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Simple Summary: This study focuses on the Tapinoma nigerrimum complex, a group of five ant
species, three of which have the potential to become invasive and disrupt ecosystems. Mitogenome
analyses have been used to study the taxonomy, biogeography, and genetics of species. So far, only
the mitogenome of one of the T. nigerrimum complex species has been described. In this study, we
assembled and analyzed the mitogenome of the remaining T. nigerrimum complex species as well as
two other species of the genus Tapinoma, which allowed a comparative study within this genus and
with other species of Dolichoderinae subfamily.

Abstract: Using next-generation sequencing data, the complete mitogenomes of six species from the
genus Tapinoma were assembled. This study explores the mitochondrial genomes of Tapinoma species,
among them the five species from the Tapinoma nigerrimum complex, comparing them with each other
and with other species from Dolichoderinae subfamily to understand their evolutionary relationships
and evolution. Tapinoma mitochondrial genomes contain the typical set of 13 protein-coding genes,
two ribosomal RNA genes, 22 transfer RNAs, and the A + T-rich control region. A phylogenetic
analysis using the protein-coding gene sequences from available Dolichoderinae mitogenomes
supports the monophyletic nature of the genus Tapinoma, with the T. nigerrimum complex forming
a well-supported clade. Key findings include genetic traits unique to the T. nigerrimum complex,
such as a start codon in the atp8 gene and a complete stop codon in cox1, distinguishing them from
other Tapinoma species. Additionally, a gene rearrangement involving tRNA-Trp, tRNA-Cys, and
tRNA-Tyr was found exclusively in the Tapinoma species, suggesting a potential phylogenetic marker
for the genus.

Keywords: ants; Tapinoma nigerrimum complex; mitogenome evolution; ant phylogeny; mitochondrial
rearrangements

1. Introduction

Among eusocial insects, ants, belonging to the family Formicidae (Hymenoptera),
hold a remarkable place due to their higher species richness and ecological influence [1,2].
Renowned as ecosystem engineers, ants play pivotal roles in soil aeration, seed dispersal,
and predation, exerting profound impacts on ecological processes. With over 14,200 de-
scribed species worldwide [3], ants represent a substantial portion of terrestrial animal
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biomass, underscoring their ecological significance [4]. Certain ant species are recognized
for their high degree of invasiveness, enabling them to proliferate globally and exacerbate
the ongoing biodiversity crisis [5]. These organisms have effectively established popula-
tions outside their native habitats, resulting in significant economic and environmental
repercussions in the invaded areas [6]. Species included within the genus Tapinoma are
noteworthy in this regard. Tapinoma melanocephalum stands out as one of the most invasive
species of ants in both hemispheres. It poses significant challenges to global biodiversity by
disrupting ecosystems outside its native ranges [7]. The genus Tapinoma, encompassing
species like T. ibericum or T. magnum, further exemplifies the invasive potential within this
taxon, with implications for ecosystem health and conservation efforts [8,9].

The Tapinoma nigerrimum taxon actually represents a species complex. Seifert et al. [9,10]
used NUMOBAT (numeric morphology-based alpha-taxonomy) to help distinguish be-
tween morphologically similar species within this group, combining morphological traits
with data on nuclear DNA (nuDNA), specifically microsatellites. They identified five
distinct species: T. darioi, T. ibericum, T. magnum, T. hispanicum, and T. nigerrimum. Similar
results were achieved using microsatellite markers alone [11]. All species are native to the
Mediterranean region, though the precise native ranges need further investigation, except
for T. ibericum and T. hispanicum, which are only found in southern and central Spain, and
T. nigerrimum, which is restricted to southern France and northern Spain [10]. T. ibericum,
T. magnum, and T. darioi exhibit supercolonial behavior, with invasive potential, posing
risks as potential pests [10,12]. High-resolution mapping in southern France revealed
that the distribution of supercolonial and monodomous species within the T. nigerrimum
complex (TNC) is linked to their sensitivity to urbanization [11]. The TNC is particularly
significant due to its ability to control the spread of the invasive Argentine ant Linepithema
humile [13,14]. In competition assays, the Tapinoma species demonstrated superior efficiency
in both interference and exploitative competition, securing food within an hour and in-
vading Argentine ant nests—behavior not observed in the latter [13]. This highlights their
critical role in mitigating other invasive species’ impacts on their ecosystem [10].

