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Abstract

The main purpose of this paper is to study the existence of periodic so-
lutions for a nonautonomous differential-difference system describing the
dynamics of hematopoietic stem cell (HSC) population under some ex-
ternal periodic regulatory factors at the cellular cycle level. The starting
model is a nonautonomous system of two age-structured partial differ-
ential equations describing the HSC population in quiescent (G0) and
proliferating (G1, S, G2 and M) phase. We are interested in the effects of
periodically time varying coefficients due for example to circadian rhythms
or to the periodic use of certain drugs, on the dynamics of HSC popula-
tion. The method of characteristics reduces the age-structured model to a
nonautonomous differential-difference system. We prove under appropri-
ate conditions on the parameters of the system, using topological degree
techniques and fixed point methods, the existence of periodic solutions of
our model.

Keywords: Hematopoietic stem cells; Delay differential-difference nonau-
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1 Introduction

1.1 Biological motivation

The process that leads to the production and regulation of blood cells (red blood
cells, white cells and platelets) to maintain homeostasis (metabolic equilibrium)
is called hematopoiesis. The different blood cells have a short life span of one
day to several weeks. The hematopoiesis process must provide daily renewal
with very high output (approximately 1011-1012 new blood cells are produced
each day [18]). It consists of mechanisms triggering differentiation and matu-
ration of hematopoietic stem cells (HSCs). Located in the bone marrow, HSCs
are undifferentiated cells with unique capacities of differentiation (the ability
to produce cells committed to one of blood cell types) and self-renewal (the
ability to produce identical cells with the same properties) [29]. Cell biologists
classify HSCs, [7], as proliferating (cells in the cell cycle: G1-S-G2-M -phase)
and quiescent (cells that are withdrawn from the cell cycle and cannot divide:
G0-phase). Quiescent cells are also called resting cells. The vast majority of
HSCs are in quiescent phase [7, 29]. Provided they do not die, they eventually
enter the proliferating phase. In the proliferating phase, if they do not die by
apoptosis, the cells are committed to divide a certain time after their entrance
in this phase. Then, they give birth to two daughter cells which, either enter
directly into the quiescent phase (long-term proliferation) or return immediately
to the proliferating phase (short-term proliferation) to divide again [10, 28, 29].

The first mathematical model for the dynamics of HSCs was proposed by
Mackey in 1978 [19]. He proposed a system of delay differential equations for
the two types of HSCs, proliferating and quiescent cells. Several improvements
to this model have been made by many authors. In many of these works, it is
assumed that after mitosis, all daughter cells go to the quiescent state. In a
recent work by M. Adimy, A. Chekroun, and T.M. Touaoula [1], a model was
proposed that takes into account the fact that only a fraction of daughter cells
enter the quiescent phase (long-term proliferation) and the other fraction of
cells return immediately to the proliferating phase to divide again (short-term
proliferation). This assumption leads to an important difference in the mathe-
matical treatment of the model: it can no longer be posed as a system of delay
differential equations. The system of equations has a different mathematical na-
ture. An extra variable is introduced whose dynamics are ruled by a difference
equation (no derivative involved).

Several hematological diseases are due to some abnormalities in the feed-
back loops between different compartments of hematopoietic populations [11].
In many cases, this results in the appearance of periodic oscillations in blood
cells, as in chronic myelogenous leukemia [2, 8, 12, 24, 25], cyclical neutropenia
[9, 16, 17], periodic auto-immune hemolytic anemia [20, 22], and cyclical throm-
bocytopenia [3, 27]. In some of these diseases, oscillations occur in all mature
blood cells with the same period; in others, the oscillations appear in only one
or two cell types. The existence of oscillations in more than one cell line seems
to be due to their appearance in HSC compartment. That is why the dynamics
of HSC have attracted attention of modelers for more than thirty years now (see
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the review of C. Foley and M.C. Mackey [11]). On another side, as for most
human cells, the circadian rhythm orchestrates the daily rhythms of HSCs. It
consists of a set of events that regulates DNA synthesis and mitotic activity
[4, 5, 23, 26], and on a genetic level, tumor suppression [13], and DNA damage
control [14]. Molecular mechanisms underlying circadian control on apoptosis
and cell cycle phases through proteins such as p53 and the cyclin-dependent
kinase inhibitor p21 are currently being unveiled [13, 21]. The circadian fluctu-
ations create periodic effects on the dynamics of cell population which promote
certain times of cell division. This phenomenon contributes to the emergence of
cells with specific cell cycle durations which could play a role in promoting tumor
development and at the same time, allowed the establishment of strategies for
the treatment of cancer. The assumption of the periodicity of the parameters in
the system incorporates the periodicity of the extracellular factors (extracellular
proteins and various constituent components of the temporally oscillatory en-
vironment). For this reason, the assumption of periodicity is an approximation
of the fluctuation of environmental factors.

We will consider some of the key aspects of our model and briefly review
the results obtained in [1]. In particular, we shall focus on the existence of
equilibria and their stability properties. In this paper, a further generalization
is considered, in order to take into account some external periodic regulatory
factors at the cellular cycle level, by allowing some of the constants of the
model, δ, K and γ, to be time T -periodic functions. This introduces further
mathematical complexity since now the system of equations is nonautonomous.
Some of the results of [1] can be emulated in a straightforward manner but
others, like the equilibria under different regimes of parameters, change to other
kind of structures in the nonautonomous setting. More specifically, the results
in [1] guarantee the existence of a non-trivial equilibrium under appropriate
conditions; using topological techniques, we shall show that a nonautonomous
version of these conditions is sufficient to prove the existence of periodic solutions
for our extended model.

