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Abstract:  The processes that give rise to species richness gradients are not well understood, but 31 

may be linked to resource-based limits on the number of species a region can support. Ecological 32 

limits placed on regional species richness would also limit population sizes, suggesting that these 33 

processes could also generate genetic diversity gradients. If true, we might better understand how 34 

broad-scale biodiversity patterns are formed by identifying the common causes of genetic 35 

diversity and species richness. We develop a hypothetical framework based on the consequences 36 

of regional variation in ecological limits to simultaneously explain spatial patterns of species 37 

richness and neutral genetic diversity. Repurposing raw genotypic data spanning 38 mammal 38 

species sampled across 801 sites in North America, we show that estimates of genome-wide 39 

genetic diversity and species richness share spatial structure. Notably, species richness hotspots 40 

tend to harbor lower levels of within-species genetic variation. A structural equation model 41 

encompassing eco-evolutionary processes related to resource availability,  habitat heterogeneity, 42 

and human disturbance explained 78% of variation in genetic diversity and 74% of the variation 43 

in species richness. These results suggest we can infer broad-scale patterns of species and genetic 44 

diversity using two simple environmental measures of resource availability and ecological 45 

opportunity.  46 

 47 

Keywords: more individuals hypothesis, heterogeneity, Anthropocene, latitudinal diversity 48 

gradient, carrying capacity, macroecology, macrogenetics  49 
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Introduction 50 

Genetic diversity and species richness are the most fundamental levels of biodiversity because 51 

they reflect within- and across-species contributions to ecosystem functioning (Oliver et al. 52 

2015; Des Roches et al. 2021b). Genetic diversity underlies a population’s capacity to adapt in 53 

response to environmental change, and species richness enhances ecosystem resiliency to 54 

perturbation. If we are to manage the current high rates of biodiversity loss, we need to better 55 

understand how patterns of biodiversity are produced and how they interact across levels of 56 

biological organization. Patterns of species richness are well-described, but because several 57 

independent processes are capable of generating these patterns, their origins remain puzzling. We 58 

know less about multi-species patterns of genetic diversity. However, there is good reason to 59 

think that the processes forming patterns of species richness could simultaneously produce 60 

spatial patterns in neutral genetic diversity (Vellend 2005; Evanno et al. 2009). This is because 61 

spatial variation in neutral genetic diversity should reflect how local population-level 62 

demographic and evolutionary processes interact with environments to produce species richness 63 

gradients. If true, we may be able to infer processes underlying biodiversity patterns at both 64 

genetic and species levels by attempting to understand their common causes. The accumulation 65 

of open data now allows us to tackle these types of questions by repurposing and synthesizing 66 

publicly archived raw data (e.g., Leigh et al. in press; Miraldo et al. 2016; Manel et al. 2020; 67 

Schmidt et al. 2020a; Theodoridis et al. 2020; Schmidt and Garroway 2021). Here we produce a 68 

continental map of spatial variation in neutral nuclear genetic diversity for North American 69 

mammals, show that genetic diversity and species richness covary spatially and are negatively 70 

correlated, and find empirical support suggesting that measures of resource availability and 71 
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heterogeneity predict both genetic diversity and species richness patterns through their effects on 72 

demography.  73 

 74 

We developed a conceptual framework to explain how genetic diversity and species richness 75 

patterns could emerge from common causes. This framework extends predictions from well-76 

supported hypotheses for species richness patterns to the population genetic level. Hypotheses 77 

for species richness gradients fall into three general categories related to evolutionary time, 78 

evolutionary rates, and ecological limits (Mittelbach et al. 2007; Worm and Tittensor 2018; 79 

Pontarp et al. 2019). We focus on ecological limits hypotheses—these posit that variation in 80 

resource availability limits the number of species able to coexist in a particular area (Rabosky 81 

and Hurlbert 2015). Here the speciation, extinction, and colonization dynamics of species are 82 

analogous to the birth, death, and immigration dynamics that set carrying capacities at the 83 

population level. Simulations suggest multiple hypotheses can produce species richness gradients 84 

