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Spatial variance‑mass allometry 
of population density in felids 
from camera‑trapping studies 
worldwide
Stefano Anile1 & Sébastien Devillard2*

power laws are cornerstone relationships in ecology and evolutionary biology. the density‑mass 
allometry (DMA), which predicts an allometric scaling of population abundance, and taylor’s law (tL), 
which predicts a decrease in the population abundance variation along with a decrease in population 
density, have enhanced our knowledge of inter- and intra-specific variation in population abundance. 
When combined, these two power laws led to the variance‑mass allometry (VMA), which states that 
larger species have lower spatial variation in population density than smaller species. the VMA has 
been predicted through theoretical models, however few studies have investigated if this law is also 
supported by empirical data. Here, to formally test the VMA, we have used the population density 
estimates obtained through worldwide camera trapping studies for an emblematic and ecologically 
important carnivorous taxa, the Felidae family. our results showed that the VMA law hold in felids, as 
well as the tL and the DMA laws; bigger cat species showed less variation for the population density 
than smaller species. these results have important implications for the conservation of wildlife 
population and confirm the validity of important ecological concepts, like the allometric scaling of 
population growth rate and the slow‑fast continuum of life history strategies.

Investigating whether ecological laws (sensu biological rules) are supported by empirical data at the macro-
ecological scale is a cornerstone in ecology and evolutionary  biology1. Among ecological laws, power laws have 
received lots of attention recently, both at the theoretical and empirical  levels1,2. In general, power law relation-
ships relate a trait, at the individual, population or community level, to another one with a power function 
Y = βXα, therefore leading to a linear relationship at the log-scale1; these slopes (i.e. coefficients) are then used 
to inform on the macro-ecological processes acting on these levels. Power laws have greatly contributed to our 
understanding of the large-scale variations of population  abundance3–5 or of variation of metabolism across the 
body mass continuum in animals and  plants6–8. In this context, one of the first power law ascertained in ecology 
is the Taylor’s law (hereafter, TL), which positively links the variance in population density to the mean density 
of  populations3,9 with the following equation:

 Since the seminal paper of  Taylor3, this relationship has upheld across numerous  taxa1,9–13, and has been the 
subject of several theoretical  works14–16 aiming to unravel the biological meaning of its exponent (i.e. the slope 
or coefficient).

Furthermore, another ecological law, the Density-Mass Allometry (hereafter  DMA4,17–20), relates mean popu-
lation density to body mass, where density decreases with increasing body mass according to the theory of 
energetic requirements of species (Eq. 2 below):

(1)
VarDi = a · (MeanDi)

b, with a > 0, and, 1 ≤ b ≤ 2 in numerous empirical

examples where Di is the population density in study site i.
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Similarly to the TL, also the DMA has been thoroughly researched and results have supported its 
 predictions4,17,21–33.

More recently a third ecological law, named the Variance-Mass Allometry (hereafter VMA) combines the 
two above mentioned laws into one equation (Eq. 3), which links the variance of population density over study 
sites to the body mass of the  species1,34,

that leads a linear relationship at the log10 scale

Given that both TL and DMA hold in some taxa, it is indeed reasonable to expect that the variance of popula-
tion density is negatively related to the species body mass (i.e. the bigger the species, the less variation in mean 
population density). The VMA scaling exponent has been theoretically predicted by combining the TL scaling 
exponent (∼ 2) and the DMA exponent (∼ − 0.75), giving an exponent for the VMA of ∼ − 3/21,34.

