. & Manley, J. L. Alternative pre-mrna splicing regulation in cancer: pathways and programs unhinged. Genes ¢

development 24, 2343-2364 (2010).

Trapnell, C. et al. Differential gene and transcript expression analysis of rna-seq experiments with tophat and cufflinks. Nature

protocols 7,562-578 (2012).

7. Wang, K. et al. Mapsplice: accurate mapping of rna-seq reads for splice junction discovery. Nucleic acids research 38, e178-¢178
(2010).

8. Robertson, G. et al. De novo assembly and analysis of rna-seq data. Nature methods 7, 909-912 (2010).

9. Steijger, T. et al. Assessment of transcript reconstruction methods for rna-seq. Nature methods 10, 1177-1184 (2013).

10. Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome research 22, 2008-17 (2012).

11. Katz, Y., Wang, E. T, Airoldi, E. M. & Burge, C. B. Analysis and design of rna sequencing experiments for identifying isoform
regulation. Nature methods 7, 1009-1015 (2010).

12. Shen, S. et al. MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic
Acids Research e61-e61 (2012).

13. Sacomoto, G. A. T. et al. KISSPLICE: de-novo calling alternative splicing events from RNA-seq data. BMC bioinformatics 13(Suppl
6), S5 (2012).

14. Martin, J. A. & Wang, Z. Next-generation transcriptome assembly. Nature Reviews Genetics 12, 671-682 (2011).

15. Dargahi, D. et al. A pan-cancer analysis of alternative splicing events reveals novel tumor-associated splice variants of matriptase.
Cancer informatics 13, 167 (2014).

16. Freyermuth, F. et al. Splicing misregulation of scn5a contributes to cardiac-conduction delay and heart arrhythmia in myotonic
dystrophy. Nature communications 7 (2016).

17. Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from rna-seq data. Nature biotechnology
29, 644 (2011).

18. Kopelman, N. M., Lancet, D. & Yanai, I. Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms.
Nat Genet 37, 588-589 (2005).

19. Roux, J. & Robinson-Rechavi, M. Age-dependent gain of alternative splice forms and biased duplication explain the relation between
splicing and duplication. Genome research 21, 357-363 (2011).

20. Batzer, M. A. & Deininger, P. L. Alu repeats and human genomic diversity. Nature Reviews Genetics 3, 370-379 (2002).

21. Lev-Maor, G., Sorek, R., Shomron, N. & Ast, G. The birth of an alternatively spliced exon: 3’splice-site selection in alu exons. Science
300, 1288-1291 (2003).

22. Sorek, R. et al. Minimal conditions for exonization of intronic sequences: 5’ splice site formation in alu exons. Molecular cell 14,
221-231 (2004).

23. Franz, M. et al. Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics 32, 309-311, https://doi.
org/10.1093/bioinformatics/btv557/oup/backfile/content_public/journal/bioinformatics/32/2/10.1093_bioinformatics_btv557/3/
btv557.pdf (2016).

24. Lopez-Maestre, H. et al. SNP calling from RNA-seq data without a reference genome: identification, quantification, differential
analysis and impact on the protein sequence. Nucleic Acids Research 44, e148-e148 (2016).

wu 0N

=

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 12

www.nature.com/scientificreports/

25. Poursani, E. M., Soltani, B. M. & Mowla, S. J. Differential expression of oct4 pseudogenes in pluripotent and tumor cell lines. Cell
Journal (Yakhteh) 18, 28 (2016).

26. Bacher, R. & Kendziorski, C. Design and computational analysis of single-cell rna-sequencing experiments. Genome biology 17, 1
(2016).

27. Shen, S. et al. Widespread establishment and regulatory impact of alu exons in human genes. Proceedings of the National Academy of
Sciences 108, 2837-2842 (2011).

28. Tilgner, H., Grubert, E, Sharon, D. & Snyder, M. P. Defining a personal, allele-specific, and single-molecule long-read transcriptome.
Proceedings of the National Academy of Sciences of the United States of America 111, 9869-74 (2014).

29. Bolisetty, M. T., Rajadinakaran, G. & Graveley, B. R. Determining exon connectivity in complex mRNAs by nanopore sequencing.
Genome biology 16, 204 (2015).

30. Mallinjoud, P. et al. Endothelial, epithelial, and fibroblast cells exhibit specific splicing programs independently of their tissue of
origin. Genome research 24, 511-521 (2014).

31. Laustriat, D. et al. In Vitro and In Vivo Modulation of Alternative Splicing by the Biguanide Metformin. Molecular Therapy. Nucleic
Acids 4, €262 (2015).

32. Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo rna-seq assembly across the dynamic range of
expression levels. Bioinformatics 28, 1086-1092 (2012).

33. Li, H. et al. The sequence alignment/map format and samtools. Bioinformatics 25, 2078-2079 (2009).

34. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of
the royal statistical society. Series B (Methodological) 289-300 (1995).

35. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101-108 (2012).

36. Dardenne, E. et al. RNA Helicases DDX5 and DDX17 Dynamically Orchestrate Transcription, miRNA, and Splicing Programs in
Cell Differentiation. Cell Reports (2014).

37. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics (Oxford, England) PMID:
21278185.27, 863-864 (2011).

38. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. journal 17 (2011).

Acknowledgements

This work was performed on the computing facilities of the computing center LBBE/PRABI and the PSMN (Pole
Scientifique de Modelisation Numerique) computing center of ENS de Lyon. This work was funded by the ANR-
12-BS02-0008 (Colibread) by the ABS4NGS ANR project (ANR-11-BINF-0001-06), Action n3.6 Plan Cancer
2009-2013, Fondation ARC (Programme Labellisé Fondation ARC 2014, PGA120140200853) and INCa (2014-
154). Doctoral fellowships from ARC 1 - Région Rhone-Alpes (C.B.P), Science Without Borders - CNPq - Brazil
(L.L. - grant process number 203362/2014-4), ARS RhA "'ne-Alpes (A.R.) and post-doctoral fellowships from
Fondation ARC (M.P.L).

Author Contributions

V.L.and D.A. designed the study. C.B.P,, E.C. and].B.C. developed FARLINE. L.L. and G.S. significantly improved
the scalability of KisSpricg, C.M., A.C. and V.L. developed KisSpLICE2REFGENOME. C.B.P,, L.L. and V.L.
compared the two pipelines and classified the instance types. L.L. developed the supporting webpage. C.B.P. and
C.EB. planned the experimental validations. M.P.L., A.R., S.T., L.D. performed the experimental validations.
C.B.P, D.A. and V.L. wrote the manuscript. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-21770-7.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

SCIENTIFICREPORTS | (2018) 8:4307 | DOI:10.1038/s41598-018-21770-7 13

Complementarity of assembly-first and mapping-first approaches for
104 alternative splicing annotation and differential analysis from RNAseq

Chapter 5

On Bubble Generators in Directed
Graphs

Preamble

Key points

Theoretically, the number of bubbles in a graph can be exponential in the size of
the graph. In practice, DBGs built from real datasets tend to be huge, usually
containing millions of vertices and bubbles. Exploring the complete bubble space
is thus unfeasible, and therefore relevant events described by hard-to-find bubbles
may be lost;

Here we describe an efficient and compact description of all bubbles in a graph G,
called bubble generator G(G), which can be constructed in polynomial time. This
is a suitable representative set of the complete bubble space;

We further show a decomposition algorithm: any bubble B in a graph G can be
represented as a sum of O(n?) bubbles belonging to G(G). This decomposition can
be found in a total of O(n?) time, where n is the number of vertices of G

The practical potential of the bubble generator is demonstrated by applying it
in two different directions in the analysis of a real RNA-seq dataset. First, we
employed the generator as a preprocessing step to algorithms that find bubbles, by
“cleaning” from the graph all unnecessary arcs. Second, we use it to find alternative
splicing events in a reference-free context, showing that it can be complementary
to current methods;

These applications, however, remain only as proofs-of-concept. More work is needed
to develop fully-fledged methods based on the bubble generator.

106 Chapter 5. On Bubble Generators in Directed Graphs

Status

Presented by L. in the 43rd International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2017), and published in LNCS [1]. Journal extension submitted
to Algorithmica. The paper presented next is this journal version.

Author contributions

As this paper is in theoretical computer science, the author list is sorted by alphabetical
order. All authors contributed equally to the paper.

Noname manuscript No.
(will be inserted by the editor)

On Bubble Generators in Directed Graphs

V. Acuna - R. Grossi - G. F. Italiano -
L. Lima - R. Rizzi - G. Sacomoto -
M.-F. Sagot - B. Sinaimeri

Received: date / Accepted: date

Abstract Bubbles are pairs of internally vertex-disjoint (s, t)-paths in a di-
rected graph, which have many applications in the processing of DNA and
RNA data. Listing and analysing all bubbles in a given graph is usually un-
feasible in practice, due to the exponential number of bubbles present in real
data graphs. In this paper, we propose a notion of bubble generator set, i.e.,
a polynomial-sized subset of bubbles from which all the other bubbles can
be obtained through a suitable application of a specific symmetric difference
operator. This set provides a compact representation of the bubble space of
a graph. A bubble generator can be useful in practice, since some pertinent
information about all the bubbles can be more conveniently extracted from
this compact set. We provide a polynomial-time algorithm to decompose any

V. Acuna
Center for Mathematical Modeling (UMI 2807 CNRS), University of Chile, Santiago, Chile.
E-mail: viacuna@dim.uchile.cl

R. Grossi
Universita di Pisa, Pisa, Italy and Erable, INRIA, France.
E-mail: grossi@di.unipi.it

G. F. Italiano
LUISS University, Roma, Italy and and Erable, INRIA, France..
E-mail: gitaliano@luiss.it

R. Rizzi
Universita di Verona, Verona, Italy.
E-mail: Romeo.Rizzi@Qunivr.it

L. Lima

Erable INRIA Grenoble Rhone-Alpes, Université Lyon 1; CNRS, UMR5558, LBBE, Villeur-
banne, France and Universita di Roma “Tor Vergata”, Roma, Italy.

E-mail: leandro.ishi-soares-de-lima@inria.fr

G. Sacomoto - M.-F. Sagot - B. Sinaimeri

Erable INRIA Grenoble Rhéone-Alpes, Université Lyon 1; CNRS, UMR5558, LBBE, Villeur-
banne, France.

E-mail: gustavo.sacomoto@gmail.com marie-france.sagot@inria.fr blerina.sinaimeri@inria.fr

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

2 V. Acuna et.al.

bubble of a graph into the bubbles of such a generator in a tree-like fashion.
Finally, we present two applications of the bubble generator on a real RNA-seq
dataset.

Keywords Bubbles - Bubble generator set - Decomposition algorithm

1 Introduction

Bubbles are pairs of internally vertex-disjoint (s,t)-paths in a directed graph,
which find many applications in the processing of DNA and RNA data. For
example, in the genomic context, genome assemblers usually identify and re-
move bubbles in order to linearise the graph [16,21,25]. However, bubbles can
also represent interesting biological events, e.g., allelic differences (SNPs and
indels) when processing DNA data [9,23,24], and alternative splicing events in
RNA data [18,17,12,19]. Due to their practical relevance, several theoretical
studies concerning bubbles were carried out in the past few years [2,4,15,18,
22], usually related to bubble-enumeration algorithms.

Although the enumeration of bubbles could be important to describe bio-
logical events appearing in the sequences, this approach has a significant dis-
advantage. Indeed, while many biological events can be represented by bubbles
in a de Bruijn graph (see e.g. [19,14,17]) (the graph build from the reads pro-
vided by a sequencing process), the opposite is not true: most of the bubbles
do not correspond to any biological phenomena and appear just because of a
combination of other events [12,17]. In practice, due to the high throughput
of second-generation sequencing machines, the genomic and transcriptomic
De Bruijn graphs tend to be huge, usually containing from millions to billions
of vertices. As expected, the number of bubbles also tends to be huge, in the
worst case exponential in the number of vertices. As a consequence, algorithms
that deal with bubbles either tend to simplify the graph by removing them,
or just enumerate a small subset of the bubbles. Such subsets usually corre-
spond to bubbles with some predefined characteristics, and may not be the
best representatives of the biological phenomena under study. More worrying
is the fact that, by focusing only on these particular bubbles, all the relevant
events described by bubbles that do not satisfy the constraints may be lost.
On the other hand, any algorithm that tries to be more exhaustive, say by
enumerating a large portion of the bubbles, will certainly spend a prohibitive
amount of time in real data graphs and thus it is not likely to be practical [12,
17]. This motivates further work for finding efficient ways to recognise bubbles
that correspond to relevant events and/or to represent the set of bubbles in a
more concise way.

In this paper, we propose an elementary bubble generator, i.e., a subset of
bubbles that is able to generate any other bubble in the graph. More specifi-
cally, we show how to identify, for any given directed graph G, a generator set
G(G) of bubbles which is of polynomial size in the input graph, and such that
any bubble in G can be obtained in a polynomial number of steps by properly
combining the bubbles in the generator G(G) through a symmetric difference

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

80

81

82

83

84

85

On Bubble Generators in Directed Graphs 3

operator. In several biological applications, it is desirable to decompose a bub-
ble into elementary bubbles in such a way that only bubbles can be generated
at each step of the decomposition. This happens, for instance, when one wishes
to decompose complex alternative splicing events [19] into several elementary
alternative splicing events. Our bubble generator enjoys this property: in order
to take this into account, we consider a constrained version of the symmetric
difference operator, where two bubbles are combinable only if the output is
also a bubble (i.e., the operator is undefined if the output is not a bubble).
Moreover, we present a polynomial-time decomposition algorithm that, given
a bubble B in the graph G, finds a sequence of bubbles from the generator
G(G) whose combination results in B. Our algorithm can be applied when one
needs to know how to decompose a bubble into its elementary parts, e.g., when
one is interested in identifying and decomposing complex alternative splicing
events [19] into several elementary alternative splicing events.

At first sight, a bubble generator might seem related to a cycle basis,
which represents a compact description of all Eulerian subgraphs in a graph.
The study of cycle bases started a long time ago [13] and has attracted much
attention in the last fifteen years, leading to many interesting results, such as
the classification of different types of cycle bases, the generalisation of these
notions to weighted and to directed graphs, as well as to several complexity
results for constructing bases. We refer the interested reader to the books of
Deo [6] and Bollobés [3], and to the survey of Kavitha et al. [10] for an in-depth
coverage of cycle bases. Unfortunately, problems related to bubble generators
appear to be very different (and more difficult) from their counterparts in cycle
bases, so that it does not seem possible to apply directly to bubble generators
all the techniques developed for cycle bases. Indeed, a cycle basis in a directed
graph contains subgraphs that are not necessarily directed cycles in the orig-
inal graph, but more generally cycles in the underline undirected graph [11].
As a consequence, the techniques developed for cycle bases in undirected and
directed graphs cannot be applied to our problem, since they do not guaran-
tee a decomposition into elementary bubbles, which generates only bubbles at
each step.

To test the practical effectiveness of our generator set of bubbles, we applied
it in two different directions in the analysis of a real RNA-seq dataset. First,
we employed the generator as a preprocessing step in all algorithms that find
bubbles, by “cleaning” from the graph all unnecessary arcs (i.e. arcs that
do not belong to any bubble). Second, we use it to find alternative splicing
(henceforth denoted by AS) events in a reference-free context. In particular,
some bubbles in our generator set correspond to AS events that are hard to
find by the state-of-art algorithm for AS events enumeration [12]. However,
this application should still be seen just as a proof-of-concept on the practical
potential of the bubble generator or as complementary to current methods,
since it is still limited for the exhaustive enumeration of AS events. The latter
would require a non-trivial procedure to enumerate AS-associated bubbles by
combining generator bubbles and would be beyond the scope of this paper (see
Section 6).

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

4 V. Acuna et.al.

The remainder of this paper is organised as follows. Section 2 presents some
definitions that will be used throughout the paper. Section 3 introduces our
bubble generator. Section 4 presents a polynomial-time algorithm for decom-
posing any bubble in a graph into elements of our bubble generator. Section 5
presents two applications of the bubble generator in processing and analysing
RNA data. Finally, we conclude with open problems in Section 6.

2 Preliminaries

Throughout the paper we assume that the reader is familiar with the standard
graph terminology, as contained for instance in [5]. A graph is a pair G =
(V, E), where V is the set of vertices, and £ C V x V is the set of edges. For
convenience, we may also denote the set of vertices V' of G by V(G) and its
set of edges E by E(G). We further set n = |V(G)| and m = |E(G)|. A graph
may be directed or undirected, depending on whether its edges are directed or
undirected. In this paper, will deal with graphs that are directed, unweighted,
finite and without parallel edges. An edge e = (u,v) is said to be incident to
the vertices v and v, and u and v are said to be the endpoints of e = (u, v). For
a directed graph, edge e = (u,v) is said to be leaving vertex u and entering
vertex v. Alternatively, e = (u,v) is an outgoing edge for u and an incoming
edge for v. The in-degree of a vertex v is given by the number of edges entering
v, while the out-degree of v is the number of edges leaving v. The degree of v
is the sum of its in-degree and out-degree.

We say that a graph G’ = (V' E’) is a subgraph of a graph G = (V, E)
if V. C V and E' C E. Given a subset of vertices V' C V, the subgraph
of G induced by V', denoted by Gy, has V' as vertex set and contains all
edges of G that have both endpoints in V’. Given a subset of edges E' C E,
the subgraph of G induced by E’, denoted by Gg/, has E’ as edge set and
contains all vertices of G that are endpoints of edges in E’. Given a subset of
vertices V/ C V and a subset of edges E' C E, we denote by G \ V' the graph
induced by V'\ V' and by G \ E’ the graph induced by E \ E’. Given a set S
of subgraphs of G, Gg denotes the graph induced by the edges in UsecsE(s).
Given two subgraphs G and H, their union G U H is the graph F' for which
V(F)=V(G)UV(H) and E(F) = E(G)U E(H). Their intersection G N H is
the graph F for which V(F) =V(G)NV(H) and E(F) = E(G)N E(H).

Let s,t be any two vertices in G. A (directed) path from s to ¢t in G is a
sequence of vertices and edges s = vy, €1, vo, €2, ..., Uk_1, €x_1, UV = t, such
that e; = (v;,v;41) fori =1,2,... k—1. Since there is no danger of ambiguity,
in the remainder of the paper we will also denote a path simply as s = vy, va,

. Vk—1, v =t (i.e., as a sequence of vertices). A path is simple if it does
not contain repeated vertices, except possibly for the first and the last vertex.
Throughout this paper, all the paths considered will be simple and referred to
as paths. A path from s to ¢ is also referred to as an (s, t)-path. The length of
a path p is the number of edges in p and will be denoted by |p|. Note that, as
a special case, we also allow a single vertex to be a path, i.e., a path of length

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

On Bubble Generators in Directed Graphs 5

c
B: Ba b d e g
aQ o

b d

Fig. 1: An example of a graph G and the set B(G) of all the bubbles in G.
The set G(G) = {By, Bs, B4} is a generator set that satisfies conditions of
Theorem 1.

0. If p and ¢ are paths, we say that p is a subpath of ¢ if p is contained in g,
and we denote this p C ¢. Given a path p; from x to y and a path ps from
y to z, we denote by p; - po their concatenation, i.e., the path from z to z
defined by the path p; followed by ps. A path ¢ is a prefix of a path p if there
exists a path r such that p = ¢ - r. Similarly, a path ¢ is a suffix of a path p
if there exists a path r such that p = r - q. A (directed) cycle is a simple path
(of length greater than zero) starting and ending on the same vertex.

Definition 1 Given a directed graph G and two (not necessarily distinct)
vertices s,t € V(G), an (s,t)-bubble consists of two directed (s,¢)-paths that
are internally vertex disjoint. Vertex s is the source and ¢ is the target of the
bubble. If s =t then exactly one of the paths of the bubble has length 0, and
therefore B corresponds to a directed cycle. In this case, we say that B is a
degenerate bubble.

In Fig. 1 we show an example of a graph and all the bubbles in it. We denote
by B(G) the set of all bubbles in G. Before giving formally the definition
of bubble generator of G, we recall some basic definitions of cycle bases in
undirected graphs.

Let G be an undirected graph. Two subgraphs G1, G2 of G can be combined
by the operator A that simply consists in the symmetric difference of the set
of edges. More formally, G1 AGs = (G1 UG2) \ (E(G1) N E(G3)) where E(G;)
is the set of edges of G;. With this operation, it can be shown that the space of
all Eulerian subgraphs of G (called the cycle space of G) is a vector space [8,
10,11,13]. In the theory of vector spaces, a set of vectors is said to be linearly
dependent if one of the vectors in the set can be defined as a linear combination
of the others; if no vector in the set can be written in this way, then the vectors
are said to be linearly independent [20]. A basis is a minimum set of vectors,
such that any vector in the space is a linear combination of this set. Clearly
a basis is a set of linearly independent vectors. Furthermore, given a vector

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

6 V. Acuna et.al.

space and a set of k linearly independent vectors F', the subspace of vectors
generated starting from elements in F is called the span of F and its dimension
is k. It is well-known that a cycle basis for a connected undirected graph G,
denoted by C(G), has dimension m —n+1. If the graph G is not connected this
is generalised to m — n + ¢, where ¢ is the number of connected components
(see, e.g., [8,10,11,13]) .

As mentioned in Section 1, we are interested in decomposing a bubble into
elementary bubbles in such a way that, at each step of the decomposition,
only bubbles are generated. To ensure this property, we define next a suitable
symmetric difference operator which takes as input two bubbles and produces
one bubble as output. Given two bubbles By and Bs, the constrained symmetric
difference operator A is such that By ABs is defined if and only the subgraph
induced by (E(B1)UE(B2))\ (F(B1)NE(Bs)) is a bubble. Otherwise, we say
that B1ABs is undefined. If B;ABs is defined, we also say that By and Bs
are combinable. Given two combinable bubbles By and By, we refer to B1 AB>
as the sum of By and Bs, and denote it also by B + By. We also say that the
bubble By + By is generated from bubbles By and Bs, or alternatively that
it can be decomposed into the bubbles By and Bs. Let B be a set of bubbles
in G. We say that a bubble B is spanned by B if it can be generated starting
from bubbles in B. The set of all the bubbles spanned by B is called the span
of B. B is a bubble generator if each bubble in G is spanned by B, i.e., each
bubble in G can be generated by starting from the bubbles in B.

Due to our constrained symmetric difference operator A, all subgraphs
generated by the elements in B are necessarily bubbles. Since not all pairs of
bubbles of G are combinable, the bubble space is not closed under A, and
therefore it does not form a vector space (over Zs). Hence, the techniques
developed for cycle bases cannot be applied directly to bubble generators.

A generator is minimal if it does not contain a proper subset that is also
a generator; and a generator is minimum if it has the minimum cardinality.
We are interested in finding a minimum bubble generator of a given directed
graph G.

3 The bubble generator

In this section, we present a bubble generator for a directed graph G. Through-
out, we assume that shortest paths in G are unique. This is without loss of
generality, since there are many standard techniques for achieving this, in-
cluding perturbing edge weights by infinitesimals. However, for our goal, it
suffices to use a “lexicographic ordering”. Namely, we define an arbitrary or-
dering vy, ..., v, on the vertices of G. A path p is considered lexicographically
shorter than a path ¢ if the length of p is strictly smaller than the length of ¢,
or, if p and ¢ have the same length, the sequence of vertices associated with
p is lexicographically smaller than the sequence associated with g. We denote
this by p <jes ¢-

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

On Bubble Generators in Directed Graphs 7

We denote by B = (p, q) the bubble having p, g as its two internally vertex-
disjoint paths, referred to as legs. We denote by ¢(B) (resp., by L£(B)) the
shorter (resp., longer) between the two legs p,q of B. Note that, because of
the lexicographic order, there are no ties. We also denote by |B| the number
of edges of bubble B. Note that |B| = [¢(B)|+ |£(B)]|. Next, we define a total
order on the set of bubbles.

Definition 2 Let B; and Bs be any two bubbles. By is smaller than By (in
symbols, By < By) if one of the following holds: either (i) £(B1) <jex L£(Bs);
or (11) £(B1) = ,C(BQ) and K(Bl) <lex E(BQ)

Definition 3 A bubble B is composed if it can be obtained as a sum of two
smaller bubbles. Otherwise, the bubble B is called simple.

For a directed graph G, we denote by S(G) the set of simple bubbles of
G. Tt is not difficult to see that S(G) is a generator. We are not able for now
to prove that any bubble in G can be obtained in a polynomial number of
steps from bubbles in S(G). Nevertheless, to achieve the latter goal, we will
introduce next another generator G(G) 2 S(G). Let p: s = xg,21,...,25 =1
be a path from s to ¢ and let 0 < i < j < h. To ease the notation, we denote
by p; ; the subpath of p from x; to x;, and refer also to pg ; as ps; and to p; p
as p; ¢ The next theorem provides some properties of simple bubbles.

Theorem 1 Let B be a simple (s,t)-bubble in a directed graph G. The follow-
ing holds:

(1) £(B) is the shortest path from s to t in G;
(2) Let L(B) = s,v1,...,0.,t. Then s,v1,...,v,. is the shortest path from s
to v, in G.

Proof Let B be a simple (s,t)-bubble: we show that both conditions (1) and
(2) must hold.

We first consider condition (1). If B is degenerate, then it trivially satisfies
condition (1). Therefore, assume that B is non-degenerate and, by contradic-
tion, that ¢(B) is not the shortest path from s to t. Let p* : s = zg, x1,..., 2, =
t be the shortest path from s to ¢t in G. For 0 < ¢ < j < h, by subpath op-
timality, p} ; is the shortest path from z; to z;. Let k be the smallest index,
0 < k < h, for which the edge (x, zk+1) does not belong to either one of the
legs of B. Such an index k must exist, as otherwise p* would coincide with a
leg of B. Furthermore, let [, K < I < h, be the smallest index greater than k
for which x; € V(B). Such a vertex x; must also exist, since x;, =t € V(B).
In other words, x; is the first vertex of the bubble B where p* departs from
B and z;, | > k, is the first vertex where the shortest path p* intersects again
the bubble B. By definition of z;, and x;, pj ; is internally vertex-disjoint with
both legs of B. We now claim that B can be obtained as the sum of two smaller
bubbles, thus contradicting our assumption that B is a simple bubble.

To prove the claim, we distinguish two cases, depending on whether x; and
x; are on the same leg of B or not. Consider first the case when x; and x; are

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

8 V. Acuna et.al.

Xk Pii X
p%'o """" *?O..
B
_ o— Tu
S=Xg . B, -~ :o t=Xn

A Qe QoY

(@) (b)

Fig. 2: Case (1) of the proof of Theorem 1. The prefix of the shortest path
from s to ¢ is shown as a solid line.

on the same leg p of B (see Fig. 2(a)). Let By be the bubble with £(B1) = pj
and L£(B1) = pg,. First, note that if either z, # s or x; # ¢, then py,; is a
proper subpath of a leg of B. Hence, |£(B1)| = |pk,| < |£(B)|, and By < B.
Otherwise, suppose s = xy and t = z;. Then either £(B) = 4(B) <jex L(B),
or L(B1) = L(B) and {(B1) = pj; = p* <iex {(B). In both cases, B; < B.
Let By be the bubble which is obtained from B by replacing py; by Pk (see
Fig. 2(a)). Since Pk, 1s a shortest path, by subpath optimality, p} ; <iex Pk,
thus Bs < B. As aresult, B can be obtained as the sum of two smaller bubbles
By, Bs, thus contradicting the assumption that B is simple.

Consider now the case where z; and x; are on different legs of B (see
Fig. 2(b)). Notice that this means xy, # s and x; # t. Let p be the leg containing
2; and ¢ the one containing . Note that p = po; - pi,, and ¢ = pak Qb
Moreover, the two legs of bubble B; are pak ~p};,l <lex q and po,, which is a
proper subpath of p. Hence, B; < B. The two legs of bubble By are g, 5, which
is a proper subpath of ¢ and py ;-pi,n <iex p- Hence, By < B, and B = B1+ By
which implies again that B is not simple.

q=14B) PoxcdB)=q i

Xk Pkl X Ve = Xhet Po. X Ve = Xh-1

Po,
(01)

Fig. 3: Case (2) of the proof of Theorem 1. The shortest path from s to ¢ and
the prefix of the shortest path from s to v, are shown as solid lines.

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

On Bubble Generators in Directed Graphs 9

We show now that B satisfies also condition (2). Assume, by contradiction,
that B satisfies condition (1) but not (2), and so p = s,v1,...,v, (note that
p is equal to £(B) without its last edge) is not the shortest path from s to
v in G. Let p* : s = xg,..., 251 = v, P* # p, be such a shortest path in
G. Similarly to the previous case, let k be the smallest index, 0 < k < h — 1,
for which the edge (zy,xk+1) does not belong to either one of the legs of B,
i.e. x) is the first vertex where the shortest path p* departs from B. Such
an index k must exist, as otherwise p* would coincide with a leg of B. Let
I,k <1 < h—1, be the smallest index such that x; € V(B). Namely, z; is
the first vertex after xj where the shortest path p* intersects again bubble B.
Such a vertex x; must always exist, since xp_1 = v, € V(B). Since k < [, we
have that |py ;| > 1. Furthermore, we claim that z; must be in £(B)\ {s,t}.
If this were not the case, we would have two distinct shortest paths from s to
ryin G (p}, ,, and the subpath of £(B) from s = z¢ to z;), which contradicts
our assumption that shortest paths are unique.

We again distinguish two cases: when both xy, 2; belong to £(B), and when
2k € L(B) and x; € L(B). We set p = L(B),q = {(B).

In the first case (see Fig. 3(a)), let By be the bubble with ¢(B;) = ¢(B)
and £(By) = Dok P Puh- Since |p,";7l| <lew |Pk,i| then L£(B1) <jer L(B), and
thus By < B. Let By be the bubble with ¢(Bs) = p; ;, and L(Bs) = pg. Since
L(By) C L(B) (as xj # t), By < B. As a result, B can be obtained as the
sum of two smaller bubbles By, By, thus contradicting the assumption that B
is simple.

In the second case (see Fig. 3(b)), let By be the bubble with ¢(B;) =
Pox - Py and L(B1) = poy. Since £(B1) C L(B), By < B. Let By be the
bubble with £(B2) = qx,n, and L(Bs) = pi; - pip- Since |L(B2)| < [L(B)],
By < B. Again, B can be obtained as the sum of two smaller bubbles By, B,
thus contradicting the assumption that B is simple. Finally, notice that this
includes also the case zj, = t and the argument holds identically with By being
a degenerate bubble. For the sake of clarity, we depicted this case separately
in Fig. 3(by). |

Given a directed graph G, we denote by G(G) the set of bubbles in G
satisfying conditions (1) and (2) of Theorem 1. An example of a graph together
with a generator G(G) is given in Fig. 1.

Theorem 2 Let G be a directed graph. The following holds:

(1) G(G) is a generator set for all the bubbles of G;
(2) 16(G)| < nm.

Proof (1) Recall that S(G) is the set of simple bubbles. By Theorem 1, S(G) C
G(G), and thus G(G) is a generator set for all the bubbles of G.

(2) Since every bubble b in G(G), with £(b) = s, uq, ..., t and L(b) = s,v1, ..., 0, ¢,

can be uniquely identified by its vertex s and its edge (v, t), then the number
of bubbles in G(G) is upper-bounded by nm. |

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

10 V. Acuna et.al.

The upper bound given in Theorem 2 is asymptotically tight, as shown by
the family of simple directed graphs on vertex set V;, = {1,2,...,n} and all
possible n % (n — 1) edges in their edge set E,, = {(u,v) : u # v,u,v € V'}.

Remark 1 Conditions (1) and (2) of Theorem 1 are not sufficient to guarantee
that a bubble is simple, e.g., see Fig. 4. Thus, the generator G(G) is not
necessarily minimal. Recall that a generator is minimal if it does not contain
a proper subset that is also a generator; and a generator is minimum if it has
the minimum cardinality.

Fig. 4: An example showing that conditions (1) and (2) of Theorem 1 are
not sufficient to guarantee that a bubble is simple. (a) A directed graph G.
(b) The three bubbles By, Bz and Bz of G satisfying conditions (1) and (2)
of Theorem 1, in which By and By are simple, but B3 is composed, since
B1 < Bs, B, < By and By = By + Bs.

4 A polynomial-time algorithm for decomposing bubbles

The main result of this section is to provide a polynomial-time algorithm for
decomposing any bubble of G into bubbles of G(G). To do so, we make use of
a tree-like decomposition. We need to take extra care in this decomposition
since a naive approach could generate (several times) all the bubbles that are
smaller than B, yielding an exponential number of steps.

Definition 4 A bubble B is short if it satisfies condition (1) of Theorem 1,
but not necessarily condition (2). Namely, let £(B) = s,v1,...,v,,t be such
that £(B) is a shortest path from s to t in G but s,vq, ..., v, is not necessarily
the shortest path from s to v, in G.

We next introduce a measure for describing how “close” is a bubble to
being short.

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

3

<3
S

On Bubble Generators in Directed Graphs 11

Definition 5 Given an (s,t)-bubble B, let p* be the shortest path from s to
t. We say that B is k-short, for k > 0, if there is a leg p € {¢(B), L(B)} for
which p* and p share a prefix of exactly k edges.

Since in our case shortest paths are unique, only one leg of a bubble B can
share a prefix with the shortest path p*. Furthermore, any bubble B is k-short
for some k, 0 < k < |[¢(B)|. In particular, a bubble is short if and only if it is
k-short for k = |¢(B)|.

Definition 6 Given a k-short bubble, we define the short residual of B as
follows: residuals(B) = |B| — k.

Since 0 < k < |¢(B)], and |B| = [(B)| + |£(B)]|, we have that |£(B)| <
residuals(B) < |B|.

We now present our polynomial time algorithm for decomposing a bubble
of the graph G into bubbles of G(G). In the following, we assume that we
have done a preprocessing step to compute all-pairs shortest paths in G in
O(mn + n?logn) time.

Lemma 1 Let B be an (s,t)-bubble that is not short. Then, B can be decom-
posed into two bubbles By and By (B = By + Bs), such that: (a) By is short,
and (b) residuals(Bz) < residuals(B). Moreover, By and By can be found in
O(n) time.

Proof Let B be a k-short (s,t)-bubble, 0 < k < [¢{(B)| and let p* : s =
Zo,&1,...,xp = t be the shortest path from s to ¢ in G. To prove (a), we
follow a similar approach to Theorem 1. Since B is k-short, there is a leg
p € {{(B),L(B)} such that p* and p share a prefix of exactly k edges, 0 <
k < h. In other terms, leg p starts with edges (zg, 1), ..., (x—1, Tx), the edge
(Tk, Tps1) is not in leg p, i.e., xy is the first vertex where the shortest path p*
departs from the leg p. Note that as a special case, k = 0 and z, = g = s.
Let I,k < 1 < h, be the smallest index such that x; € V(B). Namely, x; is the
first vertex after x; where the shortest path p* intersects again the bubble B.
Such a vertex z; must always exist, since z, =t € V(B). Since k < [, we have
that [p},| > 1. We have two possible cases: either the vertices zj and z; are
on the same leg of B (see Fig. 2(a)) or x; and z; are on different legs of B (see
Fig. 2(b)). In either case, we can decompose B as B = B; + Bo, as illustrated
in Fig. 2. Note that in both cases, the bubble B is short since one leg of B is
a subpath of the shortest path p*, and hence a shortest path itself by subpath
optimality.

Consider now Bj in Fig. 2. To prove (b), we distinguish among the fol-
lowing three cases: (1) xp # s and vertices x; and x; are on the same leg
of B; (2) zr # s and vertices z; and x; are on different legs of B; (3)
xp = s. First, consider case (1) (see Fig. 2(a)) and note that residuals(B) =
Ipki| + |pinl + 1go,n] where ¢ is the other leg of B different from p. More-
over, residuals(Bz2) = |pi.n| + |qo,n|- Hence, residuals(B) — residuals(Bs2) =
Ipka| > |pp,l = 1. Consider now case (2), (see Fig. 2(b)) and note that

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

12 V. Acuna et.al.

residuals(B) = |po.| + |pin| + |qk.n| and residuals(B2) = |pi,n| + |grn|, and
thus residuals(B) — residuals(B2) = |poi| > \pak| + |pz7l| > 1. The proof
of case (3) is completely analogous to the one of case (1), with z; = s and
po.r = 0, and again residuals(B) — residuals(Bs) = |pxi| > [pj,| > 1. In all
cases, residuals(B) — residuals(Bg) > 0, and thus the claim follows. Finally,
note that in order to compute By and By from B, it is sufficient to trace the
shortest path p*. Since all shortest paths are pre-computed in a preprocessing
step, this can be done in O(n) time. [|

Lemma 2 Any bubble B can be represented as a sum of O(n) (not necessarily
distinct) short bubbles. This decomposition can be found in O(n?) time in the
worst case.

Proof Each time we apply Lemma 1 to a bubble B, we produce in O(n) time
a short bubble B; and a bubble By such that residuals(Bs) < residualg(B).
Since residuals(B) < |B| < n, the lemma follows. |

We next show how to further decompose short bubbles. Before doing that,
we define the notion of residual for short bubbles, which measures how “close”
is a short bubble to being a bubble of our generator set G(G).

Definition 7 Let B be a short (s,t)-bubble, let ¢(B) = pj be the shortest
path from s to ¢t in G, and let L(B) = s,v1,...,v,,t be the other leg of B. Let
p be the longest prefix of £(B) — (v,,t) such that p is a shortest path in G.
Then, the residual of B is defined as residual(B) = |L(B)| —1— |p|.

Since p is a prefix of L(B) — (v, t), we have that 0 < |p| < |£(B)| — 1. Thus,
0 < residual(B) < |L(B)| — 1.

Lemma 3 Let B be a short (s,t)-bubble such that residual(B) > 0. B can
be decomposed into two bubbles By and By (B = By + Bs) such that By and
By are short and residual(By) + residual(Bs) < residual(B). Moreover, it is
possible to find the bubbles By and By in O(n) time.

Proof Since B is a short (s,t)-bubble, it satisfies condition (1) of Theorem 1.
Furthermore, as residual(B) > 0, it does not satisfy condition (2). Therefore,
there exists two bubbles B; < B and By < B such that B = By + By (from
Theorem 1). Since ¢(B) is the shortest path from s to ¢, using arguments
similar to the ones in Theorem 1, it can be shown that B can be decomposed
into By and By and the only possible cases are the ones depicted in Fig. 3.
Note that in all three cases of Fig. 3, each of the bubbles By and Bs has
one leg that is a shortest path. Thus, in all three cases, B; and By are short.
Moreover, in Fig. 3(a), residual(By) < |p;n|—1 and residual(Bz) < |pgi| —1.
Therefore, residual(B1)+residual(Bs) < |pin|—1+|pri|—1 = residual(B) —
1 < residual(B). Similarly, in Fig. 3(b) and (b1), residual(B1) < |po;| — 1,
residual(Bsz) < |p;n|—1, and thus, residual(B) +residual(Bsz) < |po;| —1+
|pi.n| — 1 = residual(B) — 1 < residual(B). In all three cases, By and By are
short and residual(B;)+residual(Bz) < residual(B). The claim thus follows.

402

403

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

On Bubble Generators in Directed Graphs 13

Once again, observe that in order to compute B; and Bs from B, it is suf-
ficient to trace the shortest path p*. Since all shortest paths are pre-computed
in a preprocessing step, this can be done in O(n) time. |

Lemma 4 Any short bubble B has a tree-like decomposition into O(n) (not
necessarily distinct) bubbles from the generator G(G). This decomposition can
be found in O(n?) time in the worst case.

