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Abstract. Current interpretations of gravimetric and
topographic data rely either on isostasy or on thin
plate bending theory. Introducing a fluid rheology
constitutes an alternative for global interpretation.
In this paper, we present a method that enables to
directly relate gravity to deviatoric stresses without
any rheological assumption. The relation is obtained
by perturbing the equilibrium equation and Poisson’s
equation around a static spherical configuration, and
by introducing a set of suited variables. Namely, we
consider the density variation over the equipoten-
tial surfaces and the height of interfaces above their
corresponding equipotential surfaces. The Backus
decomposition of second-order tensors in scalar po-
tentials (Backus 1966) is also found to be very useful.
Finally, we show that the method can provide a way
to infer strength differences and crustal thickness in
a way that generalizes the isostasy approach.

Keywords. Perturbation, topography, Clairaut’s
equation, gravity, stress, density.

1 Setting the Problem
The relation between the shape of planets and the
equilibrium equation has been intensively studied
in the hydrostatic context. This has yielded, since
Clairaut’s work, the classical studies on equilibrium
figures. In other respects, the local gravimetric and
topographic data are usually interpreted in the frame-
work of isostasy or of plate bending theory. In global
approaches, the gravity potential is commonly re-
lated to density and to discontinuity topographies
through a first-order Eulerian perturbation. More-
over it has become usual to consider a Newtonian
fluid rheology in order to relate topography to den-
sity variations and to interpret tomographic images
in terms of density and gravity.
In this paper we adopt a starting point of view similar
to that of Backus (1967) or Dahlen (1981) and refer
to the ambient state of stress, without any rheologi-

cal consideration. Thus we avoid to consider a phys-
ical process and to define an initial thermodynami-
cal configuration with the complications it implies.
Our aim is only to determine the relations that can
be established with the ambient state of stress. More
precisely, let us consider a planet occupying the do-
main of the space refered to a co-rotating frame lo-
cated at the centre of mass of the body. Our purpose
is to explain how the gravity field of the planet can
be written in terms of stress instead of density field,
independantly of any rheological law. It consists in
solving together Poisson’s equation:

for (1)

with the equation of equilibrium:

div grad for (2)

while satisfying the usual boundary conditions:

(3)

grad (4)

(5)

where , , , , grad , , denote the position-
vector, the density, the gravitational constant, the
gravity potential, the gravity vector, the (constant)
rotation vector and the Cauchy stress tensor, respec-
tively. denotes the jump across the closed inter-
faces , including the outer boundary , oriented
by the unit normal vector field . In order to solve
this system we use a perturbation method because:
(a) Equation (2) depends non-linearly on ; (b) the
shape is involved in the solutions of the equations;
(c) planets have a quasi-spherical symmetry.
The paper is structured as follows. In section 2, we
set up the shape perturbation formalism. Section
3 is devoted to the perturbation of Poisson’s equa-
tion and to the generalization of Clairaut’s equation
by introducing non-hydrostatic variables. Section
4 is devoted to the perturbation of the equilibrium
equation and to the expression of the non-hydrostatic
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variables as functions of the Backus potentials of the
deviatoric stress tensor. Finally, in section 5 we out-
line an inversion scheme of gravity and topography
models, considered as data, that relies on the global
minimization of the strength difference. Minimizing
the deviatoric stress was also considered by Dahlen
(1981, 1982) as a possible interpretation of isostasy.

2 Perturbation Formalism
Let us begin by defining the reference hydrostatic
spherical configuration as in Chambat & Valette
(2001). To this purpose, we first consider a con-
tinuous set of surfaces which interpolate the in-
terfaces from the centre of mass to the boundary
. Secondly, let us define the mean radius of
as the angular average of the distance of the cen-

tre of mass to the points of . Let us denote by
the mean radius of . We can now define

the mean density as the angular average of
over . The potential and the pressure are finally
deduced through equations (1-5) with I ,

and . Now, the real configu-
ration must be related to the reference one by intro-
ducing a continuous evolution. The physical param-
eters can be derived from the reference ones through
a Taylor expansion which defines the perturbations
to the different orders. The deformation of the do-
main is parameterized by a scalar ranging from 0,
for the reference domain , to 1 for the
real domain , and which can be thought of as a vir-
tual time. More precisely, let us consider a mapping:

with
, .