1.2 Autonomous mathematical model of HSC dynamics

Let us present the model introduced in [1]. Denote by q(t, a) and p(t, a) the
population density of quiescent HSCs and proliferating HSCs respectively, at
time t ≥ 0 and age a ≥ 0. The age represents the time spent by a cell in its
current state. Quiescent cells can either be lost randomly at a rate δ ≥ 0, which
takes into account the cellular differentiation, or enter into the proliferating
phase at a rate β ≥ 0. A cell can stay its entire life in the quiescent phase,
therefore its age a ranges from 0 to +∞. In the proliferating phase, cells stay a
time τ ≥ 0, necessary to perform a series of processes, G1, S, G2 and M , leading
to division at mitosis. Meanwhile they can be lost by apoptosis (programmed
cell death) at a rate γ ≥ 0. At the end of proliferating phase, that is, when
cells have spent a time a = τ , each cell divides in two daughter cells. A part
K ∈ (0, 1) of daughter cells returns immediately to the proliferating phase to
go over a new cell cycle while the other part (1−K) enters directly the resting

phase. This dynamic is depicted in Figure 1. Consider Q(t) =
∫ +∞

0
q(t, a)da
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Figure 1: Dynamic of HSCs (see, [1])

and P (t) =
∫ τ

0
p(t, a)da the total populations at a given time t ≥ 0, and u(t) :=

p(t, 0) the number of cells entering the proliferating state at a given time t ≥ 0.
The rate β depends on Q(t) in a nonlinear way, by a Hill function (see [19]),

β(Q) :=
β0

1 +Qr
, β0 > 0, r > 1.

The partial differential equations for this age-structured model read, for t ≥ 0,
qt + qa = −(δ + β(Q(t)))q, a ∈ [0,+∞),

pt + pa = −γp, a ∈ [0, τ ],

q(t, 0) = 2(1−K)p(t, τ),

p(t, 0) = β(Q(t))Q(t) + 2Kp(t, τ),

(1)

with initial conditions{
q(0, a) = q0(a), a ∈ [0,+∞),

p(0, a) = p0(a), a ∈ [0, τ ],
(2)

and the following natural condition

lim
a→+∞

q(t, a) = 0.

Using the method of characteristics (see [1]), we get for t > τ

p(t, τ) = e−γτp(t− τ, 0).

Integrating the system (1) with respect to the age a and putting

u(t) = ϕ(t) := e−γtp0(−t), t ∈ [−τ, 0],

yields the following system, for t > 0,
Q′(t) = −(δ + β(Q(t)))Q(t) + 2(1−K)e−γτu(t− τ),

P ′(t) = −γP (t) + β(Q(t))Q(t)− (1− 2K)e−γτu(t− τ),

u(t) = β(Q(t))Q(t) + 2Ke−γτu(t− τ),

(3)

(4)

(5)
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with initial conditions

Q(0) = Q0 :=

∫ +∞

0

q0(a)da, P (0) = P0 :=

∫ τ

0

p0(a)da

and
u(t) = ϕ(t), t ∈ [−τ, 0].

Remark that P can be recovered from u, namely,

P (t) =

∫ τ

0

e−γau(t− a)da, t ≥ 0.

On the other hand, the two equations satisfied by Q and u are independent of
P . So, it suffices to analyze the reduced system for Q and u only. It should
be noted that the equation for u is not differential. This fact poses a difficulty
in using some of the standard topological methods, because the right inverse of
the linear operator associated to the equation of u is not compact. The reduced
system reads{

Q′(t) = −(δ + β(Q(t)))Q(t) + 2(1−K)e−γτu(t− τ),

u(t) = β(Q(t))Q(t) + 2Ke−γτu(t− τ).

(6)

(7)

The following set of hypotheses can be regarded as “natural” in the context of
the model.

(h0) δ, K and γ are positive parameters, 0 < K < 1 and β(Q) :=
β0

1 +Qr
, with

β0 > 0 and r > 1.

In order to express our conditions for existence of solutions in an accurate
way, let us define the following quantities:

h1 := 2(1−K)e−γτ , h2 := 2Ke−γτ , α :=
h1

1− h2
− 1.

Also, for Q > 0 we define the function j(Q) := β(Q)Q, which attains a global
maximum B := maxQ>0 j(Q).

β0

B

β(Q) =
β0

1 +Qr

j(Q) =
β0Q

1 +Qr

Figure 2. Graphs of β and j.

5



The following results were proven in [1].

Theorem 1. System (6)-(7) has a nontrivial equilibrium (Q,u) iff

(h1) h2 < 1 (whence α <∞),

(h2) α > 0,

(h3) δ < αβ0.

In that case, the nontrivial equilibrium is given by

(Q, u) =

(
β−1

(
δ

α

)
,

δ

2e−γτ
β−1

(
δ

α

))
.

We remark that as the parameters δ and β0 are positive, the assumption
(h3) implies (h2). Furthermore, the assumptions (h1)-(h2) are equivalent to

max

{
1

γ
ln(2K), 0

}
< τ <

1

γ
ln(2)

and the condition (h3) is equivalent to

τ <
1

γ
ln

(
2(β0 + δK)

β0 + δ

)
.

Theorem 2. Assume that (h1)-(h2) and the following condition

(h3’) δ > αβ0,

are satisfied. Then, the trivial equilibrium is globally asymptotically stable.

We remark that the assumption (h3’) is equivalent to

τ >
1

γ
ln

(
2(β0 + δK)

β0 + δ

)
.

1.3 Nonautonomous model of HSC dynamics

In this work, we shall consider a nonautonomous case, with K, γ and δ contin-
uous T -periodic functions, that is for t ∈ [0,+∞),

qt + qa = −(δ(t) + β(Q(t)))q, a ∈ [0,+∞),

pt + pa = −γ(t)p, a ∈ [0, τ ],

q(t, 0) = 2(1−K(t))p(t, τ),

p(t, 0) = β(Q(t))Q(t) + 2K(t)p(t, τ).