Proof Each time we apply Lemma 3 to a short bubble B, we produce in O(n)
time two short bubbles B; and Bs such that residual(By) + residual(Bs) <
residual(B). Since [¢(B)| + residual(B) < n, this implies that a short bubble
can be decomposed in O(n) bubbles from the generator set G(G) in O(n?)
time. |

Theorem 3 Given a graph G, any bubble B in G can be represented as a sum
of O(n?) bubbles that belong to G(G). This decomposition can be found in a
total of O(n?) time.

Proof The theorem follows by Lemma 2 and Lemma 4. |

5 Applications of the bubble generator in analysing RN A-seq data

In this section, we describe as a proof-of-concept, two applications of the bub-
ble generator to the analysis of RNA-seq data.

Our test dataset is a subset (coming from the same chromosome) of reads
of the 58 million RNA-seq Illumina paired-end reads extracted from the mouse
brain tissue (available in the ENA repository under the following study: PR-
JEB25574). We mapped all reads to the Mus Musculus reference genome and
annotations (Ensembl release 94) using STAR [7]. We then selected only the
reads mapping to chromosome 10 of the genome, comprising 4,932,572 reads,
as our test dataset. We built the de Bruijn graph from these reads and ap-
plied standard sequencing-error-removal procedures, by using KISSPLICE [12,
17], a method to find alternative splicing events in a reference-free context by
enumerating bubbles in a de Bruijn Graph. Finally, we extracted the bubble
generator from the resulting graph, and evaluated it on two aspects: (i) how
well it can preprocess the de Bruijn graph to reduce the work required by a
subsequent bubble enumeration algorithm, and (ii) how it performs in terms
of finding alternative splicing events. These applications are detailed in the
following subsections.

5.1 Preprocessing the de Bruijn graph

Similarly to the practical application of a cycle base, the bubble generator
can be used as a preprocessing step in all algorithms that find bubbles, by
“cleaning” from the graph all unnecessary edges and vertices, i.e. those that
do not belong to any bubble. In KISSPLICE [12,17], this cleaning is based

440

441

442

443

444

445

446

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

14 V. Acuna et.al.

on a biconnected component (BCC) decomposition. A biconnected undirected
graph G is a connected graph such that, for any v € V(G), G — v is connected.
Biconnected components (BCCs) are the maximal biconnected subgraphs of
a graph G. Given a directed graph, consider its underlying undirected version
by ignoring the direction of its edges. Clearly a bubble in the directed graph
corresponds to a cycle in the underlying graph, and every edge that belongs
to a cycle, belongs also to a BCC of the graph. The graph can then be cleaned
by removing every vertex or edge that does not belong to a BCC. This clean-
ing partitions a potentially massive graph into smaller subgraphs, which are
then processed by a bubble enumeration algorithm (e.g. [12,17]). However,
the BCC-decomposition-based cleaning is not perfect: some vertices and edges
might belong only to undirected cycles and not to bubbles.

To improve over this, we perform a more refined cleaning: we compute a
bubble generator G(G) of the directed graph G and we remove every edge and
vertex that do not belong to any bubble in G(G). Notice that this would be a
perfect cleaning, meaning that after applying it, every edge of the graph would
belong to some bubble.

We evaluated this cleaning procedure on the de Bruijn graph contructed
from our test dataset. We first applied the BCC-decomposition-based cleaning
on this de Bruijn graph. Then to the result obtained, which is now irreducible
by this cleaning, we apply a second cleaning procedure using the bubble gener-
ator. The bubble generator cleaning led to a reduction of 40.1% on the number
of vertices and of 39.8% on the number of edges. This shows that the generator
can indeed yield a better procedure for cleaning the graph, although comput-
ing the generator requires more time than computing the BCCs (recall that
the BCCs can be computed in linear time). In other words, as expected, a
better cleaning comes at the expense of a higher computing time.

5.2 Calling alternative splicing events

As a second application, we consider the problem of finding AS events in a
reference-free context. As already mentioned in the introduction, this is a chal-
lenging problem in bioinformatics. Indeed, local assemblers such as KISSPLICE
[12] are faced with a dramatically large (and often practically unfeasible) run-
ning time due to the exponentially large number of bubbles present, most of
which are not interesting as they are not related to AS events. Indeed, a sig-
nificantly large number of bubbles is due to artefacts of the de Bruijn graph
created by repeats longer than the reads (i.e., artificial bubbles not associ-
ated with biological events). Hence, in order not to get “lost” in listing false
positives, KISSPLICE relies on heuristics that try to avoid listing bubbles that
traverse a repeat-induced subgraph. More specifically, based on the idea that
subgraphs of the De Bruijn graph related to repeats have many branching
vertices (i.e. vertices with in-degree or out-degree at least 2), KISSPLICE enu-
merates only bubbles with a number of branching vertices that is below some
threshold b.

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

On Bubble Generators in Directed Graphs 15

The question we tackle in this section is how many AS events we are able
to find just by looking at the bubbles in the generator set. To this purpose,
given our dataset we consider the set of bubbles belonging to the generator
and the set of bubbles generated by KisSpLICE (KISSPLICE being run with
default parameters, with a maximum number of branching vertices set to 5).
In both cases some simple filters are applied to filter out bubbles that probably
do not correspond to AS events (e.g. the shorter leg of AS events usually has
a length between 2k — 8 and 2k — 2, with k being the size of the k-mer in the
De Bruijn graph [12,17]). We obtained, as putative AS events, 1403 bubbles
for the generator set and 1293 bubbles for KiSSPLICE. In order to assess the
precision of our method, we mapped the bubbles output by both methods
to the Mus Musculus reference genome and annotations (Ensembl release 94)
using STAR [7], which were then analysed by KisSPLICE2REFGENOME [1].
Ki1sSPLICE2REFGENOME provides, for each bubble, the gene name, the AS
event type (exon skipping, alternative acceptor/donor splice site, intron reten-
tion, etc), the genomic coordinates and the list of splice sites used (novel or
annotated). We retrieved only those that corresponded to AS events.

Among the generator bubbles classified as putative AS events, 1085 bubbles
correspond to true AS events, according to KiISSPLICE2REFGENOME, yielding
a precision (AS events / putative AS events) of 77.3%. Note that the preci-
sion of KISSPLICE is 90.3% for this dataset. However, what is interesting to
see is that 18.5% of the putative AS events from our bubble generator will
never be found by KISSPLICE using the default parameters, as they have more
than 5 branching vertices. Moreover, 10% of these bubbles correspond to true
AS events that are missed by KISSPLICE. Increasing the maximum number
of allowed branching vertices will increase the running time of KISSPLICE’s
algorithm exponentially. A large threshold of b is in practice unfeasible. Since
we have bubbles corresponding to putative AS events in the generator that
have more than 20 branching vertices, these will be missed by KISSPLICE.

This analysis shows the practical interest of the bubble generator. Even this
simple application led to results that were comparable with the state-of-art
algorithm KISSPLICE and sometimes complementary.

6 Conclusions and open problems

Bubbles in De Bruijn graphs represent interesting biological events, like alter-
native splicing and allelic differences (SNPs and indels). However, the set of
all bubbles in a De Bruijn graph built from real data is usually too large to
be efficiently enumerated and analysed. To tackle this issue, in this paper we
have proposed a bubble generator, which is a polynomial-sized subset of the
bubble space that can be used to generate all and only the bubbles in a di-
rected graph. In particular, we have presented efficient algorithms to identify,
for any given directed graph G, a generator set of bubbles G(G), and to decom-
pose any bubble B in G into bubbles from G(G). Concerning the applications
of the bubble generator, we showed its usefulness in analysing RNA data. In

526

527

528

529

530

531

532

533

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

16 V. Acuna et.al.

particular, we indicated that our bubble generator can be used in addition to
Ki1sSPLICE to find AS events corresponding to bubbles with a high branching
number.

Our work raises several open theoretical questions. First, our generator
G(G) is not necessarily minimal, 4.e. it might happen that there exists three
bubbles B1,Bs, B3 € Q(G) such that B; < Bs, By < Bs, and B3 = By + Bs.
Is it possible to find in polynomial time a generator G'(G) that is minimal?
Second, it seems natural to ask whether all minimal generators for bubbles in
directed graphs have the same cardinality. Third, it would be interesting to find
a generator G(G) with some additional biologically motivated constraints, as
for example the maximum length of the legs of a bubble [18]. Given an integer
k and a graph G, is it possible to find a generator G(G) that generates all and
only the bubbles of G which have both legs of length at most k7 Fourth, are
there faster algorithms to find a bubble generator? Fifth, this work is related
to the research done in the direction of cycle bases. However, as we already
mentioned, our problem displays characteristics that make it very different
from the ones related to cycle bases. Thus, it may be of independent interest
to further investigate the connections between those two problems.

There are also some practical questions that need to be addressed in future
work, and which might be interesting on their own. We see three possible
directions: (i) reduce the false positive AS events by adding more biologically
motivated constraints (e.g. the ones mentioned in the previous paragraph) to
the bubbles in the generator, (ii) find “complex” AS events by listing also
the bubbles that result from a combination of two or more bubbles from the
generator.

Finally, our polynomial-time decomposition algorithm could be useful in
the case where we want to identify and decompose complex alternative splicing
events [19] into their elementary parts. We defer all those problems to further
investigations.

Acknowledgments

V. Acuna is supported by Fondecyt 1140631, Center for Genome Regulation
FONDAP 15090007, Basal Grant of the Center for Mathematical Modeling
UMI2807 UCHILE-CNRS N PFBO03 project. R. Grossi and G. F. Italiano are
partially supported by MIUR, the Italian Ministry of Education, University
and Research, under the Project AMANDA (Algorithmics for MAssive and
Networked DAta). Part of this work was done while G. F. Italiano was visiting
Université de Lyon. L. Lima is supported by the Brazilian Ministry of Science,
Technology and Innovation (in portuguese, Ministério da Ciéncia, Tecnologia e
Inovacao - MCTTI) through the National Counsel of Technological and Scientific
Development (in portuguese, Conselho Nacional de Desenvolvimento Cientifico
e Tecnolégico - CNPq), under the Science Without Borders (in portuguese,
Ciéncias Sem Fronteiras) scholarship grant process number 203362/2014-4.
B. Sinaimeri, L. Lima and M.-F. Sagot are partially funded by the French

569

570

571

572

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

On Bubble Generators in Directed Graphs 17

ANR project Aster (2016-2020), and together with V. Acuna, also by the
Stic AmSud project MATA (2016-2017). This work was performed using the
computing facilities of the CC LBBE/PRABIL.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Benoit-Pilven, C., Marchet, C., Chautard, E., Lima, L., Lambert, M.P., Sacomoto, G.,

Rey, A., Cologne, A., Terrone, S., Dulaurier, L., Claude, J.B., Bourgeois, C., Auboeuf,
D., Lacroix, V.: Complementarity of assembly-first and mapping-first approaches for
alternative splicing annotation and differential analysis from RNAseq data. Scientific
Reports 8(1) (2018)

Birmelé, E., Crescenzi, P., Ferreira, R., Grossi, R., Lacroix, V., Marino, A., Pisanti,
N., Sacomoto, G., Sagot, M.F.: Efficient Bubble Enumeration in Directed Graphs. In:
SPIRE, pp. 118-129 (2012)

Bollobas, B.: Modern graph theory, Graduate Texts in Mathematics, vol. 184. Springer-
Verlag, Berlin (1998)

. Brankovic, L., Iliopoulos, C.S., Kundu, R., Mohamed, M., Pissis, S.P., Vayani, F.:

Linear-time superbubble identification algorithm for genome assembly. Theoretical
Computer Science 609, 374-383 (2016)

. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT

Electrical Engineering and Computer Science Series. MIT Press, Cambridge, MA (1991)
Deo, N.: Graph theory with applications to engineering and computer science. Prentice-
Hall series in automatic computation. Englewood Cliffs, N.J. Prentice-Hall (1974)
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
Chaisson, M., Gingeras, T.R.: Star: ultrafast universal rna-seq aligner. Bioinformatics
29(1), 15-21 (2013). DOI 10.1093/bioinformatics/bts635

. Gleiss, P.M., Leydold, J., Stadler, P.F.: Circuit bases of strongly connected digraphs.

Discussiones Mathematicae Graph Theory 23(2), 241-260 (2003)

Igbal, Z., Caccamo, M., Turner, 1., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de bruijn graphs. Nat Genet 44(2), 226-232 (2012)
Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T.,
Zweig, K.A.: Cycle bases in graphs characterization, algorithms, complexity, and
applications. Computer Science Review 3(4), 199 - 243 (2009). DOI
http://dx.doi.org/10.1016/j.cosrev.2009.08.001

Kavitha, T., Mehlhorn, K.: Algorithms to compute minimum cycle bases in directed
graphs. Theory of Computing Systems 40(4), 485 — 505 (2007)

Lima, L., Sinaimeri, B., Sacomoto, G., Lopez-Maestre, H., Marchet, C., Miele, V., Sagot,
M.F., Lacroix, V.: Playing hide and seek with repeats in local and global de novo
transcriptome assembly of short rna-seq reads. Algorithms Mol Biol 12, 2-2 (2017).
DOI 10.1186/s13015-017-0091-2

MacLane, S.: A combinatorial condition for planar graphs. Fundamenta Mathematicae
28, 22-32 (1937)

Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation sequencing
data. Genomics 95(6), 315-327 (2010)

Onodera, T., Sadakane, K., Shibuya, T.: Detecting Superbubbles in Assembly Graphs.
In: Algorithms in Bioinformatics, Lecture Notes in Computer Science, vol. 8126, pp.
338-348. Springer Berlin Heidelberg (2013)

Pevzner, P.A., Tang, H., Tesler, G.: De Novo Repeat Classification and Fragment As-
sembly. Genome Research 14(9), 1786-1796 (2004)

Sacomoto, G., Kielbassa, J., Chikhi, R., Uricaru, R., Antoniou, P., Sagot, M.F., Peter-
longo, P., Lacroix, V.: Kissplice: de-novo calling alternative splicing events from rna-seq
data. BMC Bioinformatics 13(S-6), S5 (2012)

Sacomoto, G., Lacroix, V., Sagot, M.F.: A polynomial delay algorithm for the enumer-
ation of bubbles with length constraints in directed graphs and its application to the
detection of alternative splicing in RNA-seq data. In: WABI, pp. 99-111 (2013)

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

18

V. Acuna et.al.

19.

20.

21.

22.

23.

24.

25.

Sammeth, M.: Complete alternative splicing events are bubbles in splicing graphs. Jour-
nal of Computational Biology 16(8), 1117-1140 (2009)

Shilov, G.E.: Linear Algebra. Dover Publications, New York (1977). (Trans. R. A.
Silverman)

Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, I.: ABySS:
A parallel assembler for short read sequence data. Genome Research 19(6), 1117-1123
(2009)

Sung, W.K., Sadakane, K., Shibuya, T., Belorkar, A., Pyrogova, I.: An o(m log m)-time
algorithm for detecting superbubbles. IEEE/ACM Trans. Comput. Biol. Bioinformatics
12(4), 770-777 (2015)

Uricaru, R., Rizk, G., Lacroix, V., Quillery, E., Plantard, O., Chikhi, R., Lemaitre, C.,
Peterlongo, P.: Reference-free detection of isolated SNPs. Nucleic Acids Research 43(2),
ell (2015)

Younsi, R., MacLean, D.: Using 2k+2 bubble searches to find single nucleotide poly-
morphisms in k-mer graphs. Bioinformatics 31(5), 642-646 (2015)

Zerbino, D., Birney, E.: Velvet: Algorithms for De Novo Short Read Assembly Using De
Bruijn Graphs. Genome Res. (2008)

Chapter 6

A

fast and agnostic method for

bacterial genome-wide association
studies: bridging the gap between
k-mers and genetic events

Preamble

Key points

The most common approaches for GWAS are unsuitable when working on bacterial
species with a large accessory genome. They might be unable to cover variants in
noncoding regions, and the analysis can be compromised on species without a good
annotation;

Recent studies have relied on k-mers, which can reflect most genomic variations
in a panel. A k-mer representation often loses in interpretability what it gains in
flexibility;

This work bridges the gap between, on the one hand, SNP- and gene-based represen-
tations lacking the right level of flexibility to cover complete genomic variations,
and, on the other hand, k-mer-based representations which are flexible but not
readily interpretable;

We rely on compacted DBGs to eliminate local redundancy, and reflect genomic
variations. Each variant is then tested for association with the phenotype using a
linear mixed model, adjusting for the population structure. The unitigs found to be
phenotype-associated are then localised in the cDBG, and their neighbourhood is
used as a proxy for their genomic environment at the population level. Subgraphs
induced by their genomic environment are extracted, which often provide a direct

Chapter 6. A fast and agnostic method for bacterial genome-wide
126 association studies: bridging the gap between k-mers and genetic events

interpretation in terms of genetic events, aided by their topology, metadata and
optional annotation;

e This approach makes GWAS more amenable to bacterial panels and it was effective
in catching the dynamics of mobile genetic elements in Staphylococcus aureus and
Pseudomonas aeruginosa genomes, and retrieved known local polymorphisms in
Mycobacterium tuberculosis genomes.

Status
Published in journal PLOS Genetics [48].

Author contributions

M. Jaillard and L. share first authorship in this paper.

@.PLOS | GENETICS

L)

Check for
updates

E OPEN ACCESS

Citation: Jaillard M, Lima L, Tournoud M, Mahé P,
van Belkum A, Lacroix V, et al. (2018) A fast and
agnostic method for bacterial genome-wide
association studies: Bridging the gap between k-
mers and genetic events. PLoS Genet 14(11):
€1007758. https://doi.org/10.1371/journal.
pgen.1007758

Editor: Xavier Didelot, Imperial College London,
UNITED KINGDOM

Received: June 4,2018
Accepted: October 12,2018
Published: November 12, 2018

Copyright: © 2018 Jaillard et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: We put online all the
GWAS results generated by our method which are

discussed in the manuscript (http:/pbil.univ-lyoni.

fr/datasets/DBGWAS_support/). The proposed
method is available on gitlab: https://gitlab.com/
leoisl/dbgwas/.

Funding: MJ, MT, PM and AvB are employees of
bioMérieux. LL is funded by the Conselho Nacional
de Desenvolvimento Cientifico e Tecnologico —
CNPq, Brazil, under the Science Without Borders

RESEARCH ARTICLE

A fast and agnostic method for bacterial
genome-wide association studies: Bridging
the gap between k-mers and genetic events

Magali Jaillard® "2 *, Leandro Lima®?3*, Maud Tournoud®’, Pierre Mahé', Alex van
Belkum', Vincent Lacroix?3, Laurent Jacob?

1 bioMérieux, Marcy I’Etoile, France, 2 Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et
Biologie Evolutive UMR5558 F-69622 Villeurbanne, France, 3 EPI ERABLE - Inria Grenoble, Rhéne-Alpes,
France

® These authors contributed equally to this work.
* magali.dancette @biomerieux.com

Abstract

Genome-wide association study (GWAS) methods applied to bacterial genomes have
shown promising results for genetic marker discovery or detailed assessment of marker
effect. Recently, alignment-free methods based on k-mer composition have proven their
ability to explore the accessory genome. However, they lead to redundant descriptions and
results which are sometimes hard to interpret. Here we introduce DBGWAS, an extended k-
mer-based GWAS method producing interpretable genetic variants associated with distinct
phenotypes. Relying on compacted De Bruijn graphs (cDBG), our method gathers cDBG
nodes, identified by the association model, into subgraphs defined from their neighbourhood
in the initial cDBG. DBGWAS is alignment-free and only requires a set of contigs and pheno-
types. In particular, it does not require prior annotation or reference genomes. It produces
subgraphs representing phenotype-associated genetic variants such as local polymor-
phisms and mobile genetic elements (MGE). It offers a graphical framework which helps
interpret GWAS results. Importantly it is also computationally efficient—experiments took
one hour and a half on average. We validated our method using antibiotic resistance pheno-
types for three bacterial species. DBGWAS recovered known resistance determinants such
as mutations in core genes in Mycobacterium tuberculosis, and genes acquired by horizon-
tal transfer in Staphylococcus aureus and Pseudomonas aeruginosa—along with their MGE
context. It also enabled us to formulate new hypotheses involving genetic variants not yet
described in the antibiotic resistance literature. An open-source tool implementing
DBGWAS is available at hitps://gitlab.com/leois|/dbgwas.

Author summary

Genome-wide association studies (GWAS) help explore the genetic bases of phenotype
variation in a population. Our objective is to make GWAS amenable to bacterial genomes.
These genomes can be too different to be aligned against a reference, even within a single

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018

1/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

scholarship grant process number 203362/2014-4.

VL is funded by the Agence Nationale de la
Recherche ANR-12-BS02-0008 (Colib’read) and
ANR-16-CE23-0001 (ASTER). LJ is funded by the
Agence Nationale de la Recherche ANR-14-CE23-
0003-01 (MACARON) and ANR-17-CE23-0011-01
(FAST-BIG). This work was performed using the
computing facilities of the CC LBBE/PRABI. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing interests: | have read the journal’s
policy and the authors of this manuscript have the
following competing interests: MJ, MT, PM and
AvB are employees of bioMérieux, a company that
develops and sells diagnostic tests in the field of
infectious diseases. However, the study was
designed and executed in an open manner and the
presented method as well as all data generated
have been deposited in the public domain, also
resulting in the current publication.

species, making the description of their genetic variation challenging. We test the associa-
tion between the phenotype and the presence in the genomes of DNA subsequences of
length k — the so-called k-mers. These k-mers provide a versatile descriptor, allowing to
capture genetic variants ranging from local polymorphisms to insertions of large mobile
genetic elements. Unfortunately, they are also redundant and difficult to interpret. We
rely on the compacted De Bruijn graph (cDBG), which represents the overlaps between k-
mers. A single cDBG is built across all genomes, automatically removing the redundancy
among consecutive k-mers, and allowing for a visualisation of the genomic context of the
significant ones. We provide a computationally efficient and user-friendly implementa-
tion, enabling non-bioinformaticians to carry out GWAS on thousands of isolates in a few
hours. This approach was effective in catching the dynamics of mobile genetic elements in
Staphylococcus aureus and Pseudomonas aeruginosa genomes, and retrieved known local
polymorphisms in Mycobacterium tuberculosis genomes.

Introduction

The aim of Genome-Wide Association Studies (GWAS) is to identify associations between
genetic variants and a phenotype observed in a population. They have recently emerged as an
important tool in the study of bacteria, given the availability of large panels of bacterial
genomes combined with phenotypic data [1-7].

GWAS rely on a representation of the genomic variation as numerical factors. The most
common approaches are based on single nucleotide polymorphisms (SNPs), defined by align-
ing all genomes of the studied panel against a reference genome [1, 3, 4] or against a pangen-
ome built from all the genes identified by annotating the genomes [8], and on gene presence/
absence, using a pre-defined collection of genes [5, 7]. The use of a reference genome becomes
unsuitable when working on bacterial species with a large accessory genome—the part of the
genome which is not present in all strains. On the other hand, methods focusing on genes are
unable to cover variants in noncoding regions, including those related to transcriptional and
translational regulation [9, 10]. Moreover, some poorly studied species still lack a representa-
tive annotation [11].

To circumvent these issues and make bacterial genomes amenable to GWAS, recent studies
have relied on k-mers: all nucleotide substrings of length k found in the genomes [2, 5, 6].

The presence of k-mers in genomes can account for diverse genetic events such as the acquisi-
tion of SNPs, (long) insertions/deletions and recombinations. Unlike SNP- or gene-based
approaches, k-mer analyses do not require a reference genome or any assumption on the
nature of the causal variants and can even be performed without assembling the genome
sequences [12].

While k-mers can reflect any genomic variation in a panel, they do not themselves represent
biological entities. Translating the result of a k-mer-based GWAS into meaningful genetic var-
iants typically requires mapping a large and redundant set of short sequences [2, 5, 6, 13].
Recent studies have suggested reassembling the significantly associated k-mers to reduce
redundancy and retrieve longer marker sequences [6, 13]. Nonetheless, k-mer representation
often loses in interpretability what it gains in flexibility, and the best way to encode the geno-
mic variation in bacterial GWAS is not yet clearly defined [14, 15].

Our approach, coined DBGWAS, for De Bruijn Graph GWAS, bridges the gap between, on
the one hand, SNP- and gene-based representations lacking the right level of flexibility to
cover complete genomic variation, and, on the other hand, k-mer-based representations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018

2/28

o @
@ : PLOS | GENETICS Fast agnostic bacterial GWAS with De Bruijn graphs

(A) DBG represents overlaps between strings

—

= DBG with k=4 I
S1 ..CCTTCGC...

Sz .CCTTCGA..

—
[—

All strings of length k=4 are considered Overlaps of length k-1=3 are represented by edges in the graph

(B) A point mutation is summarized as a bubble in the graph

St .CCTTCGCTAGTA.. DBG with k=4 TCGC—> CGCT—>GCTA—> CTAGS

RERARRRRN [:> ---—>CCTT—>CTTC—>TTCG<: TAGT —AGTA—> -
S2 .CCTTCGATAGTA.. TCGA—» CGAT—> GATA—> ATAG”

(C) DBG can be compacted
DBG with k=4 compacted DBG (cDBG)

TCGC—>CGCT—>GCTA—>CTAGS TCGCTAG
CCTT—CTTC —>TTCG<:

ATAGT —> AGTA > CCTTCG HTAGTA
TCGA—>CGAT—>GATA—>ATAG TCGATAG

Fig 1. Compacted DBG construction over a set of sequences differing by a single point mutation. In this example two sequences s; and s, of
length 12 differ by a single letter. (A) All k-mers (k = 4) present in these sequences are listed. A link is drawn between two k-mers when the

k — 1 = 3 last nucleotides of the first k-mer equal the 3 first nucleotides of the second k-mer. (B) The bubble pattern represents the SNP C to A;
each branch of the bubble represents an allele. (C) Linear paths of the graph are compacted; the compacted DBG of the example only contains
four nodes (unitigs) and represents the same variation as the original DBG, which contained 13 nodes (k-mers).

https://doi.org/10.1371/journal.pgen.1007758.g001

which are flexible but not readily interpretable. We rely on De Bruijn graphs [16] (DBGs),
which are widely used for de novo genome assembly [17, 18] and variant calling [12, 19]. These
graphs connect overlapping k-mers (here DNA fragments), yielding a compact summary of all
variations across a set of genomes. Fig 1 illustrates the construction of such a graph for a simple
example, where the only variation among the aligned genomes is a point mutation. DBGs also
accommodate more complex disparities including rearrangements and insertions/deletions
(S1 Fig).

DBGWAS relies on the ability of compacted DBGs (¢cDBGs) to eliminate local redundancy,
reflect genomic variations, and characterise the genomic environment of a k-mer at the popu-
lation level. More precisely, we build a single cDBG from all the genomes included in the asso-
ciation study (in practice, up to thousands). The graph nodes—called unitigs—represent, by
construction, sequences of variable length and are at the right level of resolution for the set of
genomes considered, taking into account adaptively the genomic variation. The unitigs are
individually tested for association with the phenotype, while controlling for population struc-
ture. The unitigs found to be phenotype-associated are then localised in the cDBG. Subgraphs
induced by their genomic environment are extracted. They often provide a direct interpreta-
tion in terms of genetic events which results from the integration of three types of information:
1) the topology of the subgraph, reflecting the nature of the genetic variant, 2) the metadata
represented by node size and colour, allowing us to identify which unitigs in the subgraph are
associated to a particular phenotype status, and 3) an optional sequence annotation helping to
detect unitig mapping to—or near—a known gene.

We benchmarked our novel method using several antibiotic resistance phenotypes within
three bacterial species of various degrees of genome plasticity: Mycobacterium tuberculosis,
Staphylococcus aureus and Pseudomonas aeruginosa. The subgraphs built from significant uni-
tigs described SNPs or insertions/deletions in both core and accessory regions, and were con-
sistent with results obtained with a resistome-based association study. In addition, novel
genotype-to-phenotype associations were also suggested.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 3/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

Phenotype data

I n p ut (>strl_contigl
. catgtgctagtgtcg
Genome draft assemblies cagtgtegtgtaget

Results

We developed DBGWAS, available at https://gitlab.com/leoisl/dbgwas, and validated it on
panels for several bacterial species for which genome sequences and antibiotic resistance phe-
notypes were available. DBGWAS comprises three main steps: it first builds a variant matrix,
where each variant is a pattern of presence/absence of unitigs in each genome. Each variant is
then tested for association with the phenotype using a linear mixed model, adjusting for the
population structure. Finally, it uses the cDBG neighbourhood of significantly associated uni-
tigs as a proxy for their genomic environment. DBGWAS outputs a set of such subgraphs
ordered by min,, which is the smallest q-value observed over unitigs in each subgraph. The top
subgraphs therefore represent the genomic environment of the unitigs most significantly asso-
ciated with the tested phenotype. Fig 2 summarises the main steps of the process. A detailed
description of the pipeline is presented in the Methods section.

Here we rely on a few experiments to illustrate how the subgraphs output by DBGWAS can
be read as genetic events. We then benchmark DBGWAS against two other k-mer-based
approaches and one resistome-based approach. DBGWAS recovers known variants, while sug-
gesting novel candidates out of the range of the resistome-based approach. We also find it to
be more computationally efficient and to provide more interpretable outputs than the other
k-mer-based methods.

A synthetic description of the discussed subgraphs is provided in Table 1, while a descrip-
tion of the top subgraphs obtained for all tested antibiotics is provided in S3, S4, and S5 Tables.

» DBG construction;
AN e » DBG compaction;
- ~ . A
< o » Strain mapping.

Step 1

Tool: GATB (Drezen, 2014)

Variant matrix building T334 .
1(0001
g 30100 =X
* Linear mixed model to
Ste 2 = account for the population
; P o Y=)qﬁ +Wia +g; structure.
Variant association iinl...p Tool: bugwas (Earle, 2016)
e » Local neighbourhood retrieval
O/O<§<g around significant unitigs;
* Graph decoration with
Step 3 phenotype and statistical data,
Post-processing of : and annotation databases;
significant variants » Visualisation on web browsers.
'°. 2 Tools: Boost (boost.org)
\ 07 Blast+ (Camacho, 2009)
output Cytoscape.js (Franz, 2015)

Phenotype-associated genetic events

Fig 2. DBGWAS pipeline. DBGWAS takes as input draft assemblies and phenotype data for a panel of bacterial strains. A variant matrix X is
built in step 1 using cDBG nodes (called unitigs). Variants are tested in step 2 using a linear mixed model taking into account the population
structure. Significant variants are post-processed in step 3 to provide an interactive interface assisting their interpretation.

https://doi.org/10.1371/journal.pgen.1007758.g002

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 4/28

@’PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

Table 1. Resistance determinants identified by DBGWAS for S. aureus (SA), M. tuberculosis (IB) and P. aeruginosa (PA) panels.

Panel Phenotype Rank Sign. ming Est. Annotation Type Knowledge
unitigs effect on markers
SA Methicillin 1 71/565 7.68 x 10758 0.949 mecA + 7000 bp of SC Cmec MGE
2 99/735 3.39x 1072 0.865 6000 bp of SCCrmec MGE ” =0.96
3 11/190 2.14x10°% 0.813 2000 bp of SCCmec MGE ?=0.94
4 13/117 2.29 % 107 0.957 1500 bp of SCCmec MGE *=0.93
Ciprofloxacin 1 7/57 8.67 x 107" -0.893 parCQRDR LPG
2 7/31 221x107° 0.955 gyrAQRDR LPG
Erythromycin 1 110/510 2.69 x 1071 0.823 ermC + circular plasmid MGE
Fusidic acid 1 7/50 2.75 x 10713¢ -0.910 fusA LPG
2 214/882 7.94 % 10°* 0.924 fusC + SCC fusCcassette MGE
3 22/260 5.35x 107 0.924 1,500 bp of SCCfusC MGE = 0.98
3 1/72 535x 10* 0.924 200 bp of SCCfusC MGE ?=0.98
5 5/64 2.02x 107 -0.888 purN LPG ?=2x10""
Trimethoprim 1 7/54 8.38 x 107* 0.969 folA
2 3/41 9.30 x 1078 -0.966 btw. hyp. prot. & VOC prot. #=0.19
3 11/70 9.30 x 107'% -0.966 ybaK LPG ” = 0.44
4 2/30 6.82x 107" -0.632 mqol LPG ”=0.29
Gentamicin 1 173/1193 1.30 x 1072 0.873 aac(6’)gene within a plasmid MGE
2 127/367 9.02x 1077° 0.751 seq. of plasmid carrying aac(6’) MGE ¥ =0.38
3 2/23 9.01 x 10* 0.634 seq. of plasmid carrying aac(6) MGE * = 0.40
4 1/29 1.04 x 107% 0.579 seq. of plasmid carrying aac(6’) MGE ” =0.48
5 2/56 149 x 107 -0.831 odhB LPG ¥ =8x10""
TB Rifampicin 1 36/115 4.84x107° -0.577 rpoBRRDR LPG
2 6/37 4.35%x 1072° -0.355 katG LPG
3 5/41 4.02x10°° -0.224 embBM306V LPG
Streptomycin 1 5/30 3.70 x 107! 0.544 rpsL(30S ribos.protein S12) LPG
2 6/37 1.06 x 107** -0.428 katG LPG
3 25/113 2.87 x 107'¢ -0.339 rpoBRRDR LPG
4 6/45 1.40x 10°° -0.271 embBM306V LPG
5 8/31 2.86x 1077 -0.535 rrs, 16S rRNA C517T LPG
6 13/69 9.18 x 10> -0.216 gyrAQRDR LPG
7 2/20 1.20x 1072 0.739 espGl LPG ?=3x10""
Ofloxacin 1 31/85 9.66 x 10714 -0.888 gyrAQRDR LPG
2 9/68 1.59x 107 0.507 ubiA(Rv3806¢) LPG
3 3/32 3.86 x 1072 -0.746 Rv3909 LPG ¥=9x10"°
Ethionamide 1 9/39 7.86 x 107" -0.462 fabGIpromoter
2 15/47 516 x 1070 -0.406 gyrAQRDR LPG
3 4/26 5.55x 107" 0.319 rrs, 16S IRNA A1401G LPG
XDR 1 6/68 3.66 x 1077 0.905 rpoBI1187T (out. RRDR) LPG Ukn
1 3/27 3.66 x 107 0.905 Rv2000 LPG =
3 3/24 9.58 x 107° 0.883 espApromoter *=0.98
PA Amikacin 1 4/83 5.86x 1077 0.621 SNP in aac(6’) LPG
2 3/82 137 x107° 0.662 DEAD/DEAH box helicase LPG ¥ =0.55
3 38/315 221%107° 0.523 plasmid mapping on pHS87b MGE ?=0.17
Levofloxacin 1 5/27 7.21%x 107 -0.884 gyrAQRDR LPG
2 5/29 5.68x 10°° -0.737 parCQRDR LPG
3 5/38 1.87 x 1072 0.688 Histidine kinase/response regulator LPG I ”=0.17

For each antibiotic, we report subgraphs with their rank, number of significant unitigs over all unitigs in the subgraph (Sign. unitigs), q-value of the unitig with the

lowest g-value (min,), the corresponding estimated effect (coefficient of the linear mixed model) and annotation of the subgraph. The type of event represented by the

subgraph is colour-coded as: yellow for MGE, light blue for local polymorphism in gene (LPG), and dark blue for local polymorphism in noncoding region (LPN).

Known resistance markers are indicated in dark green (Pos), determinants whose presence was described to be caused by co-resistance in orange (CR), unknown

variants arriving at the first rank in grey (Ukn). For other subgraphs, an r* value relative to the first subgraph is provided as an estimation of linkage disequilibrium with

the first subgraph. It was computed between the most significant patterns of the first and the considered subgraphs.

https:/doi.org/10.1371/journal.pgen.1007758.t001

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018

5/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

The subgraphs themselves are available at http://pbil.univ-lyon1.fr/datasets/ DBGWAS _
support/experiments/#DBGWAS_all_results.

Coloured bubbles highlight local polymorphism in core genes, accessory
genes and noncoding regions

For P. aeruginosa levofloxacin resistance, the subgraph obtained with the lowest min,
highlighted a polymorphic region in a core gene (Fig 3A). Indeed, it showed a linear structure
containing a complex bubble, with a fork separating susceptible (blue) and resistant (red)
strains. The annotation revealed that all unitigs in this subgraph mapped to the quinolone
resistance-determining region (QRDR) of the gyrA gene. gyrA codes for a subunit of the DNA
gyrase targeted by quinolone antibiotics such as levofloxacin and its alteration is therefore a
prevalent and efficient mechanism of resistance [20, 21]. In all our experiments related to
quinolone resistance, DBGWAS identified QRDR mutations in either gyrA or parC, which
codes for another well-known quinolone target: P. aeruginosa levofloxacin (first subgraph,
gyrA: ming = 7.21 x 107*° and second, parC: 5.68 x 107%), S. aureus ciprofloxacin (first, parC:
min, = 8.67 x 10'** and second, gyrA: 2.21 x 10~7°), and ofloxacin resistance in M. tuberculo-
sis, whose genome does not contain the parC gene [22] (first, gyrA: min, = 9.66 x 107144,

For P. aeruginosa amikacin resistance, the top subgraph (min, = 5.86 x 107°) highlighted a
SNP in an accessory gene (Fig 3B). As in Fig 3A, it contained a fork separating a blue and a red
node. However, other remaining nodes were not grey: they represented an accessory sequence
because they were not present in all the strains. Most of these nodes were pale-red, showing
that the accessory sequence was more frequent in resistant samples. The annotation revealed
that this subgraph corresponded to aac(6’), a gene coding for an aminoglycoside 6-acetyltrans-
ferase, an enzyme capable of inactivating aminoglycosides, such as amikacin, by acetylation
[23]. Most unitigs in this gene had a low association with resistance, except for the ones
describing this particular SNP. Mapping the sequence of these unitigs on the UniProt database
[24] revealed an amino-acid change at L83S, right in the enzyme binding site. This SNP was
previously shown to be responsible for substrate specificity alteration in a strain of Pseudomo-
nas fluorescens [25]. It appears to increase the amikacin acetylation ability of aac(6’), making
its association to amikacin resistance more significant than the gene presence itself.

Finally, for M. tuberculosis ethionamide resistance, the top subgraph (min, = 7.86 x 10",
Fig 3C) represented a polymorphic region in a core gene promoter. The subgraph was mostly
grey and linear with a localised blue and red fork. The most reliable annotation for this sub-
graph was fabG1 (also known as mabA), a core gene previously shown to be involved in ethi-
onamide and isoniazid resistance [26, 27]. None of the significantly associated unitigs mapped
to the fabG1 gene, but their close neighbours did (highlighted in Fig 3C by black circles), sug-
gesting that the detected variant was located in the promoter region of the gene. This was con-
firmed by mapping the significant unitig sequences using the Tuberculosis Mutation database
of the mubii resource [28].

Long single-coloured paths denote mobile genetic element insertions

For S. aureus resistance to methicillin, the top subgraph (min, = 7.68 x 107'%%), shown in Fig
3D, revealed a gene cassette insertion. It contained a long path of red nodes, and a branching
region including another red node path. The first path mapped to the mecA gene, extensively
described in this context and known to be carried by the Staphylococcal Cassette Chromosome
mec (SCCmec) [21, 29, 30]. The other part of the subgraph represented a >5,000 bp fragment
of the cassette. It was less linear because it summarised several types of the cassette differing by
their structure and gene content [29]. The next subgraphs represented other regions of the

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 6/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

Panel
P. aeru

Sel. annotation
(Flg)GYRA

levofloxacin

(A) Polymorphism: core gene
Phenotype

#unitig #sign. u.
27 5

#unitigs w/ annotation

27

(B) Polymorphism: accessory gene

Panel = Phenotype #unitig #sign. u.
P. aeru amikacin 21 1
\‘
N
e @‘7
: b

_go

Sel. annotation #unitigs w/ annotation
(AGly)AAC6-PRIME 13

(C) Polymorphism: promoter
Phenotype #unitig #sign. u.
TB ethionamide 27 5

Panel

Sel. annotation #unitigs w/ annotation
fabG1l MTB 6

Panel

Sel. annotation
(Bla)MECA

S. aureus = methicillin

(D) MGE: gene in a cassette
Phenotype #unitig #sign. u.