Finding a more general expression for the VMA, without the mandatory step of testing the TL and DMA laws, 
would help understand the ecological processes which affect variability in population density. A recent study has 
indeed demonstrated that the VMA should hold even without needing to first test whether the TL and DMA 
separately  hold35. Indeed, the model developed by Segura and  Perera35 assumes that metabolic requirements 
constrain the maximum abundance of a dominant species in a local  community36–40 and hence this model sug-
gested the existence of a general form of variance-mass allometry which, under some particular circumstances, 
includes the VMA previously developed by  Marquet1 and Cohen et al.34. Specifically, Segura and  Perera35 argued 
that the explicit link between mean population density and the metabolic scaling can vary due to periodic changes 
in resources or temperatures and that is why free-living, free-living infested, and parasitic species exhibit dif-
ferent VMA  relationships41.

Since its first formalization by Cohen et al.34, the VMA has been ascertained only through empirical data 
 sets34,41,42, but to the best of our knowledge, an empirical test in terrestrial animals is lacking. For example, Cohen 
et al.34 found a strong support for the VMA prediction within genera of oak (Quercus sp.) trees; moreover, these 
authors suggested that the VMA should be evaluated at higher taxonomic levels because both the TL and DMA 
equations can also be applied among distantly related  species43,44. Similarly, the results of  Xu42 support the 
existence of VMA in oak trees, while also suggesting that the VMA should be true also for fishes. Lagrue et al.41 
further provided cross-species evidence that the VMA law occurs in a wide range of metazoan parasites, host 
species, and free-living species without parasites.

Given the aforementioned evidence, it can thus be predicted that population densities of smaller species 
should be more variable spatially, and likely temporally, than densities of larger-bodied species.

To test the VMA on terrestrial animals, repeated robust estimates of population density across study sites for 
a representative set of species within a taxon are needed. Clearly, density estimates must be robust, standardized 
and independent from each other. Camera trap  monitoring45 has been used extensively to estimate population 
density or other population parameters of many species of Felidae46,47. Many cat species are naturally individu-
ally marked as their fur-coats feature stripes, rosettes and spots. Hence, with the advent of camera-trapping as 
a “standard” sampling method, researchers can obtain species-specific density estimates for a variety of felids, 
making felids an ideal taxon for empirically testing the VMA ecological law.

Terrestrial carnivores are key species which exerted crucial effects not only on the abundance, richness and 
diversity of the community of species present in a given area, but they are also essential for shaping, regulating 
and maintaining entire  ecosystems48–50. Among terrestrial carnivores, the Felidae family is a taxa which has 
capitalized the researcher’s attention since numerous decades, not only because of their charismatic  nature51 and 
high conservation value as umbrella  species52, but also because the largest species (e.g. tiger Panthera tigris, lion 
Panthera lion, and leopard Panthera pardus) can be, in certain circumstances, man-eaters53. Moreover, all the 
members of the Felidae family are obliged  carnivores54, hence making them particularly prone to the predation of 
 livestock53, which in turn can cause severe human-conflicts with retaliatory  consequences53. Despite this strong 
research interest in  felids54, it is still difficult to study them in the wild given their low population  densities55, 
their elusive and nocturnal  behaviors56 as well as the logistic constraints due to the nature of their habitats (e.g. 
tropical forests, Savannah steppe, high altitude mountains, deserts and Siberian taiga).

Important evolutionary and conservation questions remains to address for this taxa. For example, it is largely 
unknown how population density in cat species varies spatially or temporally and which factors can trigger these 
variations. Carnivore density or distribution is generally positively related to prey  abundance57–59, however such 
studies have included only one large cat species (i.e. tigers, leopards, and Panthera onca jaguars), hence inferences 
at the family level cannot be generalized. Moreover, testing broader ecological laws regarding population density 
across Felidae might assist biologists seeking to conserve this important taxa.

Our primary goal was to investigate whether the VMA law is supported in wild populations of felids using 
density estimates collected through camera trap surveys worldwide. Following Cohen et al.34, before testing 
the VMA in felids, we first ascertained whether the TL and the DMA laws were supported,. Given the expected 
universal aspect of TL, DMA and VMA, we predicted both ecological laws would be supported in felids.

