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COEURDASSIER5, Prof. Philippe BERNY6 and Prof.5

Sandrine CHARLES1
6

1University Lyon 1, Laboratory of Biometry and Evolutionary7

Biology - UMR CNRS5558, 43 boulevard du 11 novembre 1918,8

Villeurbanne Cedex, 69622, France.9

2*Research Institute for Development, BotAny and Modeling of10

Plant Architecture and Vegetation - UMR AMAP, TA A51/PS2,11

Montpellier Cedex 05, 34398, France.12

3INSA Lyon, Biosciences department, 20 avenue Albert Einstein,13

Villeurbanne, 69100, France.14

4Institute of Environmental Engineering (GIEE), National Taiwan15

University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.16

5UMR 6249 Chrono-environnement, CNRS - Université de17
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Bourgelat, Marcy l’étoile, F-69280, France.20

*Corresponding author(s). E-mail(s): dominique.lamonica@ird.fr;21

Abstract22

“A Who’s Who of pesticides is therefore of concern to us all. If we are going to23

live so intimately with these chemicals eating and drinking them, taking them24

into the very marrow of our bones - we had better know something about their25

nature and their power.” — Rachel Carson, Silent Spring.26

27
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2 Bird models in brief

In her day, Rachel Carson was right: plant protection products28

(PPP) like all the other chemical substances that humans increas-29

ingly release into the environment without further precaution, are30

among our worst enemies today (Bruhl and Zaller, 2019; Naidu31

et al, 2021; Tang et al, 2021; Topping et al, 2020). All com-32

partments of the biosphere, air, soil and water, are potential33

reservoirs within which all species that live there are impaired.34

Birds are particularly concerned: PPP are recognized as a fac-35

tor in the decline of their abundance and diversity predominantly36

in agricultural landscapes. Due to the restrictions on vertebrates37

testing, in silico based approaches are an ideal choice alterna-38

tive given input data are available. This is where the problem39

lies as we will illustrate in this paper. We performed an extensive40

literature search covering a long period of time, a wide diver-41

sity of bird species, a large range of chemical substances and as42

many model types as possible to encompass all our future need43

to improve environmental risk assessment of chemicals for birds.44

In the end, we show that poultry species exposed to pesticides45

are the most studied at the individual level with physiologically46

based toxicokinetic models. To go beyond, with more species, more47

chemical types, over several levels of biological organization, we48

show that observed data are crucially missing (Gilbert, 2011).49

As a consequence, improving existing models or developing new50

ones could be like climbing Everest if no additional data can be51

gathered, especially on chemical effects and toxicodynamic aspects.52

Keywords: ecotoxicology, avian species, toxicokinetic-toxicodynamic models,53

drug, diet.54

1 Introduction55

As early as 1962, Rachel Carson warned about the devastating effects of plant56

protection products (PPP) on terrestrial vertebrates in her pioneering book57

Silent Spring (Carson, 1962). Later in 1967, Ratcliffe reported that birds58

ingesting the synthetic pesticide DDT (dichloro-diphenyl-trichloroethane) had59

a tendency to lay eggs with thin shells that broke prematurely in the nest.60

This was confirmed by Cade et al (1971) as resulting in marked population61
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declines, a problem that has driven bald eagles, the national symbol of the62

United States, along with peregrine falcons and other bird species, to the63

brink of extinction, with populations collapsing by up to 80%. Since then,64

all around the world, extensive studies have been carried out to understand65

the mechanisms underlying this phenomenon. The results of these studies66

are summarized in a recent collective expertise (ESCo, Pesce et al (2021)),67

especially chapter 9 (Mamy et al (2022), p623-720) focusing on terrestrial68

vertebrates to report on the state-of-the-art about: (i) active substances,69

types or families of PPP for which effects on wildlife are proven, probable,70

possible or null; (ii) the relationship between the exposure features in different71

groups of terrestrial vertebrates and the induced effects; (iii) the main mech-72

anisms (in particular direct and indirect ones) inducing the main effects; (iv)73