562 68

#unitigs w/ annotation

57

Panel
S. aureus

Sel. annotation
(MLS)ErmcC

(E) MGE: gene in a plasmid (circular structure)

Phenotype
erythromycin

#unitig
510

#sign. u.
100

#unitigs w/ annotation
18

Legend

Phenol

Node filling (phenotype status)

Pheno0

Not tested

Transparency:
Nos= significant node | Allele
Yes= neighbor node frequency: high

Node size (frequency)

Node border (selection)

©)

low unselected

selected

Fig 3. Different types of genetic events identified by DBGWAS. Each subgraph represents a distinct genetic event. Colours are continuously
interpolated between blue for susceptible unitigs and red for resistant ones. Untested unitigs, present in > 99% or < 1% of the strains, are shown
in grey. Nodes found to be not significative are shown with a transparency degree. The node size relates to its allele frequency: the larger the
node, the higher the allele frequency. Circled black nodes map to annotated genes. The two tables in each panel provide information on the
sugraph nodes. As an example, the subgraph in panel (A) is composed of 27 unitigs, 5 of which were significantly associated with resistance. All
unitigs of this subgraph mapped to the gyrA gene. The subgraphs presented in the four other panels correspond to the top subgraphs (with
lowest ming) obtained for different panels/phenotypes. All subgraphs are snapshots taken from DBGWAS interactive visualisation and are

available online.

https://doi.org/10.1371/journal.pgen.1007758.g003

same cassette. Interestingly, retaining a greater number of unitigs to build the subgraphs leads
to merging these individual subgraphs, representing related genomic regions, into a single
one. This can be done by increasing the Significant Features Filter (SFF) parameter value,
which defines the unitigs used to build the subgraphs. By default, the unitigs corresponding to

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018

7/28

o @
@ : PLOS | GENETICS Fast agnostic bacterial GWAS with De Bruijn graphs

the 100 lowest q-values are retained (SFF = 100). Increasing the SFF value to 150 (150th q-
value = 1.60 x 107*7) allowed us to reconstruct the entire SCCrmec cassette, as shown in S3 Fig.

For S. aureus erythromycin resistance, a unique subgraph was generated (min, =
2.69 x 107'°°). As shown in Fig 3E, the subgraph described the circular structure of a 2,500 bp-
long plasmid known to carry the causal ermC gene together with a replication and mainte-
nance protein in strong linkage disequilibrium with ermC [30, 31].

For P. aeruginosa amikacin resistance, the third subgraph (min, = 2.21 x 10~°) represented
a 10,000 bp plasmid acquisition. Using the NCBI nucleotide database [32], most of the unitigs
in this subgraph mapped to the predicted prophage regions of an integrative and conjugative
plasmid, whose structure corresponds to a plasmid, pHS87b, recently described in the amika-
cin resistant P. aeruginosa HS87 strain [33]. S4 and S5 Figs provide more examples of MGEs
recovered by DBGWAS, and the Interpretation of significant unitigs (step 3) subsection of the
Methods section discusses SFF default value and tuning.

DBGWAS reports expected variants without prior knowledge

Although resistance determinants are not perfectly or exhaustively known for all species, some
resistance mechanisms are well described. This is the case of gyrA and parC alteration in fluo-
roquinolone resistance in P. aeruginosa [20], and of the alteration of two streptomycin targets:
the ribosomal protein S12 (coded by rpsL) and the 16S rRNA (coded by rrs) in M. tuberculosis
[34]. Here we verify the ability of bacterial GWAS methods to recover these known mecha-
nisms. We compared DBGW AS results to those obtained by applying the same association
model to a collection of known resistance genes and SNPs [7, 35] (see the Resistome-based
association studies subsection of the Methods section), and to two other recent k-mer-based
methods: pyseer [6, 36], and HAWK [13].

For P. aeruginosa levofloxacin resistance (Table 2), both DBGWAS and pyseer identified
the two expected known causal determinants reported by the prior resistome-based study:
gyrA and parC, while HAWK only reported gyrA. pyseer reported 224 k-mers, all mapping to
gyrA and parC, while the other methods reported less than 10 features (subgraphs or reassem-
bled k-mers), among which were several unknown, potentially new candidate markers.

For M. tuberculosis streptomycin resistance (Table 3), the four methods reported the two
expected known causal determinants rpsL and rrs. However, while the resistome-based study

Table 2. Resistance determinants found by the four methods for P. aeruginosa levofloxacin resistance.

Legend resistome-based DBGWAS pyseer HAWK
Time (mem) 37m (7.2 GB) 21m (3.2 GB) 24h22m (14.5 GB) 39m (4.2 GB)
Nb reported 2 variants 5 subgraphs 224 k-mers 8 reassembled k-mers
Unknown HK/RR (1.87 x 107%) tnp (1.66 x 107
tnp NC near tnp
topA

This table presents the annotation of the features identified by the tested methods with default parameters. The total number of reported features, as well as the
execution time and memory load (in Gigabytes) are given in the header. For k-mer-based methods, annotations were retrieved by mapping unitig/k-mer sequences to
the resistance and Uniprot databases (see Interpretation of significant unitigs (step 3) subsection of the Methods section), and completed when needed by Blast on NCBI
Nucleotide database. Green cells correspond to resistance determinants already described in the literature. Grey cells represent unknown determinants. Within each
category, annotations are ordered by increasing minimum p/q-values. p/q-values are reported only for the most significant annotations. For each method, the

annotation with the lowest p/q-values is underlined. ‘NC’ means noncoding region and ‘tnp’ transposase.

https://doi.org/10.1371/journal.pgen.1007758.t002

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 8/28

o0
@ ' PLos | GENETICS Fast agnostic bacterial GWAS with De Bruijn graphs

Table 3. Resistance determinants found by the four methods for M. tuberculosis streptomycin resistance.
Legend resistome-based DBGWAS pyseer HAWK

Time (mem) 1h31m (2.1 GB) 42m (4.3 GB) 14h14m (102.4 GB) 3h01m (3.7 GB)
Nb reported 85,011 k-mers

28 variants 24 subgraphs 2,038 reassembled k-mers

Unknown espGI (120 x 107°) | NC near tnp/PE (1.13x 10™'?) | NC near tnp/PPE (2.93 x 10)
(top list) 1psN Rv0270 tnp
NC near tnp/PPE Rv2665 Rv2825¢/Rv2828¢
rnj Rv2743¢ 13E12 repeat family protein
Rv2672 Rv2522c BEE
espA promoter NC near tnp/PPE CRISPR repeats, down Cas genes
Rv2456¢ promoter guaA mmpL14
whiB6 kdpD esxM

This table presents the annotation of the features identified by the tested methods with default parameters. The total number of reported features, as well as the
execution time and memory load (in Gigabytes) are given in the header. For k-mer-based methods, annotations were retrieved by mapping unitig/k-mer sequences to
the resistance and Uniprot databases (see Interpretation of significant unitigs (step 3) subsection of the Methods section), and completed when needed by Blast on NCBI
Nucleotide database. Green cells correspond to resistance determinants already described in the literature, orange cells to resistance determinants described for
association with other antibiotics. The annotations not found by the resistome-based strategy are written in bold. Grey cells represent unknown determinants. Within
each category, annotations are ordered by increasing minimum p/q-values. p/q-values are reported only for the most significant annotations. For each method, the
annotation with the lowest p/g-values is underlined. ‘NC’ means noncoding region, ‘tnp’ transposase, ‘PE’ stands for PE-family protein and ‘PPE’ for PPE-family

protein.

https://doi.org/10.1371/journal.pgen.1007758.t003

and DBGWAS methods ranked the causal rpsL determinant first, pyseer and HAWK reported
their lowest p/q-values for the false positive katG determinant. katG and other false positives
caused by co-resistance were among the top-ranked features for all methods and this is a well
described phenomenon in M. tuberculosis species [34, 37].

Additional results for all antibiotics can be found in S6 and S7 Tables for resistome-based
association studies, and in S3 and S5 Tables for DBGWAS.

DBGWAS provides novel hypotheses

In addition to resistance markers, all three k-mer-based approaches reported several unknown
variants, not described in the context of resistance. Among them, in the context of streptomy-
cin resistance, a noncoding region between a transposase and a PPE-family protein was

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 9/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

reported by the three methods but, as expected, not by the resistome-based approach, as only
resistance genes were included in this analysis. More generally, knowledge-based approaches
such as SNP-, gene- or resistome-based GWAS can be limited in the context of new marker
discovery, since any causal variant absent from the chosen reference would remain untested.
Besides being time-consuming, preparing such a list of genetic variants can be problematic for
bacterial species without extensive annotation or reference availability. Here we describe asso-
ciations identified by DBGWAS and which were never described in the antibiotic resistance
literature.

In our P. aeruginosa panel, the second subgraph obtained for amikacin resistance (min, =
1.37 x 10~°) gathered unitigs mapping to the 3’ region of a DEAD/DEAH box helicase, known
to be involved in stress tolerance in P. aeruginosa [38]. The unitig with the lowest q-value was
present in 13 of 47 resistant strains and in only 1 of 233 susceptible strains and represented a
C-C haplotype summarising two mutated positions: 2097 and 2103. This annotation was not
an artefact of the population structure, properly taken into account by the linear mixed model.
Indeed the 13 resistant strains corresponded to distinct clones belonging to two phylogroups,
one of them containing the susceptible strain. In P. aeruginosa levofloxacin resistance, the
third subgraph (min, = 1.87 x 10°) represented a L650M amino-acid change in a hybrid sen-
sor histidine kinase/response regulator. Such two-components regulatory systems play impor-
tant roles in the adaptation of organisms to their environment, for instance in the regulation
of biofilm formation in P. aeruginosa [39], and as such may play a role in antibiotic resistance.

In S. aureus, polymorphisms within genes not known to be related to resistance were
identified for several antibiotics: purN (min, = 2.02 x 107?) for fusidic acid, odhB (min, =
1.49 x 10~*) for gentamicin, ybaK and mqoI (min, = 9.30 x 10~"%, resp. 6.82 x 10~'°) for tri-
methoprim. None of these genes have been associated with antibiotic resistance before, to the
best of our knowledge.

In M. tuberculosis, polymorphisms in two genes encoding proteins involved in cell wall and
cell processes, espG1 and espA, were found associated with streptomycin (seventh subgraph,
min, = 9.43 x 10*) and XDR phenotype (third subgraph, min, = 9.58 x 107°°), respectively.
Again, these genes have never been reported in association with antibiotic resistance before.

Although experimental validation would be required to tell whether these hypotheses are
false positive (e.g., in linkage with causal variants) or actual resistance mechanisms not yet doc-
umented, DBGWAS is a valuable tool to screen for novel candidate markers. Moreover it pro-
vides a first level of variant description (SNPs in gene or promoter, MGE, etc) which can
directly drive the biological validation.

DBGWAS facilitates the interpretation of k-mer-based GWAS

Other k-mer-based approaches are as agnostic as DBGWAS and were also able to provide
novel hypotheses, but interpreting their output can prove more challenging than a SNP/gene-
based GWAS. In the M. tuberculosis streptomycin resistance experiment for example, they
reported several thousands of features, while DBGWAS reported only 24 annotated subgraphs
without missing any expected determinant (see Table 3). The thousands of k-mers generated
by HAWK and pyseer are of course also amenable to interpretation: to build our Table 3, we
mapped these k-mers to references and extracted annotated variants which showed at least
one hit. However, doing so required additional efforts and a working knowledge of the most
appropriate annotated references. In addition, k-mers which do not map to the chosen refer-
ence cannot be interpreted. By contrast, DBGWAS always returns a subgraph containing these
k-mers. Even when no annotation exists, the topology and colours of the subgraphs may hint
towards the nature of the causal variant.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 10/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

In addition to providing context for significant k-mers and guiding their interpretation as
SNPs or MGEs, DBGWAS clustering of close variants into a subgraph can describe hypervari-
able regions as single entities, and highlight highly associated haplotypes. As an example, the
top subgraph for rifampicin resistance (min, = 4.84 x 1077°) contained 36 significant unitigs,
distinguishing between susceptible (blue) and resistant (red) strains. Instead of a single point
mutation, this subgraph represented a polymorphic region known as the rifampicin resis-
tance-determining region (RRDR) of the rpoB gene. The unitig with the lowest g-value cov-
ered several mutant positions, defining a particular haplotype strongly associated with
rifampicin susceptibility. Where DBGWAS reported in this case only one subgraph, pyseer,
for instance, reported 470 k-mers with the rpoB annotation, and the resistome-based associa-
tion study reported in this case 4 distinct SNPs in rpoB (S6 Table). In another user-submitted
example, DBGWAS identified mosaic alleles of three pbp genes involved in beta-lactam resis-
tance of Streptococcus pneumoniae. Like in the RRDR example, it returned five subgraphs cor-
responding to the three genes—three subgraphs were annotated pbp2x and represented three
distinct polymorphic regions of the gene. Each subgraph summarised the polymorphism of
the gene, as opposed to one separate feature for each SNP.

Admittedly, some subgraphs output by DBGWAS are not readily interpretable: they are
neither coloured bubbles highlighting SNPs, nor long single-coloured paths denoting MGE
insertions. This was the case of several subgraphs produced for P. aeruginosa amikacin resis-
tance, and presented in S6 Fig. Genetic variants inserted in variable regions, for example, lead
to subgraphs with a high average degree, or to very large subgraphs. The fourth subgraph for
instance (min, = 2.21 x 107°) contains a path of three red (positively-associated) nodes lying
in a noncoding region between variable accessory genes. Consequently, their neighbour uni-
tigs branch to various other unitigs, making the structure complex and hard to interpret. Com-
plex subgraphs also arise when several associated variants have overlapping neighbourhoods
(as defined in the Graph neighbourhoods subsection in the Methods section, and tuned with
the nh parameter) in at least one strain. This is the case for the subgraph with the smallest
min, which aggregates aac(6') acetyltransferase and the CML efflux pump.

The interpretation of such subgraphs is not straightforward. We often found it helpful to
tune the nh and SFF parameters to break large subgraphs into a set of smaller ones, as dis-
cussed in the discussed in the Methods section. For the aac(6’) subgraph, where nearby vari-
ants are aggregated into a large subgraph, reducing the SFF value to 15 provided a much
smaller and easier-to-interpret subgraph focusing on the aac(6') mutation (Fig 3B). Otherwise,
we recommend to focus on the topology of the most significant unitigs and their close
neighbours.

DBGWAS is fast, memory-efficient, and scales to very large panels

To assess the scalability of DBGWAS to large datasets, we retrieved 5,000 genomes from
M. tuberculosis, 9,000 genomes from S. aureus and 2,500 genomes from P. aeruginosa, as
described in the Large panels subsection of the Methods section. We present in S9 Fig the run-
time and memory usage performances for these panels. All 180 runs took less than 5 days and
250 GB of RAM on 8 cores. Both the computational time and memory usage increase log-line-
arly with the panel size. Moreover, at equal panel size, DBGWAS performance also depends
on the genome complexity, requiring less computational resource for more clonal genomes
such as M. tuberculosis.

We also compared the computational performance of DBGWAS with pyseer and HAWK.
The benchmark was performed on 13 datasets, including one large dataset of 2,500 genomes
for each of the 3 species (see the Datasets subsection in the Methods section for details).

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 11/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

Detailed results are presented in S2 Table. DBGWAS was the fastest tool in 11 out of 13 experi-
ments, always taking less than 2 hours. HAWK ran in less than 10 hours in 12 out of 13 experi-
ments, and was a little faster than DBGWAS on two of the large-scale datasets. pyseer took
from 13 to 53 hours on 9 experiments, and failed on the 4 others: one exceeded the disk space
limit of 1TB, three exceeded the runtime limit of five days. It was brought to our attention dur-
ing the reviewing process that piping the output of fsm-lite through gzip would decrease the
disk space usage. HAWK was more parsimonious in memory usage than DBGWAS on the
large scale panels. This can be explained by the fact that the 0.8.3-beta version of HAWK
which we are using does not take into account the population structure, and as such does not
have to compute an n x n covariance matrix, providing it a large gain in memory usage—and,
to a lesser extent, runtime—for large panels. On the other hand, disregarding the population
structure could also lead to spurious discoveries. HAWK v0.9.8-beta offers an adjustment but
failed to recover the known true positives, which is why we chose to present the results of the
0.8.3-beta version. DBGWAS and HAWK typically used one order of magnitude less memory
than pyseer. The most memory-consuming step for pyseer was the k-mer counting step relying
on fsm-lite.

Discussion

In this article we introduce an efficient method for bacterial GWAS. Our method is agnostic:
it considers all regions of the genomes and is able to identify potentially new causal variants
as different as SNPs in noncoding regions and MGE insertions/deletions. It performs as well
as the current SNP- and gene-based gold standard approaches for retrieving known determi-
nants, from genome pre-assemblies and without relying on annotations or reference
genomes.

DBGWAS exploits the genetic environment of the significant k-mers through their neigh-
bourhood in the cDBG, providing a valuable interpretation framework. Because it uses only
contig sequences as input, it allows GWAS on bacterial species for which the genomes are still
poorly annotated or lack a suitable reference genome. DBGWAS makes bacterial GWAS possi-
ble in two hours using a single-core computer (see S1 Table), outperforming other state-of-
the-art k-mer-based approaches.

Underlying our method, graph-based genome sequence representations such as DBGs,
extend the notion of the reference genome to cases where a single sequence stops being an
appropriate approximation [40, 41]. As demonstrated in this paper, they pave the way to
GWAS on highly plastic bacterial genomes and could also be useful for microbiomes [42] or
human tumours [13].

DBGWAS currently relies on the Benjamini-Hochberg procedure to control the FDR and
offers no advance exploiting the dependence among presence/absence patterns. An important
improvement would be to control the false discovery rate at the subgraph level instead of the
unitig level. DBGWAS could be extended to different statistical tasks by adapting its underly-
ing association model, to allow for continuous phenotypes or identify epistatic effects, for
instance. The interpretability of the extracted subgraphs could also be improved by training a
machine learning model to predict which types of event they represent [43]. This automated
labelling could guide users in their interpretation and allow them to search for specific events,
such as SNPs in core genes or rearrangements.

Several recent studies describe in silico models for defining a genomic antibiogram and
hopes are high that such technologies will complement the classic phenotypic methods [44].
Several studies have already demonstrated that in some cases, genomic antibiograms can be at
least as good as phenotypic ones [30, 45-47]. Contrary to our approach, these studies require

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 12/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

extensive resistance marker databases. DBGWAS will surely contribute to the extension of
such databases or to the development of agnostic genomic antibiograms.

In conclusion, we demonstrate for three medically important bacterial species that resis-
tance markers can be detected rapidly with relative ease, using simple computer equipment.
Our integrated software and visualisation tools offer an intuitive variant representation, hence
will provide future users with an enhanced insight into genotype to phenotype correlations, in
all domains of microbiology, beyond that of antibiotic resistance. This will include complex
traits such as biofilm formation, epidemicity and virulence.

Methods
Encoding genomic variation with compacted DBGs

DBGs are directed graphs that efficiently represent all the information contained in a set of
sequences. Nodes represent all the unique k-mers (genome sequence substrings of length k)
extracted from the input sequences. Edges represent (k — 1)-exact-overlaps between k-mers:
an edge connects a node #; to a node n, if and only if the (k — 1)-length-suffix of n; equals the
(k — 1)-length-prefix of n, (Fig 1A).

These graphs can be compacted into cDBGs by merging linear paths (sequences of nodes
not linked to more than two other nodes) into a single node referred to as a unitig [48-50] (Fig
1C). Compaction yields a graph with locally optimal resolution: regions of the genome which
are conserved across individuals are represented by long unitigs, while regions which are
highly variable are fractioned into shorter unitigs (S1 Fig).

Representing strains by their unitig content (step 1)

cDBG construction. We build a single DBG from all genomes given as input using the
GATB C++ library [51]. We start from contigs rather than reads and, consequently, we do not
need to filter out low abundance k-mers, allowing for the exploration of any variation present
in the set of input genomes. We then compact the DBG using a graph traversal algorithm,
which identifies all linear paths in the DBG—each forming a unitig in the cDBG. During this
step, we also associate each k-mer index to its corresponding unitig index in the cDBG.

There is no general rule for choosing the ideal k-mer length as it depends on many factors,
including the assembly quality, complexity of the input genomes, or presence of repeats. High
values of k lead to haplotypes containing multiple SNPs instead of distinct single SNPs, if these
SNPs are separated by less than k bases. As k increases, the k-mer-defined haplotypes also
become more specific to a genome sub-population, leading to a loss of power to detect geno-
type to phenotype associations. Low values of k, on the other hand, produce highly connected
sets of non-specific k-mers. In particular, any repeated region with at least k bases may create a
cycle in the DBG (Fig 4). We use k = 31 by default, as it produced the best performance to
retrieve known markers of P. aeruginosa resistance to amikacin and levofloxacin (Fig 5). We
found DBGWAS results to be robust to small variations of k between 21 and 41. Similar graph
structures were generated whatever the tested value of k for the clonal M. tuberculosis species
(S7 Fig). More variability was observed for P. aeruginosa resistance to amikacin, which
involves more complex resistance mechanisms (S8 Fig).

Unitig presence across genomes. Each genome is represented by a vector of presence/
absence of each unitig in the cDBG. To do so, we query the unitig associated to each k-mer in
a given genome. This procedure is efficient because it relies on constant time operations.
Firstly, we use GATB’s Minimal Perfect Hash Function (MPHF) [52] to retrieve the index of a
given k-mer, and then we use the previously computed association between k-mer and unitig
indices to know which unitigs the given genome contains. Since these two operations take

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 13/28

o @
@ : PLOS | GENETICS Fast agnostic bacterial GWAS with De Bruijn graphs

Fig 4. Effect of k on the graph topology. A cDBG was built from the P. aeruginosa gyrA gene sequences from several
strains. When k is small, k-mers are highly repeated, which generate numerous loops. As k increases, k-mer sequences
become more specific and the graph gets more linear. For large values of k, few k-mers are shared by all the strains, and
the linear path thickens into parallel paths belonging to variable strain populations.

https://doi.org/10.1371/journal.pgen.1007758.9004

(A) Choice of k for the amikacin (B) Choice of k for the levofloxacin
o | S .4
© o _{
o 7 o
8 84 8 84
2 2
g 8
[}
g 34 2 o3
S o
—= 20— 61
— i34 13
S — M 8=,
T T T T T T T T T T T T
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
False positive rate False positive rate

Fig 5. Choice of k. True positive versus false positive curves for several values of k for both amikacin and levofloxacin resistance phenotypes.
True positives are unitigs mapping to genuine variants described in resistance databases for the studied drugs [7]. In both cases, the value of k
leading to the best AUC is k = 31.

https://doi.org/10.1371/journal.pgen.1007758.g005

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 14/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

constant time, producing this vector representation for a genome takes linear time on the size
of the genome. It is important to note that the GATB’s MPHF can be successfully applied here
because we always use the same list of k-mers, i.e., after building the DBG, the set of k-mers is
fixed and not updated, and because we always query k-mers that are guaranteed to be in the
DBG (since we do not filter out any k-mer).

The unitig description on all the input genomes is stored into a matrix U:

1, if the j-th unitig is present in the i-th input genome;
Y { 0, otherwise.

We then transform the matrix U into Z, which represents the minor allele description, in
terms of presence [5]: Z is identical to U except for columns with a mean larger than 0.5,
which are complemented: Z; = 1 — U; for these columns.

We then restrict Z to its set of unique columns. If several unitigs have the same minor allele
presence pattern, then they will be represented by a single column. Keeping duplicates would
lead to performing the same statistical test several times. Finally, we filter out columns whose
average is below 0.01—the user can specify this threshold using the -ma £ option. We denote
the de-duplicated, filtered matrix of patterns by X.

Importantly, both k-mers and unitigs lead to the same set of distinct patterns across the
genomes. Indeed, every unitig represents (at least) one k-mer, and conversely every k-mer is
represented by one (single) unitig. When de-duplicated, the two representations therefore lead
to the same set of patterns to be tested for association with the phenotype.

Testing unitigs for association with the phenotype (step 2)

Human GWAS literature extensively discusses how testing procedures can result in spurious
associations if the effect of the population structure is not taken into account [53-55]. Popula-
tion structures can be strong in bacteria because of their clonality [5, 6, 56, 57]. An additional
performance analysis comparing several models for population structure, on both simulated
and real data, showed that correcting for population structure using LMMs is often preferable
to using a fixed effect correction or not correcting at all (S1 Appendix).

We thus rely on the bugwas method [5], which uses the linear mixed model (LMM) imple-
mented in the GEMMA library [58], to test for association with phenotypes while correcting
for the population structure. This method also offers the possibility to test for lineage effects,
by calculating p-values for association between the columns of the matrix representing the
population structure, and the phenotype [5]. DBGWAS optionally provides bugwas lineage
effect plots when the user specifies a phylogenetic tree using the -newick option. An example
of the generated figures is available at http://pbil.univ-lyonl.fr/datasets/ DBGWAS_support/
full_dataset_visualization/.

Formally, the LMM represents the distribution of the binarized phenotype Y;, given the j-th
minor allele pattern X;; and the population structure represented by a set of factors W € R",
by:

— T -
Y, =X+ Wate, j=1,...,p. (1)

B s the fixed effect of the tested candidate on the phenotype, & ~ N (0,6?), 02 > 0 is the ran-
dom effect of the population structure, and g; XN (0, 6%) are the residuals with variance o* >
0. W is estimated from the Z matrix, which includes duplicate columns representing both core

and accessory genome. More precisely, denoting Z = USV" the singular value decomposition
of Z, we use W= US.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 15/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

We test Hy: f = 0 versus Hy: f# 0 in Eq 1 for each pattern using a likelihood ratio proce-

dure producing p-values and maximum likelihood estimates f3. To tackle the situation of mul-
tiple testing caused by the high number of tested patterns, we compute q-values, which are the
Benjamini-Hochberg transformed p-values controlling for false discovery rate (FDR) [59].

Interpretation of significant unitigs (step 3)

The LMM is used to identify de-duplicated minor allele presence patterns significantly associ-
ated with the phenotype at a chosen FDR level. While the testing step is done at the pattern
level, the interpretation of the selected features is done at the unitig level. As a result of the de-
duplication procedure, a given pattern may correspond to several distinct unitigs. To faithfully
interpret the results, all the unitigs corresponding to the significant patterns are retrieved and
are assigned the g-value of their pattern. We now show how the initial cDBG can be used in
the interpretation step.

Significance threshold. The interpretation step focuses on the unitigs with the lowest q-
values. These unitigs are indeed used to build the resulting annotated subgraphs. The unitig
selection can be either based on the FDR (g-value threshold) or on a number of presence/
absence patterns ordered by increasing q-values. Practically, this is done in DBGWAS using a
Significant Features Filter (SFF). For a selection based on a FDR threshold, the SFF value is set
between 0 and 1, while any integer value > 1 defines the number of patterns to consider.

In our experiments, we choose not to apply a fixed FDR threshold, even though DBGWAS
offers this option. Different datasets lead to different q-values, even by several orders of magni-
tude, and a single FDR threshold would lead to selecting a large number of unitigs generating
more than 1,000 subgraphs on some of them (e.g. S. aureus ciprofloxacin) as shown in S8
Table. Instead, we retain the 100 patterns with lowest q-values. Although arbitrary, this choice
is tractable for all datasets and provides satisfactory results in our experiments. It does not pro-
vide and explicit control of the FDR: only the q-value provides an estimation of the proportion
of false discoveries incurred when considering patterns below this value. Checking the q-values
of the selected unitigs is therefore essential to assess their significance. If the default SFF = 100
is not satisfactory, it is also possible to re-run the third step only, with a more suitable SFF
value.

Graph neighbourhoods. We define the neighbourhood of each significant unitig u
(defined by the SFF) as the set of unitigs whose shortest path to u has at most ne = 5 edges.
Users can modify the ne value using the -nh option. The objects returned by DBGWAS are the
connected components of the graph induced by the neighbourhoods of all significant unitigs
in the cDBG. As illustrated in Fig 6, nearby significant unitigs might belong to the same con-
nected component, so this process groups unitigs which are likely to be located closely in the
genomes. We refer to the connected components as subgraphs in the Results section.

The SFF value can be tuned to optimise the number and size of the output subgraphs. It has
no impact on subgraphs describing SNPs in core sequences (52 Fig). On the other hand, when
significant unitigs map to different regions of a single MGE, such as a plasmid, several sub-
graphs are generated but can be gathered into a single subgraph by increasing the SFF thresh-
old (S4 Fig). When significant unitigs map to several distinct mobile regions, which can be
found in different contexts (transposon, integron, etc.) at the population level, the resulting
subgraph can become very large and highly branching: decreasing the SFF threshold allows to
select the few most significant unitigs, generating a subgraph focusing on the most relevant
region (S6 Fig). Reducing the graph complexity can also be done by decreasing the ne value,
using the -nh option.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 16/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

Ol > o BT ~ ~ 04
7’
9 , o
I — - - N \ 5
0, o = T
7’ U, | \
o & N, N © \
/ i S N13 |
I N, U, o /
\ N, No — /\G
N N, feg—— 7/
~ - N R -
" o -— - F - - ~
- N ~
— o > 14
U = Significant unitigs 7/ 20 %
N = Neighbour node within ne=2 edges 7 “N,, N,
O = Other nodes [— U \ / \l
e N
16
= Neighbourhood surrounding ’\/ \ \ N /
,r— _each significant unitig - 0p N ng\ e y
. = Induced subgraphs defined as ~ Nyg
the connected neighbourhoods S 2= 0,

Fig 6. Subgraphs induced by the neighbourhood of significantly associated unitigs. In this example, a neighbourhood
of size ne = 2 was used: any unitig distant up to 2 edges from a significant unitig is retrieved to define its neighbourhood.
Neighbourhoods are merged if they share at least one node, e.g. the neighbourhoods of U; and U, are merged because
they share N, and will be represented in a single subgraph.

https://doi.org/10.1371/journal.pgen.1007758.006

Representing metadata with coloured DBGs. The subgraphs are enriched with metadata
to make their interpretation easier. We use the node size to represent allele frequencies, i.e.,
the proportion of genomes containing the unitig sequence. We describe the effect 3 of each
unitig as estimated by the LMM using colours, in the spirit of the coloured DBGs [19]. Colours
are continuously interpolated between red for unitigs with a strong positive effect and blue for
those with a strong negative effect.

Annotating the subgraphs. DBGWAS can optionally integrate an automated annotation
step using the Blast suite [60] (version 2.6.0+) on local user-defined protein (-pt-db option)
or nucleic acid (-nt-db option) sequence databases. We annotate the subgraphs of interest by
blasting each unitig sequence to the available databases. Users can then easily retrieve the
annotations which are the most supported by the nodes in the subgraph, or with the lowest E-
value. Importantly, DBGWAS works with any nucleotide or protein Fasta files as annotation
databases straight away. However, users can customize the annotation databases by changing
the Fasta sequences headers to make DBGWAS results more interpretable. A common exam-
ple is compacting the annotation in the summary page by using abbreviations or gene class
names, and expanding them to full names in the subgraph page. Other custom fields can also
be included in the annotation table by adding specific tags to the headers. A detailed explana-
tion on how to customize annotation databases for DBGWAS can be found in https://gitlab.
com/leoisl/dbgwas/wikis/Customizing-annotation-databases. We also provide on the
DBGWAS website a resistance determinant database built by merging the ResFinder, MEGA-
Res, and ARG-ANNOT databases [61-63], and a subset of UniProt restricted to bacterial pro-
teins [24]. Subgraphs discussed in the Results section were annotated using these databases.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 17/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

Interactive visualisation. DBGWAS produces an interactive view of the enriched and
annotated subgraphs, allowing the user to explore the graph topology together with informa-
tion on each node: allele and phenotype frequencies, q-value, estimated effect, and annotation.
The view is built using HTML, CSS, and several Javascript libraries, the main one being Cytos-
cape.js [64]. Results can be shared and visualised in a web browser. As a large number of com-
ponents can be produced in one run of DBGWAS, we provide a summary page allowing users
to preview and filter the subgraphs. Filtering can be based upon the minimum q-value of all
unitigs in the component (min,), or based on the annotations. A complete description of the
DBGWAS interactive interface is available in https://gitlab.com/leoisl/dbgwas/wikis/

DBGW AS-web-based-interactive-visualization.

Re-running from step 2 or step 3. It is possible to re-run a part of the analysis if a first run
with the default values was unsatisfactory. The -skip1l option allows to re-run from the sec-
ond step, for instance to compute the lineage effects (adding the -newick option). It is also
possible to re-run only the third step by using the -skip2 option, for instance when the
default SFF and nh values generated highly connected graphs, or if the annotation was
incomplete.

Datasets

We used in our experiments genome sequences from three bacterial species with various
degrees of genome plasticity, from more clonal to more plastic: M. tuberculosis, S. aureus, and
P. aeruginosa. We also built large datasets with random phenotypes for these 3 species, and
used them only for time performance and memory usage assessment. All panels are summa-
rised in Table 4.

TB panel. M. tuberculosis (TB) is a human pathogen causing 1.7 million deaths each year
[66]. This species is known for its apparent absence of horizontal gene transfer (HGT) and,
accordingly, most of the reported resistance determinants are chromosomal mutations [67] in
core genes or gene promoters. Intergenic regions are also described to be instrumental in mul-
tidrug-resistance (MDR) and extensively drug-resistant (XDR) phenotypes [9]. We use the
PATRIC AMR phenotype data, as well as genome assemblies from their resource [35, 68]. We
thus gather a total of 1302 genomes after filtering based on genome length. Phenotype data
include isoniazid, rifampicin, streptomycin, ethambutol, ofloxacin, kanamycin and ethion-
amide resistance status. Except for the last three drugs, phenotype data are available for more
than a thousand genomes. We reconstruct MDR and XDR phenotypes based on the WHO
definition [66]. XDR phenotype could only be defined for 689/1302 strains as it required data
for at least 4 drugs. Information on how phenotype data and genome assemblies were obtained
is available on the PATRIC website.

SA panel. S. aureus is a human pathogen causing life-threatening infections. It is subject
to HGT and many plasmids, mobile elements, and phage sequences have been described in its
genome. However, this does not affect the species’ genome size, which is always close to 3 Mbp
[69]. Most antibiotic resistance mechanisms are well determined by known variants, as shown
in a previous study [30]. This study obtained an overall sensitivity of 97% for predicting 12
phenotypes from rules based on antibiotic marker mapping. We use this study panel of 992
strains obtained by merging their derivation and validation sets.

PA panel. P. aeruginosa is a ubiquitous bacterial species responsible for various types of
infections. It is highly adaptable thanks to its ability to exchange genetic material within and
between species [70]. The species accessory genome is particularly important both in terms of
size and diversity, and carries more than half of the genetic determinants already described to
confer resistance to antimicrobial drugs [7, 65, 71]. We use a panel of 282 strains, gathered

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 18/28

o @
@ : PLOS | GENETICS Fast agnostic bacterial GWAS with De Bruijn graphs

Table 4. Microbial panels.

Species Genome plasticity Range of genome length Panel name Source |Phenotype Number of available genomes
M. tuberculosis very low 4.4 Mbp TB [35] rifampicin 1,197
isoniazid 1,287
ethambutol 1,041
streptomycin 1,166
kanamycin 671
ofloxacin 696
ethionamide 420
MDR 1,211
XDR 689
Large TB [11] random 5,000
S. aureus low 2.7-3.1 Mbp SA [30] methicillin 501
ciprofloxacin 991
erythromycin 991
penicillin 991
tetracycline 991
fusidic acid 991
trimethoprim 323
gentamicin 991
rifampin 991
mupirocin 490
vancomycin 501
Large SA [11] random 9,000
P. aeruginosa high 5.8-7.6 Mbp PA [65] amikacin 280
levofloxacin 117
meropenem 280
piperacillin 280
colistin 164
polymyxin B 117
chloramphenicol 103
cefepime 280
fosfomycin 113
Large PA [11] random 2,500

We selected 3 bacterial species with distinct levels of genome plasticity, and with antibiotic resistance phenotypes available for several drugs. For each species, we also

created large datasets by computing random phenotypes for all available genome assemblies from NCBI RefSeq.

https://doi.org/10.1371/journal.pgen.1007758.1004

from two collections which mostly include clinical strains: the bioMérieux collection [65]

(n =219) and the Pirnay collection [72] (n = 63). Genome assemblies and categorical pheno-
types for 9 antibiotics are available [7]. Binarised phenotypes of amikacin resistance are avail-
able on the DBGWAS project page as an example for users.

Phenotype binarisation. Most available phenotypes are categorical, with S, I and R levels,
respectively, for susceptible, intermediary, and resistant. We binarise them by assigning a zero
value to susceptible strains (S) and one to others (I and R).

Large panels. We built large panels for the three species, in order to analyse the computa-
tional performance at a comprehensive scale. To do so, we gathered all genome assemblies of
M. tuberculosis (5,504), S. aureus (9,331), and P. aeruginosa (2,802) available on the NCBI
RefSeq bacterial genome repository [11], and removed poor quality genomes. For each panel,

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 19/28

o @
@ : PLOS | GENETICS Fast agnostic bacterial GWAS with De Bruijn graphs

we generated random binary phenotypes. For a detailed time and memory assessment, we
built several sub-panels from these three large panels at size points of 100, 250, 500, 1,000,
2,500, 5,000 and 9,000 genomes. To build these sub-panels, we sampled genomes uniformly
from the panels. To take into account the variability among subsamplings, each sub-panel was
randomly built 10 times.

Resistome-based association studies

We benchmarked DBGWAS against a targeted approach to ensure its ability to retrieve all
expected resistance determinants. We thus performed association studies under the same
model, using as input a collection of known causal resistance SNPs and genes, defining the
resistome.

In this validation study, we used bugwas with the same phenotypes and population struc-
ture matrix W, so the resistome-based analyses and DBGWAS only differ by their input vari-
ant matrix (unitigs versus SNPs or genes presence/absence).

For P. aeruginosa resistome, we use a variant matrix previously described [7], which
includes presence/absence of known resistance gene variants, as well as the SNPs called against
these reference gene variants. For M. tuberculosis resistome, we built the variant matrix using
the same approach as for P. aeruginosa [7]: we called the SNPs from a list of 32 known resis-
tance genes and promoters [34, 67, 73]. The time and memory usage required for the complete
analysis (from the mapping of the resistance genes and positions on the genome assemblies to
the association study) are provided in Tables 2 and 3.

We sort the annotated features by q-values. S6 and S7 Tables summarise all top variants
using their g-value ranks, while Tables 2 and 3 report the annotations of all variants with a -
value < 0.05 for P. aeruginosa levofloxacin and M. tuberculosis streptomycin resistance,
respectively.

k-mer-based GWAS

pyseer. We installed pyseer [6, 36] commit ID d17602500a4530b0e68a679ed675
£db12942£56f (9 commits ahead of pyseer v1.1.1). pyseer pipeline is composed of four
steps: 1) k-mer counting; 2) population structure estimation; 3) running pyseer; 4) down-
stream analysis. To use the correct parameters, we followed the pyseer tutorial (https://pyseer.
readthedocs.io/en/master/tutorial.html). For k-mer counting, we used fsm-lite (https://github.
com/nvalimak/fsm-lite), filtering out all k-mers with a minor allele frequency smaller than 1%.
For population structure estimation, we used Mash v2.0 [74]. To run pyseer, we used 8 cores
and a LRT p-value threshold of 0.05. Downstream analysis involved getting the k-mers
which exceeded the significance threshold (which can be found using the scripts/
count patterns.py script), sorting them by LRT p-value, blasting them against the two
databases presented in the Interpretation of significant unitigs (step 3) subsection, and keeping
the best hit for each k-mer. For reproducibility purposes, the scripts we used to run pyseer can
be found at https://gitlab.com/leoisl/ DBGWAS_support/tree/master/scripts/pySEER.