(2)MeanDi = c · (MeanBM)d , c > 0, and, d < 0, where BM is the species body mass

(3)VarDi = ac
b.(MeanBM)bd

(4)log(VarDi) = b0 + b1 · log(MeanBM), with b1 being negative.
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Results
Data availability. The literature search achieved an initial dataset of 679 estimates of population density 
in felids coming from 260 camera trap studies from 54 countries (Fig. 1, Supplementary Information Table S1). 
Among the 40 recognized felids  species60), we obtained density estimates from 22 (mean number of records per 
species = 30.86 ± 45.66 (s.e.m); range [1, 159]). Tiger (n = 159), leopard (n = 133) and jaguar (n = 101) represented 
the most-represented species, while lion and margay (Leopardus wiedii) had only two records each. Twenty-six, 
161, and 492 density estimates were from CR FMMDM, CR HMMDM, and SECR methods.

To prepare the final dataset, we first discarded 90 density estimates that were a result of non-targeted, i.e. ran-
dom, surveys. We then identified the density records which were outside the distribution of density estimates for 
each pair species/method of density estimation (i.e. density estimates that might be biased due to methodologi-
cal weaknesses) using a boxplot (Supplementary Information Fig. S1) and 38 additional records were discarded 
from the dataset. All outliers were unexpectedly high density estimates (Supplementary Information Fig. S1).

The reduced dataset included thus n = 551 records for the 22 Felid species (mean = 25.05 ± 39.54 range [1, 
142]). From this dataset, we calculated MeanDensity and VarDensity over specific study sites for each pair (spe-
cies/method of density estimation). We obtained 27 measures of MeanDensity and VarDensity calculated over at 
least three different study sites and for the three methods of density estimation (2 CR FMMDM, 8 CR HMMDM, 
and 17 SECR) for 18 species. Two species had estimates for three methods of density estimation (Supplementary 
Information Table S2), 5 for two, and eleven for one. The mean number of specific study site per species/method 
of density estimation pair was 12.63 ± 14.16 (s.e.m) and ranged from 3 to 57. This final dataset was then used 
for the following data analysis.

investigating tL, DMA and VMA in felids. The slopes of the TL was not impacted by the method 
of density estimation as the interaction term DensityMethod*log.MeanDensity was not retained in the model 
(p = 0.9720). Therefore we computed the additive model which showed an effect of log.MeanDensity on log.Var-
Density (p = 6.10  10–5, conditional  R2 = 0.87) and found no effect of the method of density estimation (p = 0.6265). 
We thus estimated the slope of the TL using the b estimates of the additive model: the slope was positive and 
equal to βlog.MeanDensity = 2.0470 ± 0.1858 (s.e.m) (p = 6.10 × 10–5). Therefore the more the mean density over dif-

Figure 1.  Worldmap of the locations of the n = 679 records of population density coming from camera trap 
studies in 22 Felid species. Only records using CR FMMDM, CR HMMDM and SECR methods of density 
estimation are shown. The map was generated using Qgis version 1.7 https ://qgis.org/en/site/about /index .html.

https://qgis.org/en/site/about/index.html
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ferent study sites is, the more the spatial variance in density increases, hence we found strong support to the TL 
in Felidae (Fig. 2a).

The DMA predicted the mean density of species was negatively related to their body mass at the log-scale. 
Again the slope of the DMA was not significantly different for the three methods of density estimation (interac-
tion term DensityMethod*log.BodyMass p = 0.053). We thus fitted the additive model, and, in this model, the 
method of density estimation was not significant (p = 0.1266) while the effect of the log.BodyMass was highly 
significant (p = 0.0005, conditional  R2 = 0.90). DMA was thus strongly supported in Felids (p = 0.0005) and the 
slope of the DMA was to βog.BodyMass = − 0.6561 ± 0.1531 (s.e.m) (p = 0.0005, Fig. 2b) so the mean density was 
negatively correlated with their body mass.

