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Abstract Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several dis-
eases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes
and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects
on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those
occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline
phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to
limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal
models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is
ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other im-
portant physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyri-
doxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory
enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full
spectrum of TNAP’s functions is needed to better characterize the effects of TNAP inhibition in diseases associated
with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered
additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.
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1. Introduction

Cardiovascular calcification (CVC) is an independent risk factor for car-
diovascular morbidity and mortality. CVC is a common process across
ethnicities in the general population and increases with age.1 It is essential
to distinguish between three main types of CVC. Two types of CVC
with common risk factors and pathogenesis may occur in most ageing
adults: intimal atherosclerotic plaque calcification and aortic valve calcifi-
cation.1,2 The third type of CVC affects the tunica media, in individuals
with chronic kidney disease (CKD) or with type 2 diabetes. Media calcifi-
cation indeed causes arterial stiffness, increased pulse pressure, and left
ventricular hypertrophy.3 In CKD, calcification is very likely responsible
for the high cardiovascular mortality,4 patients with end-stage renal dis-
ease have a 30 times higher risk of death compared to the general popu-
lation.5 In type 2 diabetes, media calcification first appears in the feet and
develops proximally, worsening the risk of lower limb amputation.6,7

Consequences of atherosclerotic intimal plaque calcification are less
clear,3 although it is virtually present in every adult.1 Since the calcium
score is positively associated with cardiovascular mortality risk,8 it was
commonly thought that advanced plaques with heavy calcifications are

unstable. This view has been challenged, particularly by the fact that sta-
tins increase the calcium score,9 and a consensus has emerged that
strongly calcified plaques could be in fact more stable.10 More recently,
microcalcifications have been evidenced in early plaques,11–13 where
they may destabilize plaques by exerting pro-inflammatory effects and
generating mechanical stress within the fibrous cap.14–17 Finally, although
aortic valve calcification share many features with intimal calcification, it
undoubtedly has a harmful biomechanical and clinical impact.2 Until re-
cently, lack of therapeutic targets and/or of pharmacological inhibitors
have prevented CVC inhibition. The identification of tissue-nonspecific
alkaline phosphatase (TNAP) as a central player in physiology as well as
several types of CVC, and the development of approaches to inhibit
TNAP have opened new possibilities.

2. TNAP, a therapeutic target to
block cardiovascular calcification

All types of CVC develop at least in part through mechanisms mimicking
endochondral (through a cartilage template) and/or intramembranous
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(without a cartilage template) ossification. Both ossification types have
been evidenced in the tunica media of arteries in both humans and
rodents with CKD18,19 and diabetes,20,21 in human aortic valves,22,23 and
in mouse and human atherosclerotic plaques.10,24–26 In humans, minerali-
zation in endochondral and intramembranous ossification relies on
TNAP activity. Indeed, the most severe genetic TNAP deficiencies
(hypophosphatasia, HPP) lead to the perinatal death of foetuses devoid
of minerals in their whole skeleton.27 Increasing evidence indicates that
TNAP plays a role in most types of CVC. TNAP appears as a central
player in valve calcification, based on ex vivo experimental models.28,29 In
Apolipoprotein (Apo)E-deficient mice, TNAP activity precedes calcification
in atherosclerotic plaques.30 In rats, nephrectomized to mimic CKD,
TNAP was also detected slightly before vascular calcification (VC) initia-
tion.31 Importantly, local TNAP activation in arteries may be sufficient to
trigger VC since its overexpression in vascular smooth muscle cells
(VSMCs) or in endothelial cells is sufficient to induce massive and lethal
arterial calcification in mice.32–34 Besides its local action on CVC, TNAP
may accelerate CVC from the circulation. Indeed, circulating TNAP ac-
tivity is an independent predictor of mortality in the general population
and in individuals with metabolic syndrome (MetS), who have increased
serum TNAP levels.35–40 Serum TNAP activity is associated with coro-
nary artery calcium score.41 Moreover, circulating TNAP is associated
with increased risk of cardiovascular death in patients with CKD.42–44 In
the light of these results, TNAP has emerged as a promising therapeutic
target to block CVC, but until recently this target lacked tools to be effi-
ciently inhibited in vivo. Two approaches, based on inhibition of expres-
sion or activity, have recently been developed and several preclinical
studies have been conducted with encouraging results. These advances
open the way to clinical studies aiming to prevent or treat CVC. On the
other hand, increasing evidence indicates that TNAP is not only the key
player in mineralization but also a ubiquitous enzyme that exerts various

and necessary functions in different organs. It is therefore mandatory to
thoroughly analyse these functions.

