Generalised spherical minors and their relations
Résumé
Let H be a spherical subgroup of minimal rank of the semisimple simply connected complex algebraic group G. We define some functions on the homogeneous space G/H that we call generalised spherical minors. When G = H x H, we recover Fomin-Zelevinsky generalised minors. We prove that generalised spherical minors satisfy some integer coefficients polynomial relations, that extend the identities of classical generalised minors due to Fomin and Zelevinsky, and that have the shape of exchange relations of LP-algebras.
Domaines
Mathématiques [math]
Fichier principal
Generalised_spherical_minors_and_their_relations (2).pdf (529.81 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|