the identification of the most influential environmental factors (agronomic,74

ecological. . .); (iv) the impact of PPP on functions and ecosystem services75

provided by terrestrial vertebrates.76

77

Basically, Mamy et al (2022) identified as highly probable the causal link78

between the use of PPP and the decline in invertebrate and bird populations79

observed over several decades, particularly in agricultural areas, in interaction80

with landscape simplification. Depending on the bird species and their diet,81

PPP impacts are mainly the result of either a direct effect (e.g., ingestion82

of PPP-treated seeds by granivorous birds) or an indirect effect (e.g., reduc-83

tion of food resources due to the decline of prey); see Chapter 9 in Mamy84
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et al (2022) for more details. Environmental monitoring networks in various85

European countries, including France, have revealed a large number of cases86

of PPP poisoning of birds in the vicinity of agro-ecosystems. For granivorous87

birds, the recorded cases since the beginning of the 2000s are mostly caused88

by the ingestion of seeds treated with neonicotinoids (Bishop et al, 2018),89

more specifically imidacloprid (Rogers et al, 2019). For insectivorous birds,90

the impact of PPP is mainly expressed indirectly, through the decline in91

food resources. Several studies in Europe have demonstrated the existence of92

significant correlations between the use of PPP and the concomitant decline93

in insect communities and bird populations (Hallmann et al, 2014; Bowler94

et al, 2019; Møller, 2019). In addition to these correlations, effects through95

the consumption of contaminated prey have recently been demonstrated by96

a multi-residue analysis of the diet of nestlings (Poisson et al, 2021); these97

effects, which lead to the decline of certain populations, are mainly due to the98

presence of neonicotinoids in the environment (Humann-Guilleminot et al,99

2021). Apart from the lethal effects of PPP, flight efficiency and orientation100

of birds may also be impaired in response to exposure. Such sublethal effects101

have been observed, for example, in migratory birds stopping over in agricul-102

tural areas, thus compromising the smooth running of the critical migration103

period (Eng et al, 2017, 2019).104

105
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The field of modeling has been particularly prolific in recent years, for example106

in the prediction of contaminant transfer based on the physico-chemical char-107

acteristics of the substances involved, combined with scenarios incorporating108

different types of crops, climate and soil (Servien et al, 2022). But numerous109

models have also been developed to better describe how organisms accumulate110

the chemicals and how the internal damages translate into effects on their life111

history traits (Larras et al, 2022b). Modeling is also repeatedly mentioned as112

a potential solution for integrating the processes involved at different spatial113

and temporal scales. For example, it is not uncommon in the literature to114

find work that combines ecotoxicological models, to describe the impacts of115

PPP, with ecological models, which describe the links between organisms and116

the functions they ensure within ecosystems. In particular, there are spatially117

explicit models that take into account not only the exposure of organisms,118

but also the toxic potential of PPP and the adverse effects they have on119

demography, while taking into account variability in both the landscape and120

exposure (Topping et al, 2005, 2016; Topping and Weyman, 2018; Topping121

et al, 2020). Nevertheless, as modeling strongly relies on the collection of122

experimental data and the metadata to which they are associated, data avail-123

ability is the major constraint to which model building and the testing of124

their performances faces, especially at large spatial and temporal scales. All of125

this finally prevents a wider use of models in environmental risk assessment.126

127
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An interesting perspective of the use of population modeling is the possibility128

to extrapolate bio-monitoring data related to PPP bioaccumulation or specific129

effects in terms of population risk of extinction. Based on a matrix population130

model, Goutte et al (2018) provided a nice illustration with the South polar131

skua, a large seabird, for which long term demographic monitoring disclosed132

a possible effect of an organochlorine insecticide on the breeding success, thus133

compromising the population viability. One of the key points of population134

models is their ability to support extrapolation from one species to another,135

as illustrated for birds by Etterson et al 2017. Such a rapid cross-species136

transposition of population models (especially stage-structured ones) benefits137

from the recent construction of large ecological databases gathering together138

demographic traits particularly helpful in conservation science. For instance,139