3. TNAP, a ubiquitous enzyme with
broad substrate specificity

3.1 TNAP is a membrane-anchored homo-
dimeric enzyme
Humans have in their genome four different loci expressing four distinct
alkaline phosphatase (AP) isoenzyme.45 Three of these genes, ALPI, ALPP,
and ALPPL2, are tissue-specific in their expression pattern restricted to
the intestine, placenta, and germ cells, respectively. The fourth gene,
ALPL, is designated as TNAP, since it is expressed in bone, liver, kidney,
brain, among others. The 3D structure of mammalian TNAP has not
been elucidated so far and can only be assessed based on its 57% identity
and 74% homology to the human ALPP and Escherichia coli AP for which
crystal structures are known. Both function physiologically as homo-
dimers46 (Figure 1). Structural features of APs involve the monomer–
monomer interface the active site with divalent cation-binding sites, the
crown domain, the N-terminal arm, a glycosylphosphatidylinositol (GPI)
anchor, and N-linked glycosylation sites. The monomer–monomer inter-
face exhibits a strong hydrophobic character demonstrating that <30%
of the amino acid residues are involved in two hydrogen-bonding inter-
actions.48 This feature is crucial for stability and enzymatic function. The
active site contains three metal-binding sites surrounding the catalytic
serine residue that are essential for TNAP enzymatic activity.49 The
metal-binding site M1 and M2 are occupied by Zn2þ and M3 is occupied
by Mg2þ. An additional metal-binding site—M4—is suggested for the
binding of Ca2þ that does not alter TNAP catalytic activity.50 The N-ter-
minal a-helix domain together with the crown domain, which is a flexible

Figure 1 Structural features of TNAP. AMP, adenosine monophosphate; ATP, adenosine triphosphate; GPI, glycosyl phosphatidyl inositol; LPS, lipopoly-
saccharide; OPN, osteopontin; PPi, inorganic pyrophosphate; PLP, pyridoxal phosphate; TNAP, tissue-nonspecific alkaline phosphatase. Modified from Ref.47
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..loop, stabilize the dimeric structure, and determine allosteric properties
(Figure 1). In all mammalian AP homodimers, the N-terminal a-helix (res-
idues 9–25) of one monomeric subunit encircle the contralateral subunit
reaching towards its active site. These N-terminal a-helical folding is cru-
cial for the structural stability of the second monomer in TNAP and is
largely responsible for the allosteric behaviour of mammalian APs.51

Mutation of Arg374 (R374A) and deletion of 5 and 9N-terminal amino
acids cause structural and functional disruption.52 In addition, TNAP con-
tains five putative N-linked glycosylation sites (N123, N213, N254,
N286, and N413), which are important for catalytic activity.53,54 Another
crucial structural element is the GPI anchor enabling the binding of mam-
malian APs to the surface of the plasma membrane. Plasma membrane-
localized phospholipases can enzymatically cleave the anchor, releasing
TNAP in the circulation. Both anchored and free APs are active.

3.2 TNAP has weak substrate specificity
in vitro
APs catalyse the hydrolysis of a broad range of phosphate monoesters
to form inorganic phosphate (Pi) and alcohol (or phenol) (Figure 1). For
example, purified TNAP is able to hydrolyze adenosine triphosphate
(ATP), ADP, AMP, inorganic pyrophosphate (PPi), glucose-6-phosphate,
b-glycerophosphate, or p-nitrophenyl-phosphate in vitro.55 The reaction
mechanisms have been investigated in AP from E. coli, which has an active
site with strong homology to mammalian APs, with differences at only
three positions,56 suggesting similar reaction mechanisms.57 The reaction
generates a serine-phosphate intermediate to produce Pi and an alcohol
or phenol. Pi then fills the entire volume of the active site pocket and
acts as a strong competitive inhibitor of the enzyme, in a negative feed-
back loop.58 The two Zn2þ ions play a crucial role in the reaction by co-
ordinating the hydroxyl group of serine within the active site, preparing
it for nucleophilic attack of the phosphate monoester substrate and
binding the substrate/product.59 Additionally, an arginine residue is im-
portant in the initial binding of the substrate and in the release of Pi.

56

Finally, the presence of the Mg2þ ion is required for deprotonation of
the serine residue.49 The presence of the two Zn2þ ions but not that of

the Mg2þ ion in the nucleotide pyrophosphatase phosphodiesterase
(NPP) enzymes suggests that the Mg2þ ion could play a fundamental role
in the discrimination between the binding and hydrolysis of phosphate
monoester and diester.60,61 Indeed, in addition to their phosphomonoes-
terase activity, APs may have a weaker but significant phosphodiesterase
activity,60,61 including TNAP that is able to hydrolyze phosphodiesters
in vitro.62 Whether it is present in vivo remains speculative, since all in vivo
demonstrated TNAP substrates are monoesters.

