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ABSTRACT

Variscan shear zones in the Armorican Massif represent sites of strong fluid-rock interaction.
The hydrogen isotope composition of muscovite (6Dys) from syntectonic leucogranite allows
to determine the source of fluids that infiltrated the footwall of three detachment zones and
the South Armorican Shear Zone. Using temperatures of hydrogen isotope exchange

estimated from microstructural data, we calculate the hydrogen isotope ratios of water
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(8Dyter) present within the shear zones during high temperature deformation. A ~40%o
difference in 8Dwater values from deep to shallow crustal level reveals a mixing relationship
between deep crustal fluids with higher 6D values that range from -34 to -33%o., and meteoric

fluids with 8D values as low as -74%o in the upper part of detachment footwalls.

Introduction

Crustal-scale shear zones are sites of significant fluid circulation and hydrothermal alteration
(e.g. McCaig, 1988; Fricke et al., 1992; Mulch et al., 2006b; Gébelin et al., 2011; Menzies et
al., 2014). They represent critical interfaces where metamorphic, magmatic and surface-
derived fluids meet (e.g. Upton et al., 1995; Nesbitt and Muehlenbachs, 1995; Mulch et al.,
2006b; Geébelin et al., 2015, 2017). Characterization of a meteoric component of crustal fluids
is crucial to better understand ore deposition at the orogen scale (e.g. Boiron et al., 2003) or
for paleoaltimetry reconstructions (e.g. Mulch et al., 2004, 2007; Gébelin et al., 2012, 2013).
Muscovite that crystallized at depth during deformation-related fluid flow provides a reliable
record to track meteoric-derived fluids that circulated in ductile shear zones during high
temperature deformation (~400-600°C; e.g. Gébelin et al., 2011, 2015; Methner et al., 2015).
In particular, the hydrogen isotope ratio of the fluid (8Dwaier) can be estimated if muscovite-
water hydrogen isotope equilibrium was attained during deformation and crystallization, and
if the temperature of isotope exchange can be assessed independently (Fricke et al., 1992;
Mulch and Cosca, 2004; Mulch et al., 2007). In addition, the high resistance of muscovite to
post-deformational alteration and low-temperature isotopic exchange makes it an excellent
tracer of water present during deformation (e.g. Guggenheim et al., 1987; Mariani et al.,
2006).

This method has proven to be one of the cornerstones when recovering the isotopic
composition of ancient rainfall that infiltrated the upper crust through a brittle deformation
network down to 15 km depth in the footwall of detachment zones in the North American
Cordillera (e.g. Fricke et al., 1992; Losh, 1997; Mulch et al., 2004, 2007; Gébelin et al., 2011,
2012, 2015), in the European Central Alps (Campani et al., 2012) but also in the Himalaya
(Gébelin et al., 2013, 2017).

Here, we employ hydrogen isotope geochemistry of synkinematic muscovite (8Dy) from
Variscan strike-slip and detachment footwalls of the Armorican Massif (Fig. 1) to identify
and characterize ancient meteoric water that circulated along and across the brittle-ductile
transition. Low 6DMs values indicate that meteoric fluids infiltrated the upper part of

detachments footwall and strike-slip shear zones to variable degrees.
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Geological framework

The southern Armorican domain represents the internal zone of the Variscan Belt that
experienced crustal thickening and high-pressure metamorphism during the Carboniferous
(e.g. Ballevre et al., 2013). From top to bottom, three units can be distinguished (Fig. 1): 1)
Upper units (blueschists and greenschist facies metasediments and metavolcanics; Bosse et
al., 2002; Le Hebel et al., 2002); 2) Intermediate units (mica schist; Barrovian metamorphism
from greenschist to amphibolite facies conditions; Triboulet and Audren, 1988); 3) Lower
units (migmatites; 750°C-1000MPa; Jones and Brown (1990) and syntectonic peraluminous
leucogranites).

The entire region was affected by coeval WNW-ESE trending dextral strike-slip and E-W
extensional faulting during the late-Carboniferous that provided effective pathways for melt
migration and fluid infiltration (e.g. Gapais et al., 2015). Syntectonic two-mica leucogranites
forming the footwall of detachment shear zones and spatially associated with the dextral
South Armorican Shear Zone (SASZ) were emplaced between ~320 and 300 Ma (Ar/Ar on
muscovite and U-Th-Pb on zircon and monazite; e.g. Jegouzo, 1980; Gapais, 1989; Brown
and Dallmeyer, 1996; Turrillot et al., 2009, 201 1a; Tartese et al., 2012; Ballouard et al., 2015,
2017; Gapais et al., 2015).