(Etienne et al. 2019), but the preponderance of theory suggests that ecological limits produce the 85 

strongest and most stable gradients (Vellend 2005; Worm and Tittensor 2018; Etienne et al. 86 

2019). There is also good empirical support for the likely importance of ecological limits in the 87 

formation of species richness patterns (reviewed in Rabosky and Hurlbert 2015; Brodie 2019). 88 

We thus considered ecological limits hypotheses as parsimonious starting expectations when 89 

exploring the causes of biodiversity patterns (Etienne et al. 2019). 90 

 91 

It is relatively straightforward to extend the consequences of ecological limits on community size 92 

to the population genetic level. If environments limit the number of supportable species, they 93 

must also limit the population sizes of species, and therefore affect the strength of genetic drift. 94 
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The first ecological limits hypothesis we consider is the more individuals hypothesis (Wright 95 

1983). In terms of community composition, the more individuals hypothesis suggests that 96 

resource availability imposes an upper limit on the number of individuals, and as a consequence, 97 

the number of species an area can support (Currie 1991; Rabosky and Hurlbert 2015; Storch et 98 

al. 2018). Diversity tends to increase with the number of individuals in an assemblage both in 99 

terms of genetic diversity within populations and the number of species in a community (Kimura 100 

1983; Hubbell 2001). Thus, the more individuals hypothesis predicts neutral genetic diversity 101 

and species richness will be positively correlated and increase with resource availability (Fig. 1).  102 

The second ecological limits hypothesis we consider pertains to environmental heterogeneity, 103 

which includes variation in resources, habitat types, and habitat complexity (Stein et al. 2014). 104 

Here we assume heterogeneity equates to niche availability. The idea of area-heterogeneity 105 

trade-offs suggests that heterogeneous areas can support richer communities of more specialized 106 

species, but these species should tend to have smaller population sizes because resources and 107 

species are divided among niches (Kadmon and Allouche 2007; Allouche et al. 2012). Local 108 

adaptation, and subsequently specialization, can also occur within and across species distributed 109 

across heterogeneous environments. As increasingly specialized populations diverge, genetic 110 

variation would be partitioned among locally adapted populations that may eventually no longer 111 

interbreed. Compared to larger populations, these smaller populations would also more rapidly 112 

lose genetic diversity due to genetic drift. If this were the case, we expect environmental 113 

heterogeneity would be positively associated with species richness and negatively associated 114 

with neutral genetic diversity (Fig. 1).  115 

Contemporary rapid environmental change also affects biodiversity patterns, yet it is not 116 

typically modelled in a way that makes it comparable to historical processes acting over long 117 
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periods. A major contemporary ecological limit on diversity is human land transformation. 118 

Human activities such as urbanization reduce the amount of habitat available to wild populations 119 

(McKinney 2006; Grimm et al. 2008) with consequences at genetic and species levels (Ceballos 120 

et al. 2015; WWF 2018; Leigh et al. 2019; Schmidt et al. 2020a). Habitat loss, fragmentation, 121 

and homogenization resulting from human land use alters resource and niche availability, thus 122 

processes associated with ecological limits should play out in populations and communities of 123 

urban wildlife. By reducing habitable area and resource heterogeneity, we predicted that the 124 

effects of urbanization for mammals should also cause species richness and genetic diversity to 125 

decrease in more heavily disturbed areas (Fig. 1). 126 

 127 

The effects of resource availability and heterogeneity are not mutually exclusive, and in our 128 

framework they can act in concert to produce biodiversity patterns. The links among our 129 

hypotheses and their predictions are diagrammed in full in Figure 1. We jointly model both 130 

hypotheses with a method that allows us to assess their relative importance for shaping genetic 131 

diversity and species richness. Our predictions for the ways resource availability and 132 