(8)
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Using again the method of characteristics, we obtain

p(t, τ) = exp

(
−
∫ t

t−τ
γ(s)ds

)
p(t− τ, 0) for t ≥ τ.

For convenience, set

ρ(t) =

∫ t

t−τ
γ(s)ds t ≥ τ,

which is also a T -periodic function. As for the system (1), the age-structured
partial differential model (8) can be reduced to{

Q′(t) = −(δ(t) + β(Q(t)))Q(t) + 2(1−K(t))e−ρ(t)u(t− τ),

u(t) = β(Q(t))Q(t) + 2K(t)e−ρ(t)u(t− τ).

(9)

(10)

For convenience, we define as before

h1(t) := 2(1−K(t))e−ρ(t)

and
h2(t) := 2K(t)e−ρ(t),

which turn out to be T -periodic functions. Also, we define the quantity

α :=
min(h1)

1−min(h2)
− 1.

Our basic hypothesis now reads as follows.

(H0) δ, γ and K are positive T -periodic functions, max(K) < 1 and β(Q) =
β0

1 +Qr
with β0 > 0 and r > 1.

1.4 Main results

Three results will be presented in this work. In the first place, we shall prove
the existence of T -periodic solutions of (9)-(10) under appropriate conditions
on the functions δ, γ and K.

Theorem 3. Assume that (H0) holds and

(H1) h2(t) < 1, for all t ∈ R,

(H2) α > 0,

(H3) δ(t) < αβ0, for all t ∈ R.

Then, (9)-(10) has at least one positive T -periodic solution.
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The condition (H3) is equivalent to max(δ) < αβ0. To give a biological
interpretation of this last inequality, let us firstly notice that

α =
minh1 + min(h2)− 1

1−min(h2)

where, regarded as functions of τ , the numerator is decreasing and the denom-
inator is increasing. It is seen that α becomes negative for τ large enough,
because lim

τ→∞
α = −1. According to condition (H1), it is natural to assume that

min(K) < 1
2 ; moreover, suppose that the amplitude of the function K is such

that

max(K)−min(K) <
1

2
. (11)

Then, for τ = 0,

α =
1− 2(max(K)−min(K))

1− 2 min(K)
> 0.

If the condition (11) is not satisfied, then α ≤ 0 for all τ ≥ 0: in this case, it
is expected that the cell population will not survive. On the other hand, when
(11) is assumed, the value of α decreases until it reaches 0 for some τ∗ and α < 0
for τ > τ∗. However, the condition (11) alone does not guarantee that the cell
population will not disappear for τ < τ∗. We also have to choose the mortality
rate δ (this takes into account the differentiation) small such that

max(δ) <
β0 (1− 2(max(K)−min(K)))

1− 2 min(K)
. (12)

Therefore, there is a threshold τmax > 0 for the duration of the cell cycle, such
that the condition (H3) is satisfied for τ ∈ [0, τmax) and not for τ ≥ τmax. In
order to ensure the existence of periodic solutions for the cell population, in
addition to the conditions (11)-(12), the cell cycle duration τ has to be less
than a threshold τmax.

For a proof of Theorem 3, we shall rewrite the system (9)-(10) as a sin-
gle equation for Q. Thus, solutions can be obtained as the zeros of a conve-
niently defined operator over the Banach space of continuous T -periodic func-
tions. We guarantee the existence of at least one nontrivial zero by means of the
Leray-Schauder degree theory. We remark that, in contrast with other methods
(i.e. using the contraction mapping theorem), the Leray-Schauder continuation
method gives no information about the uniqueness of such periodic solution or
its amplitude.

In the second place, we shall study small perturbations of the autonomous
system. In more precise terms, assume the conditions of Theorem 1 are satis-
fied and consider small T -periodic perturbations of the parameters. It would
be natural to expect that the nontrivial equilibrium is then perturbed into a
T -periodic solution of small amplitude oscillating close to such equilibrium.
In order to formalize such intuition, consider the continuous T -periodic vector
function Λ = (δ,K, γ) ∈ C3

T , with C3
T := (CT )3 the Banach space of continuous

T -periodic functions. Thus, (9)-(10) can be thought as a parametric system of
equations with parameters defined in C3

T . For convenience, the subset of con-
stant functions in C3

T shall be identified with R3. This setting includes both the
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autonomous and nonautonomous systems and allows to introduce our second
result as follows.

Theorem 4. Assume that a constant parameter Λ ∈ R3 and the delay τ satisfy
appropriate conditions (to be specified), then there exist open subsets U ⊂ C3

T

with Λ ∈ U and V ⊂ CT , and a continuous map I : U → V such that I(Λ) is
a T -periodic solution of the system (9)-(10) with continuous T -periodic vector
function Λ. Moreover, I(Λ) is unique in V .

The preceding theorem gives also a way to obtain periodic solutions; in
some sense, it provides a better characterization of such solutions. We remark,
however, that the sufficient conditions for existence are explicit in the first result
and not in the second one.

Finally, our last result extends Theorem 2 to the nonautonomous case.

Theorem 5. Assume that (H1)-(H2) and the following condition

(H3’) δ(t) > α(t)β0 for all t ∈ R,

are satisfied, where α is the function defined by

α(t) :=
h1(t)

1− h2(t)
− 1.

Then, the trivial equilibrium is locally asymptotically stable.

As for (H3), we can give a biological interpretation of the inequality (H3’).
Indeed, in order to guarantee the condition (H3’), we may take a sufficiently
large mortality rate δ, or the duration of the cell cycle bigger than a certain
threshold. In this case, the population will go to extinction.

It is worth mentioning that the latter theorem is local and, consequently, it
does not imply that nontrivial periodic solutions cannot exist. However, if such
solutions exist, then they are necessarily “large”. An explicit subset of the basin
of attraction of the trivial equilibrium shall be characterized in the proof.