De Zwaan et al. have recently compiled a huge data set of alpine breeding140

records for 1,310 bird species, representing 12.0% of extant species and cover-141

ing all major mountain regions across the five continents, except Antarctica142

(de Zwaan et al, 2022). Benefiting of such data collections is the condition to143

support parameter inference for population models, especially when a large144

number of species is involved. Such data bases are also particularly helpful145

when ranking species vulnerabilities is required in relationship with the dif-146

ferent uses of PPP (Forbes et al, 2015; Etterson et al, 2017).147

148

The EU Regulation 1107/2009 defines all requirements before placing PPP on149

the market, in association with data requirements from regulations 283/2013150
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and 284/2011. In particular, an assessment is required regarding the risks151

for bird reproduction when they are exposed to PPP. In this perspective,152

the OECD guideline 206 provides the way data must be collected through153

standard toxicity test protocols whereby birds are exposed to the active154

substance of interest for a period of 20 weeks. However, the expected expo-155

sure period of active substances and their numerous degradation products in156

field (as determined by EFSA guidelines), can be much shorter thus creating157

disparities between both methodologies. For non-vertebrate species, such an158

issue can be overcome by additional testing. However, owing to the need to159

avoid vertebrate testing, this option is not valid for birds. Therefore, the use160

of in silico approaches predicting toxicity endpoints for birds can be helpful161

(European Food Safety Authority et al, 2023). In particular, toxicokinetic162

(TK) models, relating the exposure concentration to the fate of chemicals163

within an organism, coupled with toxicodynamic (TD) models, that make the164

link between cellular, biochemical and physiological damages and individual165

effects on life history traits, are potentially useful tools to refine risk assess-166

ment of PPP for birds, especially under a regulatory framework where such167

models remain still underused.168

169

EFSA recently formulated recommendations to develop open source generic170

physiologically based TK (PBTK) models for a range of relevant species171

among which birds play an important role (European Food Safety Authority172

et al, 2023). Larras et al (2022a) also established how huge is the gap between173
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the set of models used in PPP regulatory reports and those existing in the174

literature, thus highlighting the need for the implementation of more sophis-175

ticated models into PPP regulation. With the idea of describing the whole176

cascade of impairments, from the exposure conditions to the apical effects,177

PBTKTD models clearly appear as the most appropriate tool to focus with178

effects at the individual level in the perspective of moving towards the next179

generation risk assessment practice. Nevertheless, accounting for molecular180

initiating events (usually based on omic-type data) and the subsequent series181

of intermediate steps and key events leading to an adverse outcome is also182

of great interest to provide a clear-cut mechanistic representation of critical183

toxicological effects; this is what are allowing Adverse Outcome Pathways184

(AOP) approaches (Vinken, 2013). Hence, combining AOP with PBTKTD185

models could help in finely refining risk assessment. Similarly, linking individ-186

ual effect models such as PBTKTD models with population and community187

ones could complement protection schemes including both direct and indirect188

effects (Forbes et al, 2017). One inside the other, PBTKTD models are the189

key pillars of a comprehensive approach along the gradient of effects at all190

levels of biological organization (European Food Safety Authority et al, 2023).191

192

However, as already stated above, moving towards more complex models193

necessarily means benefiting of more data. In particular, no generic PBTKTD194

models are available for refined environmental risk assessment of birds and195

mammals, since data requirements are very high (Astuto et al, 2022). Here196
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lies the dilemma facing PPP risk assessors for birds, i.e. discourage the use197

of additional vertebrate testing, while acquiring sufficient and appropriate198

data to improve assessment models. Clearly, the way forward seems to be199

an intensive search of the literature for information already collected. In this200

context, this paper presents a state-of-the-art of the different kinds of models201

that have been developed in the last decades to sustain the deciphering of202

chemical effects on birds. Notice that we do not detail the different types of203

