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ABSTRACT
Abnormal DNA methylation has been described in human inflammatory conditions of the gastrointest-
inal tract, such as inflammatory bowel disease (IBD). As other complex diseases, IBD results from the
balance between genetic predisposition and environmental exposures. As such, DNA methylation may
be the consequence (and potential effector) of both, genetic susceptibility variants and/or environ-
mental signals such as cytokine exposure. We attempted to discern between these two non-excluding
possibilities by performing a combined analysis of publishedDNAmethylation data in intestinalmucosal
cells of IBD and control samples. We identified abnormal DNA methylation at different levels: deviation
from mean methylation signals at site and region levels, and differential variability. A fraction of such
changes is associated with genetic polymorphisms linked to IBD susceptibility. In addition, by compar-
ing with another intestinal inflammatory condition (i.e., coeliac disease) we propose that aberrant DNA
methylation can also be the result of unspecific processes such as chronic inflammation. Our character-
ization suggests that IBD methylomes combine intrinsic and extrinsic responses in intestinal mucosal
cells, and could point to knowledge-based biomarkers of IBD detection and progression.
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Background

Inflammatory bowel disease (IBD) comprises
Crohn’s disease (CD) and Ulcerative Colitis
(UC), two chronic and progressive inflammatory
conditions of the gastrointestinal (GI) tract that
affect 2.2 million people in Europe and 1.4 mil-
lion in United States [1,2]. The exact aetiology is
not known, but IBD is characterized by various
genetic abnormalities that result in aggressive
response from both innate (i.e., macrophages
and neutrophils) and acquired (i.e., T and B
cells) immunity [3]. In CD, although inflamma-
tion may involve the entire GI tract, the ileum is
mainly affected [4]. In UC, chronic and relap-
sing inflammation affects the colon and rectum
[5] and is associated with increased risk of colon
cancer development [6].

While genetics explains a fraction of inheritance
of IBD (13,1% variance in CD and 8,2% in UC) [7],
environmental factors may influence susceptibility
through non-genetic mechanisms, such as DNA
methylation [8,9]. Indeed, several recent studies
have provided a detailed characterization of genomic
abnormalities in IBD, including DNA methylation
[10–12]. Although there is a clear crosstalk between
DNA methylation and gene expression, the cause–
effect relationship between these two processes is
dependent on the biological context [9,13]. There is
evidence for gene expression precedingDNAmethy-
lation changes [14–16], as well as evidence for DNA
methylation as an effector of genetic variants and the
resulting pathological phenotype [8]. Unifying both
possibilities, DNA methylation may represent a
mechanism to condition or to perpetuate the
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response to anti- and pro-inflammatory signals. For
example, exposure to cytokines such as interleukin 6
(IL6) and transforming growth factor beta (TGF-β)
has been associated with stable DNA methylation
changes in epithelial cells [14,17–19]. However, it is
unclear to what extent the altered DNA methylation
of epithelial cells in IBD could be due to persistent
cytokine exposure and/or to the direct consequence
of genetic susceptibility variants (i.e., SNPs).

Explaining the origin of DNAmethylation changes
in IBD may be of interest when exploiting their
potential as biomarkers. Currently, the most used
biomarkers for IBD are C-Reactive Protein and
Calprotectin, although they are not specific for
inflammation of intestinal origin, limiting their clin-
ical use [20]. Instead, DNA methylation is known to
be tissue-specific [21,22], and it may represent a sen-
sor of cytokine exposures [23–26] and thus a better
biomarker of IBD. Moreover, DNA markers are
advantageous in terms of stability, improved isolation
and storage, relative to RNA or protein [27]. With
these assumptions, we performed a combined analysis
of intestinal epithelium methylomes in IBD. Our goal
was to identify candidate loci that can be potentially
useful as biomarkers, using base-resolution methyla-
tion data in mucosal biopsies from a large aggregated
dataset of CD and UC patients, an approach that may
open the way to personalized prevention strategies.

Results

Genome-wide changes in DNA methylation are a
common feature of IBD

To identify DNA methylation changes in cells of the
intestinal mucosa associated with IBD, we reanalysed
bead-array methylation data from different datasets
(Tables 1 & 2). To increase coverage while enhancing
data harmonization, we only included datasets based
on the last two versions of Illuminamethylation bead
arrays (i.e., HM450 and EPIC, see Methods for other
inclusion criteria) which share ~400 k informative
features. Samples from these datasets included pae-
diatric and adult IBD patients, from both sexes, and
involved the two main forms of the condition (i.e.,
CD and UC).

After filtering (see Methods), we tested for the
association between IBD and DNA methylation at
392810 CpG sites (81 control and 204 IBD patients)
using a linear model. In such a model, we adjusted for
sex, age, dataset, and surrogate variables identified
during data preprocessing (Figure S1). To account
for statistical inflation, we used criteria of effect size
(change in mean methylation of at least 10% between
controls and IBD) and FDR-adjusted p value <0.05.
Using these criteria, we identified 4205 differentially
methylated positions (DMPs), out of which 436 were
hypo- and 3769 were hypermethylated in IBD

Table 1. Dataset characteristics.
Accession Condition idat Samples Age Origin PMID

MTAB_5463 UC/CD yes 111/104 6-15 Europe 29031501
GSE32146 UC/CD no 25 14-17 USA NA
MTAB_3703/3709 UC/CD yes 12 12-14 Europe 2376367
GSE81211 UC yes 12 16-68 South Korea 27517910
GSE105798 CD yes 11 NA South Korea NA
GSE42921 UC/CD no 23 5-19 USA NA

Characteristics of the datasets included in the study. Accession: either ArrayExpress or Gene Expression Omnibus (GEO) accession numbers.
Condition: ulcerative colitis (UC) or Crohn’s disease (CD). PMID: PubMed ID. Idat: raw-level bead-array data availability. NA: not available.