3.3 TNAP has a small but growing number
of pathophysiological substrates
The mineralizing function of TNAP relies on inorganic pyrophosphate
(PPi) hydrolysis rather than on Pi generation. In 1962, Fleisch and Bisaz63

proposed that PPi in the plasma reaches tissues to prevent collagen min-
eralization, which is triggered by the local hydrolysis of PPi through
TNAP. This hypothesis was confirmed by Russell et al. who measured in-
creased PPi excretion in patients with HPP.64 In the 2000s, the group of
JL Millan crossed TNAP-deficient mice (Alpl-deficient mice) with mice
deficient in genes involved in the generation of extracellular PPi. One of
these genes is Ank, the ortholog of the human ANKH gene, encoding an
exporter of PPi in the extracellular compartment, whose mutations re-
sult in craniometaphyseal dysplasia.65 The other one is Enpp1 (ectonu-
cleotidase pyrophosphatase phosphodiesterase 1) encoding an enzyme
that generates PPi from extracellular ATP, whose deficiency in humans is
associated with generalized arterial calcification of infancy.66 Crossing
Alpl-deficient mice with Ank mice or Enpp1-deficient mice not only re-
duced the ectopic calcification phenotype of PPi-deficient mice but also
prevented the mineralization defects of Alpl-deficient mice.67,68 Finally,
Murshed et al.69 demonstrated that TNAP induces mineralization only in
tissues containing a fibrillar collagen, which serves as a template for crys-
tal deposition, explaining why only bones and teeth are physiologically
mineralized (Figure 2A). However, TNAP is not involved in crystal nucle-
ation but in crystal growth. Bones from HPP patients and TNAP-
deficient mice still contain small crystals in matrix vesicles [the so-called
extracellular vesicles (EVs) released by mineralizing bone cells70] that

Figure 2 TNAP’s involvement in PPi dephosphorylation leading to the mineralization of collagen-rich tissues (A) and in AMP dephosphorylation leading to
resolution of inflammation (B). Ado, adenosine; AMP, adenosine monophosphate; ANKH, progressive ankylosis protein homolog; ATP, adenosine triphos-
phate; ENPP1, ectonucleotidase pyrophosphatase phosphodiesterase 1; Pi, inorganic phosphate; PPi, inorganic pyrophosphate; TNAP, tissue-nonspecific al-
kaline phosphatase; VSMC, vascular smooth muscle cell.
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have failed to growth and multiply within collagen fibrils.47 This paradigm
is strengthened by the fact that PPi ions may not act by inhibiting crystal
nucleation, but by binding to the hydration shell of apatite crystals, and
hindering Pi binding.71 The molecular mechanisms involved in crystal nu-
cleation remain obscure. Intravesicular dephosphorylation of phospho-
choline by phospho1 and calcium ion import by annexins have been
proposed as mechanisms to increase ion concentration and induce crys-
tal nucleation.70 Alternatively, poly-ADP ribose released in EVs by senes-
cent bone cells and VSMCs has been proposed to participate to crystal
nucleation in bone and the vasculature.72,73 Recent evidence also suggest
that phosphatidylserine-mediated nucleation could be the predominant
mechanism to produce the very first mineral nuclei during MV-mediated
bone/cartilage mineralization.74

Another in vivo substrate of TNAP is pyridoxal phosphate (PLP), the
major circulating form of vitamin B6. PLP dephosphorylation in the blood
is necessary to allow pyridoxal uptake by cells, where it is phosphory-
lated again to participate as a cofactor in many reactions.47 In particular,
PLP is required for the synthesis of the inhibitory neurotransmitter c-
aminobutyric acid (GABA) in the central nervous system, explaining in
part why severe HPP is associated with epileptic seizures.47 Moreover,
Alpl-deficient mice have increased levels of cystathionine in their brain, a
molecule of the transsulfuration pathway that is controlled by PLP-
dependent enzymes.75 Since the transsulfuration pathway is responsible
for the synthesis of important anti-oxidant molecules, such as glutathi-
one and hydrogen sulphide, TNAP may indirectly participate in anti-
oxidant capacity.