model (done by Larras et al (2022b); Astuto et al (2022)) to focus on where204

reusable data feeding these models can be caught up.205

206

After giving full details on the bibliographical methodology we adopted, we207

present the general trends that emerge from our corpus of articles. We give a208

breakdown of models by type (e.g., TD, food web) and by level of organiza-209

tion (e.g., individual, community), before specifically examining bird models210

crossing model type with their inputs (e.g., exposure routes) and outputs (e.g.,211

measured internal concentration). Then, we conclude in identifying the main212

gaps, as well as some ideas for overcoming them, and to go beyond.213

2 Methods214

Scientific articles were screened within several bibliographic databases includ-215

ing Clarivate Web of Science ©, PubMed (McEntyre and Ostell, 2002),216

Google Scholar (López-Cózar et al, 2019), Scopus (Baas et al, 2020), and the217

co-authors’ personal databases (those provided by Kuo et al (2022), > 500218



Springer Nature 2021 LATEX template

10 Bird models in brief

entries, and Mamy et al (2022), > 2500 entries). The final paper collection219

was achieved in February 2023, covering a period from the end of the seventies220

until today.221

222

The bibliographic queries were performed following several steps summarized223

in Figure 1. Google Scholar was first requested with an initial Scopus keyword224

equation (data not shown) providing a preliminary collection of few papers that225

were scrutinized through titles and abstracts to refine the final query equation.226

Then, the above-mentioned bibliographic databases were all required with the227

final Scopus keyword equation (Figure 1). From there, we excluded references228

of books, book chapters, editorials and notes, to only keep peer-reviewed jour-229

nal articles. Finally, we excluded all papers not referring to modeling issues. In230

particular, we excluded papers without any model, or containing pure descrip-231

tive models, such as those with only basic hypothesis testing methods. Purely232

general papers without case studies were also removed from our collection.233



Springer Nature 2021 LATEX template

Bird models in brief 11

Scopus keyword equation: ((bioaccumulation AND model*) OR (toxicokinetic* AND model*) OR PBTK
OR PBPK OR (toxicodynamic AND model*) OR GUTS OR (DEBtox AND model*) OR (DEBkiss AND
model*) OR (dose response AND model*) OR (exposure-effect AND model*) OR (Effect* concentrat* AND
model*) OR (modelling AND ecotoxicology) OR (modelling AND toxic*) OR (modelling AND contamina*))
AND (birds OR avian OR hen OR chicken OR poultry)

Excluded: book, book chapter,
editorial and note

Excluded: no modelling, pure descriptive models, basic statisti-
cal/hypothesis tests, generic modelling issues without case studies

Final selection: 128 papers

1

Fig. 1 Diagram of the bibliographic method we used to built the final corpus of scientific

papers analyzed in this review.

Additionally to the terms we used in our query, our paper collection was234

only limited to research and review papers published in peer-reviewed jour-235

nals and written in English. At the end of the process, we had a total236

of 130 papers (97 from the bibliographic databases and 33 from the co-237

authors’ personal databases). All these papers have been gathered together238

within a metadata file (in comma separator value format) available at239

https://doi.org/10.5281/zenodo.7685817. In addition to the classical fields240

defining a bibliographic reference, this metadata file records information241

about the biological species (wild/domestic, feeding regime, common and242

Latin names), the chemical substances (group, name, CAS number) and/or243

the models (model type, level of biological organization that is concerned)244

that have been used by the authors. The metadata file also inventories the245

https://doi.org/10.5281/zenodo.7685817
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exposure routes and the measured endpoints provided in the papers. In the246

end, the metadata file has 130 rows and 59 columns. A critical step in the247

assembly of this metadata was the identification of the model type used by248

the authors. To proceed, we first separated models processing at the individ-249

ual level, that is the most employed. Among them, dose-response models were250

easy to classify. For the rest of the papers, a careful check within the different251

sections of the papers finally allowed us to clearly identified the type of model.252