HAWK. We firstly ran HAWK [13] v0.9.8-beta, as it allows correcting for population
structure. Unfortunately, it was unable to find the known causal variants reported for P. aeru-
ginosa levofloxacin and M. tuberculosis streptomycin resistances by other methods (see Tables
2 and 3). We therefore kept in our benchmarks an earlier version, HAWK v0.8.3-beta, which
presented better qualitative performance for these two evaluated panels. HAWK pipeline is
composed of five steps: 1) k-mer counting with a modified version of jellyfish [75]; 2) running
HAWTK; 3) assembling significant k-mers with ABYSS [76]; 4) getting statistics on the assem-
bled sequences; 5) downstream analysis. The first four steps were performed as described in

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 20/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

HAWK’s github page. However, in the first step, we had to remove the lower-count cutoff in
jellyfish dump (parameter -L), since we are working with contigs and not reads. The last
step was performed similarly as the one described for pyseer. For reproducibility purposes, the
scripts we used to run HAWK v0.8.3-beta can be found at https://gitlab.com/leois/ DBGWAS_
support/tree/master/scripts/ HAWK_0_8_3_beta.

Supporting information

S1 Fig. Alignment to a reference (when possible), cDBG, and k-mers obtained for similar
(A) and very polymorphic genomes (B). In the first case, the 3 loci represented as polymor-
phic in the alignment lead to 3 bubble patterns in the cDBG, and numerous redundant k-
mers. In the second case, genomes are so polymorphic that an alignment is not possible. The
cDBG summarizes well the common regions and the links between them, while the collection
of unique k-mers still contains redundancy.

(PDF)

S2 Fig. Effect of SFF on the top subgraphs generated for S. aureus ciprofloxacin resistance.
Annotation of the first subgraphs is strictly conserved (red for parC, green for gyrA, yellow for
norA promoter region, blue for noncoding between glmM and fmtB and violet for transposase
flanking regions).

(PDF)

S3 Fig. Effect of SFF on the top subgraphs generated for S. aureus methicillin resistance.
Only one subgraph, containing the mecA gene (highlighted in red) is generated for lower SFF
values. Then several regions of the SCCmec cassette appear for SFF = 70, and are aggregated
into a single subgraph for SFF > 150. Green subgraphs do not concern the mecA MGE.
(PDF)

S4 Fig. Effect of SFF on the top subgraphs generated for S. aureus penicillin resistance.
Green subgraphs do not concern the blaZ MGE. Annotations are ordered by number of nodes
carrying it. Yellow, orange and pink highlight blaZ, blaR1 and blal, respectively.

(PDF)

S5 Fig. Effect of SEF on the top subgraphs generated for S. aureus erythromycin resistance.
Only one subgraph, describing the ermC and its plasmid is outputted when SFF < 200. Green
subgraphs do not concern the ermC MGE.

(PDF)

S6 Fig. Effect of SFF on the top subgraphs generated for P. aeruginosa amikacin resistance.
Nodes corresponding to aac(6’) gene are shown in a blue frame. When the SFF parameter
increases, these nodes aggregate to others genes found at least once close to aac(6’). The anno-
tation of the following subgraphs are well conserved (same color legend as in S8 Fig).

(PDF)

S7 Fig. Effect of k on the four first subgraphs obtained for TB rifampicin resistance. With a
k value varying between 21 and 41, the first 3 subgraphs always have the same ordering, shape
and annotation, as well as comparable q-values, although smaller q-values are observed for
lower values of k. The number of significant unitigs per subgraph is also well conserved. The
fourth top-rated subgraphs are not always the same: the gyrA mutation appears at a lower rank
when k is smaller.

(PDF)

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 21/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

S8 Fig. Effect of k on the five first subgraphs obtained for P. aeruginosa amikacin resis-
tance. When k varies, the plasmid (yellow) and the mercury reductase and transposase (blue)
remain among the five top-rated subgraphs. However, k has an effect on the aggregation of
subgraphs corresponding to different genetic events: the mutation on aac(6’) gene (blue
frame) always appears in the first subgraph but is merged with the large mercury reductase
and transposase subgraph for k = 27, 39 and 41. The order of the subgraphs also varies with k:
up to four ranks for some subgraphs, and others leave the top-5 list.

(PDEF)

S9 Fig. Large scale analysis on computational resources usage. This figure describes how
DBGWAS scales in terms of time and memory usage for large datasets, containing up to 9,000
genomes. The large panels used here are described in the Large panels subsection of the Meth-
ods section. To understand better DBGWAS performance behaviour, we present performance
curves for each panel at size points of 100, 250, 500, 1,000, 2,500, 5,000 and 9,000 genomes.
The executions were done in a cluster, instead of a single machine, and used 8 cores each. In
order to reduce subsampling and machine heterogeneity problems, each sub-panel was ran-
domly built 10 times and we present the time and memory usage for all these executions.
Although these two measures not only depends on the number of input genomes but also on
their length and complexity, this figure allows estimations of the computational resources
usage on small and large panels with different genome plasticities.

(PDF)

S1 Table. DBGWAS time and maximal memory load on a single core. All runs presented in
this table were executed with the default parameters, without optional steps (lineage effect anal-
ysis nor annotation of subgraphs), on a single Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz
core. The datasets are described in the Datasets subsection of the Methods section. DBGWAS
ran in less than 2,5 hours for all experiments in our benchmark. The maximum memory load
(given between parenthesis in the Runtime column) was 11 GB of RAM. The panel size and
genome length (given between parenthesis in the Panel column) did not drive alone the run-
ning performances; the genome complexity played an important role as well. To view the gain
in performance of DBGWAS when running on multiple (8) cores, see S2 Table.

(PDF)

S2 Table. Benchmarking DBGWAS, pyseer and HAWK: Comparison of time and maximal
memory load. The total execution time is presented with the maximal memory consumption
in parenthesis, in order of GBs. For pyseer and HAWK, the time and memory for each step

is also detailed. All tools were ran on a same machine with 8 Intel(R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz cores, 315 GB of RAM and 1 TB of disk space. Each execution used all the 8
available cores. The datasets are described in the Datasets subsection of the Methods section.
However, for the three large panels (Large TB, Large SA, and Large PA), here we just chose a
random 2,500-genome sub-panel. Moreover, DBGWAS was ran with the default parameters,
without optional steps (lineage effect analysis nor annotation of subgraphs). The parameters
for pyseer and HAWK were the ones described in the k-mer-based GWAS subsection of the
Methods section. We did not consider the time and memory consumed in the last step for
these two tools (downstream analysis). The runs taking more than 5 days to finish were inter-
rupted and are shown as Timeout. The runs that exceeded 1 TB of disk space were interrupted
and are shown as DQE (Disk Quota Exceeded).

(PDF)

S3 Table. DBGWAS results for M. tuberculosis resistance to antibiotics. For each antibiotic,
top subgraphs were reported with their rank, the g-value of the unitig with the lowest q-value

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 22/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

(min,), the corresponding estimated effect (estimated j of the linear model) and the number
of susceptible (resp. resistant) strains harbouring this unitig (count per phenotype). The type
of event represented by the subgraph, its annotation and some comments and references on
this annotation were also provided. Comments were coloured if the annotation was previously
described in antibiotic resistance literature: in green if this description concerned the tested
antibiotic, in orange otherwise.

(XLS)

S4 Table. DBGWAS results for S. aureus resistance to antibiotics. For each antibiotic, top
subgraphs were reported with their rank, the q-value of the unitig with the lowest q-value
(ming), the corresponding estimated effect (estimated /3 of the linear model) and the number
of susceptible (resp. resistant) strains harbouring this unitig (count per phenotype). The type
of event represented by the subgraph, its annotation and some comments and references on
this annotation were also provided. Comments were coloured if the annotation was previously
described in antibiotic resistance literature: in green if this description concerned the tested
antibiotic, in orange otherwise.

(XLS)

S5 Table. DBGWAS results for P. aeruginosa resistance to antibiotics. For each antibiotic,
top subgraphs were reported with their rank, the q-value of the unitig with the lowest q-value
(min,), the corresponding estimated effect (estimated j of the linear model) and the number
of susceptible (resp. resistant) strains harbouring this unitig (count per phenotype). The type
of event represented by the subgraph, its annotation and some comments and references on
this annotation were also provided. Comments were coloured if the annotation was previously
described in antibiotic resistance literature: in green if this description concerned the tested
antibiotic, in orange otherwise.

(XLS)

S6 Table. Resistome-based association study results for M. tuberculosis resistance to antibi-
otics. For each antibiotic, the 10 first features most associated to the phenotype were reported,
with their rank, g-value, and estimated effect (estimated j of the linear model). The type of tar-
geted variant, with its gene annotation were also provided. Comments were coloured if the
annotation was previously described in antibiotic resistance literature: in green if this descrip-
tion concerned the tested antibiotic, in orange otherwise. The last column presents the corre-
sponding subgraphs found by DBGWAS, with their rank and min,.

(XLS)

S7 Table. Resistome-based association study results for P. aeruginosa resistance to antibi-
otics. For each antibiotic, the 10 first features most associated to the phenotype were reported,
with their rank, q-value, and estimated effect (estimated S of the linear model). The type of tar-
geted variant, with its gene annotation were also provided. Comments were coloured if the
annotation was previously described in antibiotic resistance literature: in green if this descrip-
tion concerned the tested antibiotic, in orange otherwise. The last column presents the corre-
sponding subgraphs found by DBGWAS, with their min,
(XLS)

q

S8 Table. Number of subgraphs generated using different significance thresholds. This
table shows the number of subgraphs generated when defining the significant unitigs as the
ones with the 100 lowest q-values (default SFF = 100, ‘top 100’) or when using a 5% false dis-
covery rate (FDR) threshold (SFF = 0.05, ‘5% FDR’). Different datasets lead to different q-val-
ues, even by several orders of magnitude. For instance, a single FDR threshold leads to

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 23/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

selecting a large number of unitigs generating several hundreds subgraphs for SA (S. aureus)
panel.
(PDF)

S1 Appendix. Evaluation of association models.
(PDF)

Acknowledgments

The authors thank Jean-Baptiste Veyrieras, Sarah Earle, Chieh-Hsi Wu and Daniel Wilson, as
well as Jean-Pierre Flandrois, Manolo Gouy, Stéphane Schicklin and Ghislaine Guigon for
their insightful comments. The authors also thank the reviewers for their accurate comments
and suggestions, which helped to improve the quality of the manuscript.

Author Contributions

Conceptualization: Magali Jaillard, Maud Tournoud, Vincent Lacroix, Laurent Jacob.
Data curation: Pierre Mahé.

Formal analysis: Magali Jaillard, Leandro Lima, Pierre Mahé, Laurent Jacob.
Investigation: Magali Jaillard, Leandro Lima, Laurent Jacob.

Methodology: Magali Jaillard, Leandro Lima, Laurent Jacob.

Project administration: Pierre Mahé, Laurent Jacob.

Software: Magali Jaillard, Leandro Lima, Laurent Jacob.

Supervision: Maud Tournoud, Laurent Jacob.

Validation: Magali Jaillard, Leandro Lima, Alex van Belkum.

Visualization: Magali Jaillard, Leandro Lima.

Writing - original draft: Magali Jaillard, Leandro Lima, Alex van Belkum, Laurent Jacob.

Writing - review & editing: Magali Jaillard, Leandro Lima, Maud Tournoud, Pierre Mahé,
Alex van Belkum, Vincent Lacroix, Laurent Jacob.

References

1. Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, et al. Genomic analysis identi-
fies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nature
genetics. 2013; 45(10):1183-1189. https://doi.org/10.1038/ng.2747 PMID: 23995135

2. Sheppard SK, Didelot X, Meric G, Torralbo A, Jolley KA, Kelly DJ, et al. Genome-wide association
study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proceedings of
the national academy of sciences. 2013; 110(29):11923-11927. https://doi.org/10.1073/pnas.
1305559110

3. Alam MT, Petit RA, Crispell EK, Thornton TA, Conneely KN, Jiang Y, et al. Dissecting vancomycin-inter-
mediate resistance in Staphylococcus aureus using genome-wide association. Genome biology and
evolution. 2014; 6(5):1174—1185. https://doi.org/10.1093/gbe/evu092 PMID: 24787619

4. Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR, Mather AE, et al. Comprehensive
identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneu-
mococcal mosaic genes. PLoS genetics. 2014; 10(8):e1004547. https://doi.org/10.1371/journal.pgen.
1004547 PMID: 25101644

5. Earle SG, Wu CH, Charlesworth J, Stoesser N, Gordon NC, Walker TM, et al. Identifying lineage effects
when controlling for population structure improves power in bacterial association studies. Nature micro-
biology. 2016; p. 16041. https://doi.org/10.1038/nmicrobiol.2016.41 PMID: 27572646

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 24/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

Lees JA, Vehkala M, Valiméaki N, Harris SR, Chewapreecha C, Croucher NJ, et al. Sequence element
enrichment analysis to determine the genetic basis of bacterial phenotypes. Nature communications.
2016; 7:12797. https://doi.org/10.1038/ncomms12797 PMID: 27633831

Jaillard M, van Belkum A, Cady KC, Creely D, Shortridge D, Blanc B, et al. Correlation between pheno-
typic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. International journal of
antimicrobial agents. 2017;. https://doi.org/10.1016/j.ijantimicag.2017.02.026 PMID: 28554735

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, et al. Roary: rapid large-scale pro-
karyote pan genome analysis. Bioinformatics. 2015; 31(22):3691-3693. https://doi.org/10.1093/
bioinformatics/btv421 PMID: 26198102

Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, et al. Genome sequencing of 161 Mycobacterium
tuberculosis isolates from China identifies genes and intergenic regions associated with drug resis-
tance. Nature genetics. 2013; 45(10):1255—-1260. https://doi.org/10.1038/ng.2735 PMID: 23995137

Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resis-
tance. Nature reviews microbiology. 2015; 13(1):42-51. https://doi.org/10.1038/nrmicro3380 PMID:
25435309

Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill K, et al. RefSeq: an update on pro-
karyotic genome annotation and curation. Nucleic acids research. 2017; 46(D1):D851-D860. https://
doi.org/10.1093/nar/gkx1068

Le Bras Y, Collin O, Monjeaud C, Lacroix V, Rivals E, Lemaitre C, et al. Colib’read on galaxy: a tools
suite dedicated to biological information extraction from raw NGS reads. GigaScience. 2016; 5(1):1.
https://doi.org/10.1186/s13742-015-0105-2

Rahman A, Hallgrimsdéttir |, Eisen M, Pachter L. Association mapping from sequencing reads using k-
mers. eLife. 2018; 7:€32920. https://doi.org/10.7554/eLife.32920 PMID: 29897334

Read TD, Massey RC. Characterizing the genetic basis of bacterial phenotypes using genome-wide
association studies: a new direction for bacteriology. Genome medicine. 2014; 6(11):109. https://doi.
0rg/10.1186/s13073-014-0109-z PMID: 25593593

Power RA, Parkhill J, de Oliveira T. Microbial genome-wide association studies: lessons from human
GWAS. Nature reviews genetics. 2017; 18(1):41-50. https://doi.org/10.1038/nrg.2016.132 PMID:
27840430

de Bruijn N. A combinatorial problem. Proceedings of the koninklijke nederlandse akademie van
wetenschappen Series A. 1946; 49(7):758.

Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proceed-
ings of the national academy of sciences. 2001; 98(17):9748-9753. https://doi.org/10.1073/pnas.
171285098

Zhang W, Chen J, Yang Y, Tang Y, Shang J, Shen B. A practical comparison of de novo genome
assembly software tools for next-generation sequencing technologies. PloS one. 2011; 6(3):e17915.
https://doi.org/10.1371/journal.pone.0017915 PMID: 21423806

Igbal Z, Caccamo M, Turner |, Flicek P, McVean G. De novo assembly and genotyping of variants using
colored de Bruijn graphs. Nature Genetics. 2012; 44(2):226—232. https://doi.org/10.1038/ng.1028
PMID: 22231483

Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Annals of the New York
academy of sciences. 2015; 1354(1):12-31. https://doi.org/10.1111/nyas.12830 PMID: 26190223

Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. Journal of clinical investiga-
tion. 2003; 111(9):1265. https://doi.org/10.1172/JCI18535 PMID: 12727914

Piton J, Petrella S, Delarue M, André-Leroux G, Jarlier V, Aubry A, et al. Structural insights into the quin-
olone resistance mechanism of Mycobacterium tuberculosis DNA gyrase. PLoS one. 2010; 5(8):
€12245. https://doi.org/10.1371/journal.pone.0012245 PMID: 20805881

Lambert P. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. Journal of the royal soci-
ety of medicine. 2002; 95(Suppl 41):22. PMID: 12216271

UniProt consortium. UniProt: the universal protein knowledgebase. Nucleic acids research. 2017;
45(D1):D158-D169. https://doi.org/10.1093/nar/gkw1099 PMID: 27899622

Lambert T, Ploy M, Courvalin P. A spontaneous point mutation in the aac(6’)-Ib’ gene results in altered
substrate specificity of aminoglycoside 6’-N-acetyltransferase of a Pseudomonas fluorescens strain.
FEMS microbiology letters. 1994; 115:297-304. PMID: 8138142

Lee H, Cho S, Bang H, Lee J, Bai G, Kim S, et al. Exclusive mutations related to isoniazid and ethion-
amide resistance among Mycobacterium tuberculosis isolates from Korea. The international journal of
tuberculosis and lung disease. 2000; 4(5):441-447. PMID: 10815738

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 25/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44,

45.

46.

47.

Farhat MR, Sultana R, lartchouk O, Bozeman S, Galagan J, Sisk P, et al. Genetic determinants of drug
resistance in Mycobacterium tuberculosis and their diagnostic value. American journal of respiratory
and critical care medicine. 2016; 194(5):621-630. PMID: 26910495

Flandrois JP, Lina G, Dumitrescu O. MUBII-TB-DB: a database of mutations associated with antibiotic
resistance in Mycobacterium tuberculosis. BMC bioinformatics. 2014; 15(1):107. https://doi.org/10.
1186/1471-2105-15-107 PMID: 24731071

IWG-SCC consortium. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines
for reporting novel SCCmec elements. Antimicrobial agents and chemotherapy. 2009; 53(12):4961—
4967. https://doi.org/10.1128/AAC.00579-09 PMID: 19721075

Gordon N, Price J, Cole K, Everitt R, Morgan M, Finney J, et al. Prediction of Staphylococcus aureus
antimicrobial resistance by whole-genome sequencing. Journal of clinical microbiology. 2014;
52(4):1182—1191. https://doi.org/10.1128/JCM.03117-13 PMID: 24501024

Westh H, Hougaard D, Vuust J, Rosdahl V. Prevalence of erm gene classes in erythromycin-resistant
Staphylococcus aureus strains isolated between 1959 and 1988. Antimicrobial agents and chemother-
apy. 1995; 39(2):369-373. https://doi.org/10.1128/AAC.39.2.369 PMID: 7726500

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi |, Lipman DJ, Ostell J, et al. GenBank. Nucleic
acids research. 2012; 41(D1):D36-D42. https://doi.org/10.1093/nar/gks1195 PMID: 23193287

Bi D, Xie Y, Tai C, Jiang X, Zhang J, Harrison EM, et al. A site-specific integrative plasmid found in
Pseudomonas aeruginosa clinical isolate HS87 along with a plasmid carrying an aminoglycoside-resis-
tant gene. PloS one. 2016; 11(2):e0148367. https://doi.org/10.1371/journal.pone.0148367 PMID:
26841043

Palomino JC, Martin A. Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014;
3(3):317-340. https://doi.org/10.3390/antibiotics3030317 PMID: 27025748

Davis JJ, Boisvert S, Brettin T, Kenyon RW, Mao C, Olson R, et al. Antimicrobial resistance prediction
in PATRIC and RAST. Scientific reports. 2016; 6:27930. https://doi.org/10.1038/srep27930 PMID:
27297683

Lees J, Galardini M, Bentley SD, Weiser JN, Corander J. pyseer: a comprehensive tool for microbial
pangenome-wide association studies. Bioinformatics. 2018; p. bty539.

Traore H, Fissette K, Bastian |, Devleeschouwer M, Portaels F. Detection of rifampicin resistance in
Mycobacterium tuberculosis isolates from diverse countries by a commercial line probe assay as an ini-
tial indicator of multidrug resistance. The international journal of tuberculosis and lung disease. 2000;
4(5):481-484. PMID: 10815743

lllakkiam D, Shankar M, Ponraj P, Rajendhran J, Gunasekaran P. Genome sequencing of a mung bean
plant growth promoting strain of P. aeruginosa with biocontrol ability. International journal of genomics.
2014; 2014. https://doi.org/10.1155/2014/123058 PMID: 25184130

Ali-Ahmad A, Fadel F, Sebban-Kreuzer C, Ba M, Pélissier GD, Bornet O, et al. Structural and functional
insights into the periplasmic detector domain of the GacsS histidine kinase controlling biofilm formation
in Pseudomonas aeruginosa. Scientific reports. 2017; 7(1):11262. https://doi.org/10.1038/s41598-017-
11361-3 PMID: 28900144

Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE, Ghaffaari A, et al. Computational pan-genomics:
status, promises and challenges. Briefings in bioinformatics. 2016; p. bbw089.

Paten B, Novak AM, Eizenga JM, Garrison E. Genome graphs and the evolution of genome inference.
Genome research. 2017; 27(5):665—-676. https://doi.org/10.1101/gr.214155.116 PMID: 28360232

Baaijens JA, El Aabidine AZ, Rivals E, Schonhuth A. De novo assembly of viral quasispecies using
overlap graphs. Genome research. 2017; 27(5):835-848. https://doi.org/10.1101/gr.215038.116 PMID:
28396522

Jaillard M. Fine mapping of antibiotic resistance determinants. PhD thesis. 2018;in preparation.

Dunne WM Jr, Jaillard M, Rochas O, Van Belkum A. Microbial genomics and antimicrobial susceptibility
testing. Expert review of molecular diagnostics. 2017; 17(3):257-269. https://doi.org/10.1080/
14737159.2017.1283220

Kos VN, Déraspe M, McLaughlin RE, Whiteaker JD, Roy PH, Alm RA, et al. The resistome of Pseudo-
monas aeruginosain relationship to phenotypic susceptibility. Antimicrobial agents and chemotherapy.
2014; p. AAC-03954. https://doi.org/10.1128/AAC.03954-14 PMID: 25367914

Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, et al. Rapid antibiotic-resistance predic-
tions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nature
communications. 2015; 6:10063. https://doi.org/10.1038/ncomms10063 PMID: 26686880

Moradigaravand D, Palm M, Farewell A, Mustonen V, Warringer J, Parts L. Precise prediction of antibi-
otic resistance in Escherichia colifrom full genome sequences. bioRxiv. 2018; p. 338194.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 26/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Butler J, MacCallum |, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, et al. ALLPATHS: de novo
assembly of whole-genome shotgun microreads. Genome research. 2008; 18(5):810-820. https://doi.
org/10.1101/gr.7337908 PMID: 18340039

Zerbino D, Birney E. Velvet: algorithms for de novo Short Read Assembly Using De Bruijn Graphs.
Genome research. 2008;. https://doi.org/10.1101/gr.074492.107 PMID: 18349386

Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from sequencing data quickly and in
low memory. Bioinformatics. 2016; 32(12):i201-i208. https://doi.org/10.1093/bioinformatics/btw279
PMID: 27307618

Drezen E, Rizk G, Chikhi R, Deltel C, Lemaitre C, Peterlongo P, et al. GATB: genome assembly & anal-
ysis tool box. Bioinformatics. 2014; 30(20):2959-2961. https://doi.org/10.1093/bioinformatics/btu406
PMID: 24990603

Limasset A, Rizk G, Chikhi R, Peterlongo P. Fast and scalable minimal perfect hashing for massive key
sets. arXiv 2017;.

Balding DJ. A tutorial on statistical methods for population association studies. Nature reviews genetics.
2006; 7(10):781-=791. https://doi.org/10.1038/nrg1916 PMID: 16983374

Zhou X, Stephens M. Efficient multivariate linear mixed-model algorithms for genome-wide association
studies. Nature methods. 2014; 11(4):407. https://doi.org/10.1038/nmeth.2848 PMID: 24531419

Widmer C, Lippert C, Weissbrod O, Fusi N, Kadie C, Davidson R, et al. Further improvements to linear
mixed models for genome-wide association studies. Scientific reports. 2014; 4. https://doi.org/10.1038/
srep06874 PMID: 25387525

Falush D, Bowden R. Genome-wide association mapping in bacteria? Trends in microbiology. 2006;
14(8):353-355. https://doi.org/10.1016/j.tim.2006.06.003 PMID: 16782339

Collins C, Didelot X. A phylogenetic method to perform genome-wide association studies in microbes
that accounts for population structure and recombination. PLOS Computational Biology. 2018; 14(2):1—
21. https://doi.org/10.1371/journal.pcbi. 1005958

Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nature
genetics. 2012; 44(7):821-824. https://doi.org/10.1038/ng.2310 PMID: 22706312

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to mul-
tiple testing. Journal of the royal statistical society Series B (Methodological). 1995; p. 289-300.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture
and applications. BMC bioinformatics. 2009; 10(1):421. https://doi.org/10.1186/1471-2105-10-421
PMID: 20003500

Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of
acquired antimicrobial resistance genes. Journal of antimicrobial chemotherapy. 2012; 67(11):2640—
2644. https://doi.org/10.1093/jac/dks261 PMID: 22782487

Lakin SM, Dean C, Noyes NR, Dettenwanger A, Ross AS, Doster E, et al. MEGARes: an antimicrobial
resistance database for high throughput sequencing. Nucleic acids research. 2017; 45(D1):D574—
D580. https://doi.org/10.1093/nar/gkw1009 PMID: 27899569

Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. ARG-ANNOT, a
new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrobial agents
and chemotherapy. 2014; 58(1):212—220. https://doi.org/10.1128/AAC.01310-13 PMID: 24145532

Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD. Cytoscape.js: a graph theory library for visu-
alisation and analysis. Bioinformatics. 2015; 32(2):309-311. https://doi.org/10.1093/bioinformatics/
btv557 PMID: 26415722

van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras JB, Barbu EM, et al. Phylogenetic distribu-
tion of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. mBio. 2015; 6(6):
e01796—15. https://doi.org/10.1128/mBi0.01796-15 PMID: 26604259

Organization WH. Global tuberculosis report. Geneva: WHO Press Release. 2017;Licence: CC BY-
NCSA 3.01GO.

Gygli SM, Borrell S, Trauner A, Gagneux S. Antimicrobial resistance in Mycobacterium tuberculosis:
mechanistic and evolutionary perspectives. FEMS microbiology reviews. 2017; 41(3):354-373. https:/
doi.org/10.1093/femsre/fux011 PMID: 28369307

Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, et al. Improvements to PATRIC, the all-
bacterial bioinformatics database and analysis resource center. Nucleic acids research. 2016; 45(D1):
D535-D542. https://doi.org/10.1093/nar/gkw1017 PMID: 27899627

Mlynarczyk A, Mlynarczyk G, Jeljaszewicz J. The genome of Staphylococcus aureus: a review. Zentral-
blatt fiir Bakteriologie. 1998; 287(4):277-314. https://doi.org/10.1016/S0934-8840(98)80165-5 PMID:
9638861

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 27/28

@.PLOS | GENETICS

Fast agnostic bacterial GWAS with De Bruijn graphs

70.

71.

72.

73.

74.

75.

76.

LiuYY,Wang Y, Walsh TR, YiLX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin
resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular
biological study. The Lancet infectious diseases. 2016; 16(2):161-168. https://doi.org/10.1016/S1473-
3099(15)00424-7 PMID: 26603172

Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa. Microbiology and
molecular biology reviews. 2010; 74(4):621-641. https://doi.org/10.1128/MMBR.00027-10 PMID:
21119020

Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, et al. Pseudomonas aeruginosa population
structure revisited. PLoS one. 2009; 4(11):e7740. https://doi.org/10.1371/journal.pone.0007740 PMID:
19936230

Coll F, McNerney R, Preston MD, Guerra-Assungéo JA, Warry A, Hill-Cawthorne G, et al. Rapid deter-
mination of anti-tuberculosis drug resistance from whole-genome sequences. Genome medicine. 2015;
7(1):51. https://doi.org/10.1186/s13073-015-0164-0 PMID: 26019726

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome
and metagenome distance estimation using MinHash. Genome biology. 2016; 17(1):132. https://doi.
0rg/10.1186/s13059-016-0997-x PMID: 27323842

Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-
mers. Bioinformatics. 2011; 27(6):764—770. https://doi.org/10.1093/bicinformatics/btr011 PMID:
21217122

Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, et al. ABySS 2.0: resource-
efficient assembly of large genomes using a Bloom filter. Genome research. 2017; 27(5):768-777.
https://doi.org/10.1101/gr.214346.116 PMID: 28232478

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007758 November 12,2018 28/28

Chapter 7

Comparative assessment of
long-read error-correction software
applied to RNA-sequencing data

Preamble

Key points

e Long-read transcriptome sequencing is hindered by high error rates that affect anal-
yses such as the identification of isoforms, exon boundaries, open reading frames,
and the creation of gene catalogues;

e This review evaluates the extent to which existing long-read DNA error correction
methods are capable of correcting cDNA Nanopore reads;

e Existing tools significantly lower the error rate, but they also significantly perturb
gene family sizes and isoform diversity.

Status

Submitted to the journal Briefings in Bioinformatics [76|, currently under major review.
It will be resubmitted before the defence.

Author contributions

L. is first author in this paper.

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license.

PREPRINT

Comparative assessment of long-read error-correction software

applied to RNA-sequencing data

Leandro Lima'23* Camille Marchet*, Ségoléne Caboche ®, Corinne Da Silva®, Benjamin Istace,

Jean-Marc Aury 8, Héléne Touzet# and Rayan Chikhi*

Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558 F-69622 Villeurbanne,

France

2EPI ERABLE - Inria Grenoble, Rhéne-Alpes, France
3Universita di Roma "Tor Vergata”, Roma, ltaly

4CNRS, Université de Lille, CRIStAL UMR 9189, Lille, France

SUniversité de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity

of Lille, Lille, France

8Genoscope, Institut de biologie Francois-Jacob, Commissariat & I'Energie Atomique (CEA), Université Paris-Saclay, Evry,

France

Abstract

Motivation: Long-read sequencing technologies offer promising alternatives to high-throughput short
read sequencing, especially in the context of RNA-sequencing. However these technologies are currently
hindered by high error rates that affect analyses such as the identification of isoforms, exon boundaries,
open reading frames, and the creation of gene catalogues. Due to the novelty of such data, computational
methods are still actively being developed and options for the error-correction of RNA-sequencing long
reads remain limited.

Results: In this article, we evaluate the extent to which existing long-read DNA error correction methods
are capable of correcting cDNA Nanopore reads. We provide an automatic and extensive benchmark
tool that not only reports classical error-correction metrics but also the effect of correction on gene
families, isoform diversity, bias toward the major isoform, and splice site detection. We find that long
read error-correction tools that were originally developed for DNA are also suitable for the correction of
RNA-sequencing data, especially in terms of increasing base-pair accuracy. Yet investigators should be
warned that the correction process perturbs gene family sizes and isoform diversity. This work provides
guidelines on which (or whether) error-correction tools should be used, depending on the application type.

Benchmarking software: https://gitlab.com/leoisl/LR_EC_analyser
Key words: Long reads, RNA-sequencing, Nanopore, Error correction, Benchmark

1 INTRODUCTION

Recent advances in long-read sequencing technology have enabled
the sequencing of RNA molecules, using either cDNA-based or
direct RNA protocols from Oxford Nanopore (referred to as ONT or
Nanopore) and Pacific Biosciences (PacBio). The Iso-Seq protocol
from PacBio consists in a size selection step, sequencing of cDNAs,
and finally a set of computational steps that produce sequences
of full-length transcripts. ONT has three different experimental
protocols for sequencing RNA molecules: cDNA transformation
with amplification, direct cDNA (with or without amplification),
and direct RNA.

Long-read sequencing is increasingly used in transcriptome
studies (Sedlazeck er al., 2018; Wang et al., 2016; Byrne
et al., 2017; Oikonomopoulos et al., 2016) as they better
describe exon/intron combinations (Sedlazeck et al., 2018).
For instance the Iso-seq protocol has been used for isoform
identification, including transcripts identification (Wang et al.,
2016), de novo isoform discovery (Li er al, 2017) and fusion
transcript detection (Weirather ef al., 2015). Nanopore has recently

been used for isoform identification (Byrne et al, 2017) and
quantification (Oikonomopoulos et al., 2016).

The sequencing throughput of long-read technologies is
significantly increasing over the years. It is now conceivable to
sequence a full eukaryote transcriptome using either only long
reads, or a combination of high-coverage long and short (Illumina)
reads. Unlike the Iso-Seq protocol that requires extensive in silico
processing prior to primary analysis (Sahlin et al., 2018), raw
Nanopore reads can in principle be readily analyzed. Direct RNA
reads also permit the analysis of base modifications (Workman et al.,
2018), unlike all other cDNA-based sequencing technologies. There
also exist circular sequencing techniques for Nanopore such as INC-
Seq (Li et al., 2016) which aim at reducing error rates, at the expense
of a special library preparation. With raw long reads, it is up to the
primary analysis software (typically a mapping algorithm) to deal
with sequences that have significant per-base error rate, currently
around 13% (Weirather et al., 2017).

In principle, a high error rate complicates the analysis of
transcriptomes especially for the accurate detection of exon
boundaries, or the quantification of similar isoforms and paralogous
genes. Reads need to be aligned unambiguously and with high

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Lima et al.

base-pair accuracy to either a reference genome or transcriptome.
Indels (i.e. insertions/deletions) are the main type of errors produced
by long-read technologies, and they confuse aligners more than
substitution errors (Sovié et al., 2016). Many methods have been
developed to correct errors in RNA-seq reads, mainly in the short-
read era (Tong ef al., 2016; Song and Florea, 2015). They no longer
apply to long reads because they were developed to deal with low
error rates, and principally substitutions. However, a new set of
methods have been proposed to correct genomic long reads. There
exist two types of long-read error-correction algorithms, those using
information from long reads only (self or non-hybrid correction),
and those using short reads to correct long reads (hybrid correction).
In this article, we will report on the extent to which state-of-the-
art tools enable to correct long noisy RNA-seq reads produced by
Nanopore sequencers.

Several tools exist for error-correcting long reads, including ONT
reads. Even if the error profiles of Nanopore and PacBio reads are
different, the error rate is quite similar and it is reasonable to expect
that tools originally designed for PacBio data to also perform well
on recent Nanopore data. There is, to the best of our knowledge,
very little prior work that specifically addresses error-correction of
RNA-seq long reads. A notable exception is the PBcR tool, which
is mainly designed for genomes but is also evaluated on a Iso-Seq
transcriptome (Koren et al., 2012). Here we will take the standpoint
of evaluating DNA long-read error-correction tools on RNA-seq
data, an application that was likely not considered by the respective
tools authors.

We evaluate the following DNA hybrid correction tools:
LoRDEC (Salmela and Rivals, 2014), NaS (Madoui et al., 2015),
PBcR (Koren et al., 2012), proovread (Hackl et al., 2014); and
the following DNA self-correction tools: Canu (Koren ef al., 2017),
daccord (Tischler and Myers, 2017), LoORMA (Salmela et al., 2016),
MECAT (Xiao et al., 2017), pbdagcon (Chin et al., 2013). A
majority of hybrid correction methods employ mapping strategies
to place short fragments on long reads and correct long read regions
using the related short read sequences. But some of them rely on
graphs to create a consensus that is used for correction. These
graphs are either k-mer graphs (de Bruijn graphs), or nucleotide
graphs resulting from multiple alignments of sequences (partial
order alignment). For self-correction methods, strategies using the
aforementioned graphs are the most common. LSCPlus, a RNA-
seq correction tool designed for PacBio reads, was not evaluated
as the software webpage was unreachable (Hu et al., 2016). We
have selected what we believe is a representative set of tools but
there also exist other tools that were not evaluated in this study,
e.g. HALC (Bao and Lan, 2017), Falcon_sense (Chin et al., 2016),
HG-Color (Morisse et al., 2018), HECIL (Choudhury et al., 2018),
MIRCA (Kchouk and Elloumi, 2016), Jabba (Miclotte et al., 2016),
nanocorr (Goodwin et al., 2015), nanopolish (Loman et al., 2015),
and Racon (Vaser et al., 2017).

Other works have evaluated error correction tools in the context
of DNA sequencing. LRCStats evaluates error-correctors in a
simulated framework, without the need to align corrected reads (La
et al., 2017). A technical report from Bouri and Lavenier
(2017) provides an extensive evaluation of PacBio/Nanopore error-
correction tools, in the context of de novo assembly. Perhaps the
closest work to ours is the AlignQC software (Weirather et al.,
2017), which provides a set of metrics for the evaluation of RNA-
sequencing long-read dataset quality. In Weirather er al. (2017)

a comparison is provided between Nanopore and PacBio RNA-
sequencing datasets in terms of error patterns, isoform identification
and quantification. While Weirather et al. (2017) did not compare
error-correction tools, we will use and extend AlignQC metrics for
that purpose.

In this article, we will focus on the qualitative and quantitative
measurements of error-corrected long reads, with transcriptomic
features in mind. First we examine basic metrics of error-correction,
e.g. mean length, base accuracy, homopolymers errors, and
performance (running time, memory) of the tools. Then we ask
several questions that are specific to transcriptome applications: (i)
how is the number of detected genes, and more precisely the number
of genes within a gene family, impacted by read error correction?
(ii) Can error correction significantly change the number of reads
mapping to genes or transcripts, possibly affecting downstream
analysis based on these metrics? (iii) Do error-correction tools
perturb isoform diversity, e.g. by having a correction bias towards
the major isoform? (iv) What is the impact of error correction on
identifying splice sites? To answer these questions, we provide
an automatic framework (LC_EC_analyser, see Methods) for the
evaluation of transcriptomic error-correction, that we apply to nine
different error-correction tools.

2 RESULTS
2.1 Error-correction tools

Tables 1 and 2 present the main characteristics of respectively the
hybrid and non-hybrid error-correction tools that were considered
in this study. For the sake of reproducibility, in the Supplementary
Material Section S1 are described all the versions, dependencies,
and parameters. Note that these error-correction tools were all
tailored for DNA-seq data except for PBcR. PBcR was ran only in
hybrid mode, as the authors suggest using Canu over the non-hybrid
mode.

2.2 Evaluation datasets

Our evaluation dataset consists of a single 1D Nanopore run using
the cDNA preparation kit of RNA material taken from a mouse
brain. We obtained 1,256,967 Nanopore 1D reads representing
around 2 Gbp of data with an average size of 1650 bp and a N50
of 1885 bp. An additional Illumina dataset containing 58 million
paired-end 151 bp reads was generated using a different cDNA
protocol. The Nanopore and Illumina reads from the mouse RNA
sample are available in the ENA repository under the following
study: PRJEB25574.