Sampling strategy and sample description

To characterize the role of different types of active shear zones in controlling meteoric water
infiltration in the Variscan crust, oriented samples of highly to weakly deformed
leucogranites were collected along the SASZ and following transects from Quiberon and
Piriac detachment shear zones into their underlying mylonitic footwalls (samples locations in
the Supporting Information). Some leucogranites display albitic and chloritic alteration that,
together with the presence of quartz veins, point to the involvement of magmatic and/or
hydrothermal fluids (higher Sn and Cs content and lower K/Rb and Nb/Ta ratios; e.g.
Ballouard et al., 2016). Also, the involvement of surface-derived fluids is suspected by
oxygen isotope analysis (6180Quanz values as low as -2%o in quartz veins formed at ~250-
350°C; e.g. Lemarchand et al., 2012; Tarteése et al., 2012; Ballouard et al., 2017). We also
collected leucogranite samples from the Sarzeau detachment shear zone that allows the
observation of a deeper structural level (e.g. Gapais et al., 2015).

Sub-solidus deformation textures such as rectangular and castellate quartz grain boundaries
indicate that grain boundary migration (=550°C; e.g. Stipp et al., 2002; Bukovska et al.,

2016) was the dominant dynamic recrystallization process that affected mylonitic syntectonic
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leucogranites from all three types of shear zones (Fig. 2). These microstructural observations,
together with EBSD data indicating prism <c> and <a> glide (Gapais and Boundi, 2014,
Bukovska et al., 2016), support high deformation temperature (>400°C, e.g. Langille et al.,
2010).

C-S structures highlighted by muscovite fish along shear and schistosity planes indicate a
syntectonic emplacement of leucogranites (e.g. Gapais, 1989; Fig. S1A, Supporting
Information). Solution-precipitation mechanisms can explain the development of
synkinematic lozenge-shaped muscovite grains (groups 1, 2 and 3 of ten Grotenhuis et al.
(2003) classification; Figs. S1 and S2). Weakly deformed granite display euhedral muscovite
grains and large primary quartz crystals and/or quartz grain boundary migration consistent

with high-temperature deformation (Fig. S2).

Hydrogen Isotope Geochemistry

dD values of muscovite (0Dyis) were measured in 51 syntectonic leucogranite samples from
the different ductile shear zones (Fig. 2; Text S1 and Table S1). 6Dy values from the
Sarzeau detachment footwall (SARZ-) range from -47 to -46%o. 0D\ values from the
Quiberon (QUIB-) and Piriac (PIR-, GUE-) transects are constant within the footwall from
the top to the bottom and range from -88 to -76%o. Weakly deformed leucogranites located at
larger distance from the hanging wall (GUEweakd-) have similar values (-84 to -80%o).
dD\s values from mylonitic samples from the SASZ (ELL-, QRT-, QUEST-, LRT-) vary
from -84 to -54%o. The range of values allows to define a lateral trend from lower 6Dy,
values (-84 to -79%o) obtained on highly deformed samples within the SASZ to higher 8Dy
values (-79 and -70%o) at increasing distance from the deformation zone where leucogranites
are weakly deformed (GRTweakd-, LRTweakd-; Figs. 1 and 2).

Based on our microstructural observations (e.g. C-S structures and quartz Grain Boundary
Migration; >550°C; e.g. Stipp et al., 2002) and previous EBSD data (>400°C; Gapais and
Boundi, 2014; Bukovska et al., 2016), we used a temperature of deformation of 550 + 100°C
which corresponds to the temperature of hydrogen isotope exchange between the fluid and
the mineral. Together with measured 8Dy values and using the hydrogen isotope muscovite-
water fractionation of Suzuoki and Epstein (1976), 8D values of the fluid (8Dyater 10%o0
taking into account analytical and temperature uncertainties) present during deformation and
(re)crystallization were calculated and vary from —34 to —33%o in the Sarzeau detachment
zone, from —74 to —63%o in the Quiberon and Piriac detachment zones, and from —71 to

—41%o in the SASZ (Figs. 1, 2 and 3; Table S2).
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Discussion

Meteoric infiltration and mixing with deep crustal fluids

Samples from Sarzeau exposing the deepest part of a detachment footwall display calculated
ODater values of -34 to -33%o which are significantly higher than those obtained from the
Quiberon and Piriac detachments (6D water values as low as -74%o; Fig. 3). 8Dywater values
calculated from samples collected in the SASZ vary from —71 to —41%o, covering the entire
range of hydrogen isotope compositions found in Sarzeau and in Quiberon and Piriac.
Considering that the Sarzeau granite was emplaced at ~15 km depth (Turrillot et al., 2011b),
we interpret the highest calculated SDyaier value (~-33%o) to reflect the hydrogen isotope
composition of a deep crustal fluid (-70%o < 8Dmetamorphic fluids < -~20%o and/or -80%o <
ODmagmatic fluias < -40%o; e.g. Field and Fifarek, 1985) present during deformation at such a
depth. In contrast, the lower 6Dyr values obtained from Quiberon and Piriac (-74%o to
—63%o) suggest that muscovite from these syntectonic leucogranites interacted with
deuterium-depleted fluids during deformation. These lower dDwaier values (41%o lower than
those obtained from Sarzeau) can most readily be explained by the involvement of meteoric
fluids, in good agreement with the shallower depths of granite emplacement at Quiberon and
Piriac (~ 3-6 km; Le Hébel et al., 2007; Ballouard et al., 2017).