253

The paper collection, no reference being duplicated, was imported into the R254

software (R Core Team, 2022) and analyzed to quantify the scientific produc-255

tion per year, feeding groups (distinguishing between carnivores, frugivores,256

granivores, herbivores, insectivores, omnivores, and piscivores), chemical257

groups (according to their usage), level of biological organization (individual,258

population community)) and model types (see Table 1 hereafter). In the end,259

our paper collection led us to identify the main research tendencies related to260

the employment of models in support of a better deciphering of the impacts261

of chemical substances on birds. This also allowed us to highlight advantages262

and drawbacks of these models.263

264

Additionally to the metadata file, the supplementary material provided at265

https://doi.org/10.5281/zenodo.7685817 contains all resources to identically266

reproduce the figures we are presenting below.267

https://doi.org/10.5281/zenodo.7685817
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3 Results268

Without claiming exhaustivity, our collection of papers (fully listed at the269

end of the manuscript) shows that studies involving models in bird ecotoxi-270

cology started to be published during the late seventies, with a slight increase271

from 2000, then only few papers each year (Figure 2). Half of the 130 papers272

focused on granivores (namely, seed-eating birds (Anadón et al, 2011; Fournier273

et al, 2015; Pollet et al, 1985)). Among wild species, groups of carnivores274

(i.e., predatory birds, such as raptors (Azmanis et al, 2021; Engelman et al,275

2012; Rattner et al, 2020)) and piscivores (i.e., birds foraging for and eating276

fish or other sea life (An et al, 2006; Goutte et al, 2018; Sánchez et al, 2019))277

are similarly represented (between 9 and 14 %) (Figure 3, upper panel). A278

bit less than one third of the papers investigated drugs, while around 20%279

of them focused on PPP (Figure 3, lower panel). Regarding trace metallic280

elements, mercury and derivatives have been the most studied (Smith et al,281

2009; Nichols et al, 2010; Jackson et al, 2011). Exposure routes, all chemical282

substances combined, covered the full range of bird feeding regimes via their283

food sources. Exposure via injection or oral administration were the most284

widely studied regarding toxicokinetic-toxicodynamic aspects. Last but not285

least, exposure models describing the contamination routes, dealt with envi-286

ronment (i.e., exposure via air, or not specified), food, or more rarely water287

via drinking (Nelson et al, 1998; Conder et al, 2009; Moore et al, 2018).288

289
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The salient point, which is not directly visible from Figure 3 but which follows290

directly from it, is the total absence of studies that address the effects of PPP291

on bird species of interest for the regulatory environmental risk assessment.292

For example, European regulations 283/20134 and 284/20135 recommend293

determining the acute oral toxicity of an active substance to a quail species294

(Japanese quail, Coturnix coturnix japonica or bobwhite quail, Colinus vir-295

ginianus), while data on additional species, such as Serinus canaria, may be296

requested by other legislative frameworks (European Food Safety Authority297

et al, 2023). These quail and canary species were totally absent from our set of298

studies. On the contrary, poultry species are studied a lot, and the most, with299

a majority of the related papers employing toxico-/phamarco-kinetic (TPK)300

models. Laying hens and broiler chicken species were both studied, the latter301

being much more used (47 out of 130 papers). Regarding chicken, exposures302

to drugs and PPP were the most investigated contaminants, while modeling303

speaking, TPK models are almost exclusively used among the 47 papers.304
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Fig. 3 Number of papers per feeding groups (upper panel) and chemical groups (lower

panel) among our collection of 130 scientific articles.

About 80% of the studies were conducted at the individual level (Table 1, left305

panel). Those papers mainly addressed toxicokinetics or bioaccumulation of306

one or several substances in the organisms, leading to model concentration307

changes over time either in the whole body (Abou-Donia, 1979; Tarazona et al,308
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2015), or in different organs (Bean et al, 2019; Suknikom et al, 2016), includ-309

ing eggs (MacLachlan, 2010; Hekman and Schefferlie, 2011). Toxicokinetic310

aspects of drugs in chicken or laying hens were the most frequent combination311

(Furusawa et al, 1996; Henri et al, 2017), investigating residues of chemical in312

muscles or eggs, which suggested food consumption purpose. Toxicodynamic313

and dose-response studies have also been conducted, describing the effect of314

a chemical at the individual level, over time or not (Eagles-Smith et al, 2009;315