Table 2. Samples used in the study.
Accession Array Controls Cases Protocol Segment Inflammation

MTAB_5463 EPIC 20 84 IEC purification by sorting sig: 53, ter: 51 Histology score availablea

MTAB_5463 HM450 33 78 IEC purification by sorting sig: 48, ter:48, asc: 15 Histology score availablea

GSE32146 HM450 10 15 Intestinal mucosa Colon NA
GSE81211 HM450 3 8 Intestinal mucosa Rectum Endoscopic score availableb

GSE105798 HM450 3 8 Intestinal mucosa NA NA
GSE42921 HM450 12 11 Intestinal mucosa Colon NA

Characteristics of the samples included in each study. Accession: either ArrayExpress or Gene Expression Omnibus (GEO) accession numbers. Array:
Illumina bead array version. ainflammation score available for each sample. bactive vs. inactive status, not attributable to each sample. NA: not
available. In Segment, sig: sigmoid colon, ter: terminal ileum, asc: ascendent colon.
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(Figure 1(a), Tables 3 and S1). DMPs were robust to
IBD type (Figure 1(b)), and other clinical and techni-
cal features (Figure 1(c), S2, and S3). An important
fraction of these sites was previously identified, in
particular in the large dataset published by Howell
et al. [10]. However, our dataset combination strategy
has led to the identification of new associations.
Moreover, the consistency of these findings across
independent studies provides additional confidence
on their robustness.

A subset of DMPs mapped close to each other,
suggesting a non-random association with particu-
lar genomic loci. To explore this observation, we
performed a region-level analysis in the same com-
bined dataset. This led to the identification of 55
differentially methylated regions (DMRs), 31 hypo
and 24 hyper methylated in IBD (Tables 4 and S2).
As expected, many of these regions corresponded
to gene loci also identified using the probe-level
strategy (Figure 2(b)).

In addition, to mean methylation differences at the
probe and region levels (i.e., DMPs and DMRs),
methylation variation has been associatedwith disease
and cancer susceptibility [28]. To explore this, we used
the iEVORA algorithm in the same datasets, to iden-
tify differentially variable and methylated CpGs
(DVMCs). Using stringent criteria of differential
methylation and variation, we identified 4532
DVMCs (Figure 2(a) and Table S3), most of them
located in the vicinity of a known promoter (80%,
within 2 kb of a transcription start site). Of note, for
most of these sites (75%), IBD samples displayed
higher variability than control tissues. In addition,
more than half of them displayed lower methylation
in IBD samples relative to control mucosa (63%).

In summary, the intestinal mucosa of IBD displays
large non-random methylome abnormalities charac-
terized by high variability, but also by absolute changes
in mean DNA methylation at particular loci.

Genomic and biological context of IBD-
associated DNA methylation changes in
intestinal epithelia

DMPs distinguishing IBD from control tissues
were assessed for genomic distribution, in terms
of gene-centric and CpG island (CGI)-centric
context. DMPs were relatively absent from CGIs,
gene promoters, or the vicinity of transcription

start sites (TSS) (Figure 3(a-c)). Instead, hypo and
hypermethylated DMPs were highly concentrated
in non-CGI regions (i.e., open sea) (Figure 3(a)).
Pathway analysis of DMRs revealed over-repre-
sentation of pathways related to metabolism and
signal transduction, including Adipogenesis,
Haemostasis, G alpha signalling events, Pathways
in cancer, and TGF-beta Receptor Signalling
(Table 5).

Overall, abnormal DNA methylation in IBD is
relatively absent from CGIs. At the biological level,
DNAmethylation changes are enriched in inflamma-
tion-related pathways. Such changes may occur
downstream of cytokine signalling. Alternatively,
they may represent early changes linked to genetic
susceptibility.

IBD DMPs are genomically closer to IBD risk
polymorphisms and are enriched on blood mQTLs

DNA methylation may represent an intermediary
between genotype and disease susceptibility, and
such genetic influences on DNA methylation
within a defined genomic context are known as
methylation quantitative trait loci (mQTLs).
Among differentially methylated genes with a sig-
nificant genetic association, we found JAK3, KRT8,
and HLA genes, confirming the findings of pre-
vious studies [7,29–31]. Moreover, some DMPs
display a bimodal DNA methylation distribution
(see Methods). After ruling out technical artefacts,
such bimodal distribution may suggest that their
methylation levels are directly dependent on gen-
otype. To explore a genotype-methylation associa-
tion, we calculated the genomic distance between
DMPs identified in our analysis and single nucleo-
tide polymorphisms (SNPs) associated with IBD
risk [29,30,32]. Of note, DMPs were overall sig-
nificantly closer to a known IBD risk SNP, com-
pared to all HM450 sites taken together (Figure 4).
This difference was preserved after independently
comparing hyper or hypomethylated DMPs
(although more evident in the latter), and consis-
tent across three independent SNP datasets
(Figures 4 and S2C).