Increasing evidence suggests that adenosine nucleotides are in vivo
TNAP substrates. In addition to its intracellular energetic role, ATP is re-
leased by all cells, during necrosis, apoptosis, or in response to inflamma-
tory or mechanical stresses.76 Extracellular ATP binds to P2 purinergic
receptors in neighbouring cells and activates multiple intracellular path-
ways. These effects are restrained by CD39 that dephosphorylates ATP
into AMP removing two Pi, and CD73 that removes the third Pi to gener-
ate adenosine.76 To date, convincing data indicate that TNAP partici-
pates at least in AMP dephosphorylation (Figure 2B). Alpl-deficient mice
have less adenosine in their brain than control mice,75 suggesting that
other tissues also exhibit lack of adenosine. In the blood, TNAP might be
a significant contributor to AMP hydrolysis.77 In addition, human neutro-
phils, which are the most abundant leucocytes in the blood, have very
low expression of CD73 and high levels of TNAP,77,78 which is responsi-
ble for AMP dephosphorylation77 (Figure 2B). A contribution of TNAP
to the dephosphorylation of high AMP levels has also been reported in
bronchial epithelial cells.79,80 Given the well-known anti-inflammatory
role of adenosine, these data identify TNAP as a possible anti-
inflammatory ectonucleotidase.78 The contribution of TNAP to AMP hy-
drolysis increases with increasing AMP concentrations, suggesting that
TNAP is particularly involved in intense pro-inflammatory responses.
TNAP’s function in AMP dephosphorylation may significantly interfere
with CVC. Patients with arterial calcification due to deficiency of CD73
(ACDC) present with extensive medial calcification.81 The group of St
Hilaire demonstrated that decreased adenosine production in absence
of CD73 stimulates the expression of TNAP to compensate for deficient
AMP dephosphorylation, leading to parallel PPi hydrolysis and calcifica-
tion.82 Importantly, stimulated TNAP expression due to CD73 defi-
ciency relies on the transcription factor FOXO1 in cells from ACDC
patients, and calcified femoropopliteal arteries form non-ACDC patients
exhibit increased FOXO1 levels as compared from non-calcified arter-
ies.83 Considered together with the fact that the pro-inflammatory cyto-
kines TNF-a and IL-1b stimulate TNAP expression and calcification in

human mesenchymal stem cells (MSCs) while they decrease RUNX2
levels and osteoblast differentiation,84 these results indicate that dysre-
gulated expression of TNAP in pro-inflammatory conditions might be
sufficient to trigger CVC. Finally, TNAP dephosphorylates ATP in culture
of neurons,85 hypertrophic chondrocytes,78 and MSCs,86 but the in vivo
relevance of these findings and whether they are associated with TNAP
involvement in inflammation or calcification remains uncertain and de-
serve further investigation.

Lipopolysaccharide (LPS) is a well-known pro-inflammatory com-
pound synthesized by Gram-negative bacteria. The pro-inflammatory
effects of LPS relies on the phosphate groups in the lipid A region.87 IAP
dephosphorylates LPS in the gut and prevents the development MetS
resulting from repeated LPS absorption accompanying high fat diets.88

LPS is indeed absorbed during fatty meals,89 and contributes to post-
prandial inflammation and metabolism.90 IAP would thus limit postpran-
dial endotoxemia and keep postprandial inflammation in physiological
limits.88 It is likely that in the blood TNAP participates in the dephos-
phorylation of LPS that has escaped from IAP in the gut. Increasing evi-
dence indicates that human TNAP has the ability to dephosphorylate
LPS in vitro and in vivo.91–96 Whether LPS dephosphorylation by TNAP
also participates in the control of postprandial inflammation and metabo-
lism is yet only speculative but deserves investigation.

Finally, TNAP may dephosphorylate proteins in vivo. To our knowl-
edge, the first protein that has been suggested to be a TNAP substrate is
osteopontin (OPN). OPN is a highly phosphorylated glycoprotein
expressed in multiple cell types and may exert multiple functions. OPN
can act as an inflammatory cytokine,97 an inducible inhibitor of ectopic
calcification,98 and a promoter of regression of ectopic calcification99

and bone resorption.100 Importantly, phosphorylated but not unphos-
phorylated OPN has been proposed to inhibit ectopic calcification.101

Alpl-deficient mice have increased levels of OPN, and crossing Alpl-defi-
cient mice with Opn-deficient mice partly corrects their mineralization
defects.102 TNAP likely dephosphorylates OPN on residues from two
distinct regions to stimulate mineralization.103 These effects of TNAP on
mineralization mediated by OPN dephosphorylation seem to counter-
regulate those relying on PPi hydrolysis since the extracellular Pi/PPi ratio
and OPN appear to regulate the expression of the same genes involved
in the control of mineralization.102,103 Among other proteins that have
been proposed to be TNAP substrates, Tau protein will be discussed in
chapter 3.4.

4. Physiological TNAP’s functions
and potential consequences of its
inhibition

4.1 Inhibition of TNAP expression and/or
activity to prevent CVC
Until recently, the most potent available TNAP inhibitor was levamisole
(or tetramisole, the racemic mixture of levamisole and its enantiomer
dexamisole). However, this inhibitor has TNAP-independent effects,104