heterogeneity interact are consistent with previous work on species richness in North American 133 

mammals (Kerr and Packer 1997), where heterogeneity becomes a more important determinant 134 

of species richness as resource availability increases. If our model successfully captures known 135 

relationships between species richness and environments, and genetic diversity behaves in the 136 

ways we predict, we will have strong empirical evidence supporting the contention that 137 

continental patterns of neutral genetic diversity and species richness are both are in part governed 138 

by ecological limits.  139 

 140 
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Our specific objectives were threefold. Because biogeographic patterns of neutral nuclear genetic 141 

diversity have not yet been mapped, we first produced a continental map of spatial patterns of 142 

genetic diversity in North American mammals. To do this we repurposed publicly archived, raw, 143 

neutral nuclear genetic data spanning 38 species and >34,000 individuals at 801 sample sites in 144 

the United States and Canada. We then tested the degree to which patterns of genetic diversity 145 

matched those of species richness. Having established shared patterns of spatial variation, we 146 

then tested our proposed conceptual model based on ecological limits hypotheses where genetic 147 

diversity and species richness are caused by common environmental factors (Fig. 1). We tested 148 

our hypothetical model using structural equation modelling (SEM), a modelling framework that 149 

fits hypothesis networks by accommodating multiple predictor and response variables. Our 150 

approach (Fig. 2) allowed us to assess the relative importance of both hypotheses and the effects 151 

of contemporary environmental change while accounting for species-level variation using 152 

hierarchical models.  153 

 154 

Methods 155 

Biodiversity data 156 

Genetic diversity. We used raw genotypic data compiled by Schmidt et al. (2020a,b). This data 157 

set is comprised of repurposed raw microsatellite data from 34,841 individuals from 38 158 

mammalian species sampled at 801 sites in the United States and Canada. With it we could 159 

consistently calculate measures of gene diversity (Nei 1973) and population-specific FST across 160 

sites (Weir and Goudet 2017). See Table 1 for a summary of the dataset. Microsatellite markers 161 

estimate genome-wide diversity well (e.g., microsatellite and genome-wide diversity are 162 

correlated at R2 ~ 0.83; Mittell et al. 2015). They are commonly used in wildlife population 163 
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genetic studies because they are cost-effective and do not require a reference genome, which 164 

allowed us to maximize sample size. Detailed methods for assembling this dataset can be found 165 

in (Schmidt et al. 2020a). Briefly, we performed a systematic search for species names of native 166 

North American mammals with keywords “microsat*”, “single tandem*”, “short tandem*”, and 167 

“str” using the dataone R package, which interfaces with the DataONE platform to search online 168 

open data repositories (Jones et al. 2017). We discarded search results that did not meet our 169 

criteria for inclusion and removed results where study design may have influenced genetic 170 

diversity. For example, we excluded non-neutral data and samples taken after a recent 171 

bottleneck, translocations, managed or captive populations, or island populations. We 172 

additionally removed populations with fewer than 5 individuals sampled. Gene diversity 173 

estimates the richness and evenness of alleles in a population, and we used it here as our metric 174 

for genetic diversity because it is minimally affected by sample size (Charlesworth and 175 

Charlesworth 2010) (Fig. S1). Sample sites are treated as point locations.  176 

Species richness. We downloaded range maps for terrestrial mammals native to North America 177 

from the IUCN Red List database (IUCN 2019). We filtered these maps to retain ranges for 178 

extant, native, resident, mainland species in R version 4.0.1 (R Core Team 2020). To generate a 179 

map of species richness coincident with genetic sample sites, we estimated species richness by 180 

summing the number of ranges overlapping each site.  181 

 182 

Maps and spatial variation partitioning 183 

Genetic diversity and species richness maps. Our first step was to map spatial patterns in genetic 184 

diversity. We accomplished this using distance-based Moran’s eigenvector maps (MEMs) in the 185 

package adespatial (Dray et al. 2017). MEMs detect spatial patterns in data using a matrix of 186 
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distances between sites—a neighbor matrix—whose eigenvalues are proportional to Moran’s I 187 

index of spatial autocorrelation (Borcard and Legendre 2002; Borcard et al. 2004; Dray et al. 188 