The interaction between DensityMethod and log.BodyMass was not significant (p = 0.3571), highlighting that 
the VMA slope is equal which ever the method of density estimation used. No significant effect of the method 
of density estimation was shown (p = 0.3344) while log.BodyMass had a significant effect on log.VarDensity 
(p = 0.0207, conditional  R2 = 0.88) in this additive model. As expected, the VMA slope was negative and equal to 
βlog.BodyMass = − 1.099 ± 0.4264 (s.e.m) (p = 0.0207, Fig. 3). We found thus that the spatial variance in density for 
felid species is negatively related to their body mass.

Discussion
Based on an exhaustive review of population density estimates over multiple study sites from camera-trap studies 
on felids worldwide, we demonstrated that the spatial VMA was supported for Felidae, and hence variation in 
population density decreases with increasing body mass. We thus provide the first evidence that the spatial vari-
ance of population density is a power-law function of average body mass at the interspecific level for terrestrial 
animals. The VMA was already found for another population parameter across mammalian species as  Sinclair61 
reported an inverse allometric relationship between the standard deviation of the maximum population growth 
rate and body mass. This and our findings underlined that the general variance-mass allometry recently predicted 
by the model of Segura and  Perera35 might hold also for numerous population demographic traits (e.g. survival 
and reproduction rate, population density, population growth rate) in terrestrial animals. Population density 
databases for other terrestrial animal taxa are now  available62, allowing further tests on the spatial density VMA; 
a more thoroughly understanding of the processes and implications of such universal law would be beneficial, 
especially when considering the current species extinction  crisis63,64.

The VMA slope estimated on felids (βlog.BodyMass = − 1.099) is slightly lower than both the theoretical value of ∼ 
− 3/21,34 and the expected value of 2.0470 × (− 0.6561) = − 1.343 (Eq. 3) given the estimated slopes of the TL and 
the DMA. βlog.BodyMass also fell in the lower bound of previous estimated slopes [− 0.29–3.28]34,41,42. Differences 
in lifestyle, metabolic  ecology35 and resource use among  trees34,  parasites41,  fishes42 and terrestrial carnivores 
(this study) are likely to explain these discrepancies but it points to a deeper assessment when more VMA slopes 
are published. Several non-mutual scenarios can explain the difference between the theoretical (− 3/2) and the 
expected (− 1.343) slope and, alternately, the actual slope of the VMA we found (− 1.099). Different arguments 
could indeed be formulated to explain this flattening of the VMA encompassing both a lower than expected 
variability in small species and larger variability than expected in large species. In a more optimistic scenario, our 
dataset may not be representative enough of the actual variability found in population densities of small cats; a 
scenario which we consider realistic given the strong bias in research efforts towards large  cats46,47. In the worst 
case scenario, we cannot exclude that population densities of small cat populations are truly depressed, hence 
they are not able to attain their highest predicted population densities, thereby lowering the density variation 

Figure 2.  Taylor’s law (a) (TL) and Density-Mass Allometry (b) (DMA) in 18 species of felids. Predicted 
value were computed on fixed effects only and from the additive models. Blue points and lines are for the CR 
FMMDM method of density estimation, green points and lines are for the CR HMMDM method of density 
estimation, and red points and lines are for the SECR method of density estimation.
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in small species and ultimately flattening the VMA. For large cat species, the density variation might be higher 
than expected, thus flattening the VMA. Particularly high or low values for large cat population densities may 
be either highly biased, as the outliers we discarded from our dataset. High density values can also be genuine 
strongholds for the conservation of a particular species highlighting efficiency in conservation measures locally 
while low value might underpin highly endangered populations calling for rapid protection measure locally.