For any regular tensor field we consider a map-
ping:
with corresponding to the reference field in
and to the real one in . The order

Lagrangian displacement is defined as:

d
d

and the Eulerian, respectively Lagrangian, order
perturbation of as:

d
d

Thus, and . Defining and
respectively by:

a Taylor expansion of order yields:

>From the definition, it is clear that the Eulerian
perturbations commutate with the spatial differenti-
ations. Consider now a scalar field , a vector field
and a symmetric second order tensor field . The

following usual first-order relations hold:

grad (6)

(7)

div div (8)

where:

(9)

Finally, we impose that , and
that the deformation is purely radial, i. e.,
where is the unit radial vector.

3 Generalizing Clairaut’s Equation
The purpose of this section is to explain how Pois-
son’s equation can be solved in a way which allows
to generalize Clairaut’s equation. This is done by in-
troducing new variables which permit to separate to-
pographies from equipotential heights and to iden-
tify non-hydrostatic density repartition. The clas-
sical way to solve Poisson’s equation in a quasi-
spherical geometry is to use a perturbation approach
between the non-rotating mean model and the as-
pherical model rotating with angular velocity , and
to consider the Eulerian perturbation of potential
and of density . This leads to:

(10)

with the following interface conditions:

grad (11)



Expanding and in spherical harmonics yields
for each :

(12)

with boundary conditions:

(13)

where we have dropped the indices and in the
coefficients. The spherical harmonics used here are
normalized as

d d

where and denote colatitude and longitude, re-
spectively. For instance:

3.1 Introducing New Variables
For each degree , let us now consider the vari-
ables:

(14)

where denotes the (negative) radial gravity in the
reference state and satisfies:

(15)

is the first order equipotential height above the
sphere of radius and is the height above the
equipotential surface. represents the lateral vari-
ations of density over the associated equipotential
surface. Note that applying corre-
sponds to perturbing to the first order while following
the equipotential surfaces and that, for , cor-
responds to the geoid height and to the altitude. It
is also useful to define:

(16)

(17)

is the ratio of the reference density at radius to
the mean density d inside the
sphere of radius .
Using these variables and taking (15) into account,
equations (12,13) can be rewritten as:

(18)

or

(19)

with:

(20)

(21)

cst (22)

The location of the frame origin at the centre of mass
yields the additional condition for :

(23)

Condition (21) is derived from (13) by noting that, in
virtue of (3) and (12), can be expressed for >
as:

cst

which yields:

Condition (22) stems from the behaviour of the de-
gree component of the regular scalar function .
Let us now consider the homogeneous system corre-
sponding to (19):

(24)

Noting that (see 17), it can be shown that all
the solutions of (24) behave like in the vicin-
ity of the centre, except a line of solutions which are
proportionnal to . Let be such a solution, de-
fined to a multiplicative constant, let be the solu-
tion defined by , and let

be the matrix defined as:

(25)



From (24), we can deduce that:

det det (26)

and, taking (17) into account, that:

det det (27)

Following Poincaré (1902, p. 84), now we will show
that and remains close to and to
respectively and that F(r) is a fundamental matrix of
(24) for .

3.2 Setting Bounds on and
Let us assume that, for any , , i.e.,
that or that is decreasing with
. Note that this hypothesis is weaker than the one of
a decreasing density. Let be the minimum of
over [0, ] and define as:

(28)

Under the above hypothesis, and satisfy for any
r :

(29)

(30)

and thus by integration:

(31)

(32)

For ( ), the proof of (29) and (31) is
straightforward, since in this case, is constant and

on the interval . For , let us define
after Poincaré:

(33)

The definitions are a posteriori justified by the fact
that and remain finite, i.e., that and do
not vanish except for . and obey the
differential equation:

(34)

which can be reformulated as:

(35)

with:

(36)

Differentiating (36) with respect to yields:

(37)

Since , is a decreasing function of , and
thus for any [0 , ]:

(38)

The relation shows that
is a negative decreasing function of and that:

(39)

At the centre, so that
and . Noting that

for and outside, we conclude
that remains in the interval , that is (29).
Noting that (see 25):

det (40)

we can conclude from (27) and (29) that F is a fun-
damental matrix of (24), i.e., det , and con-
sequently that . Remarking once
again that for and for

yields (30), which ends up the proof.
In order to make completely clear the definition of
, inequality (29) shows that for we can nor-

malize it as:

(41)

In this case, (40) yields det and it fol-
lows from (27) that:

det (42)

(43)

3.3 Clairaut’s Equation

Under the hydrostatic hypothesis, the level surfaces
of density, potential and pressure coincide. In ad-
dition these level surfaces include the interfaces.
Therefore and , as defined by (14), identically



vanish. Equations (19-23) then reduce to the homo-
geneous system (24) with the boundary conditions
(22) and:

(44)

with the additional condition (23) for . This
set of equations is an alternative form of Clairaut’s
differential equation. Paragraph 3.2 shows that it can
only be fulfilled for and and thus that,
as it is well known (see for instance Jeffreys (1976)),
the solution only contains the degree 2 order 0 term:

(45)

In the general case of a non-hydrostatic repartition
of density we must solve the system (19-23) with the
use of and .

3.4 as a Function of Topographies and
Non-hydrostatic Density Repartition
Let us now show that for :

d (46)

and more generally that:

(47)

where denotes the mean radius of interfaces, in-
cluding the external boundary.
In order to prove these relations, let us first define:

A solution of (19, 20, 22) can be written as:

d (48)

where the constant vector can be taken in the
form:

and where:

Applying (see 43) to equation (48) and set-
ting in the resulting second component yields:

d

Taking boundary condition (21) into account in the
left hand side of this equation leads to:

and finally to (46) by making use of (17). In order
to prove (47), let us start from the first component of
equation (48) which can be written as:

(49)

Putting in this equation and substituting ex-
pression (46) of yields the value of the con-
stant:



Finally, setting the latter value in (49) leads to (47).

3.5 The Degree
The degree one needs a special treatment since, in
this case, the function and are constant and
is no longer a fundamental matrix. Besides, a con-
stant degree one corresponds to a translation of
the body and does not affect either the source terms
(controlled by ) or the boundary conditions (re-
lated to ). Therefore this degree would be undeter-
mined if the centre of mass was not fixed by condi-
tion (23).
Taking advantage of , (18) reduces to:

(50)

which, with the conditions (20, 22), leads to:

d

(51)

Now, condition (21) at implies the following
constraint on and :

d (52)

Furthermore, taking (22) into account, (51) yields:

d d

d
(53)

The constant can be determined by the additional
condition (23). This yields:

d d

d

Thus (53) becomes:

d d

d

d

An integration by part of the first integral yields
an expression of similar to (47) provided
that we set, for , and

d . Note that since the condi-
tion is conventional, only the compatibil-
ity condition (52) is relevant for this degree. Finally,
(46) can formally be kept for with and

, since it is equivalent to (52).

4 Taking Stress Into Account
Let us now turn to the equilibrium equation (2). Note
that in the spherical reference configuration:

I grad grad (54)

Using (8) the Lagrangian perturbation of (2) yields:

div grad grad (55)

Relations (6, 7, 9) respectively imply that:

grad grad

grad

where the star denotes the adjoint with respect to the
usual R scalar product. Substituting these three re-
lations into (55) finally yields:

div with I (56)

The boundary conditions are directly obtained upon
perturbing (5):

(57)

It is useful to apply the Backus scalar potential repre-
sentation (Backus 1966) to . This representation
generalizes to second-order tensors the usual rep-
resentation of vector fields in radial, poloidal and
torroidal potentials with respect to the sphere and
leads to local relations. In addition, expanding the
potentials in spherical harmonics constitutes an alter-
native to the use of generalized spherical harmonics.
Let us first recall the Backus representation in the
case of symmetric tensors.