for instance, on voltage-dependent sodium channels and/or noradrena-
line uptake.104 The first potent and selective TNAP inhibitor is arylsulfo-
namide 2,5-dimethoxy-N-(quinolin-3-yl) benzenesulfonamide, also
known as MLS-0038949.105 MLS-0038949 specifically inhibits TNAP
with no effect on IAP. It is however unknown whether MLS-0038949 dif-
ferently inhibits liver and bone TNAP, which have the same amino acid
sequence but differ by their glycosylation pattern.53 MLS-0038949
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..reduced calcification in culture of VSMCs.106,107 However, MLS-
0038949 has only modest pharmacokinetics properties, and had to be
modified for translational approaches. In 2018, the group of JL Millan de-
veloped 5-((5-chloro-2-methoxyphenyl)sulfonamido)nicotinamide, also
known as SBI-425, as a potent and highly selective TNAP inhibitor
adapted for in vivo experiments. This inhibitor was first validated in mice
overexpressing TNAP under the control of the Tagln promoter active in
VSMCs.32 These mice develop extensive arterial calcification, left ven-
tricular hypertrophy and fibrosis, higher systolic blood pressure, and
early and sudden mortality, consistent with pressure overload-induced
hypertrophy and progression to heart failure. Mice that orally or intrave-
nously received a daily single dose of 10 mg/kg of SBI-425 showed a com-
plete inhibition of plasma TNAP activity, and reduced arterial
calcification and prolonged lifespan in TNAP-overexpressing mice.32 SBI-
425 also prevented VC in a mouse model of pseudoxanthoma elasticum, a
genetic disease associated with impaired PPi generation,108 and in mice
with CKD induced by adenine and phosphorus-rich diet.109 Treatment
with SBI-425 at 10 or 30 mg/kg/day did not affect kidney function, but
fully prevented early death.109 This was associated with the prevention
of aorta calcification but not of heart calcification, likely explained by the

low penetration of SBI-425 in tissues.110 Nevertheless, these results indi-
cate that TNAP inhibition in general, and SBI-425 in particular, may rep-
resent a very promising strategy to treat patients with CKD. On the
other hand, patients with CKD also have atherosclerotic intimal plaque
calcification that has a very different impact on the vasculature than the
specific medial calcification developed by these patients.3 To date, one
published article reported the effects of SBI-425 on atherosclerotic pla-
que calcification in a mouse model of familial hypercholesterolemia, but
these mice were crossed with mice overexpressing TNAP in endothelial
cells,34 making results difficult to interpret. Oral supplementation of SBI-
425 30 mg/kg/day in the wicked high cholesterol (WHC) mouse model
induced by a point mutation in the low-density lipoprotein receptor, de-
creased coronary calcium accumulation, and left ventricular hypertro-
phy.34 These results indicate that SBI-425 may inhibit intimal
atherosclerosis plaque calcification in addition to inhibiting medial calcifi-
cation associated with CKD. More studies are needed to have a clearer
vision of the effects of SBI-425 on cardiovascular mortality.

Besides SBI-425, potential novel inhibitors were tested chemically and
putative binding modes were suggested by molecular docking simula-
tions. The isonicotinohydrazone derivative (E)-N’-(4-hydroxy-3-

Figure 3 TNAP activity detected by histochemistry in E15 mouse embryo (bar 500mm). Taken with permission from Ref.120
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methoxybenzylidene)isonicotinohydrazide was identified as the most
potent TNAP inhibitor of the tested derivatives.111 Further, derivatives
of 4-quinolones, hybrid compounds from chalcone and 1,2-benzothia-
zine pharmacophores and trinary benzocoumarin-thiazoles-azomethine
derivatives were suggested as selective inhibitors of AP isoenzymes.112–

114 Whether these compounds are suitable for in vitro and/or in vivo
experiments remains to be determined.

Another approach to diminish TNAP activity is to reduce its protein
levels. Recently, the epigenetic regulator apabetalone, an orally available
bromodomain and extraterminal (BET) protein inhibitor which is in clini-
cal development for cardiovascular disease treatment, was identified as a
TNAP inhibitor acting on expression level. Apabetalone diminished the
induction of ALPL mRNA, TNAP protein and enzyme activity in primary
human hepatocytes and VSMCs via the transcriptional regulator BRD4
that caused reduction of VC.115 Additionally, apabetalone prevented in-
duction of inflammatory cytokines in vitro and reduced multiple media-
tors of lipid metabolism and chronic vascular inflammation in the plasma
of CVD patients.116 Potential beneficial cardiovascular effects of apabet-
alone are under investigation. While apabetalone treatment reduced
cardiovascular risk and improved kidney function in CKD patients,
patients with recent acute coronary syndrome, type 2 diabetes, and low
high-density lipoprotein cholesterol levels, did not demonstrate benefi-
cial cardiovascular effects.117–119 In CKD and CVD patients, apabetalone
also reduced circulating TNAP levels.119 However, whether the poten-
tial favourable cardiovascular effects of apabetalone are causally linked
to TNAP reduction remains to be demonstrated.

Therefore, tools now exist to inhibit TNAP and block CVC. A tight
evaluation of TNAP inhibitors is however needed in vivo, since as its
name indicates, TNAP is ubiquitous, as perfectly illustrated by its pattern
of activity during development (Figure 3).120 During vertebrate develop-
ment and growth, TNAP is active in bone, liver, kidney, nervous, and im-
mune systems, where it exerts known or unknown effects. Its activity
changes during ageing, being progressively weaker in bone, but higher in
other tissues depending on the presence or absence of different age-
related diseases. The next subchapters review these known TNAP
functions.