Mitochondrial sequences have become valuable resources for elucidating the taxon-
omy, biogeography, and genetic diversity of ants, aiding in the development of strategies
to mitigate their invasive spread [8,15–17]. Hybridization events, detectable through a
mitochondrial DNA analysis when combined with morphological or nuclear DNA data,
highlight the dynamic evolutionary processes shaping ant populations [9,18]. The ad-
vent of next-generation sequencing (NGS) technologies has revolutionized the acquisition
of complete mitogenome sequences, enabling comprehensive investigations into ant’s
evolutionary biology [12]. However, the availability of complete mitogenomes within the
Dolichoderinae subfamily, particularly within the Tapinoma genus, and specifically the TNC,
remains limited, although the mitogenome of T. ibericum has been recently described [16].
To address this knowledge gap, we assembled the mitogenomes of six Tapinoma species
using NGS data, some of which are included in the TNC: T. darioi, T. nigerrimum, T. hispan-
icum, and T. magnum, as well as T. madeirense and T. simrothi, which do not belong to the
TNC. We compared the mitogenomic characteristics of Tapinoma with previously sequenced
Dolichoderinae mitogenomes, including other Tapinoma species. Gene rearrangements
are common in the evolution of the mitochondrial genomes [19,20]. The comparative
analysis of mitochondrial gene order is a useful tool for phylogenetic analysis because it is
uncommon that the same re-arrangement occurs convergently [21]. Mitochondrial genome
data have been used to analyze phylogenetic relationships at very different levels, ranging
from population-level studies to phylum-level analyses [22]. By collectively analyzing
these species, we aim to gain a comprehensive understanding of the genetic diversity and
potential relationships within the Tapinoma genus, particularly focusing on the TNC, which
includes several species exhibiting supercolonial behavior and the potential to become
invasive [9,10]. Our approach will significantly advance knowledge of this ecologically
important genus.
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2. Materials and Methods
2.1. Sample Collection and Determination of Species Identity of Focal Samples

Specimens of worker ants from different species were collected in France and Spain
between 2004 and 2019. Detailed information is found in Table 1. None of the species used in
this study are endangered or protected, thus specific permission for their collection was not
required. The workers were preserved in absolute ethanol at −20 ◦C until DNA extraction.
The species identity of six focal samples was established using numeric morphology-based
alpha-taxonomy (NUMOBAT) following the methodology described in Seifert et al. [10].

Table 1. Samples of the Tapinoma species whose mitogenomes were sequenced and annotated in
this study.

Species Name Coordinates Locality Nest Collection Date

T. darioi 40.65401◦ N,
0.411551◦ E Benicarló (Spain) 20 September 2019

T. magnum 46.20167◦ N, 4.828◦ E Lyon (France) 2011
T. hispanicum 37.7718◦ N, 3.4972◦ W Torres (Spain) 31 October 2014

T. nigerrimum 43.684254◦ N,
3.876259◦ E

Prades-le-Lez
(France) 30 April 2012

T. simrothi 37.714281◦ N,
3.904023◦ W Jamilena (Spain) 23 April 2014

T. madeirense 37.259167◦ N,
3.487777◦ W

Sierra de Huetor
(Spain) 19 April 2004

2.2. DNA Extraction, Mitogenomic Sequencing, and Assembly Strategies

About 4–5 µg of genomic DNA was isolated from a pull of 10–20 workers of each
species using the NucleoSpin Tissue kit (Macherey-Nagel GmbH & Co., Düren, Germany).
These DNA samples were submitted to the Novogen Company Ltd. (Cambridge, UK)
for sequencing on the Illumina® Hiseq™ 2000 platform (San Diego, CA, USA). A 350 bp
fragment library and 151 bp paired-end sequencing reads were obtained, providing about
2.6 Gb of sequencing data for each species. To ensure high data quality, the low-quality
sequences were filtered with Trimmomatic v.0.36 [23]. The mitogenomes were assembled
de novo using NOVOPlasty v4.3.1 [24], which constructs organelle genomes from NGS
data by extending a seed sequence.

For the assembly of all mitogenomes in this study, the published T. ibericum cox1 gene
(GenBank accession number NC_065783) was used as the seed. This sequence was aligned
with Illumina paired-end reads using bbmap (available at sourceforge.net/projects/bbmap/,
accessed on 1 September 2024) and UGENE [25]. A consensus sequence was then generated
and employed to initiate the assembly. Various K-mer lengths were tested, with 33 yielding
the best results in terms of mitogenome completeness.