2006). MEMs are spatial eigenvectors that represent relationships between sites at all spatial 189 

scales detectable by the sampling scheme. Multiple MEMs can be included in linear models to 190 

identify spatial patterns in data because they are orthogonal. They are appropriate for use in 191 

genetics because Moran’s I is a direct analog of Malécot’s estimator of spatial autocorrelation of 192 

allele frequencies (Malécot 1955; Epperson 2005) which accurately summarizes neutral variation 193 

in gene flow and allele frequencies (e.g., Sokal and Oden 1978; Epperson 2005). Distance-based 194 

MEM analysis produces n – 1 MEMs (n being the number of sample sites), but only eigenvectors 195 

corresponding to positive spatial autocorrelation are used. MEMs are ordered according to 196 

spatial scale explained, with the first eigenvector explaining the broadest autocorrelation pattern. 197 

We used linear regressions and the forward selection procedure described in (Blanchet et al. 198 

2008) to select two sets of MEMs: one describing spatial patterns in genetic diversity and the 199 

other describing species richness. Thirteen MEMs, ranging from broad to fine scales, explained 200 

important spatial variation in gene diversity. Forty-three MEMs were important predictors of 201 

species richness, and 8 of these patterns were shared by genetic diversity (significant MEMs are 202 

listed in Fig. S3). 203 

To restrict ourselves to broad spatial patterns, we focused on genetic and species MEMs with 204 

Moran’s I values >0.25. We fit individual linear regression models for species richness and 205 

genetic diversity with corresponding broad-scale MEMs as covariates and plotted model 206 

predicted values representing spatial patterns on maps of North America (Fig. 3). These MEMs 207 

describe the broadest-scale spatial patterns at both levels of diversity. By using values of genetic 208 

diversity and species richness described by these MEMs, we can visualize pure spatial variation 209 
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at the continental scale without local spatial patterns that may be due to environmental 210 

idiosyncrasies, and without considering non-spatial variation in genetic diversity. We also 211 

provided maps of raw genetic diversity and species richness values in Figure S2. 212 

 213 

Variation partitioning. We next quantified the extent to which genetic diversity and species 214 

richness covary spatially. Because MEMs for species richness and genetic diversity were 215 

computed from the same set of coordinates, they were directly comparable. This allowed us to 216 

identify shared spatial MEMs. We used linear regressions and variance partitioning to determine 217 

what fraction of the total variation in species richness and genetic diversity could be attributed 218 

to: (1) non-spatial variation, (2) non-shared spatial variation, and (3) shared spatial variation. We 219 

partitioned variation as follows: 220 

y𝑆𝑅 ~ 𝛼 + 𝛽
1𝑆

(MEM1𝑆) + 𝛽
2𝑆

(MEM2S) + ⋯ + 𝛽
43𝑆

(MEM43𝑆) + 𝜖 221 

y𝐺𝐷 ~ 𝛼 + 𝛽
1𝐺

(MEM1𝐺) + 𝛽
2𝐺

(MEM2G) + ⋯ + 𝛽
13𝐺

(MEM13𝐺) + 𝜖 222 

where α is the grand mean, and ySR and yGD are species richness and genetic diversity at sites. 223 

MEMS and MEMG refer to the set of MEMs explaining spatial variation in species richness (43 224 