4.2 TNAP as an anti-inflammatory
enzyme
TNAP is present in the blood as a soluble (anchorless) isoform, originat-
ing primarily from bone and liver. Bone is the main source of blood
TNAP during growth, when the skeleton is being built, whereas liver
progressively becomes the main source of blood TNAP in ageing adults
when bone formation slows down.121 Distinction between bone and
liver TNAPs in the blood is possible but technically challenging. Bone
TNAP levels can be quantified by ELISA, although cross-reactivity as high
as 18% has been reported with liver TNAP.122 Unfortunately, there is to
date no available ELISA that specifically measures liver TNAP in the
blood, which can only be assessed through total TNAP activity.
Nevertheless, since increased bone TNAP levels are relatively uncom-
mon in adults, increased TNAP activity in the blood often reflects liver
disorders, in particular, during impaired bile flow or cholestasis in pri-
mary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC)
but also non-alcoholic fatty liver disease (NAFLD),123 and more gener-
ally MetS.35–40 Circulating TNAP may generate adenosine from AMP to
exert anti-inflammatory effects,77 and/or dephosphorylate LPS to detox-
ify it, in a context of sepsis and/or to regulate postprandial endotoxae-
mia.92 TNAP is also present in the blood anchored at the membrane of

neutrophils,124 the most abundant leukocytes in human blood, where it
exerts anti-inflammatory functions.77,78,125 Neutrophil TNAP may sup-
port soluble TNAP to hydrolyze PLP, AMP, and LPS, but its presence at
the membrane more likely participates in the control of the autocrine
effects of adenosine and its nucleotides, in particular on neutrophil sur-
vival,126 migration,127 or secretion of IL-1b.78 Finally, TNAP is also pre-
sent in the blood attached to the membrane of endothelial cells in
arterioles and capillaries.34,128,129 Its specific function in endothelial cells
is unknown. It might also be related to nucleotide and/or LPS dephos-
phorylation, or to transport from blood to the endothelium.

If indeed TNAP in the blood exerts important anti-inflammatory
effects, its inhibition may have detrimental effects in several age-related
diseases. Ageing is associated with a low-grade systemic inflammation,
characterized by increased levels of C-reactive protein (CRP), and of
cytokines, such as TNF-a and IL-1b.130–132 Exacerbation of this systemic
age-associated inflammation may therefore adversely impact health dur-
ing ageing. Moreover, TNAP inhibition may not only impact systemic in-
flammation but also tissue inflammation in several diseases, since
neutrophils are often the first cells to be recruited in inflamed tissues,
e.g. in atherosclerotic plaques, where neutrophils are the first cells to en-
ter and stimulate inflammation.133,134 In plaques, TNAP inhibition may
therefore have more complex consequences than only blocking
calcification.

4.3 TNAP’S crucial role in skeletal/dental
mineralization
The most severe form of HPP leads to the perinatal death of foetuses
completely devoid of bone mineral,135 highlighting the requirement for
TNAP to mineralize the skeleton and teeth. Bone formation proceeds
either by endochondral ossification, in particular, in long bones, or by
intramembranous ossification in flat bones. In the former process, mes-
enchymal cells differentiate under the control of the transcription factor
SOX9 into proliferative chondrocytes, which then maturate into miner-
alizing hypertrophic cells expressing the transcription factor RUNX2.136

During this process, TNAP is expressed in proliferative chondrocytes,
but its expression is strongly stimulated by RUNX2 in hypertrophic
chondrocytes, where TNAP hydrolyzes extracellular PPi allowing
growth plate mineralization.137–140 During endochondral ossification,
osteoblasts form bone on this calcified cartilage plate, whereas during
endomembranous ossification, they produce bone without the need for
a cartilage template. In both cases, osteoblasts express TNAP under the
control of RUNX2 and anchor it to their cell membrane to hydrolyze
PPi.