2 Existence of T -periodic solutions

2.1 Sketch of the proof

For the reader’s convenience, let us firstly sketch the idea of the proof of Theorem
3. The details shall be given in the subsequent subsections.

Due to the above mentioned lack of compactness, we shall reduce the prob-
lem to a scalar equation in the following way. Set CT as the Banach space of
continuous T -periodic functions and C ⊂ CT the cone of nonnegative functions.
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Given Q ∈ C, we shall prove the existence of a unique solution u(Q) of (10)
and, furthermore, that the mapping u : C 7→ CT is continuous. Thus, finding a
T -periodic solution of the system is equivalent to solve the problem

Q′ = N(Q) := N(Q,u(Q)), (13)

in C, where N(Q, u) is the Nemytskii operator associated to the right-hand side
of the equation (9). Once a T -periodic solution Q of (13) is found, the pair
(Q,u(Q)) is a T -periodic solution for the system (9)-(10).

For the scalar equation (13), we shall apply the continuation method over a
bounded open set of the form Ωε,R = {Q ∈ CT : ε < Q(t) < R}, with R > ε > 0
chosen in such a way that Ωε,R satisfies the hypotheses of Mawhin’s continuation
Theorem (see [6]). For convenience, the ideas behind this result (degree theory,
Lyapunov-Schmidt reduction) shall be briefly discussed in the next section.

2.2 Mawhin’s continuation Theorem

For the sake of completeness, let us recall the basic facts concerning degree
theory that shall be employed in our proof. The Leray-Schauder degree is an
infinite dimensional extension of the Brouwer degree dB of a continuous function.
The Leray-Schauder degree dLS is defined for operators on a Banach space B
that are compact perturbations of the identity. In more precise terms, dLS is
defined for F : Ω→ B given by F = Id−C, where Ω ⊂ B is open and bounded
and C is compact, with C(Q) 6= Q for Q ∈ ∂Ω. The degree is simply defined as
the Brouwer degree of I − CV restricted to Ω ∩ V, where V is a suitable finite-
dimensional subspace of B and CV : Ω→ V is an ε-approximation of C for some
ε sufficiently small. It can be proven that the definition does not depend on the
choice of CV (see Theorem 9.4, page 60 of [6]). Let us give a brief summary of
the properties that shall be used in this work (for more details on the degree
theory see [6]).

Proposition 1. If dLS(F ,Ω, 0) 6= 0 then F has a zero in Ω.

Definition 1. We say that the family of operators {Fλ}0≤λ≤1 is an admissible
homotopy over a bounded open set Ω if and only if

• Fλ = Id− Cλ, with Cλ = C(·, λ) and C : Ω× [0, 1]→ B compact.

• Fλ(Q) 6= 0, for all Q ∈ ∂Ω and for all λ ∈ [0, 1].

Proposition 2. Let {Fλ}0≤λ≤1 be an admissible homotopy over a bounded open
set Ω. Then dLS(Fλ,Ω, 0) is constant with respect to λ.

Proposition 3. Let f : [a, b]→ R be continuous such that f(a), f(b) 6= 0. Then

dB(f,Ω, 0) =
sgn(f(b))− sgn(f(a))

2
.

In our setting, let C1
T = C1 ∩ CT , and let

Q =
1

T

∫ T

0

Q(t)dt

10



denote the average of a function Q. The set of constant functions shall be
identified with R. The following result by J. Mawhin (see [6]), adapted for
our purposes, sums up the technique that shall be used to prove the existence
theorem.

Lemma 1. Assume N : CT → CT is a continuous nonlinear operator and
Ω ⊂ CT is an open bounded set and consider the equation

Q′ = N(Q). (14)

For a constant function Q ≡ q, define f(q) := N(Q) and assume that the
following conditions hold:

1. Q′ = λN(Q) has no solutions on ∂Ω, for λ ∈ (0, 1);

2. f(q) 6= 0, for q ∈ ∂Ω ∩ R;

3. dB(f, ∂Ω ∩ R, 0) 6= 0.

Then, there exists a T -periodic solution of the equation (14) with range in Ω.

2.3 The mapping u(Q)

Let us recall that our method consists in reducing the system (9)-(10) to a scalar
equation for Q, for which Lemma 1 can be applied. In order to do so, it needs
to be shown that, for given Q ∈ CT , there exists a unique u(Q) solution of (10).
This shall define a mapping u : CT 7→ CT . The following lemma proves that
such mapping exists and is continuous. Further, it also gives estimates on the
image of some set of the form

Ωε,R = {Q ∈ CT : ε < Q(t) < R},

that will be employed in the continuation Lemma.

Lemma 2. Assume that the hypothesis (H1) of Theorem 3 holds. Then, given
Q ∈ CT , there exists a unique solution u(Q) of (10). The mapping u : CT 7→ CT
is continuous. Moreover, if 0 < ε < R are such that j(ε) < j(R), then

u(Ωε,R) ⊂ Uε :=

{
u ∈ CT :

β(ε)ε

1−min(h2)
≤ u ≤ B

1−max(h2)

}
.

Proof. Define S(u)(t) := u(t) − h2(t)u(t − τ). Then, the equation (10) can be
written as

S(u) = j ◦Q.

The norm of (Id−S)(u)(t) = h2(t)u(t−τ) in the space L(CT ) of linear operators
on CT is computed from the inequality

|(Id− S)(u)(t)| = |h2(t)u(t− τ)| ≤ max(h2) |u(t− τ)| ≤ max(h2)‖u‖CT
,
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which implies
‖Id− S‖ ≤ max(h2) < 1.

As a consequence, S is invertible with continuous inverse. Hence, the mapping
u(Q) = S−1(j ◦Q) is well defined and continuous.