2.3 Error-correction improves base accuracy and
affects the number of detected genes

Tables 3 and 4 show an evaluation of error-correction based on
AlignQC results, for the hybrid and non-hybrid tools, respectively.
The per-base error rate is 13.7% in raw reads, 0.3-4.5% for reads
corrected using hybrid methods and 2.9-6.4% with self-correctors.
As expected the correction rate is better for hybrid correctors leading
to a per-base error rate lower than 1% (except for LORDEC and
Proovread/untrimmed, which was equal to 4.5% and 2.6% resp.)
because they use additional information from short Illumina reads

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Comparative assessment of long-read error-correction software applied to RNA-sequencing data

Table 1. Main characteristics of the hybrid error correction tools considered in this study

LoRDEC NaS PBcR Proovread
Reference Salmela and Rivals (2014) Madoui et al. (2015) Koren et al. (2012) Hackl et al. (2014)
Context DNA DNA mRNA or DNA DNA
Technology PacBio or ONT ONT PacBio or ONT PacBio
Main Construction of short read dBG, Recruitment of short reads Alignment of short reads to long Alignment of short reads to long
algorithmic path search between k-mers in by alignment to long reads, reads and consensus. reads and consensus.
idea long reads assembly of short to

correct the long reads

Table 2. Main characteristics of the non-hybrid (self) error correction tools considered in this study

Canu daccord LoRMA MECAT pbdagcon
Reference Koren et al. (2017) Tischler and Myers (2017) Salmela et al. (2016) Xiao et al. (2017) Chin et al. (2013)
Context DNA DNA DNA DNA DNA
Technology PacBio or ONT PacBio PacBio or ONT PacBio or ONT PacBio
Main All-versus-all read Multiple dBGs built from Path search in dBG and k-mer based read Align long reads to
algorithmic overlap, filtering, overlapping window of multi-iterations. matching, pairwise “backbone” sequences,
idea alignment, DAG from long reads alignments, alignment between correction by iterative

the alignments,
weight path search.

highest consensus per window

matched reads, alignment-
based consensus calling

directed acyclic graph
consensus calling from

on trivial regions, local the multiple sequence
POG-based consensus alignments.

calling on complicated

regions.

to correct the long reads. The error rate is around 4-6% for self-
correction algorithms, except for LORMA that reached 2.91%. A
detailed error-rate analysis will be carried in Section 2.4.

In terms of number of reads after the correction step, LORDEC,
Proovread/untrimmed, daccord/untrimmed, and pbdagcon returned
a number of reads similar to that of the uncorrected (raw) reads. All
other softwares split and/or discard reads, likely because full-length
error-correction was deemed impossible in some reads. PBcR and
LoRMA tend to split reads into two or more shorter reads during
the correction step, as they return ~2x more reads after correction
that are also shorter (mean length of respectively 776bp and 497bp,
versus 2011bp in raw reads) and overall have significantly less
bases in total (loss of respectively 298Mbp and 553Mbp). Canu
and MECAT mostly discarded reads (30-33%) resulting in 14-25%
less bases in total, with comparable mean length to other tools.
Apart from LoRDEC, Proovread/untrimmed, and daccord (trimmed
and untrimmed) for which only 85-94% of reads were mapped,
corrected reads from all the other tools were mapped at a rate

of 98.2-99.4%, showing a significant improvement over raw reads
(mapping rate of 83.5%).

Apart from Canu, tools with high mean read length (i.e.
LoRDEC, Proovread/untrimmed, daccord/untrimmed) showed the
lowest percentages of mapped reads, indicating that trimming,
splitting or discarding reads seems necessary in order to obtain
shorter but overall less error-prone reads. A similar conclusion can
be reached by comparing the results of trimmed and untrimmed
versions of the same tool: reads corrected with Proovread and
daccord in trimmed versions showed higher numbers of mapped
reads and bases, and lower per-base error rates. However trimmed
reads become 300-600 bases shorter on average, and around 2,000
genes are no longer detected. Therefore it is unclear whether
trimming should always be performed by error-correctors in a
transcriptomic context.

An important observation is that almost all tools, except for
LoRDEC and Proovread/untrimmed, lost at least 1,000 genes
after correction. Moreover, three of the tools that have the

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Lima et al.

Table 3. Statistics of hybrid error correction tools on the 1D run RNA-seq dataset. To facilitate the readability of this table and the next ones, we
highlighted values that we deemed satisfactory in green colour, borderline in brown, and unsatisfactory in red, noting that such a classification is

somewhat arbitrary.

Raw LoRDEC NaS PBcR Proovread Proovread trimmed
nb of reads 741k 741k 619k 1321k 738k 626k
mapped reads 83.5% 85.5% 98.7% 99.2% 85.5% 98.9%
mean length 2011 2097 1931 776 2117 1796
nb of bases 1313M 1394M 1179M 1015M 1400M 1112M
mapped 89.0% 90.6% 97.5% 99.2% 92.4% 99.5%
bases®
per-base error 13.72% 4.50% 0.38% 0.67% 2.65% 0.33%
rate®
nb of detected 16.8k (33.9%) 16.8k (33.9%) 15.0k (30.2 15.6k (31.4%) 16.6k (33.4%) 14.6k (29.5%)
genes

@ As reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in unmapped reads

are not counted.

bAs reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

Table 4. Statistics of non-hybrid error correction tools on the 1D run RNA-seq dataset.

Raw Canu daccord daccord trimmed LoRMA MECAT pbdagcon
nb of reads 741k 519k 675k 840k 1540k 495k 778k
mapped reads 83.5% 99.1% 92.5% 94.0% 99.4% 99.4% 98.2%
mean length 2011 2193 2102 1476 497 1995 1473
nb of bases 1313M 1126M 1350M 1212M 760M 980M 1137M
mapped 89.0% 92.0% 92.5% 94.7% 99.2% 96.9% 97.0%
bases®
per-base error 13.72% 6.43% 5.20% 4.12% 291% 4.49% 5.65%
rate?
nb of detected 16.8k (33.9%) 12.4k (24.9%) 15.5k (31.3%) 13.9k (28.1%) 6.8k (13.7%) 10.4k (20.9%) 13.2k (26.5%)
genes

@ As reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in unmapped reads are not

counted.

bAs reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

highest number of detected genes (LoORDEC, Proovread/untrimmed,
daccord/untrimmed) also have the lowest percentage of mapped
reads, hinting that error correction might reduce gene diversity in
favor of lower error-rate. It is noteworthy that for some tools (e.g.
Canu, MECAT, LoRMA), the number of detected genes can drop by
26%-59% compared to the number of genes reported in raw reads.

Overall, no correction tool outperforms the others across all
metrics. We note that a reasonable balance appears to be achieved
by NaS and Proovread/trimmed, and that overall, hybrid correctors
tend to outperform self-correctors.

2.4 Detailed error-rate analysis

The high error-rate of transcriptome long reads significantly
complicates their primary analysis (Krizanovi¢ et al., 2018). While
Section 2.3 presented a general per-base error rate, this section
breaks down sequencing errors into several types and examines how
each error-correction tool deals with them. The data presented here
is a compilation of AlignQC results. Note that AlignQC computed
the following metrics only on reads that could be aligned, thus

unaligned reads are not counted, yet they may possibly be the most
erroneous ones. AlignQC also subsampled aligned reads to around
1 million number of bases to calculate the presented values.

2.4.1 Deletions are the most problematic sequencing errors
Table 5 shows the error rate in the raw reads and in the corrected
reads for each tool. In raw reads, deletions are the most prevalent
type of errors (7.4% of bases), closely followed by subsitutions
(5.1%), then insertions (1.2%). LoRDEC is the least capable of
correcting mismatches (2% of them remaining), even though it
is a hybrid tool. This is possibly related to the large amount
of uncorrected reads in its output, 90k reads out of 741k (12%,
as computed by exactly matching raw reads to corrected reads).
The other hybrid tools result in less than 1% of substitution
errors. Surprisingly, the non-hybrid tools also presented very low
mismatches rates: all of them showed rates lower than 1%, except
for Canu (1.33%) and daccord/untrimmed (1.1%). This suggests
that the rate of systematic substitution errors in ONT data is low,
as self-correctors were able to achieve results comparable to the

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Comparative assessment of long-read error-correction software applied to RNA-sequencing data

Table 5. Error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

Raw LoRDEC NaS PBcR Proovread Proovread Canu daccord daccord LoRMA MECAT pbdagcon pbdagcon
trimmed trimmed trimmed
Error 13.72% 4.50% 0.38% 0.67% 2.65% 0.33% 6.43% 5.20% 4.12% 291% 4.49% 5.65% 5.71%
rate
Mismatch 5.11% 2.04% 0.20% 0.18% 0.93% 0.13% 1.33% 1.10% 0.67% 0.37% 0.35% 0.50% 0.49%
Deletion 7.40% 2.15% 0.09% 0.30% 1.51% 0.18% 4.82% 3.82% 3.27% 2.51% 4.08% 5.06% 5.17%
Insertion 1.20% 0.32% 0.08% 0.19% 0.22% 0.03% 0.28% 0.28% 0.19% 0.03% 0.06% 0.09% 0.05%

Table 6. Homopolymer error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

Raw LoRDEC NaS PBcR Proovread Proovread Canu daccord daccord LoRMA MECAT pbdagcon pbdagcon
trimmed trimmed trimmed
Homop. 2.96% 0.77% 0.02% 0.10% 0.46% 0.04% 2.46% 2.14% 2.05% 1.82% 2.05% 2.26% 2.26%
deletion
Homop. 0.38% 0.08% 0.01% 0.02% 0.06% 0.01% 0.08% 0.06% 0.03% 0.01% 0.01% 0.02% 0.01%
insertion

hybrid ones, even without access to Illumina reads. Still, the three
best performing tools were all hybrid (Proovread/trimmed, PBcR
and NaS), which should therefore be preferred for applications that
require very low mismatch rates.

The contrast between self and hybrid tools is more visible
on deletion errors. All hybrid tools outperformed the non-
hybrid ones. Although in the hybrid ones, LoRDEC (2.15%)
and Proovread/untrimmed (1.51%) still showed moderate rates of
deletions, NaS, Proovread/trimmed and PBcR were able to lower
the deletion error rate from 7.4% to less than 0.3%. All non-hybrid
tools presented a high rate (3% or more) of deletion errors, except
LoRMA (2.51%). This comparison suggests that ONT reads exhibit
systematic deletions, that cannot be corrected without the help of
Illumina data. The contribution of homopolymer errors will be
specifically analyzed in Section 2.4.2. Considering insertion errors,
all tools performed equally well. It is worth noting that more non-
hybrid tools (LoRMA, pbdagcon/untrimmed, pbdagcon/trimmed
and MECAT) achieved sub-0.1% insertions than hybrid tools (NaS
and Proovread/trimmed).

Overall, hybrid tools outperformed non-hybrid ones in terms of
error-rate reduction. However, the similar results obtained by both
types of tools when correcting mismatches and insertions, and the
contrast in correcting deletions, seem to indicate that the main
advantage of hybrid correctors over self-correctors is the removal
of systematic errors using Illumina data.

2.4.2 Homopolymer insertions are overall better corrected than
deletions In this section we further analyze homopolymers indels,
i.e. insertion or deletion errors consisting of a stretch of the same
nucleotide. Table 6 shows that homopolymer deletions are an
order of magnitude more abundant in raw reads than homopolymer
insertions. It is worth noting that, by comparing the values for the

raw reads in Tables 5 and 6, homopolymers are involved in 40% of
all deletions and 31% of all insertions.

A closer look at Table 6 reveals that hybrid error correctors
outperform non-hybrid ones, as expected, mainly as homopolymer
indels are likely systematic errors in ONT sequencing. Hybrid
correctors correct them using Illumina reads that do not contain
such biases. Moreover, all tools performed well on correcting
homopolymer insertions, reducing the rate from 0.38% to
less than 0.1%. In particular, the hybrid tools NaS and
Prooovread/trimmed, as well as the non-hybrid ones LoRMA,
MECAT and pbdagcon/trimmed reached 0.01% homopolymer
insertion error rate. Regarding homopolymer deletions, hybrid
tools return less than 0.5% of them, except LoRDEC (0.77%).
Non-hybrid tools performed more pooly, returning 1.8-2.4% of
homopolymers deletion errors — a small improvement over the raw
reads.

NaS and Proovread/trimmed showed the best reduction of
homopolymers indels. It is also worth noting that hybrid correctors
are able to correct homopolymer deletions even better than non-
homopolymer deletions. For instance the ratio of homopolymer
deletions over all deletions is 40% in raw reads, and decreases
for all hybrid correctors, dropping to 20.2% for NaS and
25.6% for Proovread/trimmed, but increases to at least 43.8%
(pbdagcon/trimmed) up to 72.6% (LoRMA) in non-hybrid tools (see
Supplementary Material Section S3).

2.5 Error-correction perturbs the number of reads
mapping to the genes and transcripts

Downstream RNA-sequencing analyses typically rely on the
number of reads mapping to each gene and transcript for
quantification, differential expression analysis, etc. In the rest of
the paper, we define the coverage of a gene or a transcript as the

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Lima et al.
LoRDEC.bam NaS.bam PBcR.bam proovread_untrimmed.bam
5000| 500 5000]
RA2 = 0.989587 RA2 = 0.947233 RA2 = 0.828426 RA2 = 0.982041
E 4000| 4000j
[}
W
2 3000 3000|
o
3
O 2000| 2000]
n
2
o
U 1000| 1000|
% 2000 4D00 2000 4000 % 2000 4000
Genes coverage before
proovread_trimmed.bam canu.bam daccord.bam daccord_trimmed.bam

5000 5000 5000(5000
RA2 = 0.961674 R~2 = 0.988645 R”2 = 0.971512 RA2 = 0.974585
4000 4000 4000
3000 3000 3000
2000 2000 2000
1000 1000 1000
I:.D 2000 4000 cD 2000 4000 0[) 2000 4000
LoRMA.bam MECAT.bam pbdagcon.bam pbdagcon_trimmed.bam
5000 5000
RM2 = 0.835730 R~2 = 0.767718 RA2 = 0.961513 RA2 = 0.960425
4000| 4000
3000 3000
2000 2000)
1000 1000
<
DD 2000 4000 n[) 2000 4000 2000 4000

Fig. 1. Number of reads mapping to genes (C'¢y) before and after correction for each tool. The genes taken into account here were expressed in either the raw

dataset or after the correction by the given tool.

number of reads mapping to it. For short we will refer to those
coverages as C'¢ and C'r, respectively. In this section we investigate
if the process of error correction can perturb Cg and Cr, which in
turn would affect downstream analysis. Note that error correction
could potentially slightly increase coverage, as uncorrected reads
that were unmapped can become mappable after correction. Figure 1
shows the C'¢ before and after correction for each tool. PBcR is the
only hybrid corrector that significantly inflates Ci, probably due
to read splitting (see Section 2.3). Among self-correctors, LORMA
also inflates this value (also due to read splitting), while MECAT
presents the lowest correlation and a significant drop in Cz. Besides
these three tools, all the others present good correlation and the
expected slight increase in Cg due to better mapping. All tools
systematically presented a similar trend and lower correlation values
on Cr (see Supplementary Material Figure S1), in comparison to
Ce¢. This is expected, as it is harder for a tool to correct a read into
its true isoform than into its true gene. The behaviour of the tools in
the isoform level are in coherence with their behaviour in the gene
level (Cg): PBcR and LoRMA inflates C'; MECAT deflates; and
all the others present a slight increase.

2.6 Error-correction perturbs gene family sizes

Tables 3 and 4 indicate that error correction results in a lower
number of detected genes. In this section we explore the impact
of error-correction on paralogous genes. By paralogous gene
family, we denote a set of paralogs computed from Ensembl (see
Section 4.3). Figure 2 represents the changes in sizes of paralogous
gene families before and after correction for each tool, in terms
of number of genes expressed within a given family. Overall,
error-correctors do not strictly preserve the sizes of gene families.
Correction more often shrinks families of paralogous genes than
it expands them, likely due to erroneous correction in locations
that are different between paralogs. In summary, 36-86% of gene
families are kept of the same size by correctors, 1-12% are expanded
and 6-61% are shrunk. Supplementary Material Figure S2 shows the
magnitude of expansion/shrinkage for each gene family.

2.7 Error-correction perturbs isoform diversity

We further investigated whether error-correction introduces a bias
towards the major isoform of each gene. Note that AlignQC does
not directly address this question. To answer it, we computed the

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Comparative assessment of long-read error-correction software applied to RNA-sequencing data

Gene family count in %

Shrunk Unchanged

LoRDEC.bam

NaS.bam

PBcR.bam
proovread_untrimmed.bam
proovread_trimmed.bam
canu.bam

daccord.bam
daccord_trimmed.bam
LoRMA.bam

MECAT.bam
pbdagcon.bam
pbdagcon_trimmed.bam

Expanded

Tool's behaviour towards the gene family

Fig. 2. Summary of gene family size changes across error-correction tools.

12k
10k
8k

6k

Number of genes

4k

2k

(=3+) (-1) [}

LoRDEC.bam

NaS.bam

PBcR.bam
proovread_untrimmed.bam
proovread_trimmed.bam
canu.bam

daccord.bam
daccord_trimmed.bam
LoRMA.bam

MECAT.bam
pbdagcon.bam
pbdagcon_trimmed.bam

(+1) (+2) (+3+)

Difference on the number of isoforms

Fig. 3. Histogram of genes having more or less isoforms after error-correction.

following metrics: number of isoforms detected in each gene before
and after correction by alignment of reads to genes, coverage of lost
isoforms in genes having at least 2 expressed isoforms, and coverage
of the major isoform before and after correction.

2.7.1 The number of isoforms varies before and after correction
Figure 3 shows the number of genes that have the same number of
isoforms after correction, or a different number of isoforms (-3, -2,
-1, +1, +2, +3). In this Figure, only the genes that are expressed
in both the raw and the corrected reads (for each tool) are taken
into consideration. The negative (resp. positive) values indicate that
isoforms were lost (resp. gained). We observe that a considerable
number of genes (1k-3k) lose at least one isoform in all tools,
which suggests that current methods reduce isoform diversity during
correction. NaS and MECAT tend to lose isoforms the most, and
PBcR identifies the highest number of new isoforms after correction.
It is however unclear whether these lost and new isoforms are real
(present in the sample) or due to mapping ambiguity. For instance,
PBcR splits corrected reads into shorter sequences that may map
better to other isoforms.

Overall, the number of isoforms is mostly unchanged in
daccord/untrimmed, LoRDEC and Proovread/untrimmed. We
observe that, counter-intuitively, trimming has a slight effect on the
number of detected isoforms for Proovread and daccord but not for
pbdagcon.

2.7.2 Multi-isoform genes tend to lose lowly-expressed isoforms
after correction Figure 4 explores the relative coverage of
isoforms that were possibly lost after correction, in genes having
two or more expressed isoforms. The relative coverage of a
transcript is the number of raw reads mapping to it over the number
of raw reads mapping to its gene in total. Only the genes that are
expressed in both the raw and the error-corrected reads (for each
tool) are taken into consideration here. We anticipated that raw
reads that map to a minor isoform are typically either discarded
by the corrector, or modified in such a way that they now map to
a different isoform, possibly the major one. The effect is indeed
relatively similar across all correctors, except for MECAT that tends
to remove a higher fraction of minor isoforms, and LoRDEC that
tends to be the most conservative. This result suggests that current
error-correction tool overall do not conservatively handle reads that
belong to low-expression isoforms.

2.7.3 Coverage of the major isoform before and after correction
To follow-up on the previous subsection, we investigate whether
the coverage of the major isoform, ie. the isoform with the
highest expression in the raw dataset, increased after correction.
In Figure 5, We observe that the coverage of the major isoform
generally slightly increases after correction, except for MECAT,
where its coverage decreases, likely due to a feature of MECAT’s
own correction algorithm. This indicates that error-correction tools

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Lima et al.

60

50

40

30

20

Number of transcripts (%)

10

0

[0.0,0.1)

[0.1,0.2) [0.2,0.3) [0.3,0.4) [0.40.5) [0.50.5)

10.6,0.7)

LoRDEC.bam

NaS.bam

PBcR.bam
proovread_untrimmed.bam
proovread_trimmed.bam
canu.bam

daccord.bam
daccord_trimmed.bam
LoRMA.bam

MECAT.bam
pbdagcon.bam
pbdagecon_trimmed.bam

[0.7,0.8) [0.8,0.9) [0.9,1.0)

Relative transcript coverage in relation to gene coverage normalized

Fig. 4. Histogram of isoforms that are lost after correction, in relation to their relative transcript coverage, in genes that have 2 or more isoforms. The y axis
reflects the percentage of isoforms lost in each bin. Absolute values can be found in the Supplementary Material Figure S3.

tend to correct reads towards the major isoform, but the effect is
not pronounced. This is expected as the sum of expression of minor
isoforms is, by nature, a small fraction of the total gene expression.
Apart from LoRMA, MECAT and PBcR, where the correlations
of the major isoform coverages are spurious (7> | 0.77), other
correctors tend to preserve this coverage after correction (72=0.90-
0.96), with LoRDEC and Canu showing the highest correlations
(96%). It is noteworthy that correction biases with respect to the
major isoform do not appear to be specific to self correctors nor
to hybrid correctors, but an effect that happens in both types of
correctors.

2.7.4 Correction towards the major isoform is more prevalent
when the alternative exon is small In order to observe if particular
features of alternative splicing have an impact on error-correction
methods, we designed a simulation over two controlled parameters:
skipped exon length and isoform relative expression ratio. Using
a single gene, we created a mixture of two simulated alternative
transcripts: one constitutive, one exon-skipping. Several simulated
read datasets were created with various relative abundances between
major and minor isoform (in order to model a local differential in
splicing isoform expression), and sizes of the skipped exon. Due to
the artificial nature and small size of the datasets, many of the error-
correction methods could not be run. We thus tested these scenarii
on a subset of the correction methods.

In Figure 6, we distinguish results from hybrid and self-
correctors, presented with respectively 100x coverage of short
reads and 100x coverage of long reads, and only 100x coverage
of long reads. Results on more shallow coverage (10x) and
impact of simulation parameters on corrected reads sizes are
presented in Supplementary Material Sections S7 and S8. Overall,
hybrid correctors are less impacted by isoform collapsing than
self-correctors. LoRDEC shows the best capacity to preserve
isoforms in presence of alternatively skipped exons. However
with less coverage, e.g. due to low-expressed genes and rare
transcripts, all tools tend to mis-estimate the expression of isoforms
(see Supplementary Material). Self-correctors generally have a
minimum coverage threshold (only daccord could be run on the
10x coverage dataset of long reads, with rather erratic results,
see Supplementary Material). Even with higher coverage, not

all correctors achieve to correct this simple instance. Among all
correctors, only LoORDEC seems to report the expected number of
each isoforms consistently in all scenarios. We could not derive
any clear trend concerning the relative isoform ratios, even if the
90% ratio seems to be in favor of overcorrection towards the major
isoform. Skipped exon length seems to impact both hybrid and self
correctors, small exons being a harder challenge for correctors.

2.8 Error-correction affects splice site detection

The identification of splice sites from RNA-seq data is an important
but challenging task (Kaisers ef al., 2017). When mapping reads
to a (possibly annotated) reference genome, mapping algorithms
typically guide spliced alignments using either a custom scoring
function that takes into account common splices sites patterns (e.g.
GT-AG), and/or a database of known junctions. With long reads,
the high error rate make precise splice site detection even more
challenging, as indels (see Section 2.4) confuse aligners, shifting
predicted spliced alignments away from true splice sites.

In this section, we evaluate how well splice sites are detected
before and after error-correction. Figure 7 shows the number
of correctly and incorrectly mapped splice sites for the raw and
corrected reads, as computed by AlignQC. One would expect that
a splice site is correctly detected when little to no errors are present
in reads mapping around it. Thus, as expected, the hybrid error
correction tools present a clear advantage over the non-hybrid ones,
as they better decrease the per-base error rate. In the uncorrected
reads, 27% of the splice sites were incorrectly mapped, which is
brought down to between 0.28% (Proovread/trimmed) and 2.43%
(LoRDEC) with hybrid correction tools. Among non-hybrid tools,
LoRMA presented the lowest proportion of incorrectly detected
splice sites (3.04%), however it detects 3.5-7x less splice sites
(280k) than the other tools (which detect around 1-2 million splice
sites). The other non-hybrid tools incorrectly detected splice sites
at a rate between 5.61% (daccord/trimmed) and 11.95% (Canu). A
detailed analysis of the incorrectly mapped splice sites can be found
in the Supplementary Material Section S9.

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Comparative assessment of long-read error-correction software applied to RNA-sequencing data

LoRDEC.bam NaS.bam
E‘WGO RA2 = 0.967324 4000] R"2 = 0.902878
™
@
@
£ 3000
a
=
Q
8
£ 2000
£
=]
a
= 1000
3
=
% 1000 2000 3000 4000 % 1000 2000 3000 4000
Main isoform coverage before
proovread_trimmed.bam canu.bam

4000 RA2 = 0.919492 4000 RA2 = 0.962701

3000| 3000|

2000 2000|

1000| 1000|

% 1000 2000 3000 4000 % 1000 2000 3000 4000
LoRMA.bam MECAT.bam
4000 RA2 = 0.766813 4000 RA2 = 0.695109

DG 1000 2000 3000 4000 % 1000 2000 3000 4000

PBcR.bam proovread_untrimmed.bam

R”2 = 0.675869

4000 R”2 = 0.946579

3000

2000

1000|

CY
[*] 1000 2000 3000 4000 1000 2000 3000 4000

daccord.bam daccord_trimmed.bam

R"2 = 0.933556 R"2 = 0.939102

4000
3000
2000

1000

1] 1000 2000 3000 4000 1000 2000 3000 4000

pbdagcon.bam

pbdagcon_trimmed.bam

i RAZ = 0.925704 i RA2 = 0.925077
3000 3000
2000 2000|
1000 1000|
DD 1000 2000 3000 4000 Cl0 1000 2000 3000 4000

Fig. 5. Coverage of the major isoform of each gene before and after error-correction. The x-axis reflects the number of reads mapping to the major isoform of

a gene before correction, and the y-axis is after correction.

2.9 Running time and memory usage of
error-correction tools

Table 7 shows the running time and memory usage of all evaluated
tools, measured using GNU time. The running time shown is the
elapsed wall clock time (in hours) and the memory usage is the
maximum resident set size (in gigabytes). All tools were ran with
32 threads. Overall, all tools were able to correct the dataset within
0.3-7 hours except for PBcR, NaS and Proovread, which took 63-
116 hours, but also achieved the three lowest post-correction error
rates in Table 3. In terms of memory usage, all tools required
less than 10 GB of memory except PBcR, proovread and LoORMA,
which required 53-166 GB. It is worth noting, however, that hybrid
error correctors have to process massive Illumina datasets, which
contributes to them taking higher CPU and memory usage for
correction.

3 DISCUSSION

This work shed light on the versatility of long-read DNA error-
correction methods, which can be successfully applied to error-
correction of RNA-sequencing data as well. In our tests, error rates
can be reduced from 13.7% in the original reads down to as low
as 0.3% in the corrected reads. This is perhaps an unsurprising
realization as the error-correction of RNA-sequencing data presents
similarities with DNA-sequencing data, however this comes with
a collection of caveats that we described in the Results section.
Most importantly, the number of genes detected by alignment of
corrected reads to the genome was reduced significantly by most
error-correction methods. Furthermore, depending on the method,
error-correction results have a more or less pronounced bias towards
correction to the major isoform for each gene, jointly with a loss
of the most lowly-expressed isoforms. We provided a software
that enables automatic benchmarking of long-read RNA-sequencing
error-correction software, in the hope that future error-correction
methods will take advantage of it to avoid biases.

The summary statistics of error-corrected data (number of
corrected reads, mean length, percentage of mapped reads, per-base
error rate, number of detected genes) reveal that no tool outperforms

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Lima et al.

Skipped exon size:10 Skipped exon size:50 Skipped exon size:100

90-
754 g
E, =
S50 S
2 &
g
@ 90-
E 75 5
2y
_5 50- 3
a S
=
2 o
9 90-
o 75-
2 o
O 50- @D
g bs]
8
n 0
T 90-
@ 75- T
S 50- 2
o~ [0)
° 8

0 === ; ; ; ; ; ;
50 75 90 50 75 90 50 75 90
% of inclusion (major) isoform in expressed RNA

Skipped exon size:10 Skipped exon size:50 Skipped exon size:100

751
E -
9 50- o
1) 3
2]
= (oL,
S,
© I
Eo
c
O 75-
(7]
_: |
£t $
° g
°
2
3]
g o
Q
O 75-
B -
© for}
o 50- §
© ©

o
i I l :
Y ; ; : ; ; ; ;
50 75 90 50 75 90 50 75 90

% of inclusion (major) isoform in expressed RNA

Fig. 6. Mapping of simulated raw and error-corrected reads to two simulated isoforms, and measurements of the percentage of reads mapping to the major
isoform. The two isoforms represent an alternatively skipped exon of variable size: 10 bp, 50 bp, 100bp. Left: isoform structure conservation using 100X short
reads coverage and 10X long reads, using three error-correction programs, one per row: LoRDEC, PBcR, proovread. Right: same with three self-correctors
and 100X long reads: daccord, LORMA and pbdagcon. Columns are alternative exon sizes. Bars are plots for each isoform ratio (50%; 75% and 90%) on the
x-axis. On the y-axis, the closer a bar is to its corresponding ratio value on the x, the better. For instance, the bottom left light blue bar corresponds to a 50%
isoform ratio with an exon of size 10, and we do not retrieve a 50% ratio after correction with Proovread (the bar does not go up to 50% on the vertical axis,
but around 75% instead). The same layout applies to the right plot, where self-correctors are presented.

2M

1.5M

M

0.5M

Number of Correct and Incorrect SSs

M Correct SSs
M Incorrect SSs

Fig. 7. Statistics on the correctly and incorrectly mapped splice sites (abbreviated SSs) for the uncorrected (raw) and corrected reads.

the others across all metrics, yet a reasonable balance is achieved
by NaS and Proovread/trimmed, and that hybrid correction tools
generally outperformed the self-correctors.

Detailed error-rate analysis showed that while hybrid correctors
have lower error rates than self-correcters, the latter achieved
comparable performance to the former in correcting substitutions
and insertions. Deletions appear to be caused by systematic
sequencing errors, making them fundamentally hard (or even

impossible) to address in a self-correction setting. Moreover PBcR,
NaS, and Proovread are the most resource-intensive error-correction
tools, but also are the only correctors able to reduce base error rate
below 0.7%.
We note that LORDEC, PBcR, Proovread/untrimmed, daccord/untrimmed,

and to a lower extent NaS, were able to preserve the number
of detected genes better than other correctors. Among those,
LoRDEC, Proovread/untrimmed and daccord/untrimmed appear to

10

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Comparative assessment of long-read error-correction software applied to RNA-sequencing data

Table 7. Running time and memory usage of error-correction tools on the 1D run RNA-seq dataset

LoRDEC NaS! PBcR? Proovread Canu daccord?® daccord LoRMA* MECAT pbdagcon® pbdagcon®
trimmed? trimmed
Running 2.4h 63.2h 116h 107.1h 0.7h 6.9h 6.6h 3.4h 0.3h 5.7h 5.6h
time (7.4h) (7.1h) (6.2h) (6.1h)
Memory 5.6GB 3GB 166.5GB 53.6GB 2.2GB 6.9GB 6.8GB 79GB 9.9GB 6.4GB 6.4GB
usage (27.2GB) (27.2GB) (27.2GB) (27.2GB)

1 Na$S was ran in batches on a different system (TGCC cluster) than other tools; total running time was estimated based on subset of batches.

2PBcR was ran on a machine different from the others.

3daccord and pbdagcon need DAZZ DB and DALIGNER to be ran before performing their correction. DAZZ DB execution time and memory usage was disregarded due to being
negligible. DALIGNER, however, took 0.5h and 27.2Gb of RAM. The runtime in parenthesis denotes the runtime of the tool + DALIGNER. The memory usage in parenthesis denotes

the maximum memory usage between the tool and DALIGNER.

4LoRMA was using more than its allocated 32 cores in some (short) periods of time during the run.

also better preserve the number of detected isoforms better than
other correctors. All tools tend to lose lowly-expressed isoforms
after correction. This is expected, as these tools were mainly tailored
to process DNA data where heterogeneous coverage is not expected.
Furthermore, hybrid correctors outperformed self-correctors in the
correction of errors near splice site junctions.

As a result, we conclude that no evaluated corrector is the
most suited in all situations, and the choice should be guided
by the downstream analysis. For quantification, we have shown
that error-correction introduces undesirable coverage biases, as per
Section 2.5, therefore we would recommend avoiding this step
altogether. For isoform detection, LORDEC, Proovread/untrimmed
(hybrid) and daccord/untrimmed (non-hybrid) appear to be the
methods of choice as they result in the the highest number of
detected genes in Tables 3 and 4 and also preserve the number
of detected isoforms as per Section 2.7. For splice site detection,
we recommend using hybrid correctors, preferably NaS, PBcR or
Proovread, as per Section 2.8. The same three tools (however,
Proovread should be in trimmed mode) are also recommended if
downstream analyses require very low general error rate. Finally
for all other applications, NaS and Proovread/trimmed achieve a
reasonable balance across all metrics.

In our analysis, we used a single mapping software (GMAP) to

In the evaluation of tools, we did not record the disk space used
by each method, yet we note that it may be a critical factor for some
tools (e.g. Canu) on larger datasets. We note also that genes that have
low Illumina coverage are unlikely to be well corrected by hybrid
correctors. Therefore our comparison does not take into account
differences in coverage biases between Illumina and Nanopore
data, which may benefit self-correctors. Finally, transcript and gene
coverages are derived from the number of long reads aligning to a
certain gene/transcript. This method enables to directly relate the
results of error-correction to transcript/gene counts, but we note that
in current RNA-seq analysis protocols, transcript/gene expression is
still generally evaluated using short reads.

4 METHODS

4.1 Nanopore library preparation and sequencing

RNA MinlION sequencing cDNA were prepared from 4 aliquots (250ng
each) of mouse commercial total RNA (brain, Clontech, Cat# 636601),
according to the Oxford Nanopore Technologies (Oxford Nanopore
Technologies Ltd, Oxford, UK) protocol ”1D c¢cDNA by ligation (SQK-
LSK108)”. The data generated by MinlON software (MinKNOW 1.1.21,
Metrichor 2.43.1) were stored and organized using a Hierarchical Data

align raw and error-corrected reads, as in previous benchmarks (WeirathefFormat. FASTA reads were extracted from MinION HDF files using

et al., 2017; Krizanovi¢ et al., 2018). We note that other long-read
mapping software have since been published, e.g. minimap2 (Li,
2018), which may increase the percentage of mapped read across
all methods.

Furthermore, we only focused our evaluation on a single data
type: 1D cDNA Nanopore data, using Illumina data for hybrid
correction. While it would be natural to also evaluate PacBio data,
we note that data from the PacBio Iso-Seq protocol is of different
nature as the reads are pre-corrected by circular consensus.

As a side note, AlignQC reports that raw reads contained 1% of
chimeric reads, i.e. either portions of reads that align to different
loci, or to overlapping loci. The number of chimeric reads after
error-correction remains in the 0.7%-1.3% range except for PBcR
(0.1%), Proovread/trimmed (0.1%), MECAT (0.1%) and LoRMA
(0.04%), which either correctly split reads or discarded chimeric
ones.

poretools (Loman and Quinlan, 2014).

4.2 TIllumina library preparation and sequencing

RNA-Seq library preparations were carried out from 500 ng total RNA
using the TruSeq Stranded mRNA kit (Illumina, San Diego, CA, USA),
which allows mRNA strand orientation (sequence reads occur in the same
orientation as anti-sense RNA). After quantification by qPCR, each library
was sequenced using 151 bp paired end reads chemistry on a HiSeq4000
Tllumina sequencer. Reads were filtered in silico to remove mtRNA and
rRNA using BLAT and est2genome.

4.3 Reference-based evaluation of long read error
correction

A tool coined LR_EC_analyser, available at https://gitlab.com/
leoisl/LR_EC_analyser, was developed using the Python language
to analyze the output of long reads error correctors. The required
arguments are the BAM files of the raw and corrected reads aligned
to a reference annotated genome, as well as the reference genome in

11

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Lima et al.

Fasta file format and the reference annotation in GTF file format. A file
specifying the paralogous gene families can also be provided if plots on
gene families should be created. The main processing involves running
the AlignQC software (Weirather et al., 2017) (https://github.com/
jason-weirather/AlignQC) on the input BAMs and parsing its
output to create custom plots. It then aggregates information into a HTML
report. For example, Tables 3 — 6 are compilations from AlignQC results,
as well as Figure 7. Figures 1 — 5 were created processing text files built
by AlignQC called "Raw data” in their output. In addition, an in-depth gene
and transcript analysis can be performed using the IGV.js library (https:
//github.com/igvteam/igv. js). In this paper, we did not include
all plots and tables created by the tool. To visualise the full latest reports, visit
https://leoisl.gitlab.io/LR_EC_analyser_support/ .
More specifically, in this work we aligned the raw and corrected reads
to the Ensembl r87 Mus Musculus unmasked reference genome using the
GMAP software (version 2017-05-08 with parameters -n 10) (Wu and
Watanabe, 2005). The GMAP parameters map those from the original
AlignQC publication (Weirather et al., 2015). Gene families were computed
by selecting all paralogs from Ensembl r87 mouse genes with 80%+ identity.
Note that paralogs from the same family may have significantly different
lengths, and no threshold was applied with respect to coverage. The complete
selection procedure is reported here: https://gitlab.com/leoisl/
LR_EC_analyser/blob/master/GettingParalogs.txt.

4.4 Simulation framework for biases evaluation

In the simulation framework of Section 2.7.4, exons length and number were
chosen according to resemble what is reported in eukaryotes (Sakharkar
et al., 2004) (8 exons, 200 nucleotides). A skipped exon, whose size can
vary, was introduced in the middle of the inclusion isoform. Skipped exon
can have a size of 10, 50 or 100 nt. We also allowed the ratio of minor/major
isoforms (M /m) to vary. For a coverage of C and a ratio M /m, the number
of reads coming from the major isoform is M C and the number of minor
isoform reads is mC'. We chose relative abundances ratios for the inclusion
isoform as such: 90/10, 75/25 and 50/50. All reads are supposed to
represent the full-length isoform. Finally for hybrid correction input, short
reads of length 150 were simulated along each isoform, with 10X and 100X
coverage.

During the simulation, we produced two versions of each read. The
reference read is the read that represents exactly its isoform, without errors.
The uncorrected read is the one in which we introduced errors. We used
an error rate and profile that mimics observed R9.4 errors in ONT reads
(total error rate of ~13%, broken down as ~5% of substitutions, ~1% of
insertions and ~7% of deletions). After each corrector was applied to the
read set, we obtained a triplet (reference, uncorrected, corrected) read that
we used to assess the quality of the correction under several criteria.

‘We mapped the corrected reads on both exclusion and inclusion reference
sequences using a fast Smith-Waterman implementation (Zhao et al., 2013),
from which we obtained a SAM file. It is expected that exclusion corrected
reads will map on exclusion reference with no gaps, and that a deletion of
the size of the skipped exon will be reported when mapping them to the
inclusion. For each read, if it could be aligned to one of the two reference
sequences in one block (according to the CIGAR), then we assigned it to
to this reference. If more blocks were needed, we assigned the read to the
reference sequence with which the cumulative length of gaps is the loweest.
We also reported the ratio between corrected reads size of each isoform kind
and the real expected size of each reference isoform.

KEY POINTS

e [ong-read transcriptome sequencing is hindered by high error
rates that affect analyses such as the identification of isoforms,
exon boundaries, open reading frames, and the creation of gene
catalogues.

e This review evaluates the extent to which existing long-read
DNA error correction methods are capable of correcting cDNA
Nanopore reads.

e Existing tools significantly lower the error rate, but they also
significantly perturb gene family sizes and isoform diversity.

ACKNOWLEDGEMENTS

LL acknowledges CNPgq/Brazil for the support. This work was
performed using the computing facilities of the CC LBBE/PRABI
and the France Génomique e-infrastructure (ANR-10-INBS-09-08).