The range of 0D water values (-74%o to -33%o0) obtained from the Variscan shear zones of the
southern Armorican domain indicates a mixing relationship between deep crustal fluids and
meteoric fluids in the mylonitic detachment footwalls and along the SASZ. As shown in Figs.
3 and 4, we define two fluid end-members: a crustal fluid that predominantly involves
magmatic and/or metamorphic fluids (8D water value = -33%o) and a surface-derived fluid that
reflects a large percentage of mixing with low-8D meteoric water (8D yater Value = -74%o).
The variability in the low 6Dy values within the Quiberon and Piriac detachment zones
(74 to -63%o) and in the SASZ (-71 to -41%o) can be explained by 1) different degrees of
mixing with meteoric water, and 2) a difference in the temperature controlling the hydrogen
isotope exchange between the fluid and synkinematic muscovite (+ 100°C gives an
uncertainty of £10%o for the dDyaier values).

In addition, we suggest that the lowest dDvaier Value of -74%o represents the hydrogen isotope
composition which approximates most closely the value of surface-derived fluid that
penetrated the crust at depth during detachments activity (Fig. 3). As the downward
penetration of meteoric fluids in the crust generally leads to an increase in 6Dy Values due

to fluid-rock interaction, this 6Dyaeer Value represents a maximum value that may have been

This article is protected by copyright. All rights reserved.



potentially lower than -74%o if it would have been extracted from the near-surface geological

record (e.g. Gébelin et al., 2012).

Timing, depth and mechanisms of meteoric fluid infiltration

The onset of meteoric fluid infiltration can be estimated at ~320 Ma based on U/Pb ages from
syntectonic leucogranites emplaced in detachment footwalls or along strike-slip shear zones
(e.g. Tartese et al., 2012; Ballouard et al., 2015). Deformation and fluid infiltration likely
ended at ~300 Ma with the cessation of the shear zones activity (_40Ar/39Ar muscovite ages
from the same studied leucogranite intrusion; Turrillot et al., 2011a; Tartése et al., 2012;
Gapais et al, 2015; Ballouard et al., 2017, 2018).

Based on the depth at which leucogranites were emplaced at Quiberon and Piriac (-3 to 6
km) and along the SASZ (~3 to 12 km), we estimate a minimum depth of ~3 km for the
infiltration of Carboniferous meteoric fluids. However, based on the depth of Sarzeau granite
emplacement (~15 km) and on its deep crustal fluid signature, we infer that the penetration of
meteoric fluids in the crust did not exceed ~12 km corresponding to the deepest level of
leucogranites emplacement in the SASZ (e.g. Le Hébel et al., 2007, Tartese and Boulvais,
2010; Turrillot et al., 2011b; Ballouard et al., 2017).

These results are in good agreement with previous studies conducted on ductile shear zones
in the Pyrenees, the New Zealand Alps, the North American Cordillera and the Himalaya that
highlight the infiltration of meteoric fluids at similar depths (e.g. McCaig, 1988; Upton et al ,
1995; Mulch et al., 2004, 2006; Person et al., 2007; Gébelin et al., 2011, 2017; Menzies et al .,
2014). As proposed for detachment zones in Western USA and the South Tibetan
Detachment (Mulch et al., 2004; Person et al., 2007, Gébelin et al., 2011, 2013; 2015, 2017),
three main conditions are essential to explain the downward infiltration of meteoric fluids at
depth and imply a combined effect of brittle normal faults in the upper crust, a high
geothermal gradient and the presence of a hydraulic head. These criteria were very likely met
in the southern Armorican domain where brittle normal faults have been recognized and
linked to the exhumation of high-grade metamorphic rocks at ~300 Ma, but also where the
thickened crust would have provided the necessary hydraulic head (Fig. 3; e.g. Gapais et al.,
2015; Brown and Dallmeyer, 1996).

Fault-valve could represent another mechanism for the downward flow of small volumes of
meteoric fluids where quick episodes of fluid penetration are followed by protracted periods

of fluid stagnation promoting fluid-rock interaction under lithostatic conditions (e.g. Sibson,
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1981; McCaig, 1988; Sibson et al., 1988; Jenkin et al., 1994, Upton et al., 1995; Menzies et

al., 2014), in good agreement with our rock-buffered meteoric fluid signatures.