Beyond reporting further evidence of well-known power laws in ecological systems (TL and DMA), our 
finding on the existence of spatial VMA across felid species has strong implications for the management and 
conservation of these charismatic species. Many conservation programs aim at increasing population abundance 
above a minimum viable population  density65. However, given that larger cat species had less spatially variable 
population density, it is likely that larger cats are also less prone to respond to conservation actions specifically 
tailored to increase population density than smaller cats. Therefore, biologists should take into account our 
results when planning conservation actions involving quantitative objectives on population density. For example, 
increasing population density by 10% might be far more difficult for a large species than a small one.

How this general pattern relates to the life history of each cat species and its relative conservation status 
would be a key research topic for future studies. Nonetheless, one might argue that the existence of the VMA 
law laid in the well-known concept of the slow-fast  continuum66, which states that larger and slower species 
displayed higher adult survival, lower annual fecundity and population turnover, so that spatial and temporal 
variation in abundance is reduced. However, when considering the wide range of body sizes and life histories 
observed in carnivores, this presumed fast-slow continuum is not well  supported67. Moreover, also the well-
known allometry of the intrinsic rate of increase rmax which scales to body mass with an allometric exponent 
close to -1/468,69 can also be related to the VMA pattern we observed. As rmax is ultimately controlled by levels of 
birth, growth and mortality, the allometric scaling of rmax underlines that large species have, among other traits, 
a slower population’s capability of recovering after population collapses due to numerous types of disturbances. 
Hence large species are less able to reach high population density, limiting as much their variance in population 
density (see also Gamelon et al.70 for the role of generation time on the population stability of large mammals). 
The range of the observable values of population density may be further reduced for the larger species due to 
allometric scaling (sensu constraints) of numerous life history traits, including transient dynamics  parameters70. 
On the contrary, the lower spatial variation in population densities of the larger species relative to smaller species 
might also partly result from their overall poor conservation status, so that high population densities of highly 
threatened species are not observable. However, as already stated (see above), the spatial variation of population 
density in large species is higher than expected suggesting rather that our data arose from a mix of particularly 
high (biased or healthy populations) and low (endangered populations) population densities. Finally, further 
exploration on the role of other ecological variables potentially impacting rangewide population density (e.g., 
human footprint index, road density, and net primary productivity), as well as other life traits (i.e., fecundity 

Figure 3.  Variance-Mass Allometry (VMA) in 18 species of felids. Predicted values were computed on fixed 
effects only and from the additive models. Blue points and lines are for the CR FMMDM method of density 
estimation, green points and lines are for the CR HMMDM method of density estimation, and red points and 
lines are for the SECR method of density estimation. Species are shown on the plot using their Genus-Specie 
initials: C.a. Caracal aurata, F.s. Felis silvestris, L.c. Leopardus colocolo, L.g. Leopardus geoffroyi, L.j. Leopardus 
jacobita, L.p. Leopardus pardalis, L.s. Leptailurus serval, L.l. Lynx lynx, L.r. Lynx rufus, N.d. Neofelis diardi, N.n. 
Neofelis nebulosa, P.o. Panthera onca, P.p. Panthera pardus, P.t. Panthera tigris, P.u. Panthera uncia, P.m. Pardofelis 
marmorata, P.b. Prionailurus bengalensis, P.c. Puma concolor. 
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or dispersal), might identify critical factors impacting felid populations.. For example, the model developed by 
Segura and  Perera35 is based on the constraint acting on population abundance through metabolic requirements 
of species, hence clarifying the role of the local resource  availability33 on the VMA relationship (i.e. in our case, 
how the abundance of prey interacts with the VMA relationship).