FUNDING

This work was supported by the French National Research
Agency [ANR ASTER, ANR-16-CE23-0001]; and the Brazilian
Ministry of Science, Technology and Innovation (in portuguese,
Ministério da Ciéncia, Tecnologia e Inovagdo - MCTI) through
the National Counsel of Technological and Scientific Development
(in portuguese, Conselho Nacional de Desenvolvimento Cientifico
e Tecnolégico - CNPq), under the Science Without Borders (in
portuguese, Ciéncias Sem Fronteiras) scholarship grant [process
number 203362/2014-4 to LL].

COMPETING INTERESTS

JMA is one of the authors of the NaS error-correction tool (Madoui
et al., 2015). However, this study was designed and performed with
no bias towards this particular tool. JMA is part of the MinlON
Access Programme (MAP) and received travel and accommodation
expenses to speak at Oxford Nanopore Technologies conferences.

BIOGRAPHICAL NOTE

All authors are part of the ASTER project (ANR ASTER) with the
purpose of developing algorithms and software for analyzing third-
generation sequencing data.

REFERENCES

Bao, E. and Lan, L. (2017). HALC: High throughput algorithm for
long read error correction. BMC Bioinformatics, 18(1), 204.

Bouri, L. and Lavenier, D. (2017). Evaluation of long read error
correction software. Technical report, INRIA Rennes - Bretagne
Atlantique ; GenScale.

Byrne, A., Beaudin, A. E., Olsen, H. E., Jain, M., Cole, C.,
Palmer, T., DuBois, R. M., Forsberg, E. C., Akeson, M.,
and Vollmers, C. (2017). Nanopore long-read RNAseq reveals
widespread transcriptional variation among the surface receptors
of individual B cells. Nature Communications, 8, 16027.

Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake,
J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler,
E. E., Turner, S. W., and Korlach, J. (2013). Nonhybrid, finished
microbial genome assemblies from long-read SMRT sequencing
data. Nature Methods, 10(6), 563-569.

Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion,
G. T., Clum, A., Dunn, C., O’Malley, R., Figueroa-Balderas,
R., Morales-Cruz, A., Cramer, G. R., Delledonne, M., Luo, C.,

12

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Comparative assessment of long-read error-correction software applied to RNA-sequencing data

Ecker, J. R., Cantu, D., Rank, D. R., and Schatz, M. C. (2016).
Phased diploid genome assembly with single-molecule real-time
sequencing. Nature Methods, 13(12), 1050-1054.

Choudhury, O., Chakrabarty, A., and Emrich, S. J. (2018). HECIL:
A Hybrid Error Correction Algorithm for Long Reads with
Iterative Learning. Scientific Reports, 8(1), 9936.

Goodwin, S., Gurtowski, J., Ethe-Sayers, S., Deshpande, P.,
Schatz, M. C., and McCombie, W. R. (2015). Oxford Nanopore
sequencing, hybrid error correction, and de novo assembly of a
eukaryotic genome. Genome research, 25(11), 1750-6.

Hackl, T., Hedrich, R., Schultz, J., and Forster, F. (2014). proovread
: large-scale high-accuracy PacBio correction through iterative
short read consensus. Bioinformatics, 30(21), 3004-3011.

Hu, R., Sun, G., and Sun, X. (2016). LSCplus: a fast solution
for improving long read accuracy by short read alignment. BMC
bioinformatics, 17(1), 451.

Kaisers, W., Ptok, J., Schwender, H., and Schaal, H. (2017).
Validation of Splicing Events in Transcriptome Sequencing Data.
International journal of molecular sciences, 18(6).

Kchouk, M. and Elloumi, M. (2016). Efficient Hybrid De Novo
Error Correction and Assembly for Long Reads. In 2016
27th International Workshop on Database and Expert Systems
Applications (DEXA), pages 88-92. IEEE.

Koren, S., Schatz, M. C., Walenz, B. P.,, Martin, J., Howard,
J. T., Ganapathy, G., Wang, Z., Rasko, D. A., McCombie,
W. R., Jarvis, E. D., and Phillippy, A. M. (2012). Hybrid error
correction and de novo assembly of single-molecule sequencing
reads. Nature Biotechnology, 30(7), 693-700.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H.,
and Phillippy, A. M. (2017). Canu: scalable and accurate long-
read assembly via adaptive jigkj/i; -mer weighting and repeat
separation. Genome Research, 27(5), 722-736.

Krizanovi¢, K., Echchiki, A., Roux, J., and gikié, M.
(2018). Evaluation of tools for long read RNA-seq splice-aware
alignment. Bioinformatics, 34(5), 748-754.

La, S., Haghshenas, E., and Chauve, C. (2017). LRCstats, a tool
for evaluating long reads correction methods. Bioinformatics,
33(22), 3652-3654.

Li, C.,, Chng, K. R., Boey, E. J. H., Ng, A. H. Q., Wilm, A., and
Nagarajan, N. (2016). INC-Seq: accurate single molecule reads
using nanopore sequencing. GigaScience, 5(1), 34.

Li, H. (2018). Minimap2: pairwise alignment for nucleotide
sequences. Bioinformatics, 34(18), 3094-3100.

Li, J., Harata-Lee, Y., Denton, M. D., Feng, Q., Rathjen, J. R,
Qu, Z., and Adelson, D. L. (2017). Long read reference genome-
free reconstruction of a full-length transcriptome from Astragalus
membranaceus reveals transcript variants involved in bioactive
compound biosynthesis. Cell Discovery, 3, 17031.

Loman, N. J. and Quinlan, A. R. (2014). Poretools: a toolkit
for analyzing nanopore sequence data. Bioinformatics, 30(23),
3399-3401.

Loman, N. J., Quick, J., and Simpson, J. T. (2015). A complete
bacterial genome assembled de novo using only nanopore
sequencing data. Nature Methods, 12(8), 733-735.

Madoui, M.-A., Engelen, S., Cruaud, C., Belser, C., Bertrand, L.,
Alberti, A., Lemainque, A., Wincker, P., and Aury, J.-M. (2015).
Genome assembly using Nanopore-guided long and error-free
DNA reads. BMC genomics, 16(1), 327.

Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de
Peer, Y., Audenaert, P., and Fostier, J. (2016). Jabba: hybrid error
correction for long sequencing reads. Algorithms for Molecular
Biology, 11(1), 10.

Morisse, P., Lecroq, T., and Lefebvre, A. (2018). Hybrid correction
of highly noisy long reads using a variable-order de Bruijn graph.
Bioinformatics.

Oikonomopoulos, S., Wang, Y. C., Djambazian, H., Badescu, D.,
and Ragoussis, J. (2016). Benchmarking of the Oxford Nanopore
MinION sequencing for quantitative and qualitative assessment
of cDNA populations. Scientific Reports, 6(1), 31602.

Sahlin, K., Tomaszkiewicz, M., Makova, K. D., and Medvedev, P.
(2018). Deciphering highly similar multigene family transcripts
from Iso-Seq data with IsoCon. Nature Communications, 9(1),
4601.

Sakharkar, M. K., Chow, V. T. K., and Kangueane, P. (2004).
Distributions of exons and introns in the human genome. In silico
biology, 4(4), 387-93.

Salmela, L. and Rivals, E. (2014). LoRDEC: accurate and efficient
long read error correction. Bioinformatics, 30(24), 3506-3514.
Salmela, L., Walve, R., Rivals, E., and Ukkonen, E. (2016).
Accurate self-correction of errors in long reads using de Bruijn

graphs. Bioinformatics, 33(6), btw321.

Sedlazeck, F. J., Lee, H., Darby, C. A., and Schatz, M. C.
(2018). Piercing the dark matter: bioinformatics of long-range
sequencing and mapping. Nature Reviews Genetics, 19(6),
329-346.

Song, L. and Florea, L. (2015). Rcorrector: efficient and accurate
error correction for Illumina RNA-seq reads. GigaScience, 4(1),
48.

Sovié, L., gikié, M., Wilm, A., Fenlon, S. N., Chen, S., and
Nagarajan, N. (2016). Fast and sensitive mapping of nanopore
sequencing reads with GraphMap. Nature communications, 7,
11307.

Tischler, G. and Myers, E. W. (2017). Non Hybrid Long Read
Consensus Using Local De Bruijn Graph Assembly. bioRxiv,
page 106252.

Tong, L., Yang, C., Wu, P-Y., and Wang, M. D. (2016). Evaluating
the impact of sequencing error correction for RNA-seq data with
ERCC RNA spike-in controls. In 2016 IEEE-EMBS International
Conference on Biomedical and Health Informatics (BHI), volume
2016, pages 74-77. IEEE.

Vaser, R., Sovi¢, 1., Nagarajan, N., and §ikié, M. (2017). Fast and
accurate de novo genome assembly from long uncorrected reads.
Genome research, 27(5), 737-746.

Wang, B., Tseng, E., Regulski, M., Clark, T. A., Hon, T., Jiao, Y.,
Lu, Z., Olson, A., Stein, J. C., and Ware, D. (2016). Unveiling the
complexity of the maize transcriptome by single-molecule long-
read sequencing. Nature Communications, 7, 11708.

Weirather, J. L., Afshar, P. T., Clark, T. A., Tseng, E., Powers,
L. S., Underwood, J. G., Zabner, J., Korlach, J., Wong, W. H.,
and Au, K. F. (2015). Characterization of fusion genes and the
significantly expressed fusion isoforms in breast cancer by hybrid
sequencing. Nucleic Acids Research, 43(18), el 16—-e116.

Weirather, J. L., de Cesare, M., Wang, Y. Piazza, P,
Sebastiano, V., Wang, X.-J., Buck, D., and Au, K. F. (2017).
Comprehensive comparison of Pacific Biosciences and Oxford
Nanopore Technologies and their applications to transcriptome
analysis. F1000Research, 6, 100.

13

bioRxiv preprint first posted online Nov. 23, 2018; doi: http://dx.doi.org/10.1101/476622. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license.

Lima et al.

Workman, R. E., Tang, A., Tang, P. S., Jain, M., Tyson, J. R,,

Zuzarte, P. C., Gilpatrick, T., Razaghi, R., Quick, J., Sadowski,
N., Holmes, N., Jesus, J. G. d., Jones, K., Snutch, T. P.,, Loman,
N. J., Paten, B., Loose, M. W., Simpson, J. T., Olsen, H. E.,
Brooks, A. N., Akeson, M., and Timp, W. (2018). Nanopore
native RNA sequencing of a human poly(A) transcriptome.
bioRxiv, page 459529.

Wu, T. D. and Watanabe, C. K. (2005). GMAP: a genomic

mapping and alignment program for mRNA and EST sequences.

Bioinformatics, 21(9), 1859-1875.

Xiao, C.-L., Chen, Y., Xie, S.-Q., Chen, K.-N., Wang, Y., Han,
Y., Luo, F., and Xie, Z. (2017). MECAT: fast mapping, error
correction, and de novo assembly for single-molecule sequencing
reads. Nature Methods, 14(11), 1072-1074.

Zhao, M., Lee, W.-P., Garrison, E. P., and Marth, G. T. (2013). SSW
Library: An SIMD Smith-Waterman C/C++ Library for Use in
Genomic Applications. PLoS ONE, 8(12), e82138.

14

Chapter 7. Comparative assessment of long-read error-correction software
170 applied to RNA-sequencing data

Chapter 8

Assemblying alternative splicing
events from short reads guided by
accurate long reads

Preamble
Key points

e In preparation.

Status

In preparation, not being submitted before the defence.

Author contributions

L. is first author in this paper.

Assemblying alternative splicing events from short reads
guided by accurate long reads

Leandro Lima*, Camille Sessegolo*, Blerina Sinaimeri*, Said Sadique Adi*, Marie-France Sagot*,
Vincent Lacroix*

1 Introduction and background

Alternative splicing (AS) is an essential process in eukaryotic organisms, as evidenced by 90%
of human multi-exonic genes undergoing it [31,49]. The study of AS can help to understand the
transcriptome diversity expressed in a given set of cells in a particular condition, helping on the
comprehension of diseases, development stages, stress-response mechanisms, etc. Despite its impor-
tance, AS remains underestimated, even in model species [49,43].

The most commonly used technique to study transcriptomes, and consequently AS, is through
RNA sequencing. Many tools were developed to process RNA-seq reads when a reference genome
or transcriptome is available. As examples, we can cite: i) splice-aware mappers [6,50,19,25,8,20];
ii) reference-based assemblers [47,45,15,36]; iii) reference-based algorithms to estimate expression
levels [38,22,33,5,32].

The context this work is inserted in, however, concerns non-model species, where reference
genomes or transcriptomes are not available. In this case, most de novo pipelines try to identify and
quantify full-length isoforms by assembling RNA-seq reads, such as Oases [44], SOAPdenovo-Trans
[51], Trans-ABySS [39] and Trinity [13]. The main advantages of de novo methods over reference-
based methods are: i) they do not require any read-reference alignments and can therefore be applied
when the genomic sequence is not available, is gapped, highly fragmented or substantially altered,
as in cancer cells [13]; ii) they enable to discover transcripts that are missing or incomplete in the
reference [16]. Their disadvantages include: i) the assembly of short reads is itself difficult, and only
the most abundant transcripts are likely to be fully assembled [16]; ii) reconstruction heuristics
are usually employed, which may lead to missing infrequent alternative transcripts while highly
similar transcripts are likely to be assembled into a single transcript [29,27]; iii) they require more
computational power than reference-based strategies.

As described, assembling full-length transcripts from short reads without a reference genome is
challenging. Indeed, when the sequenced reads are short, and two transcripts have similar expression
levels with a long enough constitutive region (longer than the fragments’ length) flanked by two
variable regions, the reads do not provide enough information to phase the two variable regions
reliably, and any choice could be arguable. A recent solution to this problem was conceived due to
advances in the sequencing technology. Such advances resulted in the maturity of third generation
sequencers, e.g. PacBio and Oxford Nanopore, capable of sequencing long reads. In the RNA context,
these technologies are being increasingly used as they better describe exon/intron combinations,
and frequently sequence full-length transcripts, thus usually eliminating the assembly step and its
related problems.

However, in many applications, the focus can be restricted to the exon level. Identifying which
exons can be alternatively spliced is already very valuable. It has been shown that local assem-
bly of AS events is more sensitive and precise than global assembly strategies from short read

* Authors list is provisional and is subject to modifications before the submission of this work.

data [43,27,4], due to the fact that assembling only the local variations between mRNAs is eas-
ier than assembling full-length transcripts, which requires discriminating very similar expressed
transcripts, due to AS and expression of paralogous genes.

Therefore, we can say that long reads enable the study of full-length transcripts, while short
reads are more appropriate for local assembly approaches. Indeed, long reads could also be used
to study local events, like AS. However, there are two main issues with this approach. The first
is that the cost of sequencing a long read is orders of magnitude higher than sequencing a short
read. As such, usually just a fraction of the transcriptome, mostly the highly expressed isoforms,
are covered by long reads. Nevertheless, a comprehensive AS study requires a deep sequencing
in order to capture non-highly expressed mRNAs, and to correctly quantify all identified events.
Short-read sequencing can dig deeper in the transcriptome, describing AS events not present in
the long reads. The shallowness of long reads sequencing can be alleviated through special library
preparations, such as normalization of the RNA libraries, to reduce over-represented transcripts [21].
Moreover, degradation of mRNA targets selected to be sequenced can be eliminated through 5-cap
selection, thus guaranteeing the sequencing of full-length mRNAs. Such techniques might decrease
the throughput, but will better describe the transcriptome diversity in a set of cells. Even so, short
reads are still able to dig deeper in the transcriptome. The second issue with using long reads to
study AS is that third generation sequencing is currently hindered by high error rates that affect the
identification of isoforms, exon boundaries, open reading frames, and the creation of gene catalogues.
Although error-correction in long RNA-seq datasets is possible with correction algorithms tailored
for the genomic context, such methods usually tend to truncate the transcriptome, an undesirable
side effect [26]. However, accurate long reads can still be obtained natively, mainly through Pacific
Biosciences (PacBio) SMRT Iso-Seq sequencing [38]. An alternative to Iso-seq data is to employ
circular sequencing techniques for Nanopore, such as INC-Seq [23].

Although long-read sequencing is currently shallow and not as comprehensive as short-read
sequencing to describe AS events, they are able to describe the complete structure of mRNAs,
which is hard or impossible, in some cases, with short reads. The full-length sequencing of a given
transcript provides a backbone or a guide to assemble AS events around the transcript. In this
work, we therefore explore a hybrid AS assembly method, which makes use of both short and long
reads, in order to list AS events in a comprehensive manner, thanks to short reads, guided by the
full-length context provided by the long reads. Hybrid assembly of both types of RNA-seq reads in
a de novo context has already been explored. Trinity [13] v2.0.2 release onwards improves the last
step of assembly, the Butterfly algorithm, to better integrate long read support and to improve on
the assembly of complex isoforms, particularly those containing internally repetitive sequences [14].
IDP-denovo [12] first assembles short reads into short-reads scaffolds (SR-scaffolds) through existing
de novo assemblers of short read data only, then align long reads to SR-scaffolds to extend and fill
potential gaps between the latter. Unaligned long reads are not discarded, but grouped into gene
clusters. The extended SR-scaffolds and the gene clusters are used to create a pseudo-reference of
exonic regions, i.e. a reference containing only the expressed regions for each gene, allowing the
identification of alternative exon usage and splice sites. Finally, isoform abundance estimation is
performed using IDP [2]. However, as previously shown in [43,27,4], the local assembly of AS events
is more sensitive and precise than full-length transcriptome assembly strategies, when the input is
only short reads. Therefore, we expect that this remains true also in the hybrid assembly scenario.
By focusing on the specific goal of assembling only AS events, and not full-length transcripts, we
predict that the method here described will be faster, more sensitive and precise than methods that
focus on the hybrid global assembly of short and long RNA-seq reads, such as Trinity and IDP.

2 Methods

Our method receives as input shallow long reads, and deep short reads (both in Fasta or Fastq
formats), and outputs local alternative splicing events that are described in the short reads, but not
in the long reads, in Fasta format. It is composed by four main steps: 1) hybrid DBG construction;
2) exact mapping of long reads to the hybrid DBG; 3) Unitig Linking Graph construction; 4)
alternative splicing events enumeration. The next sections explain each step in detail. We start
however by providing some basic definitions.

2.1 Basic definitions

The next sections use the following basic definitions. Given a graph G, and a vertex v € G, the
out-neighbours (in-neighbours) of v in G are denoted by N (v) (N (v)). We shall usually simplify
all the notations by omitting the graph argument, when this is clear from the context. As such, the
previous notations can be simplified to N*(v) and N~ (v). In a DBG G built with a given value of &,
the k-mer represented by the vertex v € G is denoted by kmer(v). The abundance of a vertex v € G,
denoted by a(v), is the number of times kmer(v) appears in the reads datasets used to build G. The
relative out-abundance (in-abundance) of an arc e = (s,t) € G is ra™(e) = a(t)/ 2 ven+(s) (V)
(re=(e) = a(t)/ Xpen-) a(v)). A compressed de Bruijn graph (cDBG) C'is obtained from a DBG
G by replacing all the linear paths p in G by a vertex u such that the sequence associated to u
(denoted by seq(u)) in C is the sequence spelled by p in G. The vertices of C are called unitigs. The
size of a unitig u, denoted by |u|, equals the size of seq(u). Observe that G and C' encode the same
information, but in practice the latter can be more efficiently stored in memory and algorithms
usually run faster. A walk w = v1,v9, ..., v of k vertices in a graph G is a sequence of vertices of G
such that (v;,v;+1) € G for 1 <i <k — 1. A path is a walk with no repeated vertices.

2.2 Hybrid DBG construction

We now detail how we build a hybrid bicoloured DBG from both the short and long reads. We start
by building a DBG Gg from the deep short reads. We assume that these reads contain few errors,
e.g. 0.1%, which is common in the Illumina technology, the most used second-generation sequencer.
We deal with sequencing errors by using two cut-offs. As commonly done in genomics, we first
remove from the graph the non-solid k-mers. Solid k-mers are the vertices v € Ggla(v) > amin,
where i is the minimum abundance solidity threshold (parameter -min_abundance, defaulting
to 2), representing a counting floor for the k-mers that are believed to be correctly sequenced (i.e.
does not include a sequencing error). The second cut-off is a relative one, which is commonly applied
in tools processing second generation RNA-seq reads, such as Trinity [13] and KisSplice [43]. The
objective of the relative cut-off is to remove errors in highly-expressed transcripts. We do so by
detecting and removing the arcs e € Gglra™(e) < ramin or ra™(e) < Tamin, Where ra,;, is the
minimum relative abundance threshold (parameter -rel_cutoff, defaulting to 0.02). By default,
we apply low values for both cutoffs so that we do not miss infrequent isoforms.

Next, we build the DBG G, from the long reads. However, we do not perform any sequencing
error removal procedures on Gp. The main reason is that the sequencing is much more shallow,
and applying the same cutoffs as in short reads would result in losing out many reads (i.e. many
transcripts are supported by only one read). Our method is primarily designed for perfect long

reads. We discuss later how sequencing errors in long reads are expected to affect the performance
of the method.

Finally, we build a hybrid DBG G in which we merge both graphs Gg and G,. To do so, we first
retrieve the unitigs of Gg and G, and then we build G by using such unitigs as input. Moreover, we
colour each vertex v € GG with the colour red, if it stems from the short reads, blue if it stems from
the transcripts, or purple if it stems from both datasets. Finally, in order to be computationally
efficient in the downstream steps, we compress the DBG G into the cDBG C' by replacing its linear
paths by unitigs. During this compression, we also associate each k-mer of GG to the unitig it belongs
to in C, using a vector kmer2Unitig (more specifically, we associate each k-mer identifier to a unitig
identifier). This will allow us to map a sequence to C' efficiently in the next two steps.

We observe that if there are too many sequencing errors in the long reads, i.e. one at every k
bases, both graphs Gs and G will hardly have common regions, and thus the merging of these
graphs will not be appropriate. Therefore, our method works optimally for error-free long reads.
Moreover, it is assumed to work partially (to be demonstrated) when the error rate is below 1 error
every k bases, which can obtained using PacBio SMRT Iso-Seq sequencing [38], or Nanopore INC-
Seq sequencing [23], or through error-correction algorithms [26]. In any case, the high-error-rate
issue of long reads is being actively addressed by the community, through error-correction methods,
special library preparation protocols, and advances in the sequencing technology. The expectation
is thus that the long reads error rate will decrease significantly in the short future, while Illumina
sequencing will continue to improve on reducing the per read cost to remain competitive. This is
the situation in which this method performs appropriately.

In our implementation, all the aforementioned graphs are built using the GATB library [9].

2.3 Exact mapping of long reads to the hybrid DBG

For each long read [given as input, we map [to C' by retrieving a walk w(l) € C spelling out
l. To do so efficiently, we use the implementation of a minimum perfect hash function (MPHF)
on the set of k-mers [28] used to build C. The MPHF allows to retrieve the identifier of a given
k-mer in constant time in most cases'. As such, to map a long read I, we iterate through each
k-mer of [, querying its identifier using the MPHF, and associating the k-mer identifier to its unitig
identifier using the vector kmer2Unitig (in constant time). As we have O(|l|) k-mers in [, this
procedures takes expected O(|l|) time. We note here that, since we assume that the input long
reads are accurate, and thus no sequencing-error-removal procedure was applied when building
G, we do not need to take into account inexact mappings: there will always exist a walk w € C
spelling out each long read. If few sequencing errors are indeed present in long reads, they will be
interpreted as small variations (e.g. SNPs or indels), or will eventually be simplified in the next
step. However, the vector kmer2Unitig can lead to heavy memory usage. It is possible to store it
more compactly by associating just a sample of the k-mers in each unitig. If such k-mers are spaced
by a constant distance, we have a multiplicative reduction in memory consumption, while keeping
the same asymptotic time for mapping. This simple idea is based on the sampling of suffix array
positions in the FM-index [10], and is also already implemented in the sparse Pufferfish index [1].
For now, our method still lacks the implementation of this feature.

! The query time of the MPHF described by Limasset et al. in [28] can deteriorate to the query time of
classical hash tables, in the worst case, but this is extremely rare to happen in practice.

2.4 Unitig Linking Graph construction

The Unitig Linking Graph (ULG) is an abstraction of the ¢cDBG, which removes the complex
parts of the graph, and connects the remaining parts using the read information, adding the range
information given by single-end reads back to the graph, which was lost when cutting the reads into
k-mers. The most complex parts of the graph are often associated to high-copy-number and low-
divergence repeats (i.e. repeats that are present in many copies with very high similarity between
them), which cannot be easily processed by an assembly algorithm(see Figure 1).

The main goal of the ULG is to solve repeats larger than k, but shorter than the reads’ length.
Longer repeats cannot be reliably solved using second generation data, since the read length is not
enough to span such repeats. Observe that since our goal is to find alternative paths that are not
contained in the long reads, we cannot use the long-range information given by long reads to solve
the repeats present in short-read data only.

The ULG shares similarities with several approaches that were conceived to add the read infor-
mation back to the DBG in a reference-free context. The first approaches to do so were based on
using multiple values of k to build a DBG, instead of only one [35,34,3,30,24]. A general framework
for methods based on this strategy is to build contigs using increasing values of k, and to combine
the produced contigs into one final assembly. The inputs to these DBG constructions with different
values of k can be the raw reads, the contigs built with k' < k or a mixture of both. As k increases,
more read information is integrated into the assembled contigs. More recently, some studies encode
the read information directly into the graph, e.g. [17,41,48]. The main difference between the ULG
and these approaches is that the ULG removes the complex, highly branching parts of the graph,
and connects only the well-assembled unitigs through the read information, while the others work
on the whole graph. As such, the ULG is less general than the aforementioned approaches, and it
is also not an option when its application cannot afford the removal of such complex regions, such
as genomic variant calling in population graphs [48]. On the other hand, it can simplify the down-
stream assembly process, and translate into faster methods, as it is built directly upon a simplified
cDBG, and not on the full DBG.

The ULG U is built from a ¢cDBG C. Figure 2 exemplifies this process. The vertices in U
are the unitigs that are considered trustful. Trustful unitigs are long-enough unitigs so that we
can consider them well assembled. It also means that they have a low branching concentration, as
branches in DBGs split linear paths, thus creating smaller unitigs. The algorithmic choice of trusting
longer unitigs is in accordance to Lima et al. in [27], who show that regions with high branching
concentration in DBGs are related to repeats, and processing them can lead to spurious assemblies.
A strategy to avoid traversing and assembling such regions is to simply use only the long-enough
unitigs. Formally, a unitig u is trustful if u satisfies one of the following conditions: a) u is red and
|u| > k + min,eq or b) u is purple or blue and |u| > k + minyye, where min,.q is the minimum
size of a red unitig to be considered trustful (parameter minSizeRedUnitigs, defaulting to 15)
and minpye is the minimum size of a purple or blue unitig to be considered trustful (parameter
minSizeBlueUnitigs, defaulting to 5). In Figure 2(a), we highlight the trustful and non-trustful
unitigs in a cDBG.

Removing the non-trustful unitigs and keeping only the trustful ones will substantially discon-
nect the graph, making any assembly very fragmented. For example, in Figure 2(a), we will have
six isolated unitigs if we do so. This means that trustful unitigs are potentially connected through
complex, repeat-induced regions, which were removed in the ULG. In order to retrieve back the con-
nections, we map the short reads to the cDBG (using the same procedure described in Section 2.3).
An example of such mapping can be seen in Figure 2(b). Given a read r, described by a walk w(r)

(a)
UCSC Genome Browser on Human Dec. 2013 (GRCh38/hg38) Assembly

MOVE | <<< | << | < | > | »> | >»> ZOOMIN 15x | 3x | 10x | base ZOOM OUt | 15x¢ | 3x | 10x | 100x
chr16:80,975,801-80,981,877 6,077 bp. ‘ enter position, gene symbol, HGVS or search terms | ao

|cnms az3.2)

Scale 2 kil | ha3s
chr16: | &8,977, 8a8| 58,975, aes| 58,979, aas| 58,950, ans| 58,981, ams|
Your Sequence from B1at Search
rcmca,incLisuﬂ:rm [)
GENCODE w24 Comprehensive Transcript 3et (only Gasic displaded by default)
GEMCODE w2+ me— =
Repeat ing Elements by RepeatMasker
LTR
OMA
Eimp e
Low Comp 186 ity 1

Satellite
RNA

ather
unknouwn

(b)

Fig. 1. (a) A subgraph in a de Bruijn graph with neighbourhood 5 around an exonized ALU. The correct
assembly is shown as the red path. The complex region is due to the presence of ALUs in transcriptomic
data. ALUs are mainly present in introns, but some have been exonised. They are present in high numbers in
transcriptomic data because some pre-mRNA is sequenced together with mRNAs. Both exonic and intronic
ALUs contribute to the complex structure of the DBG; (b) The UCSC Genome Browser shows that this
region corresponds to an exonized ALU (circled in red) in the CMC2 human gene. The flanking exons are
also shown for a better visualisation. The data used in this figure corresponds to RNA-seq reads from the

MCFT7 cell line (with depletion of DDX5 and DDX17) [4].

in the ¢cDBG, for each pair of consecutive trustful unitigs (u,v) € w(r), we get the substring s in
r connecting u to v and add a s-labeled arc e = (u,v,s) to U. For example, if r maps orderly to
the trustful unitigs u, v, w and x, we shall build arcs between v and v, v and w, and w and z. The
orderly mapping of r to the set of trustful unitigs is denoted by m(r) = w, v, w, z. Furthermore, if
several different reads map to the same pair of consecutive unitigs v and v, we might have several
arcs e = (u,v,s), with different labels s, in U. Constructing these arcs between trustful unitigs
based on short-read mapping is exemplified in Figure 2(c).

Finally, we still might lose some range information by constructing arcs only between consecutive
unitigs, e.g. we lost the information given by the read r that u is connected to x passing through
v and w. In order to recover part of this information, we store for each trustful unitig u a set h(u)
such that v € h(u) +» Faread rlu — ... = v — ... € m(r). In other words, h(u) contains the set
of vertices v such that there is at least one read mapping to u and later to v. The information
provided by h(u) can be used as hints and guide the assembly algorithm on how to solve a repeat-
induced region using the range information provided by the short reads. Figure 2(c) shows h(U1)
for the depicted example. In this figure, we can also see how the hints can help to choose the
correct path during assembly in an efficient way. If we start by assembling U1 — U2, the hints from
U1 indicate that it is more reliable to continue the assembly towards U4 and UG6. The assembly
a1 = Ul — U2 — U5 should be considered with caution since there are no reads supporting the
link from U1 to U5 (while we have for U4 and UG6). Such assembly could be wrong if, for example,
Ul and U2 stem from a gene G; and U2 and U5 stem from another gene Go (U2 is a conserved
region in an inter-gene repeat present in G and Gs). There is also the possibility of a; being a
correct assembly, and due to a read coverage or read length problem, we have no reads linking U1
to U5. Thus, the usefulness of the hints of a unitig depends on the read coverage and read length.

Observe that there is still an arc coupling problem that is not solved by the ULG. For example,
in assembly ay = Ul — U2 — U4 in Figure 2, we should choose the green arc (with label ACTTG) to
connect U1 and U2 for as to be coherent with Read 1. However, empirical observations in RNA-seq
data suggest that the labels of different arcs between two trustful unitigs differ only by some SNPs
or indels, or represent more complex allelic differences, like tandem satellite repeats with different
copy number?. In our method, since we are not interested in these variations, we further simplified
the ULG by keeping only the most frequent arc between two unitigs.

Extensions of the ULG to represent proper read threading, for example, can be done. Each
element of the hints set can be a path spelled by a read. This would allow for properly spanning
multiple copies of a same repeat, for instance. However, this naive strategy would be heavy in
memory. The approach implemented in the Linked de Bruijn Graph (LdBG), described in [48], in
which h(v) would store only the paths starting in v can be low in memory and enough to represent
the full read information. In fact, the LdBG [48] is more general than the ULG, since it operates
on the full DBGs, and has proper read threading. However, the LdABG can be more costly than the
ULG, as all the complex regions are kept in the graph3.

2 Note to the reviewers: we shall add a section in the Supplementary Material in the full version of the
paper with data to backup this claim.

% Note to the reviewers: the authors were unaware of [48] during the conception and implementation of the
ULG. It might be more proper to describe the ULG as based on, or as a specialization of, the LdBG.

I Trustful unitigs
@ Non-trustful unitigs

I Trustful unitigs
@ Non-trustful unitigs

(b)

h(ul) = {U2, U3, U4, US6)

I Trustful unitigs
@ Non-trustful unitigs

(c)

Fig. 2. Building the ULG from a ¢cDBG. (a) The cDBG with the trustful and non-trustful unitigs identified;
(b) The mapping of four reads on the ¢cDBG; (¢) The construction of the ULG: 1) the non-trustful unitigs
are removed; 2) the trustful unitigs are linked by labelled arcs reflecting the read mapping; 3) the hints for
each vertex v, h(v), is created. In this example, only h(U1) is shown for simplicity.

2.5 Alternative splicing events enumeration

In order to enumerate the AS events that are present in the short reads and absent in the long
reads, we iterate through the mapping of each long read [, and find alternative paths in the ULG
flanked by two unitigs stemming from [. This section describes in detail this procedure.

Let C be the cDBG (created in Step 1 - see Section 2.2), [a long read, w(l) a walk in C' spelling
out ¢ (computed in Step 2 - see Section 2.3), and U the ULG (created in Step 3 - see Section 2.4).
We iterate through the vertices v = w; € w(l), enumerating all (v, u)-alternative paths in U, which
are paths starting in v, following trustful unitigs not belonging to I, and finally reaching a vertex
u=w; € w(l)|i <j,i.e, the index of v in w is smaller than the index of v in w. The main intuition
is that v and u compose (part of) the flanking exons of the alternative splicing event we want to
find. We require v and u to be (i) trustful and (ii) purple. Clearly, (i) has to be satisfied for v and v
to belong to the ULG U. We require (ii) so that the flanking sequences are expressed in both short
and long reads. Moreover, to bound our search space, we do not explore paths longer than a given
threshold, and we halt the enumeration once we’ve listed a good amount of AS events between the
two flanking vertices. Lastly, we make use of the hints of the ULG to guide our assembly.

In order to understand our algorithm in detail, consider the following definitions. Given a unitig
u € U, c¢(u) denotes the number of k-mers u contains, i.e. ¢(u) = |u| — k + 1. Given an arc
e = (u,v,s) € U, c(e) denotes the length of the label of e, i.e. ¢(e) = |s|. In general, the ¢ function
denotes the cost of traversing a given unitig or arc. Given a path p = r — y — ... — z of vertices
of U, ¢(p) is the cost of all its vertices and arcs, and seq(p) denotes the sequence obtained by
assembling p. ED(s1, s2) denotes the edit (or Levenshtein) distance between two sequences s; and
$9. SG-ED(s1, s2) denotes the semi-global edit distance between s; and so, i.e. we compute the edit
distance between s1 and so not penalizing for edit operations in both extremes of s; and ss. SG-E D
is more appropriate than FD to measure the difference rate between two sequences assuming that
one of them is a lot longer than the other. Finally, d(s,t,U) denotes the length of the shortest path
from s to t in U.

The proposed algorithm is a single-source multi-target path-enumeration algorithm with two
constraints. The first is a length constraint £ (¢ = 2000 by default) on the assembled sequences to
bound the search space. Events longer than ¢ will not be found by the algorithm. The second is
a biologically-motivated constraint on the splicing complexity to further reduce the search space.
During the enumeration algorithm, an alternative path p = u — w — ... — v is defined as a novel
splicing event if: (i) there is no other path p’ € AP(u,v) that is very similar to p, where AP (u,v)
contains all alternative paths found so far between u and v; (ii) p is not contained in any long
read. More specifically, in condition (i) we verify if ED(seq(p), seq(p’))/max(|seq(p)|, |seq(p’)|) >=
minED, for all p’ € AP(u,v), where minED is a minimum edit distance threshold to consider that
two paths represent different splicing events (minED = 0.05 by default). To efficiently implement
condition (ii), we verify if SG-ED(seq(p),l) >= minED, for all long reads [containing at least
one of the flanking unitigs v or v. Finally, for each pair of flanking unitigs u and v, we list at most
SC (SC = 10 by default) splicing events. This constraint is reasonable since we hardly have more
than SC' alternative transcripts between two constitutive exons. For instance, human genes have on
average 6.95 transcript variants per gene, and most genes have at most 10 transcript variants [42].
Moreover, the fact that a gene has many transcript variants does not imply it has complex local AS
events: combinations of several local AS events and alternative transcript initiation and termination
sites can contribute multiplicatively to the number of transcript variants. We further note that, in
the current state of this work, these parameters are still being tuned and are under evaluation.

10

Furthermore, when exploring the search space of all feasible alternative paths, we make use
of the ULG’s hints, described in Section 2.4, to drive the assembly towards the sequences most
supported by the read information. To do so, when building an alternative path p in our enumeration
algorithm, we keep track of how many times each vertex v € U was included in the hints of each
u € p in a vector HC'. In other words, HC(v) = >_,c [h(u) N {v}|. When faced with the choice of
which unitigs to follow to extend a path p = u — ... — v, we explore the neighbours w such that
HC(w) is the highest. Indeed, this could lead us to miss some lowly covered transcripts, but this
conservative algorithmic choice reduces the number of misassemblies. A more permissive strategy
can be executed by setting a higher value for SC. We observe that this strategy is similar to the
oldest link approach described in the LABG [48]. However, we are more permissive, since our goal
is to enumerate several alternative paths between two vertices, whereas the LdBG focus on finding
a long linear path explaining the genome.

Finally, Algorithm 1 describes our alternative path enumeration procedure in detail. For the
time analysis of Algorithm 1, consider the following definitions. Let U be a graph, and let n and
m be the number of vertices and arcs in U, respectively. U is the reverse graph of U, i.e. U is
a copy of U but with the direction of the arcs reversed. Let ssd(v,U) be the Dijkstra’s Shortest
Path First algorithm [7], that computes the distance from a single source v to all vertices in U
in O(m + nlogn) time. In order to simplify this time analysis, we will ignore the time required
to output an alternative path once we reach a target (i.e. we are not taking into account here
the time spent when executing lines 5-19). We will only determine the asymptotic delay of finding
alternative paths. Updating and restoring the HC' (in lines 22 and 37, respectively) can be done
in O(n) time with a count vector indexed by the vertices. We can associate a boolean vector to
a path p in order to query the membership of a vertex w in p in O(1) time. Thus the constraint
in line 24 can be done in O(1) time. For the constraint in line 25, we can add an artificial vertex
t' to UM such that N,(t') = T and c(t',t € T) = 0, and precompute ssd(t', U) before line 24
in O(m + nlogn) time. By doing so, 3t € T|c(p) + ¢(v,w) + d(w,t,U) < £ can be evaluated in
O(1) time, since minger{d(w,t,U)} = d(t',w,U"), which is already precomputed. Thus, lines 24
and 25 run in O(n) total time, since | N (v)| = O(n), with a O(m + nlogn) preprocessing time.
We observe that all vertices w € p should not be in U” at the time of the precomputation of
ssd(t',UF). Tt is not hard to see that the other lines in Algorithm 1 take at most linear time, apart
from the recursive call. Since every time we execute Algorithm 1, we add a vertex to the path p
and |p| < n, then the delay to find alternative paths is O(n* (m+mnlogn)). It is not hard to reduce
the problem of listing bounded length (s, ¢)-paths in directed graphs [37] to our problem of finding
alternative paths in the ULG. The delay of the most efficient algorithm for this first problem is
also O(n* (m+nlogn)) [37], matching our. An improvement in our algorithm would also imply an
improvement on the most efficient algorithm for the single-source K-shortest paths in a directed
graph [52,37], which dates back from the 1970s. As such, we consider that improving even further
the delay of our enumeration algorithm is far from being trivial, and out of the scope of this paper.