Zhao et al, 2014). However, Toxicodynamic and dose-response studies were316

rarer, probably because they would imply experiments with vertebrates that317

are subject to restrictions. Another plausible explanation could be a lack318

of interest in toxic effects on laboratory species themselves, contrary to the319

indirect effects that its diet may have on human health (Rani et al, 2021). In320

this perspective, TPK models are the appropriate tools.321

322

At the population level, several model frameworks have been employed such323

as individual-based models (Hallam et al, 1996), matrix demographic models324

(Goutte et al, 2018), or Monte Carlo Markov Chain models (Bennett and325

Etterson, 2007). Such models describe the effect of a chemical at the popula-326

tion level, either by incorporating critical effect concentrations on the chosen327

endpoints (e.g., survival, reproduction, behavior) together with an exposure328

scenario (Etterson and Bennett, 2013), or by directly negatively impacting329
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one or several vital rates, such as survival rate or reproductive success, com-330

pared to a scenario without contamination (An et al, 2006).331

332

At higher levels of biological organization and/or with spatially explicit mod-333

els, studies are much rarer (less that 5%) (Table 1, right panel). Community334

level papers from our collection used food chain models to investigate bioac-335

cumulation via two case studies (organochlorine accumulated in Arctic birds336

(Borg̊a et al, 2004) and polychlorinated biphenyls accumulated in eggs of337

San Francisco bay birds (Gobas and Arnot, 2010)). In our database spatially338

explicit models were population models including a compartment describing339

environmental changes and/or where birds were located in space, allowing to340

investigate for example habitat modification impact (Nacci et al, 2005), feed-341

ing habits (Matsinos and Wolff, 2003), or crop rotation (Topping et al, 2005).342

343
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Table 1 Number (#) of papers per model type (left) and per level of organization (right),

among our collection of 130 scientific articles.

Model type Meaning or Based on #

TPK Toxico-/Pharmaco-Kinetic 89

TD Toxico-Dynamic 12

DR Dose response 4

Energy-based Dynamic Energy Budget theory 5

ODE based Ordinary Differential Equations 11

IBM Individuals or Agents 3

Food web Multiple trophic interactions 2

Spatial Spatially explicit 3

Exposure Exposure profile feature 13

Other Any other type 6

Biological level #

Individual 104

Population 22

Community 2

Landscape 3

By crossing views on our paper collection, classified by both model types344

(columns) and either model outputs (measured internal concentration, pink345

lines / measured endpoints, blue lines) or model inputs (exposure routes,346

orange lines), we finely deciphered what were the main objectives of most347

of the studies on birds exposed to chemicals. As shown in Figure 4, most of348

the studies employed TPK models to investigate drug effects on birds after349

injection or oral administration (Kuo et al, 2022), by measuring the time350

course of internal concentrations at the whole organism level (Gögebakan and351

Eraslan, 2015), or distinguishing target organs (Yang et al, 2014).352

353
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Figure 4 (second column and blue lines) also clearly demonstrates that354

toxico/pharmaco-dynamics and dose-response analyses are under-represented355

(see also Table 1, left panel), which points to a crucial gap in observed data of356

chemical effects on bird life history traits. While the lack of toxico/pharmaco-357

dynamic models can be understood easily enough (due to their difficult358

handling and implementation), it is much more surprising to find so few359

studies involving dose-response models, while they are today the basis of the360

regulatory environmental risk assessment. Moreover, there are today no gen-361

eral accepted methods that are currently available for how to calibrate and362

validate toxicokinetic-toxicodynamics (TKTD) models without animal testing363

(European Food Safety Authority et al, 2023). As a consequence, due to the364

3R requirements (European Parliament and European Council, 2010), such a365

lack in effect quantifier models prevents to attempt interconnecting individual366

and population levels in the perspective of gaining in ecological relevance,367

while still including information for which it is easier to obtain experimental368