In order to find estimates for u(Q) in terms of the estimates on Q, we will
follow a roundabout way. Given a fixed Q ∈ CT , let us define SQ(u)(t) =
j(Q(t)) + h2(t)u(t− τ). Solving the equation (10) for Q, is equivalent to find a
fixed point of SQ. Next observe that, given any Q ∈ CT , the mapping SQ is a
contraction. So, by the Banach Fixed Point Theorem it has a unique fixed point,
which is necessarily equal to u(Q). This gives us another way to characterize
u(Q).

Now, let Q ∈ Ωε,R. If we could find an invariant set U for SQ then, by
Banach’s Theorem, the (unique) fixed point u(Q) will belong to U . With this
idea in mind, consider sets of the form Ua,b := {u ∈ CT : a ≤ u ≤ b}. It
follows from the hypothesis that the minimum value of j in [ε, R] is attained at
ε. Suppose that Q ∈ Ωε,R, then given u ∈ Ua,b, we have

j(ε) + a min(h2) ≤ j(Q(t)) + h2(t)u(t− τ) ≤ B + b max(h2).

Hence, taking a =
j(ε)

1−min(h2)
and b =

B

1−max(h2)
we deduce that SQ(Ua,b) ⊆

Ua,b. So, for Q ∈ Ωε,R, u(Q) ∈ Uε. This means that u(Ωε,R) ⊂ Uε.

2.4 Proof of Theorem 3

We are now in condition of proving our existence theorem. To this end, we shall
show that (H1), (H2) and (H3) allow to find ε and R such that the assumptions
of Lemma 1 are satisfied for Ωε,R.

Since β(R) → 0 and 1
R
Bmax(h1)
1−max(h2) → 0 as R → +∞, we may choose R large

enough such that min(δ) > −β(R) + 1
R
Bmax(h1)
1−max(h2) . Once R is chosen, using (H3)

and the fact that j(ε) → 0 as ε → 0, we may choose ε small enough such that

1 + εr <
β0α

max(δ)
and also j(ε) < j(R). Summarizing, our choice of ε and R

yields:

(C0) 0 < ε < R and j(ε) < j(R),

(C1) 1 + εr <
β0α

max(δ)
,

(C2) min(δ) > −β(R) +
1

R

Bmax(h1)

1−max(h2)
.

Let us check now that for such ε and R, the first condition in Lemma 1 is
satisfied.

12



Let λ ∈ (0, 1) and suppose there exists Q ∈ ∂Ωε,R such that Q′ = λN(Q).
The fact that Q ∈ ∂Ωε,R implies the existence of t0 ∈ [0, T ] such that Q(t0) = ε,
or such that Q(t0) = R. If Q(t0) = ε, then, Q reaches its minimum value at t0
and hence 0 = Q′(t0) = λN(Q(t0)). That is,

0 = −(δ(t0) + β(ε))ε+ h1(t0)uQ(t0 − τ),

δ(t0)ε = −β(ε)ε+ h1(t0)u(Q)(t0 − τ).

Using (C0) and the fact that Q ∈ Ωε,R, we may apply Lemma 2 in order to get

δ(t0)ε ≥ −β(ε)ε+ min(h1)
β(ε)ε

1−min(h2)
.

Thus,

δ(t0) ≥ β(ε)

{
min(h1)

1−min(h2)
− 1

}
=

β0α

1 + εr
. (15)

This contradicts (C1).

Now suppose there exists t0 such that Q(t0) = R. Then, by (C0) and Lemma
2, we obtain

δ(t0)R = −β(R)R+ h1(t0)u(Q)(t0 − τ),

≤ −β(R)R+
Bmax(h1)

1−max(h2)
.

This contradicts (C2) and the first condition of Lemma 1 is thus proven.

Next, we shall verify the second condition. In the first place, notice that
Ωε,R∩R = [ε, R]. Now, suppose f(q) = N(Q) = 0, for some Q ≡ q ∈ ∂Ωε,R∩R =

{ε, R}. Then, Q ≡ ε or Q ≡ R. In the first case, the fact that N(ε) = 0 implies

0 = −(δ(t) + β(ε))ε+ h1(t)u(Q)(t− τ),

δ = −β(ε) +
1

ε
h1(t)u(Q)(t− τ) ≥ β0α

1 + εr
.

But, max(δ) ≥ δ ≥ Cα

1 + εr
contradicts (H1). On the other hand, if Q ≡ R then

N(Q) = 0 implies

δ = −β(R) +
1

R
h1(t)u(Q)(t− τ) ≤ −β(R) +

1

R

Bmax(h1)

1−max(h2)
.

This contradicts (H2).

It remains to show that the last condition in Lemma 1 is satisfied. By
Proposition 3, the inequalities

f(ε) > −(max(δ))ε+ β(ε)εα = ε

(
β0α

1 + εr
−max(δ)

)
> 0

and

f(R) < −δR− β(R)R+R
Bmax(h1)

1−max(h2)
< 0,

13



imply that dB(f, [ε, R], 0) = −1.

Finally, using Lemma 1, we conclude the existence of T -periodic solution to
equation (13), which, in turn, gives us a T -periodic solution of system (9)-(10).

3 Small perturbations of the autonomous prob-
lem

3.1 Preliminaries

Consider the operator F : CT × C3
T → CT given by

F(Q,Λ) := Q−Q+N(Q,Λ) +K(N(Q,Λ)−N(Q,Λ)). (16)

In other words, for each fixed Λ ∈ C3
T , the mapping F(·,Λ) is the operator

defined in the proof of Lemma 1. We already know that for any constant
Λ = (δ,K, γ) satisfying the assumptions of Theorem 1, there exists a (unique)
stationary solution Q. That is, under the previous identification of R with the
set of constant functions, we have a pair (Q,Λ) such that F(Q,Λ) = 0. We shall
obtain a (locally unique) branch of solutions Q(λ) when λ is close to λ with the
help of the Implicit Function Theorem, namely:

Theorem 6. Let X, Y and Z be Banach spaces and let U be an open subset of
X × Y . Let F be a continuously differentiable map from U to Z. If (x, y) ∈ U
is a point such that F(x, y) = 0 and DxF(x, y) is a bounded, invertible, linear
map from X to Z, then there exist open neighborhoods G and H of y and x,

respectively, and a unique C1 function ϕ : G → H such that ϕ(y) = x and
F(ϕ(y), y) = 0, for all y ∈ G.