We also tested the overlap between IBD-DMPs and
CpGs participating in blood mQTLs as defined by
McRae et al. [33]. Although this was not a significant
enrichment, 544 out of the 4205DMPs participated in
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the 52916 mQTLs reported previously
(Supplementary Table S4). To ascertain whether the
SNPs putatively associated to our DMPs were also

associated to IBD, we interrogated the largest fine-
mapping study performed to date on the disease that
claims to identify associations at a base-pair resolution

Figure 1. DNA methylation distinguishes IBD from healthy intestinal epithelial cells.
(a) Top differentially methylated positions (DMPs) with a mean difference between IBD (red) vs. Control (grey) of at least 20% (delta-
beta > 20, FDR < 0.05). Probe ID and corresponding nearest gene are shown for each significant CpG site. Methylation is represented
on the y-axis as normalized beta values. (b) The same CpG sites shown in (a) are represented separately for ulcerative colitis (UC) and
Crohn’s disease (CD), shown in blue and green, respectively. (c) Heatmap showing top differentially methylated positions between
IBD vs. control. The red to blue colour gradient represents higher to lower methylation. Main covariates considered in the analysis
(i.e., dataset, anatomical location, and sex) are also represented.
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level [29]. We found that 4 of the 544 mQTLs identi-
fied here bear an IBD-associated polymorphism,
namely rs11264305, rs17228058, rs3806308, and
rs3807306, located in or close to ADAM15, SMAD3,
RNF186, and IRF5, respectively. Briefly, we found that
SNP-CpG pairs overlap regulatory loci, discernible by
H3K27ac histone marks and the presence of a CpG
island (in the case of ADAM15).

These findings suggest that at least a fraction of
IBD abnormal methylome is in direct relationship
with upstream genetic susceptibility variants.

IBD and epithelial and immune cell fractions of
the coeliac duodenum share DMPs

As the IBD methylome is both, related to inflamma-
tion and genetic susceptibility, it may also be largely
unspecific.We therefore chose coeliac disease (CeD),
a chronic inflammatory condition of the GI tract
with a well-characterized genetic component, to get
further insight into methylome specificity. In addi-
tion, DNA methylation data for epithelial and
immune components of CeD were analysed sepa-
rately [34]. When we crossed IBD-DMPs with
epithelial CeD-DMPs we found that, out of 4205
IBD-DMPs and 43 CeD epithelial-DMPs, 8 were
common (representation factor = 17.7, p < 1.5e-08)
(Table 6). Interestingly, 5/8 common DMPs mapped
to the HLA region on chromosome 6. On the other
hand, 31 IBD-DMPs were common with the 310
CeD immune-DMPs (representation factor = 9.5,
p < 1e-20). These common hits were enriched for
TGF-β signalling pathway (WikiPathways, adjusted

p value = 0.04419), and were spread across the gen-
ome. All common DMPs followed the same direc-
tion (i.e., hypo or hypermethylation) in both
diseases, indicating that methylation alterations
were concordant. However, methylation fold
changes were larger in CeD, probably due to the
fact that the coeliac DMPs were identified in sepa-
rated cell populations, while IBD methylation was
assessed in whole intestinal tissue potentially blur-
ring cell-specific signatures.

In summary, there is a significant overlap in
DNA methylation changes associated with IBD
and CeD, including the HLA region.

Discussion

IBD is a complex pathology with a wide range of
clinical trajectories. Despite such heterogeneity, we
show here that non-random changes in DNA
methylation associated with IBD are robust to
main clinical parameters and consistent across
several studies.

There are intrinsic limitations of DNA methyla-
tion analyses relative to standard genetic profiling,
such as confounding, reverse causation, and cellu-
lar heterogeneity [13,21]. Interpretability becomes
even more complex when aggregating data from
independent studies. Despite our efforts in limit-
ing the effect of potential confounders, we are
aware that the residual effect of cell composition,
anatomical location, inflammation, etc., and/or the
differences in sample size from the different stu-
dies may have influenced our results.

Table 3. Top DMPs.
Probe ID FDR Delta Beta Symbol Distance

cg16465027 1.14E-14 -0.20 PHACTR1 122016
cg19269426 1.80E-12 -0.22 GGPS1 0
cg07839457 6.58E-12 -0.23 NLRC5 435
cg16240683 1.24E-10 0.22 ZNF436-AS1 0
cg24129356 4.02E-09 -0.22 HLA-DMA 0
cg22718139 1.05E-08 0.25 HMGCS2 0
cg26974214 5.56E-08 -0.23 LIPA 0
cg02806715 3.03E-07 -0.20 HLA-DMA 0
cg09321817 7.33E-07 -0.25 HLA-DPA1 0
cg01804934 2.60E-05 -0.21 HLA-DPA1 0
cg23045908 6.30E-05 -0.21 PDE4B 0
cg06061086 9.70E-04 -0.20 FOXP4 14522

Differentially methylated positions (DMPs) with a mean difference between groups of at least 20% (delta-beta -CBrk- 20, FDR -OBrk- 0.05). Probe ID:
Illumina probe reference, logFC: logarithmic fold-change between groups (IBD vs. control), FDR: false discovery rate, Symbol: gene symbol,
Distance: distance in base pairs to the closest gene. Full list of DMPs can be found in Supplementary Table S1.
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Different characteristics of DNAmethylation, such
as its relative stability, make this mark an ideal sensor
of disease risk and progression. Indeed, several studies

have been able to useDNAmethylation as amarker of
IBD in blood samples [31,35,36]. Both in blood and
intestinal mucosa, a deeper mechanistic insight is