140 In the teeth, TNAP is expressed in odontoblasts and ameloblasts,
the cells responsible for dentin and enamel mineralization, respec-
tively.140,141 This explains why HPP in humans and lack of TNAP in mice
result not only in bone hypomineralization but also in decreased dentin
and enamel mineralization,141 and lack of acellular cementum, a tissue
highly sensitive to extracellular PPi concentration.142,143 In addition to its
pro-mineralizing role relying on PPi hydrolysis in bone and tooth cells,
TNAP may exert functions in MSCs. TNAP has indeed been identified as
a marker of human MSCs,144 where its stimulation may lead to ATP hy-
drolysis leading to the promotion of osteoblastogenesis at the expense
of adipogenesis.86 In this context, it is logical to anticipate that TNAP in-
hibition will slow down bone formation and exacerbate age-related os-
teoporosis. These side effects of TNAP inhibition are a concern for
patients with CKD, who are prone to develop mineral bone disorder
(MBD). They are also relevant for post-menopausal women, who may
be at increased risk of developing osteoporosis with a severity inversely
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associated to the calcium score,145 and have a high risk of cardiovascular
mortality.146 The first reports of TNAP inhibition using SBI-425, in a
mouse model of pseudoxanthoma elasticum108 and in a mouse model of
CKD-MBD109 did not report significant effects on bone architecture.
These reports in mice with daily administration of SBI-425 for several
weeks were reassuring and paved the way to subsequent studies. On the
other hand, one article reported that in addition to preventing the
warfarin-induced VC in rats, administration of SBI-425 for 7 weeks de-
creased bone formation rate and mineral apposition rate, and increased
osteoid maturation time, effects that did not yet impact bone architec-
ture as determined by mCT.147 Collectively, these studies indicate that
TNAP inhibition with SBI-425 for several weeks has no harmful effects
on bone architecture, but that in case of long treatments with high doses,
bone homoeostasis has to be carefully controlled. Moreover, if indeed
TNAP is an anti-inflammatory enzyme acting by dephosphorylating
adenosine nucleotides and LPS, its inhibition on the long term may ad-
versely impact bone homoeostasis through enhanced inflammaging. It is
indeed well-known that inflammaging drives the decline in bone mass as-
sociated with ageing.148 TNF-a in particular strongly inhibits the expres-
sion of RUNX2 in osteoblasts149 and induces its degradation by the
proteasome, resulting in impaired osteoblastogenesis.150 Inflammaging-
associated reduction of bone TNAP expression may render bones more
susceptible to inflammation in a vicious cycle. Alplþ/- mice have increased
levels of IL-1b and IL-6 in their bones, which is probably due to TNAP’s
nucleotidase activity.78 As mentioned above, SBI-425 does not seem to
have dramatic effects on bone homoeostasis but most of the experi-
ments were not realized in aged animals with osteoporosis, which de-
serve further consideration.

4.4 Emerging functions of TNAP in the
central nervous system
TNAP is strongly active in the brain during development (Figure 3),
where it is expressed by endothelial and neuronal cells. In endothelial
cells, TNAP is active in both the luminal and abluminal sides of the cell
membrane, particularly in the arterial part of the microvasculature, but
not the venous system.151,152 In human brain vessels, TNAP activity can
be detected from gestational ages,153,154 while in mouse brain vessels
TNAP is active several days after birth.151,155 This subcellular distribution
suggests a role in active transport across capillary endothelial cells, and in
blood brain barrier (BBB) permeability.156,157 This role likely includes
PLP dephosphorylation in the blood and pyridoxal transport across the
BBB. Lack of TNAP in both Alpl-deficient mice and newborns with HPP
results in higher PLP levels in blood, reduced GABA synthesis, and epi-
leptic seizures. In addition to endothelial TNAP, neuronal TNAP is likely
crucial for normal brain development and functions. During develop-
ment, neuronal TNAP activity is observed in both grey matter and white
matter.158 Interestingly, the association of TNAP with neurogenesis in
embryonic rodent brain is maintained in adulthood, with elevated TNAP
activity in neurogenic niches.159 Multiple neuroanatomical abnormalities
have been observed by MRI in HPP infants, such as hypodensity of the
white matter, dilated ventricles, multicystic encephalopathy, parenchy-
mal lesions,160–164 while delay in myelination and synaptogenesis, and ab-
normalities in the spinal nerve roots were reported in Alpl-deficient
mice.139,165 Several mechanisms have been proposed to explain TNAP
contribution in brain development: dephosphorylation or interaction
with extracellular matrix proteins, such as laminin and collagen,166–168 a
role in signal transduction through interaction with PrPc, a plasma mem-
brane GPI anchored protein in lipid rafts highly expressed in the central

nervous system,166 regulation of PLP-dependent enzymes, impacting
synthesis of GABA, serotonin and dopamine,75,169,170 and a ectonucleo-
tidase function involved in axon formation and growth,85 neurotransmis-
sion,171,172 and contributing to the epileptic phenotype of TNAP-
deficient pups.173

SBI-425 administration in mice does not trigger epileptic seizures, sug-
gesting that the remaining TNAP activity is sufficient to dephosphorylate
PLP in the blood and allow GABA synthesis in the brain. It is however
possible that TNAP inhibition may trigger seizures in some patients.
Indeed, epileptic seizures have been reported in children treated for pae-
diatric nephrotic syndrome with levamisole.104 In this case, pyridoxine
supplementation could prevent these seizures as it does in the infantile
and perinatal forms of hypophosphatasia.160,174,175 In addition, SBI-425
does not cross the BBB in healthy mice,176 indicating that it should not al-
ter TNAP functions in brain cells in animals and patients with a normal
BBB. However, SBI-425 may cross the BBB whose integrity is compro-
mised by systemic and local inflammation,176 which might be the case in
ageing adults with MetS and neurodegenerative disorders, such as
Alzheimer’s disease (AD). Analyses of post-mortem AD brains showed
an increase in TNAP protein, activity, or expression in hippocampus and
temporal gyrus, which are cerebral regions targeted by tau pathol-
ogy.177,178 Patients with AD also seem to have increased serum levels of
TNAP, which are associated with cognitive dysfunction.177,179–181