Such a support for the VMA was obtained by using spatial replicates not conducted at the same spatial scale, 
for example among our records we observed a gradient of spatial scales, from different parts of a wildlife reserve 
to national park, through different areas of a country up to by study sites shared among different countries (Sup-
plementary Information Table S1). Despite this, the VMA relationship was supported, albeit we acknowledge that 
such differences in the spatial scales might also influence the variation observed around the VMA relationship. 
Moreover, the species with the highest number of spatial replicates were mainly large species (e.g. tiger with 
57 spatial replicates), so that the large spatial variation we found in small species cannot be accounted for by a 
higher number of spatial replicates. The method of density estimation used to record density (CR or SECR esti-
mates) did not alter the slopes of the relationships (i.e. the allometric exponent) as additive models were always 
the best supported, but rather suggested over- or under-estimation of populations density depending on the 
methods used (Fig. 2b). During the last years of the study period, most studies used SECR methods to estimate 
population density and such an approach is becoming the gold standard for estimating the population density 
in felids. Unfortunately, our data did not allow us to investigate the temporal VMA due to a small number of 
temporal replicates on a low number of species. However, as the number of camera-trapping studies has increased 
 considerably71, it is likely the data required for assessing temporal VMA should be soon available. When temporal 
replicates were available for a specific study site, we averaged population density over time-period to obtain a 
single estimate per species of the population density; we acknowledge this approach may have introduced bias 
as the averaged estimate could not be representative of the true population density for these sites. However, the 
temporal variance calculated within a single study site was far less important than the spatial variance between 
sites for these species (results not shown), hence likely minimizing this bias. Finally we used averaged body mass 
mostly from the study of Johnson et al.72 and from the PanTHERIA database; a better approach would have been 
to obtain the body mass of each species directly from each specific study site. Unfortunately, this information 
was not available for most study sites. This potential discrepancy between averaged and actual, site-specific body 
sizes, may have contributed to the variation observed around the VMA.

Our efforts for maintaining the dataset, analyzing it and disseminating our  findings46,47 have contributed to 
increase the scientific knowledge for this highly distinctive and charismatic taxon. Moreover, in this study we 
have found strong support for the VMA law for a whole taxon of carnivore species for the first time and evidently 
this result calls for other assessments of the VMA at the interspecific level in other taxonomic groups, both on 
the spatial and temporal variance in population density, before confirming its universality on ecological systems 
and discussing its implications more in depth.