2.3. Mitogenome Annotation and Sequence Analysis

The mitogenomes of all the studied Tapinoma species were annotated following the
procedure outlined by Cameron [26], using the MITOS2 web server [27,28] based on the
Galaxy platform (available online: https://usegalaxy.eu/?tool_id=toolshed.g2.bx.psu.edu/
repos/iuc/mitos2/mitos2/2.1.9+galaxy0&version=latest, accessed on 27 September 2024).
The annotation of protein-coding genes (PCGs) was manually refined ensuring consistent
start/stop codons and open reading frames and comparing with other Dolichoderinae
mitogenomes using Geneious R11.1.5 (Biomatters Ltd., Auckland, New Zealand). Addition-
ally, base composition estimation, the generation of circularized plots of the mitogenome,
and the secondary structure analysis were conducted using Geneious R11.1.5. Codon
usage analysis was performed using MEGA v.11.0.13 [29]. The resultant assemblies and
annotations were deposited in GenBank under accession number (PQ459328 to PQ459333).

The final dataset of Dolichoderinae comprises 23 sequences from 18 species (Table 2).
Multiple sequences of the same species were included to account for different origins and

https://usegalaxy.eu/?tool_id=toolshed.g2.bx.psu.edu/repos/iuc/mitos2/mitos2/2.1.9+galaxy0&version=latest
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sizes. Notably, four selected mitogenomes lacked annotations and were available only as
sequences (Dolichoderus lamellosus, D. pustulatus, Leptomyrmex erythrocephalus, and Tapinoma
sessile). To facilitate comparisons, these mitogenomes were also annotated using the same
methodology employed for the Tapinoma species [16].

Table 2. Available mitochondrial genome sequences so far for Dolichoderinae.

Species Mitogenome
Size (bp) Country of Origin Accession

Number Reference

Tribe Dolichoderini
Dolichoderus lamellosus (Mayr, 1870) 16,234 Costa Rica BK012125 [30]
Dolichoderus pustulatus (Mayr, 1886) 16,224 Canada BK012668 [30]
Dolichoderus quadripunctatus (Linnaeus, 1771) 16,017 Poland MT178447 [31]
Dolichoderus sibiricus (Emery, 1889) 16,086 South Korea MH719017 [32]

16,044 South Korea MK801110 [31]
16,067 Russia MT919976 unpublished
16,110 Taiwan MW160468 unpublished

Tribe Leptomyrmecini
Dorymyrmex brunneus (Forel, 1908) 15,848 - MG253267 unpublished
Leptomyrmex erythrocephalus (Fabricius, 1775) 15,546 Australia BK012481 [30]
Leptomyrmex pallens (Emery, 1883) 15,591 New Calcedonia KC160533 [33]
Linepithema humile (Mayr, 1868) 16,098 USA KT428891 [34]

15,929 - KX146468 [35]
15,934 South Korea MT890564 [36]

Ochetellus glaber (Mayr, 1862) 16,259 South Korea MN044390 [37]
Tribe Tapinomini
Tapinoma darioi (Seifert et al., 2017) 15,680 Spain PQ459328 This study
Tapinoma hispanicum (Seifert et al., 2024) 15,665 Spain PQ459329 This study
Tapinoma ibericum (Santschi, 1925) 15,715 Spain NC_065783 [16]
Tapinoma madeirense (Forel, 1895) 15,507 Spain PQ459330 This study
Tapinoma magnum (Mayr, 1861) 15,694 France PQ459331 This study
Tapinoma melanocephalum (Fabricius, 1793) 15,499 China MN397938 [38]
Tapinoma nigerrimum (Nylander, 1856) 15,817 France PQ459332 This study
Tapinoma sessile (Say, 1836) 15,287 USA BK012786 [30]
Tapinoma simrothi (Krausse, 1911) 15,487 Spain PQ459333 This study

2.4. Comparative Phylogenetics

Following the methodology established in the description of the T. ibericum mi-
togenome [16] for phylogenetic analysis, the complete set of PCGs from the mitogenomes
of the Dolichoderinae species was used. According to the most recent ant phylogeny,
published by Borowiec et al. [39], the ant subfamily most closely related to Dolichoderinae
is Aneuretinae, which includes only the species Aneuretus simoni (Emery, 1893). Unfortu-
nately, the mitogenome sequence for this species is not available. Therefore, we selected
sequences from species of the subfamily Pseudomyrmecinae as outgroups, as it is another
subfamily closely related to Dolichoderinae. These included Tetraponera aethiops Smith,
1877 (BK010476), and Pseudomyrmex gracilis (Fabricius, 1804) (BK010472). As an external
outgroup, the sequence of the PCGs of Apis mellifera mellifera (Linnaeus, 1758) (KY926884),
from Apidae family was used.