3 Preliminary results

In order to check if our method works, we validated it in sample datasets. This also gave us some
good test cases to help solve eventual bugs and direct the development. The results described in
this section will not be part of the final version of this paper. An implementation of our method
can be found in https://gitlab.inria.fr/lishisoa/EYTA, but we warn that it is yet in active
development, not finished, and unstable.

11

3.1 Simulated dataset on one gene and five transcripts

We first ran our method on the human gene NEU1, which contains five transcripts. The long reads
set was composed only by one of the five transcripts (ENST00000229725.4), and short reads were
simulated using ART ILLUMINA [18] at 50x coverage for each transcript. In this small example,
there were four intron retentions, one alternative acceptor and one exon skipping event to be found,
which all were. Figure 3 details these results.

| Chr6_GLBBE2SEV2_alt [E_GLGBeESEVE_aTE |]

Scale 1 kit | hass
chr6_GLB8o2S6va_! | 3,161, aa8| 3,161,568] IR ,162, aaa| 35,162,588] 3,163,08& 3,163,568| 3,164, aa0|
GauenevNicon—Blat Seanch

ENSTB6860493354 .1
ENSTRBaRA456127 .5
ENSTB866808473226.5
ENSTBa88A495558, 1

T T T s
|cnrs_cLaeazssvz_a 1t [T T B oLaeatssvz_aw I T T |i
T T T 7
] Il Il Il]
scale 1 Ko} T 1 hs3s
chr&_GLBeeaseva_: | 3,161, 990| 3,161,500| 3,162, 00| 3,162,500| 3,163, 000 3,163, s00| 3,164, 000|
vour Sequence|from B1at Search
if_129.44_LR_0_MT ——
Quant if_38.6_AF_2
ntif_37.1S38_AP_4 I
ntif_67.2189_AP_0
Nt if_34.3524_AP_8
uantif_29.5_AP_10 | 4
ntif_36.1887_AF_6 —

(b)

Fig. 3. (a) The five transcripts from the human gene NEUL, aligned to the human reference genome and
visualized using the UCSC Genome Browser. The events to be found are in red boxes. IR stands for Intron
Retention, AC for Alternative Acceptor, and ES for Exon Skipping. (b) The output of our method - the
long read and its alternative paths. All events were found in this very simple example.

3.2 Simulated dataset on the whole human chromosome 1

Our next benchmark comprised a simulated dataset on the whole human chromosome 1. We
restricted ourselves to protein-coding, multi-transcript, and non-paralogous genes, obtaining 488
genes. We did not simulate long reads, and we took 10% of the transcripts of each gene as our long
reads set. We then simulated 30x coverage 150-bp single-end short reads from all transcripts using
wgsim [18], with no error-rate. Our ground truth, built using ASTALAVISTA [11], is composed
by all pairwise known AS events in these genes, where only one of the isoforms of the event is in
the aforementioned long reads set. We understand that this setting is unrealistic in some aspects.
First, real datasets contain paralogous genes, and if they are similar enough (i.e. presenting several
common regions with more than k bases), we will confuse the expression of two different paralogous
genes as alternative transcripts of a single gene. Second, our reads are perfectly accurate. Third,
we have a uniform and homogeneous short-read coverage of all transcripts. On the other hand, we
are also overestimating the alternative splicing level of each gene by simulating all of its transcripts
with short reads. Therefore, this simulated dataset is expected to be more complex in this aspect
than real datasets. Nonetheless, this composes a good test dataset to improve our implementation

12

and have a first performance check of our method. Should this benchmark be included in the final
version of the paper, we shall improve on these unrealistic characteristics.

Considering this benchmark, we currently obtain a recall (proportion of ASTALAVISTA AS
events found by our method over the total number of ASTALAVISTA AS events) of 99.6% and a
precision (proportion of found events corresponding to ASTALAVISTA AS events over the total
number of found events) of 88.7%. We plan to improve our method with this benchmark by clarifying
the 11.3% false positive events we currently have. We could already verify that many of these
false positive events correspond to misassemblies that happen when we have alternative transcript
termination (or initiation) sites coupled with AS events as shown in Figure 4. Unfortunately, as
short reads are unable to describe the full structure of mRNAs, it is not clear how to avoid such
misassemblies for now.

GRCh38.90.chrl B B 1:95.232,155-95,249,225 Go ft « » @O ® 1 | v &

16 kb
o EEETY 95,236 K0 R 9524080 952240 95,244 80 95,246 40 9528k
| | 1 |

[y
-
.
= = '

Upper path ¢drresponds to| Lawer path corresponds to a novel AS event that is described by a true transcript rwops
B i
(W

the read L

ere the assembly of the lower

) path should have stoppe

RWDD3 RWDD3

RWDD3

RWDD3

RWDD3

RWDD3

Fig. 4. A false positive event in human gene RWDD3. The misassembly is due to an alternative transcript
termination site coupled with AS events. The last exon of the transcript that corresponds to the lower path
of the event is part of an internal exon of other transcripts. The event itself is flanked by the first exon
of the gene, and this longer exon. By comparing the transcripts that correspond to the upper and lower
paths of the event, we can see that we do not have a common right flanking exon that would define the
alternative splicing event (the small common region shared between the second exon of the upper path and
the third exon of the lower path is shorter than k, and thus does not induce a right flanking vertex in the
ULG). Unfortunately, as short reads are unable to describe the full structure of mRNAs, it is not clear to
infer that the assembly of the lower path should have stopped earlier. Visualisation done with IGV [40].

4 Perspectives

In this section, we describe our perspectives for this work, which we plan to develop in order to
publish it.

4.1 Methodological perspectives

— Implement paired-end read mode in the ULG;

13

— Compare the ULG approach against a multi-k approach and to the LABG [48];

— Optionally enumerate AS events described uniquely by the long reads;

— Investigate some enumeration techniques to allow for a faster search of novel AS events. One
such idea is attributing a weight to every vertex in the graph, and increasing the weight of the
vertices of an alternative path when it is found. We then prioritize lighter paths in the search
for novel AS events.

4.2 Benchmarking perspectives

We plan to benchmark our method on samples sequenced with both PacBio Iso-seq and Illumina.
We first intend to run it on a human sample, as we can make use of the most complete annotations
available to validate the results of our method. We then plan also to run on a sample containing
a more comprehensive Iso-seq sequencing. A good option that we have found so far is the data
presented in [21], which contains PacBio Iso-seq data from the brain tissue of an adult J-Line
chicken, which was also sequenced using Illumina. More importantly, the long reads RNA library
was normalized in [21] to reduce over-represented transcripts, which appears to have provided a
transcriptome coverage efficiency of more than 5 times that of a previous study [46]. If our method
manages to find novel AS events even on normalized Iso-seq data, then its performance will be even
better than on non-normalized datasets, which is far more commonly used. As the chicken genome
is not as well annotated as the human genome, many events that we find might not have been
described previously. We will then validate our predictions by searching for canonical splice sites.
Finally, we will compare the performance of our method against IDP-denovo [12] and Trinity [13]
in hybrid mode.

14

Algorithm 1 Alternative path enumeration algorithm

1: function ENUMERATE_ALTERNATIVE_PATHS(ULG U, source u, set of targets T, current unitig v, current path p, length
threshold ¢, hints counter HC', splicing complexity SC, splicing events spl Evs, alternative paths APs, long reads set L,
edit distance threshold minED)

2: p < p+wv //add v to the end of p
3 //check if we reached a target
4 if v € T then
5 //yes. Check if we still did not list SC' (u, v)-alternative-splicing events
6: if |splEvs(u,v)| < SC then
T //no, we can try to list this one
8 //check if the assembled alternative path compose a new splicing event, i.e. it
9: //has a large enough edit distance with all the previously found (u, v)-alternative-
10: //paths and it is not contained in a long read
11: if alternativePathIsANovel AS(p, U, APs, L) then
12: //novel AS event found between u and v - output the path and its assembly
13: output p and seq(p)
14: splEvs(u,v) < splEvs(u,v) J{p}
15: end if
16: APs(u,v) « APs(u,v) J{p} //add p to all alternative paths found between u and v so far
17: end if
18: p+ p—wv //remove v from the end of p
19: return
20: end if
21: //here we did not reach a target - keep building the alternative path towards a target

22: update HC due to the addition of v in p

23: //find the set of neighbours N to be explored

24: N« {w € N (v)| 1) w ¢ p; //path constraint

25: 2) 3t € T'le(p) + c(v,w) + d(w,t,U) < ¢} //length constraint

26: Hpaz < maxznenHC(n) //Hmae denotes the highest hint

27: N < {n € N|JHC(n) = Hmaz} //we update N to ensure an assembly guided by the highest hints
28: if Hipae = 1 then

29: //vertices added to p before v did not give any hints
30: //hardest case in assembly

31: //guide the assembly by the SC-longest unitigs

32: N < n € N|n is one of the SC-th longest unitigs in N
33: end if

34: / /explore each neighbour recursively

35: for n € N do
ENUMERATE_ALTERNATIVE_PATHS(U, u, T, n, p, £, HC, SC, splEvs, APs, minED)
36: end for

37: restore HC' to the previous state
38: p < p—v //remove v from the end of p
39: end function

15

References

1.

2.

10.

11.

12.

13.

14.

15.

Fatemeh Almodaresi, Hirak Sarkar, Avi Srivastava, and Rob Patro. A space and time-efficient index
for the compacted colored de bruijn graph. Bioinformatics, 34(13):1169-177, jun 2018.

K. F. Au, V. Sebastiano, P. T. Afshar, J. D. Durruthy, L. Lee, B. A. Williams, H. van Bakel, E. E.
Schadt, R. A. Reijo-Pera, J. G. Underwood, and W. H. Wong. Characterization of the human ESC
transcriptome by hybrid sequencing. Proceedings of the National Academy of Sciences, 110(50):E4821—
E4830, nov 2013.

. Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin, Alexander S.

Kulikov, Valery M. Lesin, Sergey I. Nikolenko, Son Pham, Andrey D. Prjibelski, Alexey V. Pyshkin,
Alexander V. Sirotkin, Nikolay Vyahhi, Glenn Tesler, Max A. Alekseyev, and Pavel A. Pevzner. SPAdes:
A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computa-
tional Biology, 19(5):455—477, may 2012.

. Clara Benoit-Pilven, Camille Marchet, Emilie Chautard, Leandro Lima, Marie-Pierre Lambert, Gus-

tavo Sacomoto, Amandine Rey, Audric Cologne, Sophie Terrone, Louis Dulaurier, Jean-Baptiste Claude,
Cyril Bourgeois, Didier Auboeuf, and Vincent Lacroix. Complementarity of assembly-first and mapping-
first approaches for alternative splicing annotation and differential analysis from RNAseq data. Scien-
tific Reports, 8(1), 2018.

. Nicolas L Bray, Harold Pimentel, Pall Melsted, and Lior Pachter. Near-optimal probabilistic RN A-seq

quantification. Nature Biotechnology, 34(5):525-527, apr 2016.

. Brian Bushnell et al. Bbmap: A fast, accurate, splice-aware aligner. LBNL-7065E. Ernest Orlando

Lawrence Berkeley National Laboratory, Berkeley, CA., 3 2014.

. E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):269-271,

December 1959.

. A Dobin, C A Davis, F' Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chaisson, and T R

Gingeras. Star: ultrafast universal rna-seq aligner. Bioinformatics, 29(1):15-21, January 2013.

. Erwan Drezen, Guillaume Rizk, Rayan Chikhi, Charles Deltel, Claire Lemaitre, Pierre Peterlongo, and

Dominique Lavenier. GATB: Genome assembly & analysis tool box. Bioinformatics, 30(20):2959-2961,
jul 2014.

Paolo Ferragina and Giovanni Manzini. An experimental study of an opportunistic index. In Proceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pages 269-278,
Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathematics.

S. Foissac and M. Sammeth. ASTALAVISTA: dynamic and flexible analysis of alternative splicing
events in custom gene datasets. Nucleic Acids Research, 35(Web Server):W297-W299, may 2007.
Shuhua Fu, Yingke Ma, Hui Yao, Zhichao Xu, Shilin Chen, Jingyuan Song, and Kin Fai Au. IDP-
denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing. Bioinformatics,
34(13):2168-2176, feb 2018.

Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A Thompson, Ido Amit,
Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong Zeng, Zehua Chen, Evan Mauceli, Nir
Hacohen, Andreas Gnirke, Nicholas Rhind, Federica di Palma, Bruce W Birren, Chad Nusbaum, Kerstin
Lindblad-Toh, Nir Friedman, and Aviv Regev. Full-length transcriptome assembly from RNA-seq data
without a reference genome. Nature Biotechnology, 29(7):644-652, may 2011.

Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A Thompson, Ido
Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong Zeng, Zehua Chen, Evan Mauceli,
Nir Hacohen, Andreas Gnirke, Nicholas Rhind, Federica di Palma, Bruce W Birren, Chad Nus-
baum, Kerstin Lindblad-Toh, Nir Friedman, and Aviv Regev. Trinity v2.0.2 release (Jan 22, 2015).
https://github.com/trinityrnaseq/trinityrnaseq/releases/tag/v2.0.2, 2015. [Online; accessed
04-February-2019].

Mitchell Guttman, Manuel Garber, Joshua Z Levin, Julie Donaghey, James Robinson, Xian Adiconis,
Lin Fan, Magdalena J Koziol, Andreas Gnirke, Chad Nusbaum, John L Rinn, Eric S Lander, and Aviv
Regev. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved
multi-exonic structure of lincRNAs. Nature Biotechnology, 28(5):503-510, may 2010.

16

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Brian J Haas and Michael C Zody. Advancing RNA-seq analysis. Nature Biotechnology, 28(5):421-423,
may 2010.

Guillaume Holley, Roland Wittler, Jens Stoye, and Faraz Hach. Dynamic alignment-free and reference-
free read compression. Journal of Computational Biology, 25(7):825-836, jul 2018.

Weichun Huang, Leping Li, Jason R. Myers, and Gabor T. Marth. ART: a next-generation sequencing
read simulator. Bioinformatics, 28(4):593-594, dec 2011.

Daehwan Kim, Ben Langmead, and Steven L Salzberg. HISAT: a fast spliced aligner with low memory
requirements. Nature Methods, 12(4):357-360, mar 2015.

Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and Steven L Salzberg.
TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions.
Genome Biology, 14(4):R36, 2013.

Richard I. Kuo, Elizabeth Tseng, Lel Eory, Ian R. Paton, Alan L. Archibald, and David W. Burt.
Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human.
BMC Genomics, 18(1), apr 2017.

Bo Li and Colin N Dewey. RSEM: accurate transcript quantification from RNA-seq data with or
without a reference genome. BMC' Bioinformatics, 12(1):323, 2011.

Chenhao Li, Kern Rei Chng, Esther Jia Hui Boey, Amanda Hui Qi Ng, Andreas Wilm, and Niranjan
Nagarajan. INC-Seq: accurate single molecule reads using nanopore sequencing. GigaScience, 5(1):34,
12 2016.

Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. MEGAHIT: an ultra-
fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph.
Bioinformatics, 31(10):1674-1676, jan 2015.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094-3100,
may 2018.

Leandro Lima, Camille Marchet, Segolene Caboche, Corinne Da Silva, Benjamin Istace, Jean-Marc
Aury, Helene Touzet, and Rayan Chikhi. Comparative assessment of long-read error-correction software
applied to rna-sequencing data. bioRziv, 2018.

Leandro Lima, Blerina Sinaimeri, Gustavo Sacomoto, Helene Lopez-Maestre, Camille Marchet, Vincent
Miele, Marie-France Sagot, and Vincent Lacroix. Playing hide and seek with repeats in local and global
de novo transcriptome assembly of short rna-seq reads. Algorithms Mol Biol, 12:2-2, Feb 2017.
Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast and scalable minimal
perfect hashing for massive key sets. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany, 2017.

Jeffrey A. Martin and Zhong Wang. Next-generation transcriptome assembly. Nature Reviews Genetics,
12(10):671-682, sep 2011.

Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A. Pevzner. metaSPAdes: a new
versatile metagenomic assembler. Genome Research, 27(5):824-834, mar 2017.

Qun Pan, Ofer Shai, Leo J Lee, Brendan J Frey, and Benjamin J Blencowe. Deep surveying of alternative
splicing complexity in the human transcriptome by high-throughput sequencing. Nature Genetics,
40(12):1413-1415, nov 2008.

Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. Salmon provides fast
and bias-aware quantification of transcript expression. Nature Methods, 14(4):417-419, mar 2017.
Rob Patro, Stephen M Mount, and Carl Kingsford. Sailfish enables alignment-free isoform quantification
from RNA-seq reads using lightweight algorithms. Nature Biotechnology, 32(5):462-464, apr 2014.

Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin. Meta-IDBA: a de novo assembler for
metagenomic data. Bioinformatics, 27(13):194-i101, jun 2011.

Yu Peng, Henry C. M. Leung, S. M. Yiu, and Francis Y. L. Chin. IDBA — a practical iterative de
bruijn graph de novo assembler. In Lecture Notes in Computer Science, pages 426—440. Springer Berlin
Heidelberg, 2010.

Mihaela Pertea, Geo M Pertea, Corina M Antonescu, Tsung-Cheng Chang, Joshua T Mendell, and
Steven L Salzberg. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
Nature Biotechnology, 33(3):290-295, feb 2015.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

17

Romeo Rizzi, Gustavo Sacomoto, and Marie-France Sagot. Efficiently listing bounded length st-paths.
In Lecture Notes in Computer Science, pages 318-329. Springer International Publishing, 2015.

Adam Roberts and Lior Pachter. Streaming fragment assignment for real-time analysis of sequencing
experiments. Nature Methods, 10(1):71-73, nov 2012.

Gordon Robertson, Jacqueline Schein, Readman Chiu, Richard Corbett, Matthew Field, Shaun D
Jackman, Karen Mungall, Sam Lee, Hisanaga Mark Okada, Jenny Q Qian, Malachi Griffith, Anthony
Raymond, Nina Thiessen, Timothee Cezard, Yaron S Butterfield, Richard Newsome, Simon K Chan,
Rong She, Richard Varhol, Baljit Kamoh, Anna-Liisa Prabhu, Angela Tam, YongJun Zhao, Richard A
Moore, Martin Hirst, Marco A Marra, Steven J M Jones, Pamela A Hoodless, and Inanc Birol. De
novo assembly and analysis of RNA-seq data. Nature Methods, 7(11):909-912, oct 2010.

James T Robinson, Helga Thorvaldsdéttir, Wendy Winckler, Mitchell Guttman, Eric S Lander, Gad
Getz, and Jill P Mesirov. Integrative genomics viewer. Nature Biotechnology, 29(1):24-26, jan 2011.
Roye Rozov, Gil Goldshlager, Eran Halperin, and Ron Shamir. Faucet: streaming de novo assembly
graph construction. Bioinformatics, 34(1):147-154, jul 2017.

Jae Yong Ryu, Hyun Uk Kim, and Sang Yup Lee. Human genes with a greater number of transcript
variants tend to show biological features of housekeeping and essential genes. Molecular BioSystems,
11(10):2798-2807, 2015.

G. Sacomoto, J. Kielbassa, R. Chikhi, and R. Uricaru et al. KISSPLICE: de-novo calling alternative
splicing events from RNA-seq data. BMC Bioinformatics, 13(Suppl 6):55, 2012.

Marcel H. Schulz, Daniel R. Zerbino, Martin Vingron, and Ewan Birney. Oases: robust de novo RNA-seq
assembly across the dynamic range of expression levels. Bioinformatics, 28(8):1086-1092, feb 2012.
Mingfu Shao and Carl Kingsford. Accurate assembly of transcripts through phase-preserving graph
decomposition. Nature Biotechnology, 35(12):1167-1169, nov 2017.

Sean Thomas, Jason G. Underwood, Elizabeth Tseng, and Alisha K. Holloway and. Long-read sequenc-
ing of chicken transcripts and identification of new transcript isoforms. PLoS ONE, 9(4):94650, apr
2014.

Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J van Baren,
Steven L Salzberg, Barbara J Wold, and Lior Pachter. Transcript assembly and quantification by
RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature
Biotechnology, 28(5):511-515, may 2010.

Isaac Turner, Kiran V Garimella, Zamin Igbal, and Gil McVean. Integrating long-range connectivity
information into de bruijn graphs. Bioinformatics, 34(15):2556-2565, mar 2018.

Eric T. Wang, Rickard Sandberg, Shujun Luo, Irina Khrebtukova, Lu Zhang, Christine Mayr, Stephen F.
Kingsmore, Gary P. Schroth, and Christopher B. Burge. Alternative isoform regulation in human tissue
transcriptomes. Nature, 456(7221):470-476, nov 2008.

Thomas D. Wu, Jens Reeder, Michael Lawrence, Gabe Becker, and Matthew J. Brauer. GMAP and
GSNAP for genomic sequence alignment: Enhancements to speed, accuracy, and functionality. In
Methods in Molecular Biology, pages 283-334. Springer New York, 2016.

Y. Xie, G. Wu, J. Tang, R. Luo, J. Patterson, S. Liu, W. Huang, G. He, S. Gu, S. Li, X. Zhou, T.-W.
Lam, Y. Li, X. Xu, G. K.-S. Wong, and J. Wang. SOAPdenovo-trans: de novo transcriptome assembly
with short RNA-seq reads. Bioinformatics, 30(12):1660-1666, feb 2014.

Jin Y. Yen. Finding the k shortest loopless paths in a network. Management Science, 17(11):712-716,
1971.

Chapter 9

Conclusions and Perspectives

In this thesis, we developed, improved and evaluated methods to process massively se-
quenced data, mainly short and long RNA-sequencing reads, to help the community
answer biological questions such as: which alternative splicing events can be identified
from an mRNA sample studied through RNA-seq, and which genotypes might provide
antibiotic resistance in a set of strains.

The main thread we followed was developing and improving methods to process se-
quenced data using de Bruijn graphs to contribute to the alternative splicing literature
(Chapters 3 and 8, papers [75,77]). We tackled this general problem also from a theo-
retical (Chapter 5, papers [1,2]|) and an analytical (Chapter 4, paper [11]) perspective.
Collaborations (Chapter 6, paper [48], and Chapter 7, paper [76]) deviated us from this
main thread, but we always had at least one main aspect in common with our original
proposal.

In the next subsections, we describe a series of technical and personal perspectives
resulting from this PhD. The technical perspectives list several works that are currently
in development, but that were not yet ready to be featured in the previous chapters, or
future directions that can be followed. The personal perspectives describe my general
view related to the scientific context where this thesis is placed, and a more general
opinion about bioinformatics.

9.1 Technical Perspectives

9.1.1 KisSplice
Enumeration algorithm

We explored another approach to enumerate (s, *,aq,az,b)-bubbles in a DBG G, i.e.
bubbles with source s and any target such that the paths p; and po of the bubbles satisfy
Ip1] < a1, |p2| < a9, and the number of branching vertices in both p; and py is at most b.
In [77], we describe an algorithm to do so with delay O(b?|A(G)|), hereby called AlgK S.
Exploring the following facts — i) DBGs built from DNA or RNA are naturally sparse,
due to having a maximum in- and out-degree 4; ii) the current KisSplice algorithm

190 Conclusions and Perspectives

b=5 | b=10 | b=15 | b=20 | b=25
AllPaths | 13.9 | 14 154 | 33.8 167.2
AlgK S 228 | T/o | T/o |T/o | T)o

Table 9.1: Results of the runtime of both the AllPaths and AlgK.S algorithms on a
human dataset, with increasing values of b. The runtimes presented are in minutes, T/o
stands for Timeout, when an execution took more than 300 minutes.

normally takes a huge amount of time when b increases, and therefore b is usually a
small constant (5, by default); iii) some algorithms can afford to use more memory space
in exchange of less running time — we developed an algorithm, hereby called AllPaths,
that finds all paths originating from a source vertex s satisfying the length and branching
constraints, and then proceeds to list all pairs of internally disjoint paths having a same
target ¢ as bubbles. Although this is one of the naivest approaches to enumerate bubbles
in a DBG, it is surprisingly fast in practice. Theoretically, AllPaths takes a total time
of O(P? % b) to enumerate all bubbles originating from a source vertex s, where P is the
number of paths. This algorithm is theoretically better than AlgK S if B = ©(P?), but
theoretically worse if B = O(P), where B is the number of output bubbles. Although
in general B = O(P), empirical tests on a human dataset showed that AllPaths was
several times faster than AlgK S (see Table 9.1).

We then compared AllPaths and AlgKS on a larger dataset, containing 200M
reads from the Geuvadis project [61]|. Using k = 25 and b = 5, AllPaths took 9.2 hours
while AlgK S took 291.5 hours'. These results convinced us that it would be worth to
add AllPaths to the KisSplice implementation, and it was made available on KisSplice
v2.4.0. Since then, it has been employed in several papers, such as [11,26,79]. Further
exploration in search of theoretical justifications on why AllPaths is more efficient than
AlgK S in some instances is left as an open problem.

DBG construction improvement

Currently, KisSplice builds the DBG from the raw RNA-seq reads using the Minia [20]
version 1 graph building procedure. We changed the graph building algorithm to GATB [30],
which has shown to be more efficient in preliminary tests, but additional work should
still be done to attest the gain in efficiency and to ensure the correctness of the imple-
mentation. This improvement will be featured in the next release.

Stranded Kissreads

Kissreads is the read coherency and quantification step of KisSplice and DiscoSNP [128].
It is responsible to filter out read uncoherent bubbles from the output, and to provide an

"We note that these executions were done in a cluster, so the specific machines where they were run
could differ.

9.1 Technical Perspectives 191

estimated quantification of each path of the bubble. In a project in collaboration with
the group of Nadia Naffakh at Institut Pasteur, where stranded RNA-seq reads were
available, many bubbles were identified in which each path was composed of genes located
on opposite strands. This corresponds to false-positive bubbles. Such false positives
had not been identified on previous datasets because we had never analysed data with
overlapping genes. In principle, this is very rare in human, but not in this dataset, where
the cells are infected by a virus which perturbs the termination of transcription. This
dataset was a training set for our new version of Kissreads, which is now able to process
stranded RNA-seq data. Some additional work is still needed to ensure the correctness of
the implementation. This improvement will be featured in the next release, and should
also be relevant for users working on species with dense genomes where many genes
overlap.

9.1.2 Bubble generator

In Chapter 5, papers [1,2], we described the bubble generator, a compact representation
of all bubbles in a directed graph. Unfortunately, the results obtained on enumerating
alternative splicing events through the bubble generator did not yield results better than
existing algorithms, although part of the bubbles in the generator were indeed interesting,
corresponding to real events that would be hard to find with the KisSplice algorithm. We
decided to not add this feature to the KisSplice implementation, since we do not think
it is ready for production usage. In order to do so, some interesting directions would
be to reduce the number of false positive alternative splicing events by adding more
biologically-motivated constraints to the bubbles in the generator. Another direction
would be to properly enumerate alternative splicing events by combining the generator
bubbles appropriately. We warn, however, that this application does not seem trivial to
develop. Indeed, the main application of cycle basis is preprocessing a graph to remove
vertices and edges that do not belong to any cycles, in order to reduce the work of a post-
processing algorithm, possibly a cycle enumerator. In the case of the bubble generator,
we might have the same situation. Another interesting usage would also be to decompose
complex events to bubbles in the generator, in which the user would like to know how
alternative splicing events are combined to form a more complex one.

9.1.3 DBGWAS

For DBGWAS, the main perspectives are:

e Accept continuous phenotypes (almost finished on branch https://gitlab.com/
leoisl/dbgwas/tree/0.5.4) and genotypes;

e Automated subgraph labeling, which is a feature to automatically predict DBG-
WAS subgraph labels into local polymorphisms or mobile genetic element (de-
scribed in detail in [24], and almost finished on branch https://gitlab.com/
leoisl/dbgwas/tree/automatic_labelling). This was mainly done by Magali
Dancette and Laurent Jacob;

192 Conclusions and Perspectives

e Enable the user to input read datasets instead of assemblies;
e Enable the user to use customized statistical test in step 2;

e Scale to metagenomics datasets.

9.1.4 Mapping of high-error-rate long RNA-seq reads to DBGs built
from short RINA-seq reads

The method presented in Chapter 8, paper [75], to enumerate alternative splicing events
in the presence of both short and long reads requires accurate long reads, which can
restrict its application. In order to generalize to long reads datasets containing a high
error rate, a mapping of such erroneous long reads to de Bruijn or node-labeled graphs
built from short reads is required. This problem is currently being addressed in the
literature. Some works describe heuristics for this problem, e.g. LoRDEC [110], and
hybridSPAdes [5], while others tackle it through a Partial Order Alignment [63]| approach,
with appropriate handling of cycles, such as in [55,88]. Additional works describe exact
optimal algorithms [50,101], but that do not seem to scale to the size of real data graphs.
In a work in progress with Said Sadique Adi (Associate Professor at Universidade Federal
de Mato Grosso do Sul) and members of the team, we are currently addressing this
problem by: 1) building a DBG G from the short reads; 2) mapping long reads to G
naively; 3) improving the badly mapped regions of the long reads.

9.1.5 The [value for flagging repeats in RN A-seq data

We plan to extend the Branching Measure introduced in Chapter 3, paper |77|, with the
[value. The intuition is to better capture complex regions induced by repetitions in
RNA-seq data. Let us say that we have a high-copy-number and low-divergence repeat
R. Each copy of R has a high probability of being inserted in a different context (the
flanking bases of each copy) in the transcriptome. As such, if we build the DBG from
the RNA-seq data, we will compact all copies of R into a small subgraph, due to their
low divergence. The number of different contexts flanking R would be associated with
its copy number. Figure 9.1 exemplifies this process. To capture the repeats as depicted
in Figure 9.1, we propose a new measure, the § value. The g value of a vertex v bounded
by a distance d is Bq(v) = maxo<i<q |Wi(v)|, where Wj;(v) is the set of vertices u such
that there exists a walk from v to u containing exactly ¢ arcs. Intuitively, the repeats
we want to capture will contain a high § value. More specifically, the vertices located
at the borders of the repeat copies would have a very high § value, providing a hint to
the assembler that it traverses, or is about to traverse, a hard-to-assemble region. It is
also important to note that we should keep d to a small value, as we want to capture
the complexity of the local flanking context of a repeat. A high value of d can have
the undesirable side-effect of many vertices being classified as bordering repeats, even
though they could be relatively distant. We also note that we compute the in-g value
and the out-(value, which are the [values of a vertex considering the incoming and the
outgoing arcs, respectively.

9.1 Technical Perspectives 193

atgcgat... —
.-!— aagctag...
gccagec... =
o qummmmey N\ codisks..
atgctaa... —
_.; > ...attaggatcttag ttagcta. .
ggcagtc... B =N
cgatatg...

ttagcta... -’ &
. aggctag...

—0 =
=@ 0=
— o WD o —
=0 o=

Figure 9.1: Top left: the different copies of a repeat inserted each in a different context.
For simplicity, here we are assuming that all these different repeat copies are all equal
(no divergence). Top right: all members of the repetition are compacted into a single
sequence and their different (right) flanking contexts. Bottom: the structure that such
repeat would create in a DBG. The subgraph in blue corresponds to the several copies
of the repeat compacted, and the highly branching regions around it correspond to the
several different flanking contexts.

As a proof-of-concept, Figures 9.2 and 9.3 show chimeric and truncated transcripts
assembled by Trinity, respectively, in a real dataset. By looking at the structure of the
graph, we can see that the [value would be able to flag the repeat-associated nodes in
these transcripts.

This is only a proof-of-concept of the g value, which was presented by L. in the
SeqBio 2015 Workshop (http://www.gdr-bim.cnrs.fr/seqbio2015). We retook this
work in 2017, and it is currently implemented in a module which has the objective of
identifying repeat-associated vertices of a DBG, and remove them from the graph. This
module was developed by L., and is part of a tool currently in development by Camille
Sessegolo in her PhD, supervised by Vincent Lacroix and Arnaud Mary, which has the
objective of identifying complex alternative splicing events (discussed in detail in the
next subsection).

Conclusions and Perspectives

chrl2-:56596533-56597581

g N A I
G (PUCLLLLO Ll LU ¢

0
¢
"G &
¢
1

P -3
eog [2225
S O oot
JfHEELTIL
FXQ
Py oo

FFFO-0-03-9-5-3 >F°
o FFFF3 o3

Low assemblability Region

@ Repeat-associated nodes

Figure 9.2: A chimeric transcript assembled by Trinity. The green nodes map to chr9,
the blue nodes map to chr12, and the black nodes are associated to a repeat (an Alu).
The 8 value of the nodes in the borders of the repeat is high.

chr19+:53066195-53066841

A¥¥§
-
e

AluSg - SINE/AlU

Low assemblability Region

Figure 9.3: A truncated transcript assembled by Trinity. The green nodes map to chrl9,
and the black nodes are associated to a repeat (an Alu). The /3 value of the nodes in the

border of the repeat is high.

9.1 Technical Perspectives 195

9.1.6 Complex alternative splicing events enumeration

Sammeth in [112] states: i) the true splicing diversity of alternative splicing (AS) events
often comprises more than two alternatives and therefore cannot be sufficiently described
by pairwise comparisons (i.e. pairwise bubbles); ii) the majority of the exons that are
observed as mutually exclusive in pairwise comparisons in fact involves at least one other
alternative splice form that disagrees with their mutual exclusion; iii) similar observations
as in (ii) also hold for the alternative skipping of two subsequent exons; iv) a systematic
analysis of complete AS events at a large scale provides subtle insights in the mechanisms
that drive (alternative) splicing. A complex or complete AS event can be described as all
AS variations contained between two constitutive parts of all transcripts of a gene. As a
concrete example, Figure 9.4 shows an example of a complex AS event that, if described
pairwisely, will contain redundancy and incompleteness. Moreover, inferring if a pairwise
AS event is differentially expressed based on their quantification can lead to incorrect
conclusions if it is, in fact, a complex AS event, mainly if the pairwise event describes a
variation between two non-major isoforms. Figure 9.5 shows this scenario.

Ichrl iz (DTN B T PN NENESHI NN i)
Scale 200 bases| {
chri: | 112e2ee08| 112020108] 112020208 112020300] 112020400 112020508] 112020868] 112020706|
Your Sequence from Blat Search .
shorter_Path_2 Il >El Transcript 1
Longer_Path_2 T Transcript 2
Shorter_Path_1 Redundancy
Longer_Fath_1 I — Ml Transcript 3
Shorter_Fath_3 .
(a) Lohger_Path_s Redundancy and incompleteness
J UCSC Genes Based on RefSeq, UniFrot, GenBank, CCDS and Comparative Genomics
Clorf162 4 NN -

Figure 9.4: A small example showing that describing complex AS events through pairwise
bubbles can lead to redundancy and incompleteness. Here, we have three transcripts:
transcript 1 is the exclusion of the middle exon, transcript 2 describes its inclusion, and
transcript 3 describes an alternative acceptor site. If analysed pairwisely, we will have
three bubbles, where half of the paths described by these bubbles will be redundant (i.e.
already described previously), and one bubble will be incomplete (i.e. their paths are

subpaths of bubbles already described previously).

These observations led us to explore the identification of AS events using complex,
instead of pairwise, bubbles. We thus describe in the following our definition of a complex
bubble. A (s,t)-multiwise-bubble MW in a directed graph G is a subgraph of G where:
i) MW is the subgraph induced by AP, where AP is the set of all (s,t)-paths in G; ii)
s is the only source of MW (i.e. only s can reach all vertices v € MW); iii) ¢ is the
only target of MW (i.e. only t can be reached by all vertices v € MW); iv) s and ¢
are the only vertices common to all p € AP. A (s,t)-complex-bubble C'B is a maximal
multiwise-bubble. It is worth noting that we have at most n % (n — 1) multiwise-bubbles
in a graph G, where n is the number of vertices in G, and thus at most n * (n — 1)
complex bubbles. On the other hand, we could have Q(2") pairwise bubbles in G, in
the worst case. It is intuitive to verify that many pairwise bubbles can be included in a
single complex bubble, but an interesting difference between both models is that if our

196 Conclusions and Perspectives

Healthy Condition Disease Condition

Pairwise events view

10 10

A B
[a[p[B]

AB x ADB = significative

Complex events view

1000

AB x ADB = not significative

Figure 9.5: Inferring if a pairwise AS event is significant based on their quantification can
lead to incorrect conclusions if it is, in fact, a complex AS event, mainly if the pairwise
event describes a variation between two non-major isoforms. Here, we compare an AS
event in two different conditions (healthy and disease). In the top, we have a pairwise AS
event comparison, where exon D is included in 80% of the transcripts going through this
event in the healthy condition, while it is excluded in 80% in the disease condition. This
would give us clue that this change is significant. However, the bottom panel show us
that this event is included in a more complex event, in which the major isoform excludes
both exons B and D. With this larger context, we can verify that the magnitude of the
change described in the top panel is very small and probably not significant.

object of study are complex bubbles, then we have a quadratic number of objects (on
n) to be enumerated and analysed. Therefore, we can work on developing algorithms
where the total execution time is polynomial on the size of the input, since the size of
the output is now polynomial. Although we have "only" a quadratic number of objects
to output, outputting a single (s,t)-complex-bubble C'B can still take exponential time,
if this output procedure consists in listing all paths between s and t in CB. However,
we expect that linear sequences are hardly the best descriptors for such complex events,
and we would like to describe them as graph objects instead, in the same spirit of [112],
but in a de-novo and in a DBG context. We can now define the Enumerating Complex
Bubbles Problem:

9.1 Technical Perspectives 197

Enumerating Complex Bubbles Problem (ECBP)
Input: A directed graph G = (V, A).
Output: All (s,t)-complex-bubbles.

Unfortunately, finding an (s, t)-complex-bubble C'B in polynomial time is not easy.
It can be reduced from the following NP-complete problem (see Proposition 9.2.1 (P5)
in Bang-Jensen and Gutin [7]): Given three distinct vertices x,y,z in a directed graph
G, decide whether G has an (z, z)-path which also contains the vertex y. In some cases,
when the set of all (s,¢)-walks coincides with the set of all (s,t)-paths, then the (s,t)-
complex-bubble can be found in polynomial time.

Our current algorithm to tackle the ECBP has three steps:

1. Find all pairs of vertices (s,t) having a multiwise bubble;
2. Find which multiwise bubbles are complex bubbles;
3. Output each complex bubble.

Step 1 is implemented using the following proposition (proof is omitted):
Proposition 1. Given a directed graph G and two distinct vertices s and ¢, there exists
an (s,t)-multiwise-bubble if and only if the immediate dominator of ¢ in Fj is s, where
Fs is the flow graph with root s.

Note that there is the degenerate case where if ¢ is an out-neighbour of s, and there
is only one path from s to ¢, then the immediate dominator of ¢ in Fg is s, but s and ¢
do not have a multiwise bubble.

Step 2 is implemented observing that an (s, t)-multiwise-bubble is an (s, t)-complex-
bubble if there is no (s',#)-multiwise-bubble such that there is a path from s’ to s and
from t to .

Finally, Step 3 is implemented by outputting the subgraph induced by the nodes v
than can be reached from s and that can reach ¢.

Given an (s, t)-complex-bubble CB, if the set of all (s,?)-walks coincides with the
set of all (s,t)-paths, then the described algorithm works. Otherwise, then some of the
vertices in C'B might not belong to any (s,t)-path, but only to (s,¢)-walks. We are
currently tackling this issue by ideas of changing the definition of the complex bubbles
to accept walks instead of paths, or to transform the input directed graph into an acyclic
version.

It is also worth mentioning that the ECBP is related to the problem of identifying
superbubbles [16,91,119]. However, complex bubbles do not necessarily present the
matching, acyclicity and minimality properties of superbubbles. As such, it is not possible
to use the algorithms designed to find superbubbles to find complex bubbles.

Unfortunately, our described model did not work on real RNA-seq data due to
repeats. Repeats induce many cycles in the DBG, one interleaved in another, and as
such our model needs to be improved to deal with such cases. We are improving upon
this first work in a collaboration with Camille Sessegolo, a PhD student of the team
supervised by Vincent Lacroix and Arnaud Mary, who took the main lead in this work.