Table 4. Top DMRs.
Symbol Coordinates # CpG FDR beta FC

BST2 chr19:17516282-17517008 5 7.82E-60 -0.08
HMGCS2 chr1:120311439-120311653 4 1.37E-54 0.06
HLA-DPA1 chr6:33040535-33041697 8 5.01E-44 -0.07
LGALS3 chr14:55602634-55604454 4 1.14E-29 0.06
LTBP3 chr11:65318624-65318683 2 1.65E-36 0.05
DACT2 chr6:168665386-168665533 3 1.92E-31 0.05
DYSF chr2:71823484-71823517 2 7.51E-29 0.05
IARS2 chr1:220292508-220292590 2 3.27E-27 0.06
CIITA chr16:10969805-10971250 6 1.27E-37 -0.06
VILL chr3:38033516-38033934 3 1.11E-29 0.06
HLA-B chr6:31322298-31323856 5 3.04E-25 -0.05
THBS1 chr15:39874776-39876248 4 4.62E-16 0.07
CLDN4 chr7:73223852-73223935 2 5.85E-23 0.06
CLHC1 chr2:55360999-55361310 2 4.80E-23 -0.08
ZNF467 chr7:149462836-149463219 2 4.80E-24 0.05
SHH chr7:155617333-155617398 2 1.30E-24 0.07
ARL14 chr3:160395420-160395719 2 1.65E-21 0.08
TMEM232 chr5:110062343-110062837 7 4.54E-22 0.07
HOXA10 chr7:27217057-27217606 2 1.09E-23 0.05
FAAP20 chr1:2120985-2121724 6 5.17E-21 0.07
EPHB3 chr3:184297380-184297522 3 5.82E-18 -0.09
PSMD1 chr2:231989800-231989824 2 7.41E-17 -0.08
MUC4 chr3:195552341-195552429 2 1.53E-16 -0.08
SBNO2 chr19:1130866-1130965 2 2.53E-18 -0.07
PARP9 chr3:122281881-122281975 3 2.17E-19 -0.08
HOXD8 chr2:176996285-176997707 5 5.07E-14 -0.05
CUX1 chr7:101579003-101579936 3 5.12E-11 0.05
ATXN7L1 chr7:105279391-105279882 3 4.08E-17 0.05
ELL chr19:18589848-18589894 2 4.50E-14 -0.05
PLA2G2A chr1:20305344-20305685 2 2.08E-13 -0.08
SUMO1P1 chr20:52356911-52357117 2 3.12E-13 -0.07
TRIM69 chr15:45018591-45018905 3 8.08E-21 -0.05
HLA-C chr6:31238245-31238751 3 9.95E-16 -0.06
SFT2D3 chr2:128453108-128453484 5 7.96E-13 0.08
STAT1 chr2:191875807-191876673 2 1.99E-10 -0.08
RPS6KA2 chr6:166970252-166970727 2 3.48E-11 -0.05
PHACTR1 chr6:12594257-12595019 2 1.33E-21 -0.07
SLC45A4 chr8:142255356-142255537 2 1.54E-11 -0.06
CANT1 chr17:76991208-76991253 2 1.02E-14 0.05
DRD3 chr3:113933104-113933175 2 1.63E-09 -0.07
AFF3 chr2:100170766-100171136 4 1.54E-09 0.05
LRRC47 chr1:3720588-3720744 2 1.29E-09 0.06
MIR34A chr1:9224003-9224198 2 2.40E-10 -0.06
TRIM5 chr11:5710654-5711068 2 7.64E-15 -0.06
FOXP4 chr6:41499640-41499799 2 7.46E-08 -0.05
ATP9A chr20:50312386-50312632 2 1.01E-07 -0.05
SLCO3A1 chr15:92612836-92613280 2 8.59E-08 -0.05
CCDC155 chr19:49891494-49891574 2 3.13E-06 -0.06
SVIL chr10:29948324-29948428 2 1.17E-05 -0.06
TPM1 chr15:63337352-63337496 2 8.85E-06 -0.05
SHTN1 chr10:118652838-118652981 2 1.18E-05 -0.06
CES1P1 chr16:55794595-55794731 2 3.09E-05 -0.06
GNL3 chr3:52722445-52722452 2 4.73E-05 0.06
CYP2E1 chr10:135341870-135342620 5 1.16E-05 0.05
ASPG chr14:104552032-104552209 3 8.13E-05 0.05

Differentially methylated regions (DMRs) with at least five CpG sites, a maximum beta change between groups (beta FC) of at least 10%, and a
minimum FDR of 0.05, are shown below. # CpGs: number of CpG sites per region, FDR: false discovery rate, Beta FC: methylation beta value fold
change. Full list of DMRs can be found in Supplementary Table S2. The table is sorted by beta FC, from hypo- to hypermethylation in IBD.
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necessary to better distinguish those methyl marks
that are dependent on genetic susceptibility from
those that are a consequence of environmental cues.