The alignment of the concatenated PCGs was performed using MAFFT v7.453 soft-
ware [40]. The phylogenetic relationships were then reconstructed using the maximum
likelihood (ML) method implemented in MEGA v.11.0.13 [29] employing the GTR + G + I
model (model with the lowest Bayesian information criterion) with 1000 bootstrap replicates.

The genetic distances for the PCGs were estimated using the R package ape_5.4-1 [41]
and graphically plotted as a heatmap using the R package ggplot2 [42]. Only a single
sequence of L. humile (KX146468) was considered, as it is the most central sequence in the
phylogenetic tree and sufficient for this purpose. There are four D. sibiricus mitogenome
sequences deposited in GenBank. The phylogenetic analysis indicates that these sequences
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do not form a single cluster; instead, they appear in well-supported, distinct clades, with
two sequences grouped in one clade and the other two in a separate clade. As we are
uncertain whether these represent different species, we selected one sequence from each
clade for further analysis of the PCGs’ genetic distances (MT919976 and MK801110).

3. Results and Discussion
3.1. General Features and Phylogenetic Analysis

The complete mitogenomes of T. darioi, T. nigerrimum, T. hispanicum, T. magnum,
T. madeirense, and T. simrothi were assembled and annotated (Figure 1, Supplementary
Table S1). The new mitogenome sequences ranged in size from 15,487 bp (T. simrothi) to
15,817 bp (T. nigerrimum). These sizes are comparable to those found in previous studies for
T. ibericum (15,715 bp), T. melanocephalum (15,499 bp), or T. sessile (15,287 bp), as well as other
sequenced Dolichoderinae mitogenomes, in which the mitogenome sizes vary between
15,287 and 16,259 bp (Table 2). The determined sequences are the typical double-stranded
circular molecules that, like most eukaryotic mitogenomes, encode a total of 37 genes
(13 PCGs, 22 tRNAs, 2 rRNAs) and include an A + T-rich control region.
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Figure 1. Graphical maps of the mitogenomes for four species from the T. nigerrimum complex (T.
nigerrimum, T. hispanicum, T. magnum, T. darioi), as well as for T. simrothi and T. madeirense.

Concatenated sequences of the PCGs were used for phylogenetic analyses. This anal-
ysis includes all sequenced mitogenomes from species of Dolichoderinae and the six mi-
togenomes sequenced and annotated in this study. The maximum likelihood tree (Figure 2)
showed that all species from the genus Tapinoma are grouped into a well-supported clade
with a high bootstrap value (100%), corroborating that the genus is monophyletic, as
was observed in previous analyses [16,43,44]. Among the included Tapinoma species, T.
melanocephalum exhibits a basal position, potentially reflecting earlier divergent evolution
within the genus.
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Figure 2. Phylogenetic tree based on Dolichoderinae mitogenomes using the ML method. Bootstrap
values above 70 are shown next to the branches. Species from the T. nigerrimum complex are shaded
in blue, while the remaining species from the Tapinoma genus are shaded in yellow. T. aethiops and
P. gracilis, from the Pseudomyrmecinae subfamily, were also included. The tree was rooted using
A. mellifera mellifera as an outgroup. Mitochondrial gene rearrangements found in Dolichoderinae
in relation to the ancestral insect mitogenome are also depicted. tRNAs clusters which are different
from the ancestral insect mitogenome are highlighted in green, red, and yellow squares.
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Species of the TNC are grouped in a well-supported clade. This species complex
includes T. nigerrimum, T. darioi, T. hispanicum, T. ibericum, and T. magnum. Seifert et al. [9,10]
and Centanni et al. [11], through NUMOBAT and molecular analyses involving cox1 and
microsatellite markers, concluded that this species complex comprised five species. The
results obtained with complete mitogenomes are strongly consistent with previous studies,
identifying T. ibericum and T. hispanicum as sister species, as are T. darioi and T. nigerrimum.
Additionally, T. magnum is confirmed as the most distantly related species, consistent with
previous studies. When compared to the phylogeny in Seifert et al. [9], which did not
feature T. hispanicum, our results are broadly similar, already showing a sibling species
relationship between T. darioi and T. nigerrimum. Analysis of the genetic variability using
PCG pairwise genetic distances, measured with the Kimura two-parameter model, reveals
genetic distance values lower than 0.1% among all species in the TNC (Figure 3), suggesting
that the species within this complex are genetically closely related, possibly due to recent
evolutionary divergence. For this analysis, only one of the available sequences was used for
each species, as in the case of L. humile, a species for which three different sequences have
been deposited in GenBank (Table 2). The case of D. sibiricus is different. The phylogenetic
analysis shows that the four mitogenome sequences of this species cluster into two different
clades with high bootstrap values. We cannot determine whether there is an issue with
species misidentification or whether D. sibiricus includes cryptic species. In any case, one
sequence from each clade was selected. Species identities can be established using adequate
markers of nuclear DNA or expression products of nuclear DNA that are least influenced
by environmental modification [45]. The exchange of matrilines between species, mostly
by ancient or current hybridization but also by incomplete lineage sorting, is a frequent
event in ants [46]. This poses a risk for using mitochondrial genomes in phylogenetic
studies. Tapinoma ants are among the ant genera in which the transfer of mtDNA between
lineages defined by nuclear DNA or its expression products is comparatively rare—found
in 6% of samples [9]. The low rate in Tapinoma is probably due to well-differentiated male
genitalia or intranidal mating in the supercolonial species [9]. This reduces the frequency
of interspecific hybridization. We established the identity of the focal Tapinoma samples
(Table 2) by the use of NUMOBAT, which showed a 98.3% agreement with classification
by nuclear DNA in both the nigerrimum and simrothi groups [10]. We consider the risk
of transfer of matrilines between lineages defined by the nuclear genome as low in the
cases presented here. We are aware that whole-genome sequencing of nuclear DNA would
answer this question.