Activation of TNAP in AD may have both beneficial and harmful effects.
First, TNAP may exert protective effects on neuroinflammation by its
ability to dephosphorylate ATP into adenosine.75,85,182,183 Second,
TNAP may also protect from AD development helping to maintain a
functional BBB.176 On the other hand, a scenario based on in vitro
approaches, proposed that TNAP participates to AD progression by
dephosphorylating extracellular hyperphosphorylated Tau protein.178

Unphosphorylated Tau interacting with muscarinic receptors induces an
increase in intracellular calcium that affects calcium homoeostasis trig-
gering neuronal cell death184; it promotes phosphorylation of intracellu-
lar Tau which has neurotoxic effects, and it increases TNAP
expression.178,185 Thus, a positive feedback loop would result in a link
between increases in TNAP and Tau levels, increase in neuronal loss and
decline in brain functions. In this complex context, exploring the effects
of TNAP inhibition in models of AD and neuroinflammation deserve
consideration.

Finally, TNAP inhibition may participate in brain damages induced by
ischaemic stroke. Ischaemic strokes account for 85% of strokes and are
due to large vessel atherosclerosis in 15–20% of cases.186 Serum TNAP
activity is increased in patients with acute ischaemic stroke and is associ-
ated with a poor functional outcome, stroke recurrence, and mortal-
ity.187–193 TNAP may not only be a biomarker but also an active player in
post-ischaemic reperfusion injuries. TNAP may play a protective role in
post-ischaemic BBB leakage.176,194 Moreover, TNAP may also reduce
neuroinflammation following stroke. Stroke leads to cell necrosis, which
triggers the release of ATP and a subsequent inflammation that is re-
solved by the dephosphorylation of ATP into adenosine.195 The
reported involvement of TNAP in ATP hydrolysis and/or adenosine gen-
eration in neurons85,182,183 and in neutrophils,77,78 which are recruited
by ATP release,196 and play multiple pro-inflammatory roles during
stroke,197–199 may suggest that TNAP inhibition might worsen post-
ischaemic neuroinflammation. Therefore, the effects of TNAP inhibition
on brain damages and functional outcome after stroke deserves
investigation.

8 G. Claudia et al.
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4.5 TNAP’S functions in liver and kidneys
TNAP’s former name was liver/bone/kidney (L/B/K) AP. The expression
of TNAP in liver and kidney is known for a long time, but its function in
these tissues remains elusive. In the liver, TNAP is localized at the cana-
licular membrane of hepatocytes and the apical area of the cytoplasm of
bile duct epithelial cells.140,200,201 Cholangitis is associated with increased
release of liver TNAP into the blood,123 suggesting that TNAP partici-
pates in bile excretion. TNAP may dephosphorylate ATP at the cholan-
giocyte surface to participate in the regulation of bile pH in response to
the secretion of bile salts.202 Additionally, liver TNAP may participate in
LPS detoxification and excretion in the bile.91–94,203 Whether this regula-
tion takes place under pathological conditions during bacterial infection,
or physiologically to regulate postprandial endotoxemia is worth explor-
ing. Finally, it is possible that liver expresses TNAP mainly to release it in
the blood in adults to control systemic inflammation when bone forma-
tion is reduced and bone TNAP release in the blood is decreased. To
our knowledge, no effect of TNAP inhibition on the liver has been
reported to date, but most studies were conducted in mice which, in
contrast to humans and rats, have very weak expression of liver
TNAP.201

In the kidney, TNAP is expressed at the brush borders of proximal re-
nal tubules.140,204 This renal expression of TNAP may appear surprising
since prevention of mineralization in urine is supposed to rely on the
presence of PPi, the mineralization inhibitor inactivated by TNAP.205

However, the main production site of PPi may be the distal nephron
where TNAP is absent,205 which may explain why TNAP does not in-
duce urinary tract calcification. Instead, in the kidney brush border,
TNAP induced by LPS may be able to dephosphorylate and detoxify
it.206,207 Whether this function occurs in physiological and/or in patho-
logical situations remains obscure, but it is worth exploring.

5. Conclusion

An increasing number of articles now indicate that TNAP is responsible,
or at least involved, in CVC, and tools to inhibit its expression and activ-
ity are now available. Several preclinical studies showed that TNAP inhi-
bition strongly reduces VC.108,109,147 Since TNAP is ubiquitous and likely
has several important functions in addition to its well-established role in
the control of the Pi/PPi ratio during physiological and ectopic minerali-
zation, there is now a compelling need to perform studies to better un-
derstand these additional functions, identifying its associated substrates,
and elucidating these new metabolic pathways.
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