In more precise terms, if the Fréchet derivative of F with respect to Q at the
point (Q,Λ) is an isomorphism, then, for all Λ ∈ C3

T in a neighbourhood of Λ
there exists a (locally unique) associated T -periodic function Q and the mapping
Λ 7→ Q is continuous. This shows there is a continuity between the equilibrium
provided by Theorem 1 and the periodic solutions (Q,u(Q)) associated to small
periodic perturbations of Λ. In particular, these periodic solutions shrink to a
point in the (Q, u) plane, as the amplitude of the oscillations of Λ goes to zero.

With this in mind, let us firstly recall that for any continuous linear operator
T : CT × C3

T → CT one has

(DQT )(Q,Λ)ψ = T ψ, for all ψ.

Moreover, for an arbitrary operator H we may write H = P ◦ H. So, by the
chain rule we have

DQ(H) = DQ(P ◦H) = P ◦DQH = DQH.

Let us compute (DQF)(Q,Λ):

(DQF)(Q,Λ)ψ = ψ−ψ+(DQN)(Q,Λ)ψ+K
(
(DQN)(Q,Λ)ψ−(DQN)(Q,Λ)ψ

)
.

(17)
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Proposition 4. If C : X → Y is a compact (nonlinear) operator differentiable
at x0, then DxC(x0) is a compact linear operator.

Proof. See Theorem 14.1, page 96 of [6].

From the previous computation and the last proposition we conclude that
(DQF)(Q,Λ) is a compact perturbation of the identity (namely, a Fredholm
operator of the type I + C). Thus, in order to prove that it is an isomorphism,
we only have to check its injectivity. To this end, observe that having an element
ψ in the kernel, means

ψ′ = (DQN)(Q,Λ)ψ. (18)

Next, recall that

N(Q,Λ) = −(δ + β(Q))Q+ h2(Λ)Rτu(Q,Λ), (19)

where Rτ (ψ)(t) = ψ(t− τ). Thus,

(DQN)(Q,Λ)ψ = −(δ + j′(Q))ψ + h2(Λ)Rτ (DQu)(Q,Λ)ψ. (20)

In order to compute the differential of u, let us firstly clarify its definition.
As shown before, given a fixed function Λ satisfying (H1), it is possible to define
an invertible operator S. This definition shall be now extended as follows. Let
Λ ⊂ C3

T the subset of Λ satisfying (H1), then

S : CT × C3
T → CT , S(u,Λ) = u+ h2(Λ)Rτu. (21)

For each fixed Λ, the operator SΛ(u) := S(u,Λ) is invertible and u(Q,Λ) =
S−1

Λ (j(Q)) is continuous in (Q,Λ) and differentiable in Q, with

(DQu)(Q,Λ)ψ = S−1
Λ (j′(Q)ψ) = j′(Q)S−1

Λ (ψ). (22)

So, the equation (18) reads

ψ′ = −δψ − j′(Q)ψ + h1(Λ)j′(Q)RτS
−1
Λ (ψ),

ψ′ + (δ + j′(Q))ψ = h1(Λ)j′(Q)RτS
−1
Λ (ψ).

We shall apply SΛR
−1
τ at both sides of the last equality. Because (R−1

τ ψ)(t) =
ψ(t+ τ), we obtain

SΛR
−1
τ

(
ψ′ + (δ + j′(Q))ψ

)
= h1(Λ)j′(Q)ψ,

SΛ

(
ψ′(t+ τ) + (δ + j′(Q))ψ(t+ τ)

)
= h1(Λ)j′(Q)ψ.

Expanding the definitions of SΛ, we get an expression in terms of ψ(t), ψ′(t),
ψ(t+ τ) and ψ′(t+ τ). The resulting equation is of the form

Aψ′(t+ τ) +Bψ(t+ τ) = aψ′(t) + bψ(t), (23)

with
A = 1, B = δ + j′(Q),
a = h2(Λ), b = 2e−γτ (K δ + j′(Q)).

(24)
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From now on, the arguments Q and Λ shall be omitted to simplify notations.
In summary, the kernel of (DQF)(Q,Λ) is non-trivial if and only if the equation
(23) has a non-trivial solution in CT . Let us take a generic function ψ ∈ CT ,
and expand it in complex Fourier series, with ω = 1

T . We get

ψ(t) =
∑
k∈Z

ake
ikωt, ψ′(t) =

∑
k∈Z

akikωe
ikωt, (25)

ψ(t− τ) =
∑
k∈Z

ake
ikωτeikωt, ψ′(t− τ) =

∑
k∈Z

akikωe
ikωτeikωt. (26)

By replacing in the equation (23) and comparing coefficients, we obtain

ak
(
eikωτ (Aikω +B)− (aikω + b)

)
= 0. (27)

In order to have a non-trivial periodic solution, we need that at least for some
k ∈ Z, the following identity is satisfied:

eikωτ =
aikω + b

Aikω +B
. (28)

Let’s call this equation the characteristic equation. For fixed values of Λ, τ and
T , this equation may or may not have integer solutions k.

Lemma 3. For fixed Λ and T , there exists a set E ⊂ R such that for τ ∈ R \E
the equation (28) has no integer solutions. E is empty for almost all values of
Λ and T , and countable for the remaining ones.

Proof. Consider the homography H(z) = aiz+b
Aiz+B . The image of the real line

under H is either a circle or a straight line in C. In order to decide which is the
case, it suffices to compute the value of the function at three points on the real
line.