3.2. Gene Organization and Sequence Analysis

The comparative analysis of the mitogenomes in arthropods has enabled the identi-
fication of an ancestral mitogenome for this group of organisms [47]. The gene order of
this ancestral mitogenome is also considered ancestral in insects [48]. In Formicidae, the
main change with respect to the ancestral insect mitogenome affects the region located
between the control region and the nad2 gene, which includes the tRNA-Ile, tRNA-Gln, and
tRNA-Met genes (CR-IQM-nad2) (Figure 2). In most of the ant mitogenomes analyzed,
including the species of Dolichoderinae, the order of these transfer RNAs has changed to
MIQ [16], which could be considered an ancestral or plesiomorphic character in ants. In
addition to this change, three other rearrangements have been detected in Dolichoderinae
species in relation to the ancestral mitogenome (Figure 2). The first affects D. pustulatus,
in which a second change occurs in the same transfer RNAs, showing the order QMI. In
D. lamellosus, a translocation of the tRNA-Gln gene has occurred, placing it between the
srRNA gene and the control region. The third change appeared in species of the genus
Tapinoma, affecting the tRNAs located downstream of the nad2 gene, which in Tapinoma
shows the order WYC (tRNA-Trp, tRNA-Tyr, tRNA-Cys), unlike other ants that present the
ancestral order WCY [16]. This difference is maintained in all TNC species as well as in the
remaining Tapinoma species. The new data support the hypothesis of Ruiz-Mena et al. [16]
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that this change could be considered a synapomorphic trait of the genus Tapinoma and that
it could potentially be used as a molecular marker to establish the boundaries of the genus.
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Like typical eukaryotic mitogenomes, the Tapinoma mitogenomes encode 13 PCGs
(Figure 1, Supplementary Table S1). Most PCGs are encoded by the heavy strand (H-
strand), while the nd4, nd4l, nd5, and nd1 genes are located on the light strand (L-strand).
All Tapinoma PCGs initiate with the standard ATN codon. The main difference between
species of the TNC species and other Tapinoma species was found in the start codon for
the atp8 gene (Table 3). Outside of the TNC, this gene has ATA or ATT as the start codon.
However, in four of the TNC species, the start codon is ATC. Within the TNC, only T.
magnum has ATT as the start codon. The phylogenetic analysis shows that T. magnum
occupies a basal position in the clade of TNC species. It is plausible to assume that the
acquisition of the ATC codon is a synapomorphic trait that appeared in the common
ancestor of the other four TNC species.

In the TNC species, all PCGs present the TAA stop codon. However, incomplete stop
codons were observed in non-TNC species, specifically in the nad2, cox1, and nad5 genes
(Table 3). Incomplete stop codons (TA- or T--) occur when the coding sequence ends within
the 5′ end of the adjacent tRNA, with a functional stop codon generated by the addition
of a poly(A) tail at the 3′ end prior to transcription [49,50]. The existence of complete stop
codons in all genes in the TNC suggests a potential evolutionary shift toward a more stable
and efficient genomic architecture. The main difference was found in the cox1 gene, which
presents an incomplete stop codon in all species outside the TNC. Hence, the presence of
the complete stop codon for this gene seems to be a synapomorphic trait in all TNC species.
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Table 3. Start and stop codons in each PCG in the mitogenomes of Tapinoma species. Same start
codons share the blue (ATA), green (ATG), brown (ATT), and yellow (ATC) background. Incomplete
stop codons share the green (TA-), and blue (T--) background.