Isotopic composition of ancient rainfall in the Armorican Massif

Low-6D meteoric precipitation typical of high-altitude regions (6Dwater ~ -150%o in the
Himalayas; e.g. Quade et al., 2011) are expected in the thickened Armorican Massif.
Although our data highlight the presence of meteoric fluids at depth, 8D values of these
surface waters (estimated at -74%o) remain relatively high if corresponding to the initial
meteoric water (see above). Four main factors can explain these relatively high 6D values for
Carboniferous rainfall: 1) a moderate paleoelevation as hydrogen (6D) isotope ratios of
rainfall scale with elevation on the windward side of a mountain range (e.g. Poage and
Chamberlain, 2001); 2) the equatorial paleogeographic position of the Armorican Massif
during the late-Carboniferous (e.g. Tait et al., 1996; Boucot et al., 2013) would have yielded
higher 8Drainfan values as observed today due to the high global evaporation flux over the
oceans at the equator (Rozanski et al., 1993); 3) the warm equatorial late-Carboniferous
paleoclimate that characterized the Variscan belt of western Europe could lead to relatively
high 6Dmeteoric water values (e.g. Poulsen and Jeffery, 2011); 4) the presence of major ice sheets
(40% more extensive than today) during the late-Carboniferous may have induced an increase
of +1.5%o in the 5'0 of ocean waters or +12%o for the 0D ocean water Values (Gonzalez-

Bonorino and Eyles, 1995; Buggisch et al., 2008).

Conclusion

We investigate fluid flow in ductile shear zones of the southern Armorican domain through
muscovite hydrogen isotope ratios (8Dy;) from syntectonic leucogranites emplaced within
detachment footwalls and strike-slip fault systems. Mica fish from the lower part of
detachment footwalls reveal a typical metamorphic and/or magmatic fluid source, whereas
the top of detachment footwalls reveal low 8Dy values indicative of meteoric fluids
infiltration. Syntectonic leucogranites from the SASZ also interacted with surface-derived
fluids, but varying degrees of mixing between deep-sourced and surface-derived fluids
resulted in intermediate 8Dy values. Penetration of surface-derived fluids in the crust
occurred between ~320 and 300 Ma by the means of upper-crustal brittle fracture networks
while active shear zones continuously exhumed lower-crustal rocks. Ancient rainfall D
values are relatively high compared to present-day major orogens and can be explained by

moderate paleoelevation and/or warm paleoclimatic and equatorial paleogeographic
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conditions. Variscan shear zones in the Armorican Massif represented major orogen-scale

structures where fluids from both the Earth’s surface and the deep parts of the crust mixed.
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Figure captions

Figure 1. General map of the southern Armorican domain and E-W cross-section (AA”).
Samples sites colours indicate the calculated hydrogen isotope composition of fluids that
interacted with muscovite in syntectonic granites. E.Q: Elliant quarry; Q.G.: Questembert
granite; L.: Lizio leucogranite; S.: Sarzeau leucogranite; Q.: Quiberon leucogranite G.:
Guérande leucogranite; modified after Gapais et al. (1993).

Figure 2. Representative quartz microstructure from the SASZ and detachment zones as well
as associated measured 0D\ values (+ 2%o) and calculated 0Dy Values (£ 10%o). Hydrogen
isotope ratios of water have been calculated from 8Dy values using a deformation
temperature of 550 = 100°C and temperature-dependent fractionation equations from Suzuoki
and Epstein (1976).

Figure 3. 3D simplified sketch showing the crustal-scale ductile shear zones and associated
dDyater values. Blue arrows: meteoric fluids infiltration. Red Arrows: deep crustal fluids.
SASZ: South Armorican Shear Zone.

Figure 4. Graph showing the 6Dyater values from detachments footwall and the SASZ
calculated from measured 0D values of synkinematic muscovite (this study). Note the
progressive involvement of meteoric fluids from an unmixed deep crustal end-member fluid
in the Sarzeau lower part of detachment footwall (6Dwater value = -33%o) to greater mixing
with meteoric fluids in the Piriac and Quiberon upper part of detachment footwalls (8Dyter

value = -74%o). MF/R: meteoric fluid/rock ratio.
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Supporting Information

Additional Supporting Information may be found in the online version of this article:
Figure S1. Muscovite microstructures in Quiberon and Piriac

Figure S2. Muscovite microstructures in Sarzeau and the SASZ

Text S1. Methods

Table S1. GPS localization and hydrogen isotope composition of muscovite (8Ds)

Table S2. Calculated 8D.qir values with uncertainties
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