We suggest here that IBD methylome is indeed a
combination of both components, on the one hand,
many associations at the site and region levels were

Figure 2. Mean DNA methylation and variability distinguishes IBD from healthy intestinal epithelial cells.
(a) Top differentially variable methylated CpG sites (DVMCs) in IBD vs. Control. DNA methylation was plotted as beta values for each
of the top nine DVMC identified with the iEVORA algorithm (see Methods section). (b) Gene symbols overlapping between site-
(DMPs), region (DMRs)-level, and variability (DVMCs) analyses.

Figure 3. Genomic distribution of IBD-related DMPs.
DMPs were annotated according to CpG islands (CGI) (a), relation to gene features (b), and distance to the nearest transcription start
site (TSS) (c) For each genomic context, distribution is shown separately for all DMPs, those hypo- or hypermethylated in IBD relative
to healthy tissues, and all the HM450 probes, as a control.

Table 5. Pathway analysis.
Pathway Adjusted P-value Combined Score Dataset

Adipogenesis genes_Mus musculus_WP447 5.78E-06 33.17 WikiPathways 2016
Adipogenesis genes_Homo sapiens_WP236 5.78E-06 32.1 WikiPathways 2016
TGF Beta Signalling Pathway_Mus musculus_WP113 4.28E-04 26.34 WikiPathways 2016
TGF-beta Receptor Signalling_Homo sapiens_WP560 7.32E-04 24.45 WikiPathways 2016
Alpha6-Beta4 Integrin Signalling Pathway_Mus musculus WP488 2.44E-03 18.52 WikiPathways 2016
Haemostasis_Homo sapiens_R-HSA-109582 1.31E-03 29.15 Reactome
G alpha(12/13) signalling events_Homo sapiens_R-HSA-416482 4.29E-03 21.79 Reactome
Pathways in cancer _Homo sapiens_hsa 05200 5.90E-04 26.06 KEGG 2016
Aldosterone synthesis and secretion_Homo sapiens_hsa04925 5.90E-04 24.68 KEGG 2016
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enriched in inflammatory pathways, suggesting that
methyl marks could have been introduced down-
stream of cytokine signalling (either up- or downs-
stream of gene expression changes). On the other
hand, at least a fraction of DNA methylation changes
was linked to a neighbouring risk polymorphism,
indicating an effector role for DNA methylation in
the interface between genotype and phenotype.

In agreement with the largest study selected for our
meta-analysis [10], genes near abnormal DNAmethy-
lation were enriched in immune and inflammatory
pathways, highlighting the role of chronic inflamma-
tion in both, UC and CD. In particular, TGF-β is a
cytokine able to modulate the inflammatory response,
and it was enriched in IBD-DMRs. Moreover, it was
enriched in those DMPs common between IBD and
CeD, in agreement with the crucial role of TGF-β
pathway in regulating the intestinal T cell response.
An additional element that emerged from our path-
way analysis is the potential crosstalk between IBD
and adipogenesis. In fact, patients with IBD, particu-
larly those with CD, develop ectopic adipose tissue
(fat-wrapping or creeping-fat) covering a large part of

the small and large intestine [37]. It has been pro-
posed that in obese or overweight IBD patients it is
the mesenteric adipose tissue that contributes to
intestinal and systemic inflammation [37].

In our study, we identified 4532 CpG sites that
simultaneously display differential variation and dif-
ferential methylation (DVMCs) associated with IBD.
In most cases, IBD mucosal cells displayed higher
variation at those DVMCs relative to control cells.
Although this hypervariability may represent cellular
variation (e.g., changes in inflammatory or stromal
components of the intestinal mucosa), it has been
suggested that a stochastic component of methylation
variation at certain genomic locations may character-
ize pathological conditions [28,38]. Of note, differen-
tial variation in DNA methylation has been found in
other pathologies, including cancer [38–40]. In parti-
cular, they have been described as predictors of cancer
development in non-tumour tissues [28,39] or asso-
ciated with exposure to known carcinogens [41]. This
is an interesting finding, considering that one fraction
of IBD patients has an increased susceptibility to
develop colon cancer [42].

Figure 4. Genomic distances between IBD-related DMPs and known risk SNPs.
Shortest genomic distances were calculated between each IBD-related DMP and the closest IBD-associated polymorphism (SNP).
Boxplots represent the distribution of such distances for all DMPs or separately for hyper- or hypo-methylated DMPs. The distance of
all HM450 CpG sites was calculated as a control (left boxplot in both panels). The same analysis was performed for all DMPs (right
panel) or using only DMPs that did not display a bimodal distribution (left panel), as described in Methods. (*) denotes a significant
difference in mean distance relative to control HM450 distances (p < 1e-5).
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In terms of genomic distribution, we found that
DMPs are relatively absent from CGIs. Instead, they
could be associated with other regulatory regions
such as enhancers, for example, in association with
SNPs. Indeed, GWAS performed in multiple com-
plex diseases have shown that SNPs of susceptibility
are enriched in enhancer regions, and DNA methy-
lation could be an intermediary in this process
[43,44]. Illustrating this, the presence of differentially
methylated sites in the vicinity of known susceptibil-
ity loci supports the notion of DNA methylation as
an intermediary between genotype and phenotype
(mQTLs). In addition, among DMRs with a signifi-
cant genetic association, we find JAK3, KRT8, HLA
genes, all of them associated with a role in IBD
pathogenesis [45–49].