Start codons

nad2 cox1 cox2 atp8 atp6 cox3 nad3 nad5 nad4 nad4l nad6 cob nad1
T. nigerrimum ATA ATG ATT ATC ATG ATG ATA ATA ATG ATT ATG ATG ATT
T. darioi ATA ATG ATT ATC ATG ATG ATA ATA ATG ATT ATG ATG ATT
T. hispanicum ATA ATG ATT ATC ATG ATG ATA ATA ATG ATT ATG ATG ATT
T. ibericum ATA ATG ATT ATC ATG ATG ATA ATA ATG ATT ATG ATG ATT
T. magnum ATA ATG ATT ATT ATG ATG ATA ATA ATG ATT ATG ATG ATT
T. simrothi ATA ATG ATT ATA ATG ATG ATA ATA ATG ATT ATG ATG ATT
T. madeirense ATA ATG ATT ATA ATG ATG ATT ATT ATG ATT ATG ATG ATA
T. sessile ATA ATG ATT ATA ATG ATG ATT ATT ATG ATT ATG ATG ATT
T. melanocephalum ATA ATG ATT ATT ATG ATG ATA ATA ATG ATT ATT ATG ATT

Stop codons

nad2 cox1 cox2 atp8 atp6 cox3 nad3 nad5 nad4 nad4l nad6 cob nad1

T. nigerrimum TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA
T. darioi TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA
T. hispanicum TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA
T. ibericum TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA
T. magnum TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA
T. simrothi TA- TA- TAA TAA TAA TAA TAA TA- TAA TAA TAA TAA TAA
T. madeirense TAA TA- TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA TAA
T. sessile TAA TA- TAA TAA TAA TAA TAA TA- TAA TAA TAA TAA TAA
T. melanocephalum T-- TA- TAA TAA TAA TAA TAA T- TAA TAA TAA TAA TAA

Mitogenomes exhibit two distinct non-coding sequences: the control region (CR) and
the intergenic spacers (IGSs). The size variations observed among the mitogenomes of
different Tapinoma species were primarily attributed to differences in the IGS regions and,
most notably, the CR. In the mitogenomes of Tapinoma species included in this study, the
length of the CR ranges from 318 bp in T. simrothi to 356 bp in T. madeirense. Additionally,
27 IGSs were identified (Supplementary Table S1). These IGSs vary in length from 1 to
102 bp, with the longest intergenic spacer found between the tRNA-Gln and nad2 genes in
all the species, ranging from 69 to 102 bp. When comparing Tapinoma species to other ants
for which IGSs have been described, the total number of IGSs in the Tapinoma species is
comparable to that found in other Dolichoderinae ants [16]. In species within the TNC, the
cumulative size of all IGSs ranges from 571 bp to 697 bp, consistent with the size found in T.
ibericum (719 bp). In contrast, in species outside the TNC, the size of the IGSs ranges from
423 bp (T. madeirense) to 455 bp (T. simrothi). This is notably smaller than what is found in
other ant species, such as Solenopsis invicta (Buren, 1972) (519 bp) and up to nearly 4 kb in
Atta laevigata (Smith, 1858) [51,52].