H(0) =
b

B
, H(1) =

ai+ b

Ai+B
, H(−1) =

−ai+ b

−Ai+B
and H(∞) =

a

A
.

Thus, H(R) is a circle centered on the real axis and intersecting this axis at
H(0) and H(∞). Hence H(R>0) is a semicircle and the possible scenarios are
the following:

1. If H(R>0)∩S1 = ∅, then the equation (28) has no solutions, for any τ ∈ R.
Hence, ET = ∅.

2. If H(R>0) ∩ S1 6= ∅, then there exists r ∈ R>0 and η ∈ R such that

eiη = H(r).

(a) If T is such that r = k0ω for some k0 ∈ Z, then the equation (28) has
solutions for τ = η+2lπ

k0ω
, with l ∈ Z. That is: ET = {η+2lπ

k0ω
| l ∈ Z}.

(b) If r 6= kω for all k ∈ Z, then the equation (28) has no solution
independently of τ . Hence, ET = ∅.
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Remark 1. Given that H(∞) = h2 < 1 (hypothesis (h1)), a more detailed anal-
ysis of the value of H(0) indicates that option 1 is impossible under assumptions
(h0)-(h3).

Theorem 7. Assume (h1) holds for some constant Λ. Then, for each period
T (except at most countably many), there exist open U, V with Λ ∈ U ⊂ C3

T

and V ⊂ CT and a continuous map I : U → V such that I(Λ) is a T -periodic
solution to the system (9)-(10) with parameter Λ. Moreover, I(Λ) is unique in
V .

In [1], the authors focused on autonomous periodic oscillations arising as
consequences of a destabilization of the system through a Hopf bifurcation. In
particular, they proved that the possible cause of the appearance of periodic
oscillations is the increase in the duration of the cell cycle (the delay τ). In the
extended model (9)-(10), the situation is different. We are interested in the ef-
fects of periodically time varying coefficients on the dynamics of HSC population
(even for small delay). This new aspect has never been investigated for HSC
dynamics in the context of differential-difference systems. Our investigation im-
proves the model in [1], both biologically and mathematically. In particular, this
new model may be helpful to understand the appearance of periodic oscillations
in HSC dynamics due to time fluctuation of factors, exterior to the process of
hematopoiesis. In our model, we assumed that all cells divide at the same age
τ ; however, it is believed (see [2]) that τ is distributed with a density f sup-
ported on an interval [0, τ̄ ] with τ̄ > 0. In addition, we did not consider in our
model the case when τ is time dependent. In both cases, the resulting model is
a differential-difference system with distributed or time dependent delay, whose
analysis is more complicated. This is one of the limitations of our model, that
will be investigated in a future work.

4 Local stability of the trivial solution

In this section, we shall prove that if the condition (H3) of Theorem 3 is replaced
by the condition

(H3’) δ(t) > β0α(t) for all t ∈ R,

then the solutions of the nonautonomous system (9)-(10), with small positive
initial conditions, are bounded from above by the solutions of the autonomous
system {

Q′(t) = −(δ∗ + β(Q(t))Q(t) + h∗1u(t− τ),

u(t) = β(Q(t))Q(t) + h∗2u(t− τ),

(29)

(30)

with the same initial conditions, and

δ∗ = min(δ)− ε, h∗i = max(hi) + ε, for some ε� 1.

This, in turn, implies the local stability of the trivial solution because, as we
shall see, the system (29)-(30) is globally asymptotically stable at the origin.
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The proof of stability for the autonomous system (taken from [1]), is based
on a Lyapunov functional argument. An adaptation of this argument for the
nonautonomous system seems to be elusive. For this reason, we shall employ
a different approach, which consists in using the solutions of the autonomous
problem as bounds for the nonautonomous one.

First we recall some definitions.

Definition 2. Consider a system described by the coupled differential-functional
equations {

Q′(t) = f(t, Q(t), ut),

u(t) = g(t, Q(t), ut)

(31)

(32)

where ut ∈ C[−τ, 0] is defined by ut(s) := u(t + s). The function g or the
subsystem (32) defined by g is said to be uniformly input to state stable if there
exist:

1. A function ξ : R≥0 × R≥0 → R≥0 such that ξ(a, t) is continuous, strictly
increasing with respect to a, strictly decreasing with respect to t, ξ(0, t) = 0,
and limt→∞ ξ(a, t) = 0.

2. A function ν : R≥0 → R≥0 continuous, strictly increasing, with ν(0) = 0,

such that the solution ut(t0, ϕ,Q) corresponding to the initial condition ut0 = ϕ
and input function Q(t) satisfies

‖ut(t0, ϕ,Q)‖ ≤ ξ(‖ϕ‖, t− t0) + ν(‖Q
∣∣
[t0,t)
‖).

Theorem 8. Suppose that f and g map R×(bounded sets in Rm×C[0, 1]) into
bounded sets of Rm and Rn respectively, and g is uniformly input to state stable;
v1, v2, w : R≥0 → R≥0 are continuous nondecreasing functions, where addition-
ally vi(s) are positive for s > 0, and vi(0) = 0. If there exists a functional

V : R× Rm × C[0, 1]→ R,

such that
v1(|Q|) ≤ V (t, Q, ϕ) ≤ v2(‖(Q,ϕ)‖)

and

V̇ (s,Q(s), us) :=
d

dt
V (t, Q(t), ut)

∣∣∣∣
t=s

≤ −w(|Q(s)|),

then, the trivial solution of the coupled differential-functional equations (31)-
(32) is uniformly stable. If w(s) > 0 for s > 0, then it is uniformly asymptot-
ically stable. If, in addition, lims→∞ v1(s) = ∞ , then it is globally uniformly
asymptotically stable.

Proof. The proof can be found in [15].