The presence of CpGs participating in both IBD-
DMPs as well as mQTLs suggests that a considerable
number of the DMPs identified in ourmetanalysis are
regulated by SNP-genotypes in cis. However, very few
of these are associated with IBD. This observation
points to the possibility that, although fine-mapping
aims to identify the SNPs responsible for the disease-
association, other nearby SNPs in strong linkage dis-
equilibrium could be the ones implicated in the
mQTLs, drawing the methylation patterns reported.
Additionally, we describe a picture in which most of
the IBD-DMPs seem to be genotype-independent,
since they do not participate in any mQTL, at least
in blood. Regarding the SNPs associated to IBD as
well as to the methylation levels of IBD-DMPs, it is
interesting that the methylation of a CpG island 4 kb

Table 6. IBD DMPs previously identified to be differentially methylated in both CeD duodenal epithelia and immune fractions.
CpG Nearest gene Mean Control Mean IBD Delta Beta FDR IBD FDR CeD

Epithelial fraction
cg00403478 HLA-DPA1 6.2E-01 4.6E-01 −0.30 3.9E-04 7.51E-03
cg00676801 STAT1 7.8E-01 6.7E-01 −0.38 9.7E-05 1.40E-02
cg02181920 TAP1 5.2E-01 4.0E-01 −0.22 2.2E-06 1.65E-02
cg02286081 HLA-DPB1 7.9E-01 6.6E-01 −0.27 1.2E-02 1.84E-02
cg06471536 PREP 5.5E-01 4.4E-01 −0.17 1.4E-09 3.76E-02
cg07839457 NLRC5 5.5E-01 3.3E-01 −0.25 6.6E-12 1.71E-02
cg08735211 HLA-DMA 7.5E-01 5.9E-01 −0.31 2.8E-06 3.24E-02
cg09321817 HLA-DPA1 7.4E-01 4.8E-01 −0.38 7.3E-07 7.51E-03

Immune fraction
cg01829342 FRMD6 4.4E-01 5.5E-01 0.19 1.3E-03 3.45E-02
cg01971120 RNU5 F-1 2.5E-01 3.7E-01 0.20 1.1E-11 1.93E-02
cg01977473 GRAMD2B 3.0E-01 4.1E-01 0.12 6.3E-13 3.74E-02
cg02360367 SKI 3.5E-01 4.8E-01 0.11 1.3E-11 9.49E-03
cg02909176 ATP11A 3.3E-01 4.5E-01 0.13 1.0E-10 1.07E-02
cg05364072 MAP7D1 5.2E-01 6.3E-01 0.22 5.0E-06 1.86E-02
cg07843390 GNG7 2.9E-01 4.0E-01 0.16 1.5E-12 4.04E-02
cg09558069 S100A5 3.4E-01 4.4E-01 0.13 3.7E-11 4.38E-02
cg09670127 BCL11A 3.3E-01 4.3E-01 0.13 3.0E-07 2.56E-02
cg09799714 PDZD3 2.4E-01 3.5E-01 0.15 2.4E-14 1.44E-02
cg10331073 APBB1IP 2.7E-01 3.9E-01 0.10 1.6E-07 4.32E-02
cg14997942 DNAJC1 3.3E-01 4.6E-01 0.23 1.1E-11 1.97E-02
cg15876825 VGLL4 3.9E-01 5.3E-01 0.11 6.9E-09 4.24E-02
cg15924102 LINC01132 2.9E-01 4.3E-01 0.13 5.2E-14 3.81E-02
cg16312609 MIR4708 2.8E-01 3.9E-01 0.17 1.1E-13 2.85E-02
cg17292100 SPAG1 2.5E-01 3.5E-01 0.12 1.3E-13 2.85E-02
cg17980364 TMEM135 2.8E-01 3.9E-01 0.12 1.2E-17 1.46E-02
cg18423737 SMAD7 5.6E-01 6.9E-01 0.13 8.6E-10 3.00E-02
cg18556822 NOSTRIN 2.4E-01 3.6E-01 0.18 1.7E-15 4.88E-03
cg19697512 PPCDC 3.9E-01 5.2E-01 0.15 7.7E-07 4.24E-02
cg19794481 MIR141 3.1E-01 4.3E-01 0.12 2.3E-12 3.18E-02
cg20059312 NGEF 3.7E-01 4.9E-01 0.10 1.1E-15 4.59E-02
cg20555562 TEX29 2.9E-01 4.2E-01 0.15 8.6E-08 2.79E-02
cg20859933 ZBTB44 3.4E-01 4.6E-01 0.13 1.6E-10 1.86E-02
cg21646082 CEP85 3.1E-01 4.2E-01 0.11 3.2E-11 4.77E-02
cg22601415 ANK3 3.6E-01 4.9E-01 0.11 7.6E-09 4.83E-02
cg22659049 LIMCH1 4.3E-01 5.9E-01 0.13 1.7E-03 4.24E-02
cg24216990 GUCA1A 2.5E-01 3.5E-01 0.15 1.4E-15 3.69E-02
cg26049390 RDH10 3.1E-01 4.2E-01 0.14 1.1E-04 2.16E-02
cg26075184 NKX2-3 2.2E-01 3.7E-01 0.15 5.4E-11 1.52E-02
cg26094842 VTI1A 3.0E-01 4.0E-01 0.19 1.1E-09 2.16E-02
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upstream of the cg24032190-DMP identified in the
first intron of SMAD3 has been reported to be allele-
specific and to regulate the expression of the gene
[50]. Therefore, we propose another DMP in the
same region that could mediate the association
between the locus and IBD; and hypothesize that
this could also be the case for the genomic regions
surrounding ADAM15, RNF186, and IRF5.