Gene overlaps in the Tapinoma species were observed at two gene junctions. The first
one was found between the tRNA-Ile and tRNA-Gln genes in all TNC species. In all TNC
species, this overlap is three bp in length. T. simrothi also exhibits a three bp overlap, but
this overlap was not found in T. madeirense, T. sessile, or T. melanocephalum (Supplementary
Table S1). In T. sessile and T. madeirense there is an IGS between the tRNA-Ile and tRNA-Gln
genes with one or two bp, respectively. However, this region in T. melanocephalum is 67 bp
in length and contains a tandem repeat sequence (TAACTAACT). The second gene overlap,
measuring seven bp (ATGATAA), occurs between the atp8 and atp6 genes, appears in
all Tapinoma species and is fully conserved across the Dolichoderinae mitogenomes [16].
Indeed, the atp8/ atp6 gene junction is highly conserved among arthropods [26,53], but in
other hymenopteran species it was also possible to find an IGS in the atp8/atp6 junction
such as in the wasp Evania appendigaster (Linnaeus, 1758), in which the atp6 and atp8 genes
are separated by an IGS of 244 bp [54].
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Overall, the A + T nucleotide content in these mitogenomes is significantly higher than
that of G + C and is a characteristic shared by Hymenoptera mitogenomes [55]. The A + T
content in the TNC is notably high, reaching approximately 84%, and this pattern is also
observed in species not included in the TNC described in this article, with A + T percentages
varying within a narrow range. The lowest percentage was found in T. madeirense, with
an A + T content of 83.6%, and the highest value was found in T. nigerrimum, with a
percentage of 84.3%. Codon usage also reflects this bias toward A + T-rich codons (Figure 4,
Supplementary Table S2). This bias in the utilization of codons for the same amino acids can
be quantified through relative synonymous codon usage (RSCU) values in the mitogenome
PCGs. RSCU indicates the observed frequency of a codon in a gene relative to the expected
frequency under equal codon usage. For all synonymous codons, the RSCU value is higher
in codons ending in A or T (NNA or NNT). The most frequently used codons are A + T-rich:
ATT (Ile), TTA (Leu), TTT (Phe), and ATA (Met). Synonymous codons ending in A or U
are more prevalent than those ending in G or C. For example, UUU (RSCU = 9.9) is more
common than UUC (RSCU = 0.1) for Phe. The preference for codons ending in A or T
appears to be a general characteristic in insects and has been observed across several insect
groups [56–59].

The amino acid compositions of the Tapinoma PCGs are similar within the TNC as
well in the remaining Tapinoma species, probably because of evolutionary conservation,
optimization of translation efficiency, and similar selective pressures that maintain func-
tional integrity. However, we found that their proportions are not exactly the same: Ile was
observed as the most commonly represented amino acid, followed by Leu, Phe, and Met,
and therefore, the codons corresponding to these common amino acids also have relatively
high proportions. The A + T bias in usage can also be seen in the stop codons. In all
Tapinoma mitogenomes, all the used stop codons are TAA (13 times), which, in some cases,
is incomplete as mentioned above, while the TAG stop codon is not used at all. The TAG
stop codon is also not present in the PCGs of the other Tapinoma species (Supplementary
Table S1). Most of the PCGs described in the mitogenomes of Dolichoderinae use the TAA
stop codon or its incomplete variants. The exceptions to this are the nad3 and nad4l genes
in L. erythrocephalus and the nad1 gene in L. humile, in which the TAG stop codon is present.