Methods
Data collection. We searched the literature for camera survey-based estimates of population density for 
felids during 11 January 2012 until 14 December 2019 using the most common, freely accessible and widely 
used scientific bibliography database: Scirus, Web of Science, BioOne and Google  scholar46,47. We used the term 
“camera-trapping” along with both common and scientific names for the 40 species of  felids60. Each entry was 
then fully examined and the following data were extracted: species, author (only the first name was recorded), 
journal name (for technical reports or thesis entries, we used the terms report or thesis as substitute for the jour-
nal name), year of publication, study site and specific-study site (for those entries where a specific area within 
the study site was sampled, see Anile and  Devillard47 for details), study year(s), sampling dates, the method of 
density estimation (i.e. either SECR—spatially explicitly capture recapture- or CR—capture recapture-analysis), 
the type of buffer used (only for CR entries according to the following levels: FMMDM—full mean maximum 
distance moved; HMMDM—half mean maximum distance moved), and the density D (N/A individuals/100 
 km2). We retained only these three methods of density estimation as they are recognized to provide the most 
accurate estimates of the population density of naturally marked individuals from camera trap studies. Until 
the pioneer study of Efford et al.73, researchers have indeed used non-spatial CR models for estimating D; this 
framework involved the disjointed estimation of N using closed population models and A, the so called “effec-
tive” trapping area (i.e. usually a minimum convex polygon delineated around the camera traps plus a buffer). 
However, this framework underestimates the true movements of animals within and around the trapping grid, 
hence biasing high the density  estimate59,74. On the contrary, the development of SECR models overrides the 
need of estimating the area A because these models inherently estimate D by modelling the location of the 
home-ranges of the animals (detected and not detected) based on the spatial information provided by the cap-
tures  themselves45,75. We further classified each entry as random vs. target  records46,47 by carefully inspecting the 
methods section to assess if a species-specific sampling was used for a given species. For entries reporting data 
for more than one species, year and period (e.g. repeated sampling over the years or repeated sampling in the 
same year), we considered them independently. Thus, we used only independent records. This strict classifica-
tion system for each entry was necessary as we found some cases where only the method of density estimation 
differed or, alternatively, the period of sampling between entries overlapped. In the latter case we only retained 
the most recent record (i.e. the one with the latest year of publication as in the majority of the cases the SECR 
method of density estimation was used). For each species we then associated the body mass (mean; gr) using the 
data provided in Johnson et al.72 or alternatively, for those cat species not reported in the above mentioned study, 
in the PanTHERIA  database76. The body mass of the Andean cat Leopardus jacobita was taken from Huaranca 
et al.77 given it was not reported in the two afore mentioned sources. As Felidae are dimorphic  species72, we aver-
aged male and female body mass.
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Data preparation. From the initial dataset of felid population density estimated trough CR FMMDM, CR 
HMMDM or SECR method of density estimation, we further reduced the dataset by discarding records from 
studies where the species was not the targeted one (i.e. random records sensu Anile and  Devillard46) as relative 
abundance index (RAI), and hence density estimate, is biased in such  studies46. A boxplot was used to remove 
outlier density estimates for each species/method of density estimation pair from the dataset. Particularly high 
or low density might reveal a bias in the study design and/or peculiar habitat conditions. From this dataset we 
calculated the mean density MeanDensity over specific study sites. When several density estimates were available 
for a given specific study site (i.e. temporal repeats of the monitoring over years or seasons), we averaged the 
density estimates over temporal windows. The method of density estimation was accounted for and only specific 
study sites providing density estimated by the same method were averaged. Therefore a species could have sev-
eral (up to three) mean densities, one for each method of density estimation. The variance of density VarDensity 
was calculated as the variance of density estimates over specific study sites. Again only the density estimates 
coming from the same method of density estimation were used to provide a value of VarDensity leading poten-
tially to up to three values for VarDensity for a single species. For the following data analysis, we only kept in the 
dataset MeanDensity and VarDensity that were estimated for at least three different specific study sites.

Data analysis. We used linear mixed model with a Gaussian distribution with Restricted Maximum Likeli-
hood (REML, lmer function in the lme4 package for the R software) to assess whether the Taylor’s law (TL), the 
Density-Mass Allometry (DMA) and the Variance-Mass Allometry (VMA) are supported by the density esti-
mates reported in felids from camera-trap studies. Significance threshold was set to nominal value of α = 0.05. 
The continuous response variable was either VarDensity (TL, VMA) or MeanDensity (DMA), while the explana-
tory variable was the body mass BodyMass for the DMA and VMA tests and the MeanDensity in the TL test. For 
each model (TL, DMA and VMA) we also added as a fixed effect the method of density estimation (DensityM-
ethod with three modalities CR FMMDM, CR HMMDM, SECR) in interaction with the continuous explanatory 
variable. We added DensityMethod as a potential confounding factor as previous studies have shown that the 
method used to estimate density from camera trap studies might affect density  estimates46,59,74,78. Finally, we 
included in the models the random factor Species because, as stated above, some species can have up to three 
repeated measures for the pair metric (MeanDensity, VarDensity) in the dataset coming from the different meth-
ods of density estimation.

To ensure that the slope of the TL, DMA and VMA was not biased by the method used to estimate density, 
we first tested for the interaction between DensityMethod and the response variables. If this interaction term was 
not significant (i.e. the method of density estimation is not affecting the slope), we then computed the additive 
model to investigate TL, DMA and VMA slope significance, but we kept the method of density estimation in 
this additive model as a confounding factor. MeanDensity, VarDensity and BodyMass were log10-transformed 
in all models. Model residuals were examined for homoscedasticity and normal distribution to assess whether 
they satisfactorily respected the model hypotheses (Supplementary Information Figs. S2–S4).

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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