observations. Contamination via food represented the main exposure route369

(∼ 45 %) within studies covered by our 130 papers (Figure 4, fourth orange370

line). For example, Meda et al. developed a physiologically based pharma-371

cokinetic model to investigate the main factors involved in the transfer of372

α-hexabromocyclododecane to broiler meat (Méda et al, 2020); Fournier et al373

(2015) assessed the impact of physiological characteristics of laying hen on374

the transfer of ingested PCBs to their eggs. Regarding exposure models, they375

have been developed to address levels of chemical contamination in the field,376
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mainly for PPP. For example, Moore et al. developed probabilistic models to377

estimate, during the breeding season and the spring and fall migrations, how378

many chlorpyrifos and malathion granules Kirtland’s warblers ingest and,379

from that, the quantity of pesticide ingested (Moore et al, 2018).380

381

Among the 130 papers, some studies were generic in scope, but for differ-382

ent reasons. A total of 41 papers (31.5%) concerned several biological species383

that were simultaneously studied as exposed to a same chemical (Newsted384

et al, 2006; Samuels and Ladino, 1984). A total of 45 papers (34.6%) reported385

effects of several chemicals on one bird species (Topping et al, 2005; Wayland386

et al, 2008). And only 8 papers out the 130 were general reviews covering a387

wide spectrum of species-compound combinations (see for example Kuo et al388

(2022)). It is worth to note that only two papers dealt with the impacts of389

multiple stressors: the first on white-tailed eagle populations (Korsman et al,390

2012); the second on the common loon (Nacci et al, 2005). One of the most391

striking points of our review is that only 9 papers (∼7%) gave access to raw392

data, potentially reusable for further studies.393
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Fig. 4 Cross-view of the 130 papers analyzed in this review, categorized by model type

(columns) and model outputs (measured internal concentration, pink lines, measured end-

points, blue lines) or model inputs (exposure routes, orange lines). At column-line intercepts,

histograms show the number of papers as a function of the studied chemical(s).

Results displayed in Figure 4 also appeared in a limpid manner within the title-394

based word cloud provided as graphical abstract. This word cloud specifically395
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emphasizes how frequent TPK studies applied to chickens were, as well as that396

toxico/pharmaco-kinetic models were equally frequently employed, while no397

chemical substances appeared more studied than another one.398

4 Conclusion399

Our bibliographic corpus showed a certain diversity in model types, chemicals,400

exposure routes and feeding groups. Nevertheless, we identified a huge gap in401

models dealing with chemical effects on birds at the individual level, even if402

we found a large collection of papers on toxico/pharmaco-kinetic aspects. This403

is far from being a negligible source of information. However, originally inter-404

ested in toxicokinetic-toxicodynamic models on birds exposed to PPP, it was405

clear that we would have very few previous studies at our disposal on which to406

capitalize. Focusing on bird species targeted by the regulatory environmental407

risk assessment and their exposure to PPP in addition, we ended up with no408

dedicated resources to draw on. Both bad and good news in the end. Indeed,409

we had found a new niche in which to innovate and develop new modeling tools410

to support next generation risk assessment for birds. In such a perspective, the411

key point will undoubtedly be the availability of raw data to build clever and412

comprehensible mechanistic effects models, generic enough to be employed for413

a wide battery of bird species and chemical compound combinations. Under414

the umbrella of Open Science, achieving such dreamed tools, should manda-415

torily imply full compliance to the FAIR data principles. To do so, we could416

recommend adding non invasive endpoint measurements on birds together with417
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the current practice of TPK studies, or in vitro studies that are considered418

as a good alternative to in vivo testing to better decipher TPK properties.419

Such data could advantageously support further development of the TPK part420

of TPK-TPD models, tools that now make sense to our community, which421

more broadly advocates the need to modernize wildlife risk assessment through422

improved collaboration, data sharing, application of standardized exposure423

scenarios, better communication of assumptions and uncertainties of models,424

and post-regulatory monitoring (Morrissey et al, 2023).425

5 Supplementary Information426

All supplementary information mentioned in this manuscript is available at427
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