All the mitogenomes described in this article exhibit the typical 22 tRNAs, as is usual
in insects [20], although the existence of additional tRNAs has been described in some
Poneroid ants, likely originated from duplications [60]. In the TNC, the size of the tRNAs
range from 58 bp (tRNA-Ser1 gene in T. madeirense) to 75 bp in the tRNA-Arg gene of T.
ibericum (Supplementary Figure S1). These values are similar to those reported in other
Dolichoderinae species [32]. Figure 5 displays the 22 tRNAs found in T. ibericum [16] and
the changes found among TNC species. All tRNAs can fold into the typical secondary
structure, except for tRNA-Ser1 (AGN), which lacks the stable sequence in the DHU arm,
which is a common feature among insects and other metazoans [61–63]. The sequence of
8 out of the 22 tRNAs is identical across all species within the TNC (Figure 5). However,
changes can be observed when comparing the sequences of these eight tRNAs to those
found in other Tapinoma species that are not part of the TNC (Supplementary Figure S1).
Among TNC species, T. magnum exhibits the greatest variability compared to the other four
species, likely due to its more distant phylogenetic relationship. The variable positions
in the tRNAs are mainly found in the DHU and TΨC arms, likely because they are less
constrained by structural requirements, allowing for evolutionary flexibility. The anticodon
arm is identical in 21 of the 22 tRNAs across the TNC species (Figure 5). This arm contains
the anticodon triplet, which is crucial for pairing with complementary mRNA codons in
the ribosome. Mutations in this region could have severe effects, as they might directly
impact the tRNA’s ability to recognize its corresponding codon. The only change observed
in the anticodon arm occurs in the tRNA-Cys of T. hispanicum, in which an adenine is
replaced by a guanine. This change results in an A-U to G-U pairing in the stem of this
arm, which theoretically would not affect the secondary structure of the arm. Although
variation occurs primarily in the DHU and TΨC arms, most changes are observed in the
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loops, while the stems are more conserved, as has been observed in other ant subfamilies
as well as in other insect groups [17,64]. The stem regions form double-stranded structures
that are critical for the stability of the tRNA’s secondary structure, which is why they tend
to be more conserved. In fact, the observed changes in these regions do not affect the stem
formation. When substitutions do occur, they lead to A-U to G-U pairings or vice versa, as
seen in the TΨC arms of tRNA-Met and tRNA-Gly (Figure 5). Small insertions or deletions
have also been observed in the stems of these two arms, yet the secondary structure of the
tRNAs does not appear to be affected (Supplementary Figure S1).
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The mitogenomes of Tapinoma show the placement of the large ribosomal RNA subunit
gene (lrRNA) between the tRNA-Leu and tRNA-Val genes. It is assumed that the bases
between these two genes comprise the lrRNA gene. According to this, the 3′ end of the
small ribosomal RNA subunit gene (srRNA) would be delimited by the presence of the
tRNA-Val gene. However, no tRNA gene flanks the 5′ end of the srRNA gene. To determine
the location of the srRNA gene, we used the annotation provided by the MITOS2 software,
which considers the secondary structure for the annotation [26], along with comparisons to
previously described Tapinoma mitogenomes and those of other Dolichoderinae species. In
agreement with the obtained results, the lengths of the lrRNA and srRNA genes in the TNC
mitogenomes described in this study are very similar to those in the T. ibericum mitogenome
(1345 and 791 bp, respectively) (Supplementary Table S1). The lrRNA lengths range from
1344 bp in T. darioi to 1347 bp in T. hispanicum, and the length of the srRNA gene ranges
from 791 bp in T. darioi to 798 bp in T. nigerrimum. Furthermore, the mitogenomes of species
outside this complex are also comparable, with T. simrothi showing lengths of 1343 and
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795 bp, respectively, and T. madeirense displaying slightly higher values of 1356 and 799 bp,
respectively. Regarding the total A + T content in these genes, all mitogenomes exhibit a
similar average, 88%, for the lrRNA gene and 89% for the srRNA gene, consistent with the
genome of T. ibericum [16].
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Figure 5. Putative secondary structures of the 22 tRNA genes in the T. nigerrimum complex. Sites that
are fully conserved among species are indicated with black nucleotides. Red circles indicate positions
in which nucleotide substitution has taken place in relation to the T. ibericum tRNA. Hollow arrows
indicate sites with deletions, while solid arrows indicate sites with insertions.

Among the non-coding fragments in the mitogenome, the CR is crucial since it is
responsible for the initiation of mtDNA transcription and replication. In analyzed insect
mitogenomes, certain patterns related to the CR have been observed: it is the largest non-
coding sequence, highly variable, with the possible presence of tandem internal repeats
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and extraordinarily high A + T content [65]. Similarly, a wide diversity in the CR has
been described in different ant species, suggesting that it may be associated with adaptive
evolution to the heterogeneous habitats of this group of insects [17,66]. The CR is one of
the most difficult regions to identify using both traditional methods and NGS, primarily
due to the high sequence variability and the presence of internal repeats [57,67]. The
CRs of the Tapinoma mitogenomes described in this study exhibit an A + T richness of
approximately 99% in all cases and lack internal repeats. Despite the heterogeneity in the
size and organization of the CRs, the existence of conserved sequences that could form
a stem–loop configuration necessary for the initiation of the mitogenome replication has
been suggested [68]. The analysis of the potential secondary structure of the CRs in the
analyzed Tapinoma mitogenomes shows the presence of inverted repeats in all of them
(Supplementary Figure S2), which could lead to the formation of these stem–loop secondary
structures, some of which could act as possible replication origins.

The results of this study, based on the analysis of the mitogenome of Tapinoma species,
confirm the previously established relationships based on morphological character and
microsatellite data, highlighting the utility of mitochondrial DNA sequences in such re-
search. Its maternal inheritance, high mutation rate, and the presence of conserved regions
allow for the precise resolution of evolutionary relationships at both intraspecific and
interspecific levels. Additionally, its non-recombinant nature provides a complementary
and reliable tool to validate and strengthen evolutionary hypotheses, demonstrating its
value in comparative phylogenetic studies, especially when used in conjunction with other
molecular markers such as those derived from nuclear sequences.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/insects15120957/s1: Figure S1: Alignment of tRNA sequences
from the mitogenomes of Tapinoma species and secondary structure. Figure S2: Alignment of
the control regions in Tapinoma species and potential secondary structure. Table S1: Mitogenome
annotations in Tapinoma species. Table S2: Codon usage in Tapinoma species.
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