198 Conclusions and Perspectives

9.2 Personal Perspectives

Regarding the post-PhD period, my general view related to the scientific context where
this thesis is placed is that, unless a specific problem requires short reads, the scientific
community will focus its efforts on processing long reads to tackle problems. I believe
that long reads will eventually take over short reads, and that transcriptome assembly
might not even be required anymore, and genome assembly will be simplified with longer
and more accurate reads. However, it will take some years for long reads technologies to
reach this state, so in the short term (5-10 years, or maybe longer), I believe that the
methods that are able to efficiently utilize both short and long reads will define the state-
of-the-art. Regarding alternative splicing, and transcriptomic variations in general, being
able to completely describe the structure of a transcript in a long read is very valuable,
since exons can be phased perfectly. Precise identification of isoforms, exon boundaries,
open reading frames might still be challenging with the high error rate, but protocols like
PacBio Isoseq already addresses this natively, creating very accurate Reads of Insert. For
sure, both the Nanopore and PacBio error rate and cost will decrease, and throughput
will increase in the next years, thus allowing for such applications. The Nanopore RNA
direct protocol will also enable the study of transcriptomic variations without the biases
and artifacts created by the cDNA synthesis step, allowing for a better understanding of
the real transcriptomic variation in a cell.

Another possible scenario is Illumina sequencing remaining very competitive after
several years, mainly by reducing per-base cost and increasing the throughput, justifying
its use even when a biological question can be tackled by sequencing only long reads.
This will imply in even larger datasets than those we have nowadays, and the demand
for efficient hybrid methods that make use of succinct data structures will increase, with
a large fraction probably being based on de Bruijn graphs or variants.

A more general opinion about bioinformatics after finishing this thesis is that this
field requires diverse competences that are not easy to master, ranging from mathematics
and theoretical computer science, to wet lab and biology. Mathematical modeling, critical
analyses, efficient software implementation, and correct wet lab manipulation are not easy
tasks, and I believe that effective collaborations are key to produce valuable works and
to learn new concepts.

Bibliography

1]

2]

3]

4]

[5]

6]

[7]

18]

19]

Vicente Acuna, Roberto Grossi, Giuseppe F Italiano, Leandro Lima, Romeo Rizzi,
Gustavo Sacomoto, Marie-France Sagot, and Blerina Sinaimeri. On Bubble Gen-
erators in Directed Graphs. In WG 2017 - /8rd International Workshop on Graph-
Theoretic Concepts in Computer Science, volume 10520 of Lecture Notes in Com-
puter Science, pages 18 31, Eindhoven, Netherlands, June 2017. Springer.

Vicente Acuna, Roberto Grossi, Giuseppe F Italiano, Leandro Lima, Romeo Rizzi,
Gustavo Sacomoto, Marie-France Sagot, and Blerina Sinaimeri. On Bubble Gen-
erators in Directed Graphs. Submitted to Algorithmica, 2019.

Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and
Peter Walter. Molecular Biology of the Cell. Garland Science, 5 edition, November
2007.

S. Anders, A. Reyes, and W. Huber. Detecting differential usage of exons from
RNA-seq data. Genome Research, 22(10):2008-2017, jun 2012.

Dmitry Antipov, Anton Korobeynikov, Jeffrey S. McLean, and Pavel A. Pevzner.
hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioin-
formatics, 32(7):1009 1015, nov 2015.

Kin Fai Au, Jason G. Underwood, Lawrence Lee, and Wing Hung Wong. Improving
PacBio long read accuracy by short read alignment. PLoS ONE, 7(10):e46679, oct
2012.

Jorgen Bang-Jensen and Gregory Z. Gutin. Digraphs: Theory, Algorithms and
Applications. Springer Publishing Company, Incorporated, 2nd edition, 2008.

Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail
Dvorkin, Alexander S. Kulikov, Valery M. Lesin, Sergey 1. Nikolenko, Son Pham,
Andrey D. Prjibelski, Alexey V. Pyshkin, Alexander V. Sirotkin, Nikolay Vyahhi,
Glenn Tesler, Max A. Alekseyev, and Pavel A. Pevzner. SPAdes: A new genome
assembly algorithm and its applications to single-cell sequencing. Journal of Com-
putational Biology, 19(5):455-477, may 2012.

Ergude Bao and Lingxiao Lan. HALC: High throughput algorithm for long read
error correction. BMC Bioinformatics, 18(1), apr 2017.

200

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Timo Beller and Enno Ohlebusch. A representation of a compressed de bruijn graph
for pan-genome analysis that enables search. Algorithms for Molecular Biology,

11(1), jul 2016.

Clara Benoit-Pilven, Camille Marchet, Emilie Chautard, Leandro Lima, Marie-
Pierre Lambert, Gustavo Sacomoto, Amandine Rey, Audric Cologne, Sophie Ter-
rone, Louis Dulaurier, Jean-Baptiste Claude, Cyril Bourgeois, Didier Auboeuf, and
Vincent Lacroix. Complementarity of assembly-first and mapping-first approaches
for alternative splicing annotation and differential analysis from RNAseq data. Sci-
entific Reports, 8(1), 2018.

Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Lan-
dolin, and Adam M Phillippy. Assembling large genomes with single-molecule
sequencing and locality-sensitive hashing. Nature Biotechnology, 33(6):623-630,
may 2015.

Pacific Biosciences. SMRT SEQUENCING: READ LENGTHS. https://www.
pacb.com/smrt-science/smrt-sequencing/read-lengths/, 2018. [Online; ac-
cessed 29-December-2018].

Etienne Birmelé, Pierluigi Crescenzi, Rui Ferreira, Roberto Grossi, Vincent
Lacroix, Andrea Marino, Nadia Pisanti, Gustavo Sacomoto, and Marie-France
Sagot. Efficient bubble enumeration in directed graphs. In String Processing and
Information Retrieval, pages 118-129. Springer Berlin Heidelberg, 2012.

Benjamin J. Blencowe. Alternative splicing: New insights from global analyses.
Cell, 126(1):37 47, 2006.

Ljiljana Brankovic, Costas S. Iliopoulos, Ritu Kundu, Manal Mohamed, Solon P.
Pissis, and Fatima Vayani. Linear-time superbubble identification algorithm for
genome assembly. Theoretical Computer Science, 609:374-383, jan 2016.

Nicolas L Bray, Harold Pimentel, Pall Melsted, and Lior Pachter. Near-optimal
probabilistic RNA-seq quantification. Nature Biotechnology, 34(5):525-527, apr
2016.

Brian Bushnell et al. Bbmap: A fast, accurate, splice-aware aligner. LBNL-7065E.
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA., 3 2014.

Yesesri Cherukuri and Sarath Chandra Janga. Benchmarking of de novo assembly
algorithms for nanopore data reveals optimal performance of OLC approaches.
BMC Genomics, 17(S7), aug 2016.

Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de bruijn graph rep-
resentation based on a bloom filter. In WABI, volume 7534 of Lecture Notes in
Computer Science, pages 236-248. Springer, 2012.

Bibliography 201

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Rayan Chikhi and Guillaume Rizk. Space-efficient and exact de bruijn graph rep-
resentation based on a bloom filter. Algorithms for Molecular Biology, 8(1):22,
2013.

Chen-Shan Chin, David H Alexander, Patrick Marks, Aaron A Klammer, James
Drake, Cheryl Heiner, Alicia Clum, Alex Copeland, John Huddleston, Evan E Eich-
ler, Stephen W Turner, and Jonas Korlach. Nonhybrid, finished microbial genome
assemblies from long-read SMRT sequencing data. Nature Methods, 10(6):563-569,
6 2013.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. McGraw-Hill Science / Engineering / Math, 3* edition, 2009.

Magali Jaillard Dancette. Fine mapping of antibiotic resistance determinants. PhD
thesis, Université Claude Bernard Lyon 1, 2018.

Daryanaz Dargahi, Richard D. Swayze, Leanna Yee, Peter J. Bergqvist, Bradley J.
Hedberg, Alireza Heravi-Moussavi, Edie M. Dullaghan, Ryan Dercho, Jianghong
An, John S. Babcook, and Steven J.M. Jones. A pan-cancer analysis of alternative
splicing events reveals novel tumor-associated splice variants of matriptase. Cancer

Informatics, 13:CIN.S19435, jan 2014.

Nadia M. Davidson, Anthony D. K. Hawkins, and Alicia Oshlack. SuperTran-
scripts: a data driven reference for analysis and visualisation of transcriptomes.
Genome Biology, 18(1), aug 2017.

James J. Davis, Sébastien Boisvert, Thomas Brettin, Ronald W. Kenyon, Chun-
hong Mao, Robert Olson, Ross Overbeek, John Santerre, Maulik Shukla, Alice R.
Wattam, Rebecca Will, Fangfang Xia, and Rick Stevens. Antimicrobial resistance
prediction in PATRIC and RAST. Scientific reports, 6:27930, 2016.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
1(1):269 271, December 1959.

A Dobin, C A Davis, F Schlesinger, J Drenkow, C Zaleski, S Jha, P Batut, M Chais-
son, and T R Gingeras. Star: ultrafast universal rna-seq aligner. Bioinformatics,
29(1):15 21, January 2013.

Erwan Drezen, Guillaume Rizk, Rayan Chikhi, Charles Deltel, Claire Lemaitre,
Pierre Peterlongo, and Dominique Lavenier. GATB: Genome assembly & analysis
tool box. Bioinformatics, 30(20):2959 2961, jul 2014.

John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul
Peluso, David Rank, Primo Baybayan, Brad Bettman, Arkadiusz Bibillo, Keith
Bjornson, Bidhan Chaudhuri, Frederick Christians, Ronald Cicero, Sonya Clark,
Ravindra Dalal, Alex deWinter, John Dixon, Mathieu Foquet, Alfred Gaertner,
Paul Hardenbol, Cheryl Heiner, Kevin Hester, David Holden, Gregory Kearns,

202

Bibliography

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Xiangxu Kong, Ronald Kuse, Yves Lacroix, Steven Lin, Paul Lundquist, Con-
gecong Ma, Patrick Marks, Mark Maxham, Devon Murphy, Insil Park, Thang
Pham, Michael Phillips, Joy Roy, Robert Sebra, Gene Shen, Jon Sorenson, Austin
Tomaney, Kevin Travers, Mark Trulson, John Vieceli, Jeffrey Wegener, Dawn Wu,
Alicia Yang, Denis Zaccarin, Peter Zhao, Frank Zhong, Jonas Korlach, and Stephen
Turner. Real-time dna sequencing from single polymerase molecules. Science,
323(5910):133-138, 2009.

Paul Flicek and Ewan Birney. Sense from sequence reads: methods for alignment
and assembly. Nature Methods, 6:56 EP — Oct 2009. Review Article.

Fernande Freyermuth, Frédérique Rau, Yosuke Kokunai, Thomas Linke, Chan-
tal Sellier, Masayuki Nakamori, Yoshihiro Kino, Ludovic Arandel, Arnaud Jol-
let, Christelle Thibault, Muriel Philipps, Serge Vicaire, Bernard Jost, Bjarne
Udd, John W. Day, Denis Duboc, Karim Wahbi, Tsuyoshi Matsumura, Haru-
toshi Fujimura, Hideki Mochizuki, Francois Deryckere, Takashi Kimura, Nobuyuki
Nukina, Shoichi Ishiura, Vincent Lacroix, Amandine Campan-Fournier, Vincent
Navratil, Emilie Chautard, Didier Auboeuf, Minoru Horie, Keiji Imoto, Kuang-
Yung Lee, Maurice S. Swanson, Adolfo Lopez de Munain, Shin Inada, Hideki Itoh,
Kazuo Nakazawa, Takashi Ashihara, Eric Wang, Thomas Zimmer, Denis Furling,
Masanori P. Takahashi, and Nicolas Charlet-Berguerand. Splicing misregulation of
SCNb5a contributes to cardiac-conduction delay and heart arrhythmia in myotonic
dystrophy. Nature Communications, 7(1), apr 2016.

Komei Fukuda, Thomas M. Liebling, and Francois Margot. Analysis of backtrack
algorithms for listing all vertices and all faces of a convex polyhedron. Computa-
tional Geometry, 8(1):1-12, jun 1997.

Daniel R Garalde, Elizabeth A Snell, Daniel Jachimowicz, Botond Sipos, Joseph H
Lloyd, Mark Bruce, Nadia Pantic, Tigist Admassu, Phillip James, Anthony War-
land, Michael Jordan, Jonah Ciccone, Sabrina Serra, Jemma Keenan, Samuel Mar-
tin, Luke McNeill, E Jayne Wallace, Lakmal Jayasinghe, Chris Wright, Javier
Blasco, Stephen Young, Denise Brocklebank, Sissel Juul, James Clarke, Andrew J
Heron, and Daniel J Turner. Highly parallel direct RNA sequencing on an array of
nanopores. Nature Methods, 15(3):201 206, jan 2018.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

S Goodwin, J D McPherson, and W R McCombie. Coming of age: ten years of
next-generation sequencing technologies. Nat Rev Genet, 17(6):333-351, 05 2016.

Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn A
Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong
Zeng, Zehua Chen, Evan Mauceli, Nir Hacohen, Andreas Gnirke, Nicholas Rhind,

Bibliography 203

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

Federica di Palma, Bruce W Birren, Chad Nusbaum, Kerstin Lindblad-Toh, Nir
Friedman, and Aviv Regev. Full-length transcriptome assembly from RNA-seq data
without a reference genome. Nature Biotechnology, 29(7):644-652, may 2011.

Jonathan L. Gross and Jay Yellen. Graph Theory and Its Applications, Second
Edition (Discrete Mathematics and Its Applications). Chapman & Hall/CRC, 2005.

D. Gustield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

Mitchell Guttman, Manuel Garber, Joshua Z Levin, Julie Donaghey, James Robin-
son, Xian Adiconis, Lin Fan, Magdalena J Koziol, Andreas Gnirke, Chad Nusbaum,
John L Rinn, Eric S Lander, and Aviv Regev. Ab initio reconstruction of cell
type—specific transcriptomes in mouse reveals the conserved multi-exonic structure
of lincRNAs. Nature Biotechnology, 28(5):503-510, may 2010.

Brian J Haas and Michael C Zody. Advancing RNA-seq analysis. Nature Biotech-
nology, 28(5):421-423, may 2010.

Thomas Hackl, Rainer Hedrich, Jorg Schultz, and Frank Forster. proovread :
large-scale high-accuracy PacBio correction through iterative short read consensus.
Bioinformatics, 30(21):3004-3011, 11 2014.

D. Hernandez, P. Francois, L. Farinelli, M. Osteras, and J. Schrenzel. De novo
bacterial genome sequencing: Millions of very short reads assembled on a desktop
computer. Genome Research, 18(5):802 809, feb 2008.

Guillaume Holley, Roland Wittler, Jens Stoye, and Faraz Hach. Dynamic
alignment-free and reference-free read compression. Journal of Computational Bi-
ology, 25(7):825-836, jul 2018.

X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome
research, 9(9):868-877, September 1999.

Mlumina. Illumina sequencing platforms. https://www.illumina.com/systems/
sequencing-platforms.html, 2018. [Online; accessed 29-December-2018|.

Magali Jaillard, Leandro Lima, Maud Tournoud, Pierre Mahé, Alex van Belkum,
Vincent Lacroix, and Laurent Jacob. A fast and agnostic method for bacterial
genome-wide association studies: Bridging the gap between k-mers and genetic
events. PLOS Genetics, 14(11):1 28, 11 2018.

Magali Jaillard, Alex van Belkum, Kyle C Cady, David Creely, Dee Shortridge,
Bernadette Blanc, E Magda Barbu, W Michael Dunne, Gilles Zambardi, Mark
Enright, Nathalie Mugnier, Christophe Le Priol, Stéphane Schicklin, Ghislaine
Guigon, and Jean-Baptiste Veyrieras. Correlation between phenotypic antibiotic
susceptibility and the resistome in Pseudomonas aeruginosa. International journal
of antimicrobial agents, 2017.

204

Bibliography

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Chirag Jain, Haowen Zhang, Yu Gao, and Srinivas Aluru. On the complexity of
sequence to graph alignment. jan 2019.

Miten Jain, Sergey Koren, Karen H. Miga, Josh Quick, Arthur C. Rand, Thomas A.
Sasani, John R. Tyson, Andrew D. Beggs, Alexander T. Dilthey, lan T. Fid-
des, Sunir Malla, Hannah Marriott, Tom Nieto, Justin O’Grady, Hugh E. Olsen,
Brent S. Pedersen, Arang Rhie, Hollian Richardson, Aaron R. Quinlan, Ter-
rance P. Snutch, Louise Tee, Benedict Paten, Adam M. Phillippy, Jared T. Simpson,
Nicholas J. Loman, and Matthew Loose. Nanopore sequencing and assembly of a
human genome with ultra-long reads. Nature Biotechnology, January 2018.

David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On gener-
ating all maximal independent sets. Inf. Process. Lett., 27(3):119-123, 1988.

Yarden Katz, Eric T Wang, Edoardo M Airoldi, and Christopher B Burge. Anal-
ysis and design of RNA sequencing experiments for identifying isoform regulation.
Nature Methods, 7(12):1009 1015, nov 2010.

Telikepalli Kavitha, Christian Liebchen, Kurt Mehlhorn, Dimitrios Michail, Romeo
Rizzi, Torsten Ueckerdt, and Katharina A. Zweig. Cycle bases in graphs charac-

terization, algorithms, complexity, and applications. Computer Science Review,
3(4):199 - 243, 20009.

Vaddadi Naga Sai Kavya, Kshitij Tayal, Rajgopal Srinivasan, and Naveen
Sivadasan. Sequence alignment on directed graphs. Journal of Computational
Biology, 26(1):53 67, jan 2019.

Daehwan Kim, Ben Langmead, and Steven L Salzberg. HISAT: a fast spliced
aligner with low memory requirements. Nature Methods, 12(4):357-360, mar 2015.

Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and
Steven L Salzberg. TopHat2: accurate alignment of transcriptomes in the presence
of insertions, deletions and gene fusions. Genome Biology, 14(4):R36, 2013.

Sergey Koren, Michael C. Schatz, Brian P. Walenz, Jeffrey Martin, Jason T.
Howard, Ganeshkumar Ganapathy, Zhong Wang, David A. Rasko, W. Richard
McCombie, Erich D. Jarvis, and Adam M. Phillippy. Hybrid error correction
and de novo assembly of single-molecule sequencing reads. Nature Biotechnology,
30(7):693-700, 2012.

Sergey Koren, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H.
Bergman, and Adam M. Phillippy. Canu: scalable and accurate long-read assembly
via adaptive <i>k</i> -mer weighting and repeat separation. Genome Research,
27(5):722-736, 5 2017.

Bibliography 205

[60]

[61]

[62]

|63]

[64]

[65]

[66]

[67]

Anna Kuosmanen, Ahmed Sobih, Romeo Rizzi, Veli M#kinen, and Alexandru I.
Tomescu. On using longer rna-seq reads to improve transcript prediction accu-
racy. In Proceedings of the International Joint Conference on Biomedical Engi-
neering Systems and Technologies, BIOSTEC 2016, pages 272-277, Portugal, 2016.
SCITEPRESS - Science and Technology Publications, Lda.

Tuuli Lappalainen, , Michael Sammeth, Marc R. Friedlinder, Peter A. C. ‘t Hoen,
Jean Monlong, Manuel A. Rivas, Mar Gonzalez-Porta, Natalja Kurbatova, Thasso
Griebel, Pedro G. Ferreira, Matthias Barann, Thomas Wieland, Liliana Greger,
Maarten van Iterson, Jonas Almlof, Paolo Ribeca, Irina Pulyakhina, Daniela Esser,
Thomas Giger, Andrew Tikhonov, Marc Sultan, Gabrielle Bertier, Daniel G.
MacArthur, Monkol Lek, Esther Lizano, Henk P. J. Buermans, Ismael Padi-
oleau, Thomas Schwarzmayr, Olof Karlberg, Halit Ongen, Helena Kilpinen, Sergi
Beltran, Marta Gut, Katja Kahlem, Vyacheslav Amstislavskiy, Oliver Stegle,
Matti Pirinen, Stephen B. Montgomery, Peter Donnelly, Mark I. McCarthy, Paul
Flicek, Tim M. Strom, Hans Lehrach, Stefan Schreiber, Ralf Sudbrak, Angel Car-
racedo, Stylianos E. Antonarakis, Robert Hésler, Ann-Christine Syvénen, Gert-
Jan van Ommen, Alvis Brazma, Thomas Meitinger, Philip Rosenstiel, Roderic
Guigdé, Ivo G. Gut, Xavier Estivill, and Emmanouil T. Dermitzakis. Transcrip-
tome and genome sequencing uncovers functional variation in humans. Nature,
501(7468):506 511, sep 2013.

T. Laver, J. Harrison, P.A. O'Neill, K. Moore, A. Farbos, K. Paszkiewicz, and D.J.
Studholme. Assessing the performance of the oxford nanopore technologies minion.
Biomolecular Detection and Quantification, 3:1 — 8, 2015.

C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial
order graphs. Bioinformatics, 18(3):452-464, mar 2002.

John Lees, Marco Galardini, Stephen D Bentley, Jeffrey N Weiser, and Jukka
Corander. pyseer: a comprehensive tool for microbial pangenome-wide association
studies. Bioinformatics, page bty539, 2018.

John A Lees, Minna Vehkala, Niko Vilimdki, Simon R Harris, Claire
Chewapreecha, Nicholas J Croucher, Pekka Marttinen, Mark R Davies, Andrew C
Steer, Steven YC Tong, Antti Honkela, Julian Parkhill, Stephen D Bentley, and
Jukka Corander. Sequence element enrichment analysis to determine the genetic
basis of bacterial phenotypes. Nature communications, 7:12797, 2016.

Bo Li and Colin N Dewey. RSEM: accurate transcript quantification from RNA-seq
data with or without a reference genome. BMC Bioinformatics, 12(1):323, 2011.

Bo Li, Nathanael Fillmore, Yongsheng Bai, Mike Collins, James Thomson, Ron
Stewart, and Colin Dewey. Evaluation of de novo transcriptome assemblies from
RNA-Seq data. Genome Biology, 2014.

206

Bibliography

[68]

[69]

[70]

[71]

[72]

73]

|74]

[75]

[76]

|77]

78]

[79]

Chenhao Li, Kern Rei Chng, Esther Jia Hui Boey, Amanda Hui Qi Ng, Andreas
Wilm, and Niranjan Nagarajan. INC-Seq: accurate single molecule reads using
nanopore sequencing. GigaScience, 5(1):34, 12 2016.

Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam.
MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de bruijn graph. Bioinformatics, 31(10):1674-1676, jan 2015.

Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics, 32(14):2103-2110, mar 2016.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18):3094-3100, may 2018.

Yang I. Li, David A. Knowles, Jack Humphrey, Alvaro N. Barbeira, Scott P. Dick-
inson, Hae Kyung Im, and Jonathan K. Pritchard. Annotation-free quantification
of RNA splicing using LeafCutter. Nature Genetics, 50(1):151 158, dec 2017.

Y. Liao, G. K. Smyth, and W. Shi. featureCounts: an efficient general purpose pro-
gram for assigning sequence reads to genomic features. Bioinformatics, 30(7):923—
930, nov 2013.

LibreTexts libraries. Introductory and General Biology LibreTexts. https://bio.
libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_
Introductory_Biology_(CK-12)/3%3A_Genetics/3.8%3A_Human_Genome, 2016.
[Online; accessed 29-December-2018|.

Leandro Lima et al. Finding novel alternative splicing events in the presence of a
shallow reference transcriptome and deep second-generation sequencing. In prepa-
ration, 2019.

Leandro Lima, Camille Marchet, Segolene Caboche, Corinne Da Silva, Benjamin
Istace, Jean-Marc Aury, Helene Touzet, and Rayan Chikhi. Comparative assess-
ment of long-read error-correction software applied to rna-sequencing data. bio Rziv,
2018.

Leandro Lima, Blerina Sinaimeri, Gustavo Sacomoto, Helene Lopez-Maestre,
Camille Marchet, Vincent Miele, Marie-France Sagot, and Vincent Lacroix. Play-
ing hide and seek with repeats in local and global de novo transcriptome assembly
of short rna-seq reads. Algorithms Mol Biol, 12:2-2, Feb 2017.

Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacterial
genome assembled de novo using only nanopore sequencing data. Nature Methods,
12(8):733-735, jun 2015.

Héléne Lopez-Maestre, Lilia Brinza, Camille Marchet, Janice Kielbassa, Sylvére
Bastien, Mathilde Boutigny, David Monnin, Adil El Filali, Claudia Marcia

Bibliography 207

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Carareto, Cristina Vieira, Franck Picard, Natacha Kremer, Fabrice Vavre, Marie-
France Sagot, and Vincent Lacroix. SNP calling from RNA-seq data without a
reference genome: identification, quantification, differential analysis and impact on
the protein sequence. Nucleic Acids Research, page gkw655, jul 2016.

Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12),
dec 2014.

Sorina Maciuca, Carlos del Ojo Elias, Gil McVean, and Zamin Igbal. A natural
encoding of genetic variation in a burrows-wheeler transform to enable mapping and
genome inference. In WABI, volume 9838 of Lecture Notes in Computer Science,
pages 222 233. Springer, 2016.

Mohammed-Amin Madoui, Stefan Engelen, Corinne Cruaud, Caroline Belser, Lau-
rie Bertrand, Adriana Alberti, Arnaud Lemainque, Patrick Wincker, and Jean-
Marc Aury. Genome assembly using Nanopore-guided long and error-free DNA
reads. BMC genomics, 16(1):327, 4 2015.

Marcel Margulies, Michael Egholm, William E. Altman, Said Attiya, Joel S. Bader,
Lisa A. Bemben, Jan Berka, Michael S. Braverman, Yi-Ju Chen, Zhoutao Chen,
Scott B. Dewell, Lei Du, Joseph M. Fierro, Xavier V. Gomes, Brian C. Godwin,
Wen He, Scott Helgesen, Chun He Ho, Gerard P. Irzyk, Szilveszter C. Jando, Maria
L. 1. Alenquer, Thomas P. Jarvie, Kshama B. Jirage, Jong-Bum Kim, James R.
Knight, Janna R. Lanza, John H. Leamon, Steven M. Lefkowitz, Ming Lei, Jing Li,
Kenton L. Lohman, Hong Lu, Vinod B. Makhijani, Keith E. McDade, Michael P.
McKenna, Eugene W. Myers, Elizabeth Nickerson, John R. Nobile, Ramona Plant,
Bernard P. Puc, Michael T. Ronan, George T. Roth, Gary J. Sarkis, Jan Fredrik
Simons, John W. Simpson, Maithreyan Srinivasan, Karrie R. Tartaro, Alexander
Tomasz, Kari A. Vogt, Greg A. Volkmer, Shally H. Wang, Yong Wang, Michael P.
Weiner, Pengguang Yu, Richard F. Begley, and Jonathan M. Rothberg. Genome se-
quencing in microfabricated high-density picolitre reactors. Nature, 437(7057):376
380, jul 2005.

Jeffrey A. Martin and Zhong Wang. Next-generation transcriptome assembly. Na-
ture Reviews Genetics, 12(10):671 682, sep 2011.

M. Mele, P. G. Ferreira, F. Reverter, D. S. DeLl.uca, J. Monlong, M. Sammeth, T. R.
Young, J. M. Goldmann, D. D. Pervouchine, T. J. Sullivan, R. Johnson, A. V. Segre,
S. Djebali, A. Niarchou, T. G. Consortium, F. A. Wright, T. Lappalainen, M. Calvo,
G. Getz, E. T. Dermitzakis, K. G. Ardlie, and R. Guigo. The human transcriptome
across tissues and individuals. Science, 348(6235):660 665, may 2015.

E. W. Myers. The fragment assembly string graph. Bioinformatics, 21(Suppl
2):1i79-1i85, sep 2005.

208

Bibliography

[87]

[83]

[89]

[90]

[91]

92]

93]

[94]

[95]

[96]

Eugene W. Myers, Granger G. Sutton, Art L. Delcher, Tan M. Dew, Dan P. Fa-
sulo, Michael J. Flanigan, Saul A. Kravitz, Clark M. Mobarry, Knut H. J. Reinert,
Karin A. Remington, Eric L. Anson, Randall A. Bolanos, Hui-Hsien Chou, Cather-
ine M. Jordan, Aaron L. Halpern, Stefano Lonardi, Ellen M. Beasley, Rhonda C.
Brandon, Lin Chen, Patrick J. Dunn, Zhongwu Lai, Yong Liang, Deborah R.
Nusskern, Ming Zhan, Qing Zhang, Xiangqun Zheng, Gerald M. Rubin, Mark D.
Adams, and J. Craig Venter. A Whole-Genome Assembly of Drosophila. Science,
287(5461):2196 2204, 2000.

Adam M Novak, Glenn Hickey, Erik Garrison, Sean Blum, Abram Connelly,
Alexander Dilthey, Jordan Eizenga, M. A. Saleh Elmohamed, Sally Guthrie, An-
dré Kahles, Stephen Keenan, Jerome Kelleher, Deniz Kural, Heng Li, Michael F
Lin, Karen Miga, Nancy Ouyang, Goran Rakocevic, Maciek Smuga-Otto, Alexan-
der Wait Zaranek, Richard Durbin, Gil McVean, David Haussler, and Benedict
Paten. Genome graphs. jan 2017.

Petr Novak, Pavel Neumann, and Jiti Macas. Graph-based clustering and charac-
terization of repetitive sequences in next-generation sequencing data. BMC' Bioin-
formatics, 11(1):378, 2010.

Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A. Pevzner.
metaSPAdes: a new versatile metagenomic assembler. Genome Research,
27(5):824 834, mar 2017.

Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Detecting superbubbles
in assembly graphs. In Lecture Notes in Computer Science, pages 338-348. Springer
Berlin Heidelberg, 2013.

Fatih Ozsolak and Patrice M. Milos. Single-molecule direct RNA sequencing with-
out ¢cDNA synthesis. Wiley Interdisciplinary Reviews: RNA, 2(4):565 570, mar
2011.

Qun Pan, Ofer Shai, Leo J Lee, Brendan J Frey, and Benjamin J Blencowe. Deep
surveying of alternative splicing complexity in the human transcriptome by high-
throughput sequencing. Nature Genetics, 40(12):1413-1415, nov 2008.

Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford.
Salmon provides fast and bias-aware quantification of transcript expression. Nature
Methods, 14(4):417-419, mar 2017.

Rob Patro, Stephen M Mount, and Carl Kingsford. Sailfish enables alignment-free
isoform quantification from RNA-seq reads using lightweight algorithms. Nature
Biotechnology, 32(5):462 464, apr 2014.

J. Pearl. Heuristics: intelligent search strategies for computer problem solving.
Addison-Wesley, 1? edition, 1984.

Bibliography 209

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

108

Y. Peng, H. C. M. Leung, S. M. Yiu, and F. Y. L. Chin. Meta-IDBA: a de novo
assembler for metagenomic data. Bioinformatics, 27(13):194-1101, jun 2011.

Yu Peng, Henry C. M. Leung, S. M. Yiu, and Francis Y. L. Chin. IDBA a practical
iterative de bruijn graph de novo assembler. In Lecture Notes in Computer Science,
pages 426 440. Springer Berlin Heidelberg, 2010.

Mihaela Pertea, Geo M Pertea, Corina M Antonescu, Tsung-Cheng Chang,
Joshua T Mendell, and Steven L Salzberg. StringTie enables improved reconstruc-
tion of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3):290-295,
feb 2015.

Atif Rahman, Ingileif Hallgrimsdottir, Michael Eisen, and Lior Pachter. Association
mapping from sequencing reads using k-mers. eLife, 7:e32920, jun 2018.

Mikko Rautiainen and Tobias Marschall. Aligning sequences to general graphs in
o(v + me) time. bioRziv, 2017.

Anthony Rhoads and Kin Fai Au. Pacbio sequencing and its applications. Ge-
nomics, Proteomics & Bioinformatics, 13(5):278 — 289, 2015. SI: Metagenomics of
Marine Environments.

Romeo Rizzi, Gustavo Sacomoto, and Marie-France Sagot. Efficiently listing
bounded length st-paths. In Lecture Notes in Computer Science, pages 318-329.
Springer International Publishing, 2015.

Adam Roberts and Lior Pachter. Streaming fragment assignment for real-time
analysis of sequencing experiments. Nature Methods, 10(1):71-73, nov 2012.

Gordon Robertson, Jacqueline Schein, Readman Chiu, Richard Corbett, Matthew
Field, Shaun D Jackman, Karen Mungall, Sam Lee, Hisanaga Mark Okada, Jenny Q
Qian, Malachi Griffith, Anthony Raymond, Nina Thiessen, Timothee Cezard,
Yaron S Butterfield, Richard Newsome, Simon K Chan, Rong She, Richard Varhol,
Baljit Kamoh, Anna-Liisa Prabhu, Angela Tam, YongJun Zhao, Richard A Moore,
Martin Hirst, Marco A Marra, Steven J M Jones, Pamela A Hoodless, and Inanc
Birol. De novo assembly and analysis of RNA-seq data. Nature Methods, 7(11):909
912, oct 2010.

Roye Rozov, Gil Goldshlager, Eran Halperin, and Ron Shamir. Faucet: streaming
de novo assembly graph construction. Bioinformatics, 34(1):147-154, jul 2017.

G. Sacomoto, J. Kielbassa, R. Chikhi, and R. Uricaru et al. KISSPLICE: de-
novo calling alternative splicing events from RNA-seq data. BMC Bioinformatics,
13(Suppl 6):S5, 2012.

G. Sacomoto, V. Lacroix, and M.-F. Sagot. A polynomial delay algorithm for the
enumeration of bubbles with length constraints in directed graphs and its appli-
cation to the detection of alternative splicing in rna-seq data. In WABI, pages
99-111, 2013.

210

Bibliography

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Gustavo Sacomoto, Blerina Sinaimeri, Camille Marchet, Vincent Miele, Marie-
France Sagot, and Vincent Lacroix. Navigating in a sea of repeats in RNA-seq
without drowning. In Lecture Notes in Computer Science, pages 82-96. Springer
Berlin Heidelberg, 2014.

Leena Salmela and Eric Rivals. LoRDEC: accurate and efficient long read error
correction. Bioinformatics, 30(24):3506-3514, 12 2014.

Leena Salmela, Riku Walve, FEric Rivals, and Esko Ukkonen. Accurate self-
correction of errors in long reads using de Bruijn graphs. Bioinformatics,

33(6):btw321, 6 2016.

Michael Sammeth. Complete alternative splicing events are bubbles in splicing
graphs. Journal of Computational Biology, 16(8):1117-1140, aug 2009.

M. H. Schulz. Data Structures and Algorithms for Analysis of Alternative Splicing
with RNA-Seq Data. PhD thesis, Free University of Berlin, 2010.

Marcel H. Schulz, Daniel R. Zerbino, Martin Vingron, and Ewan Birney. Oases:
robust de novo RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics, 28(8):1086 1092, feb 2012.

Mingfu Shao and Carl Kingsford. Accurate assembly of transcripts through phase-
preserving graph decomposition. Nature Biotechnology, 35(12):1167-1169, nov
2017.

Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nat Biotechnol,
26(10):1135-1145, 2008.

Richard Smith-Unna, Chris Boursnell, Rob Patro, Julian Hibberd, and Steven
Kelly. TransRate: reference free quality assessment of de novo transcriptome as-
semblies. Genome Research, pages gr.196469.115+, June 2016.

Lincoln Stein. Genome annotation: from sequence to biology. Nature Reviews
Genetics, 2:493 EP | Jul 2001. Review Article.

Wing-Kin Sung, Kunihiko Sadakane, Tetsuo Shibuya, Abha Belorkar, and lana
Pyrogova. An o(m log m)-time algorithm for detecting superbubbles. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 12(4):770 777, jul
2015.

Sonia Tarazona, Pedro Furio-Tari, David Turra, Antonio Di Pietro, Maria José
Nueda, Alberto Ferrer, and Ana Conesa. Data quality aware analysis of differential
expression in RNA-seq with NOISeq r/bioc package. Nucleic Acids Research, page
gkv711, jul 2015.

Bibliography 211

[121] Oxford ~ Nanopore Technologies. World first: continuous
DNA sequence of more than a million bases achieved with
nanopore sequencing. https://nanoporetech.com/about-us/news/

world-first-continuous-dna-sequence-more-million-bases-achieved-nanopore-sequencing,
2017. [Online; accessed 29-December-2018|.

[122] Hagen Tilgner, David Knowles, Rory Johnson, Carrie Davis, Sudipto Chakrabortty,
Sarah Djebali, Joao Curado, Michael Snyder, Thomas Gingeras, and Roderic
Guigd. Deep sequencing of subcellular RNA fractions shows splicing to be pre-
dominantly co-transcriptional in the human genome but inefficient for IncRNAs.
Genome research, 22:1616-1625, 2012.

[123] German Tischler and Eugene W. Myers. Non Hybrid Long Read Consensus Using
Local De Bruijn Graph Assembly. bioRziv, page 106252, 2 2017.

[124] Alexandru I. Tomescu, Anna Kuosmanen, Romeo Rizzi, and Veli Mékinen. A
novel min-cost flow method for estimating transcript expression with rna-seq. BMC
Bioinformatics, 14(5):S15, Apr 2013.

[125] Cole Trapnell, David G Hendrickson, Martin Sauvageau, Loyal Goff, John L Rinn,
and Lior Pachter. Differential analysis of gene regulation at transcript resolution
with RNA-seq. Nature Biotechnology, 31(1):46 53, dec 2012.

[126] Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Mari-
jke J van Baren, Steven L Salzberg, Barbara J Wold, and Lior Pachter. Transcript
assembly and quantification by RNA-seq reveals unannotated transcripts and iso-
form switching during cell differentiation. Nature Biotechnology, 28(5):511-515,
may 2010.

[127] Isaac Turner, Kiran V Garimella, Zamin Igbal, and Gil McVean. Integrating long-
range connectivity information into de bruijn graphs. Bioinformatics, 34(15):2556—
2565, mar 2018.

[128] Raluca Uricaru, Guillaume Rizk, Vincent Lacroix, Elsa Quillery, Olivier Plantard,

isolated SNPs. Nucleic Acids Research, 43(2):el1-el1, nov 2014.

[129] Eric T. Wang, Rickard Sandberg, Shujun Luo, Irina Khrebtukova, Lu Zhang,
Christine Mayr, Stephen F. Kingsmore, Gary P. Schroth, and Christopher B.
Burge. Alternative isoform regulation in human tissue transcriptomes. Nature,
456(7221):470-476, nov 2008.

[130] Thomas D. Wu, Jens Reeder, Michael Lawrence, Gabe Becker, and Matthew J.
Brauer. GMAP and GSNAP for genomic sequence alignment: Enhancements to

speed, accuracy, and functionality. In Methods in Molecular Biology, pages 283-334.
Springer New York, 2016.

212

Bibliography

[131]

[132]

Chuan-Le Xiao, Ying Chen, Shang-Qian Xie, Kai-Ning Chen, Yan Wang, Yue
Han, Feng Luo, and Zhi Xie. MECAT: fast mapping, error correction, and de novo
assembly for single-molecule sequencing reads. Nature Methods, 14(11):1072-1074,
9 2017.

Y. Xie, G. Wu, J. Tang, R. Luo, J. Patterson, S. Liu, W. Huang, G. He, S. Gu, S. Li,
X. Zhou, T.-W. Lam, Y. Li, X. Xu, G. K.-S. Wong, and J. Wang. SOAPdenovo-
trans: de novo transcriptome assembly with short RNA-seq reads. Bioinformatics,
30(12):1660-1666, feb 2014.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