Regarding coeliac epithelial DMPs also found
altered in IBD, it is important to note that most of
them were located in the HLA region. This locus
presents strong linkage disequilibrium and encodes
a number of genes related to immune response and
immune regulation through self-recognition [49,51],
and strongly predisposes to autoimmune diseases
such as CeD. In our previous work [34], we claimed
to have found a genotype-independent methylation
signature in coeliac duodenal epithelia. The finding of
a signature in the HLA region common to IBD and
CeD reinforces this idea, given that the HLA associa-
tion with IBD is much weaker (variance explained
<5%) than with CeD, and moreover, different HLA
haplotypes drive these associations [45]. Additionally,
this common methylation signature points to a non-
specific pattern, probably responding to common
inflammatory forces in the two disorders.

Conclusions

Our findings illustrate an aberrant DNA methyla-
tion landscape in IBD, independent of IBD sub-
type and other clinical and pathological features.
The enrichment of abnormal DNA methylation in
inflammatory pathways and genes suggests a direct
role for this mark downstream of cytokine signal-
ling and/or a risk genotype. Such a landscape may
be a more general indicator of intestinal chronic
inflammation, although evidence from purified
epithelial cells suggests that those changes are not
primarily explained by an inflammatory status
[10]. Such effect of inflammation, as well as cell
heterogeneity in general could not be directly
accounted for in our analyses. However, we expect
that such limitation will be compensated with the
future addition of new IBD datasets with adequate
and complete annotations. In addition, technolo-
gical progress in other forms of methylation (e.g.,
5hmC) and a higher coverage of the genome will

add to the overall goal of identifying biomarkers
in IBD.

Methods

Dataset selection

Dataset selection criteria included: methylome data
obtained from intestinal mucosa (including colon
and terminal ileum), availability of healthy controls
and IBD samples (CD, UC, or both), in data
obtained using Human Infinium Bead Arrays
(Illumina’s HM450 or EPIC arrays), an established
technology to detect DNAmethylation [52]. Tables 1
& 2 shows the main characteristics of the datasets
fulfiling these criteria. Dataset MTAB_3703/3709
was eventually excluded from the analyses as only 6
samples were of non-foetal origin, with only 3 sam-
ples from large intestine.

Data preprocessing

All methylation data and sample information were
downloaded fromGene Expression Omnibus (GEO)
and Array Express public repositories, and analysed
using R/Bioconductor packages [53]. Normalized
data was loaded into R directly from each repository,
except when raw idat files were also available. In that
case, idat files were normalized using the “Funnorm“
function of the minfi package [54]. Each dataset was
independently assessed for data quality and distribu-
tion, before merging. Merged data was filtered for
sex chromosomes, known cross-reactive probes [55],
and probes associated with common SNPs that may
reflect underlying polymorphisms rather than
methylation profiles [56]. In addition, the ‘nmode.
mc’ function of the ENmIx package was used for the
identification of multimodal sites [57]. These sites
were not removed at this step but were used instead
to classify significant associations in a later step.

Quality control and cross-validation

After filtering, 392810 CpG sites common to all
datasets were used to identify principal compo-
nents (PC) of variation and plotted using PC
regression and multidimensional scaling (MDS)
plots. Strong associations were observed between
PCs and known variables (i.e., dataset, sex, age,
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and anatomical location), with age and anatomi-
cal location partially confounded by the dataset
of origin. As additional quality control, DNA
methylation values were used to predict age
and sex and contrast with downloaded pheno-
type information (Figure S1). Sex was inferred
from the median total intensity signal on XY
chromosomes and permitted the identification
of eight sex mismatches that were removed
from the analysis. Age prediction was performed
using Horvath’s coefficients [58], as implemen-
ted in the wateRmelon package [59]. There was
a strong positive correlation between reported
and predicted age (Figure S1). For two datasets
where age was not available, predicted age cor-
responded to adult samples, as reported in the
corresponding repositories. The common
merged and filtered matrix of methylation beta
values and their corresponding phenotype data
was taken to the next step.

As validation of our aggregated analysis, we per-
formed independent region-level analyses to test for
the association between IBD and DNA methylation
in three datasets, where enough power made it
possible (dataset 1: all datasets with available idat
files, 2: dataset based on EPIC bead array data, and
3: dataset GSE42921). There was a significant over-
lap among those three analyses, with 905 common
gene symbols (Figure S2). We also performed a
leave-one-out cross-validation approach. To this
end, we successively removed each of the six data-
sets of the study and performed differential methy-
lation analysis at the probe and region levels
(Figure S2). Two different diagrams are shown
due to limitations of this visualization, but they
illustrate that there is a common set of CpG sites
differentially methylated across all or most datasets,
and an important overlap with our final list of
differentially methylated probes. Similar results
were obtained when differential methylation was
studied at the region level (DMRs).