4.1 Backus Representation of Real Second-
order Symmetric Tensor Fields
Let be a regular real valued second-order symmet-
ric tensor field. There exists 6 uniquely determined
real potential fields such that:

(58)

and:

(59)

grad grad

grad grad

P

H H P

where the indices and in (58) refer to the spherical
harmonic degrees, where the index in (59) refers to
the sphere of radius r, and where denotes the vec-
torial product. The projector P and the tangential
gradient grad are defined as:

P I grad grad grad

and the differential operators over the sphere of ra-
dius r, H and , are related to the covariant deriva-
tive by:

H

The differential operator H is defined from H by
the relation:

H

H H

which holds for any regular scalar field and any
regular vector field tangent to the sphere.
Moreover, it can be verified that (Backus, 1966,
1967):

tr (60)

grad grad (61)

div grad grad (62)

with:

(63)

(64)

(65)

Note finally that is an eigenvector of if and only
if and that is transversely isotropic
with respect to if and only if

. In the latter case: P

4.2 Expression of and as Functions of
Stress Potentials
Using relation (62) for and identifying
the radial, poloidal and toroidal components in the
Lagrangian perturbation of the equilibrium equation
(56) results in:

(66)

(67)

(68)

Substituting (67) into (66) and taking (63-65) into ac-
count yields:

(69)

(70)

d (71)

Expression (61) shows that boundary conditions (57)
can be rewritten as:

(72)

Furthermore, it can be deduced from (70, 72) that:

(73)

at each interface. Finally, a spherical harmonic ex-
pansion yields expressions of , , and similar
to (69-71) in which the operator is re-
placed by .

4.3 Expression of as a Function of
Stress Potentials
Let us substitute the expression of the harmonic co-
efficient derived from (69) into (46). Integrating
by parts and taking boundary conditions (73) into ac-
count first yields:

d



(74)

Upon integrating by parts the third term of the previ-
ous integral, then taking (72) into account and noting
that verifies (24), we finally obtain:

d

(75)

The topographies are not directly involved in the
expression. They only intervene through (73). Note
also that (75) identically vanishes for . This is
due to the fact that the integration of equation (56)
over the reference domain also yields the three equa-
tions (52) corresponding to the order .

4.4 Taking Strength Lines Into Account
As far as we know, the problem of determining the
different kind of strength line patterns - related to the
principal stresses - which fulfil the boundary condi-
tions, i.e., normal to any interface where a fluid is
involved, is an open problem. Let us assume that the
strength lines are quasi-radial or quasi-spherical. We
guess that this assumption is very likely even in the
context of a convective process. This implies that the
rotation mapping the local spherical frame onto
the principal stresses frame can be formally written
to the first order as I where is an anti-
symmetric operator, and that:

I I I I

correct to first order. Therefore is an eigen-vector
field of the field and, according to 4.1 and (71)
the stress potentials , and vanish. As a conse-
quence (75) reduces to:

d (76)

with:

(77)

and at the interfaces:

(78)

5 Inferring Strength Differences
Let us outline how we can get some inference on
stress differences in the Earth and extrapolate avail-
able information on the crustal thickness. For the
sake of simplicity we will now assume that .
In this case the only parameter is the stress difference

between the averaged quasi-horizontal
stress and the quasi-vertical one. Equations (76-78)
then simplify (omitting the degree two Clairaut term)
to:

(79)

d (80)

Using these last two equations can be identi-
fied from geoid height and topography ,
both considered as data, through a functional least
squares approach. Additional information can be
obtained from models of discontinuity height
or density through equations (79). The regular-
ization imposes a global minimization of and
corresponds to a simple mechanical criterion. Note
that since the kernel is close to , the in-
formation is localized in the lithosphere, hence only
the Moho topography is involved. Seismic models
of Moho topography are now available and are re-
liable for the first harmonic degrees. Moreover, we
can scale the control parameters of the inversion with
respect to the degree, in order to make the Moho to-
pography and the density a posteriori verify Kaula
type laws. It enables to extrapolate the reliable in-
formation uponMoho topography to greater degrees.
The method also provides a way to estimate the min-
imum amount of stress difference needed in order to
adjust gravimetric and topographic models.
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