Theorem 9. If the conditions (h0),(h1) and (h3’) hold, then the trivial equi-
librium of the autonomous system (29)-(30) is globally asymptotically stable.
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Proof. For t ∈ [0, τ ], we have

u(t) ≤ C‖Q
∣∣
[0,t)
‖+ h∗2ϕ(t− τ).

If we define n(t) := min{n ∈ N : n > t
τ } then by induction

u(t) ≤ C
(

1− (h∗2)n(t)

1− h∗2

)
‖Q
∣∣
[0,t)
‖+ (h∗2)n(t)‖ϕ‖.

In consequence,

u(t) ≤ C
(

1

1− h∗2

)
‖Q
∣∣
[0,t)
‖+ (h∗2)t/τ‖ϕ‖.

This implies that ξ(a, t) = (h∗2)t/τa and ν(a) = C

(
1

1− h∗2

)
a satisfy the con-

ditions for uniformly input to state stability.

Next, define

V (t, Q, ϕ) := |Q|+ h∗1
1− h∗2

∫ 0

−τ
|ϕ(θ)|dθ.

It is immediate to verify that

|Q| ≤ V (t, Q, ϕ) ≤ |Q|+ h∗1
1− h∗2

τ‖ϕ‖ ≤
(

1 +
h∗1

1− h∗2
τ

)
‖(Q,ϕ)‖ (33)

and, over trajectories of positive solutions,

V̇ (t, Q(t), ut) = Q′(t) +
h∗1

1− h∗2
(u(t)− u(t− τ)), (34)

= −δ∗Q(t)− β(Q)Q+ h∗1u(t− τ) +
h∗1

1− h∗2
(β(Q)Q+ h∗2u(t− τ)− u(t− τ)) ,

(35)

= −δ∗Q(t) + β(Q)Q

(
h∗1

1− h∗2
− 1

)
+ u(t− τ)

(
h∗1h

∗
2

1− h∗2
+ h∗1 −

h∗1
1− h∗2

)
,

(36)

= −
(
δ∗ − β(Q)

(
h∗1

1− h∗2
− 1

))
Q. (37)

This implies that V is a Lyapunov functional for the system, with v1(s) = s,

v2(s) =

(
1 +

h∗1
1− h∗2

τ

)
s and w(s) = δ∗ − β(s)

(
h∗1

1− h∗2
− 1

)
> 0. We remark

that the quantities δ∗ and h∗i were defined in order to guarantee that the latter
inequality is strict.

Lemma 4. Let r̄ > 0 be the value where j reaches its maximum. If ‖(Q0, ϕ)‖
is small enough then Q(t) < r̄ for all t ≥ 0.
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Proof. Take

‖(Q0, ϕ)‖ ≤ r̄

1 +
h∗1

1− h∗2
τ

.

Then, by (33) we have
V (0, Q0, ϕ) ≤ r̄.

Also, because of (34),

V̇ (t, Q(t), ut) ≤ 0, for all t ≥ 0,

and again by (33), this implies |Q(t)| ≤ r̄, for all t ≥ 0.

Remark that for the Hill function β(Q) :=
β0

1 +Qr
, β0 > 0, r > 1, we have

r̄ =

(
1

r − 1

) 1
r

.

The following result shall provide a comparison between the solutions (Q, u)
and (Q, u), the solutions to the nonautonomous and the autonomous case re-
spectively, for given initial conditions (Q0, ϕ).

Theorem 10. Assume the initial conditions satisfy

‖(Q0, ϕ)‖ ≤ r̄

1 +
h∗1

1− h∗2
τ

.

Then, Q(t) ≤ Q(t) and u(t) ≤ u(t), for all t ≥ 0.

Proof. The proof will proceed by the method of steps. Let t ∈ [0, τ ], then

(Q−Q)′(t) ≤ −δ(t)Q(t)− j(Q(t)) + δ∗Q(t) + j(Q(t)) + h1(t)u(t− τ)− h∗1u(t− τ),

< −δ∗(Q−Q)(t)− (j(Q(t))− j(Q(t))) + h∗1(u− u)(t− τ).

Now, because u(t− τ) = u(t− τ) = ϕ(t− τ), we get

(Q−Q)′(t) < −δ∗(Q−Q)(t)− (j(Q(t))− j(Q(t))).

As (Q − Q)(0) = 0 and (Q − Q)′(0) < 0, so (Q − Q) starts negative. Suppose
there exists t0 ∈ [0, τ ] such that Q(t0) = Q(t0) = 0 and Q(t0) < Q(t0) for
0 ≤ t < t0. Then, (Q − Q)′(t0) < 0, which is a contradiction. So, Q(t) < Q(t)
for all t ∈ [0, τ ]. In particular, Q(t) < r̄ for all t ∈ [0, τ ]. So, given that j is
increasing in [0, r̄], j(Q)− j(Q) < 0. For the second equation in [0, τ ],

(u− u)(t) < j(Q)− j(Q) < 0.

Now, for t ∈ [τ, 2τ ], t− τ ∈ [0, τ ]. So, (u− u)(t− τ) < 0 and then

(Q−Q)′(t) < −δ∗(Q−Q)(t)− (j(Q)− j(Q)) + h∗1(u− u)(t− τ),

< −δ∗(Q−Q)(t)− (j(Q)− j(Q)).
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Given (Q−Q)(τ) < 0 and (Q−Q)′(τ) < 0, by a similar argument as before,

Q(t) < Q(t) < r̄, for all t ∈ [τ, 2τ ].

Similarly, for the second equation,

(u− u)′(t) < j(Q(t))− j(Q(t)) + h∗1(u− u)(t− τ) < 0.

The result follows inductively.

Corollary 10.1. Suppose that

‖(Q0, ϕ)‖ ≤ r̄

1 +
h∗1

1− h∗2
τ

.

Then, the solutions of the original system tend asymptotically to zero. That is,
the trivial solution is locally asymptotically stable.
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