Latent variables and batch correction

In addition to the obvious batch effect of the dataset
of origin, DNA methylation is known to be influ-
enced by genotype, sex, age, and cell composition. As
all of these factors are potential confounders, we
tried to minimize or account for their effect using

different strategies. Those factors where data was
available (i.e., dataset, sex, predicted age) were mod-
elled in a linear regression. In the particular case of
sex where the effect on DNA methylation is strong,
we removed an important part of such effect by
filtering out all probes mapping to chromosomes X
and Y, as described above. The effect of genotype was
addressed a posteriori, in ourmQTL analyses. For all
other factors (except inflammation, where annotated
data was not available for most samples), we were
able to assess their association with the main com-
ponents of variation before and after adjustment for
latent variables identified using surrogate variable
analysis (SVA) [60]. In particular, cell composition
has been shown to be suited to be addressed using
this strategy [61]. In our case, cell composition can
be dependent on both, inflammation and anatomical
location. Anatomical location was indeed strongly
associated with the first component of variation
(PC1) (Figure S2), an effect that was attenuated
after SVA. A similar reduction in the strength of
association with main PCs was observed for the
effect of dataset, age, and sex. Of note, our variable
of interest (IBD vs. control) was associated with the
first three PCs after SVA adjustment, while the effect
of all other co-variates and batches was minimized
(Figure S1). In total, 29 surrogate variables were
identified and they were modelled in our linear
regression, together with dataset, sex, and age.
There was no association (using linear regression)
between surrogate variables (SVs, Figure S2) and our
main variable. However, dataset of origin and anato-
mical location were strongly associated with several
SVs (Figure S2).

Differential methylation

Associations were tested for 392810 CpG sites, across
285 samples (81 control and 204 IBD samples).
Methylation data was modelled at the probe and
region levels using a linear model with Bayesian
adjustment [62]. Sex and dataset were modelled
together with subject status (i.e., control or IBD
patient). Surrogate variables identified in the previous
step were also included in the linear model to account
for unknown sources of variation. Quantile-quantile
(QQ) plots were used to inspect the distribution of
resulting p values and estimate statistical inflation
(Figure S2). Differentially methylated positions
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(DMPs) and regions (DMRs) were selected based on a
methylation change (delta beta) of at least 10% or 5%
(for DMPs and DMRs, respectively) when comparing
control vs. IBD samples and a false discovery rate –
(FDR) adjusted p value below 0.05. DMRs were iden-
tified with the DMRcate package using the recom-
mended proximity-based criteria [63]. A DMR was
defined by the presence of at least two differentially
methylated CpG sites with a maximum gap of 1000
bp. To identify CpG positions exhibiting significant
differential variation and differential methylation
(DVMCs), data was analysed using iEVORA, an algo-
rithm that identifies DNA methylation outlier events
shown to be indicative ofmalignancy [28]. iEVORA is
based on Bartlett’s test (BT) that examines the differ-
ential variance in DNA methylation, but because BT
is very sensitive to single outliers, it is complemented
with re-ranking of significant events according to
t-statistic (TT, t test), to balance the procedure. The
significance is thus assessed at the level of differential
variability, but the significance of differential variabil-
ity with larger changes in the average DNA methyla-
tion are favoured over those with smaller shifts. We
used adjusted q(BT) <0.001 and p(TT) <0.05 as
thresholds for significant DVMCs. To study genomic
context, we used HM450 annotations, with hg19 as
the human reference genome, UCSC and previously
reported genomic features [65]. Differentially methy-
lated genes (DMPs, DMRs, and DVMCs) were
further analysed to determine functional pathways
and ontology enrichment using Enrichr [56]. We
tested the association between two gene lists by calcu-
lating a hypergeometric distribution using the ‘phy-
per’ function implemented in R base. To this end, we
used the gene list lengths, their overlap, and a con-
servative total number of sites (400 k for data based on
HM450 bead arrays). Based on the same distribution,
we calculated the random expectation and the corre-
sponding proportion between the observed overlap
and such expectation. This value is referred to as
‘representation factor’ throughout the text.

SNPs-DMPs associations in IBD and CeD

To identify methylation quantitative trait loci
(mQTL), single nucleotide polymorphisms (SNPs)
associated with IBD risk were obtained from a fine-
mapping study of IBD with single-variant resolution
[29]. Two independent GWAS were also considered

in some of the analyses: (1). Jostins L et al. [32], and
(2). Lange KM de et al. [30]. Genomic distances
between 368 unique SNPs pooled from these three
studies and IBD-associated DMPs were calculated
using the R package GenomicRanges. In addition,
we searched for those CpGs that apart from being
differentially methylated in IBD according to our
metanalysis, were previously reported to be differen-
tially methylated in a previous work performed by our
group in CeD [34]. CeD is a genetic, inflammatory
condition of the duodenum in which the Human
Leucocyte Antigen (HLA) region explains around
40% of the heritability, and HLA-DQ2/-DQ8 mole-
cules are necessary for gliadin presentation and activa-
tion of the autoimmune response. Briefly, we looked
for the overlap between the bimodal IBD-DMP list
presented here and the coeliac DMPs found in both
the epithelial and the immune cell fractions of the
duodenum. We also searched for the IBD-DMPs
that were previously reported to participate in blood
mQTLs in cis (2Mb, p < 1e-6), according to the largest
to-date mQTL database available [33], and found the
overlap between them and the SNPs associated to IBD
[29]. All the overlaps were reported using in-house R
scripts. We also calculated the representation factor
and the associated probability of the overlaps (hyper-
geometric test), in order to establish whether they
were significant.
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