MEMs) and genetic diversity (13 MEMs), respectively, and βs are their slopes. The coefficients 225 

of variation (R2) for these models give us the proportion of variation in each response variable 226 

attributable to spatial variation. Subtracting these values from 1 gives the amount of non-spatial 227 

variation. 228 

To determine the amount of shared variation, we used the set of 8 MEMs shared between species 229 

richness and genetic diversity (MEMSG) as predictors in the regressions below: 230 

y𝑆𝑅 ~ 𝛼 + 𝛽
1𝑆𝐺

(MEM1𝑆𝐺) + 𝛽
2𝑆𝐺

(MEM2SG) + ⋯ + 𝛽
8𝑆𝐺

(MEM8𝑆𝐺) + 𝜖 231 
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y𝐺𝐷 ~ 𝛼 + 𝛽
1𝑆𝐺

(MEM1𝑆𝐺) + 𝛽
2𝑆𝐺

(MEM2SG) + ⋯ + 𝛽
8𝑆𝐺

(MEM8𝑆𝐺) + 𝜖 232 

R2 values from these models estimate the proportion of variation in genetic diversity and species 233 

richness explained by shared spatial variation. Subtracting these values from the total spatial 234 

variation in species richness and genetic diversity gives the proportion of non-shared spatial 235 

variation. 236 

 237 

Structural equation modeling 238 

Population size data. The more individuals hypothesis is most applicable at broad spatial scales, 239 

and when considering the total number of individuals that comprise a species (Storch et al. 240 

2018). In place of census sizes for the species in our dataset, which are not consistently available, 241 

we craft our hypothesis around species’ long-term effective population sizes. The effective 242 

population size is a concept defined in population genetics as the number of individuals in an 243 

idealized population that experiences the same rate of genetic drift as the real population 244 

(Charlesworth and Charlesworth 2010). Populations lose genetic diversity to drift at a rate 245 

inversely proportional to the effective population size. Body size is routinely used as a proxy for 246 

long-term effective population size at the species level (Frankham 1996; Corbett-Detig et al. 247 

2015; Mackintosh et al. 2019; Buffalo 2021). Large bodied species that tend to have long 248 

lifespans and produce few offspring generally have smaller effective population sizes than small, 249 

fecund, short-lived species (Romiguier et al. 2014; Mackintosh et al. 2019). Thus body size 250 

measured at the species level is an imperfect, but nevertheless useful substitution for census size. 251 

We recorded adult body mass (g) for each species in our genetic dataset from the PanTHERIA 252 

database (Jones et al. 2009) and log-transformed values before analysis. There were no obvious 253 

outliers in these data.  254 
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Environmental variables. We used potential evapotranspiration as a surrogate for total ecosystem 255 

resource availability (Currie 1991; Rabosky and Hurlbert 2015). Potential evapotranspiration is 256 

an indicator of atmospheric energy availability and is one of the strongest environmental 257 

correlates of species richness in North American mammals (Currie 1991; Kreft and Jetz 2007; 258 

Fisher et al. 2011; Jiménez-Alfaro et al. 2016). As we predict, at the species level, that resource 259 

availability across a range sets the long-term effective population size, we estimated mean range-260 

wide potential evapotranspiration (mm/yr) using annual data from 1970-2000 available via the 261 

CGIAR Consortium for Spatial Information (Trabucco and Zomer 2019). For comparison, we 262 

also measured mean range-wide actual evapotranspiration, an alternative measure of resource 263 

availability, and present those results in the Supplementary Information.  264 

We quantified heterogeneity and niche availability using a 250 m resolution map of land cover 265 

types in North America (CEC et al. 2010). This map includes 19 land cover categories based on 266 

satellite imagery collected in 2010 with multiple categories of forest, shrubland, grassland, polar 267 

habitat types, wetland, cropland, barren land, built up land, and open water. Because the 268 

heterogeneity hypothesis suggests species specialize on different resources within their range, we 269 

quantified heterogeneity at sites rather than at the species level. We measured heterogeneity 270 

using Simpson’s diversity index. To assess scale dependence, we calculated Simpson’s index 271 

within four buffer zones around each site: 5000, 20000, 50000, and 100000 km2. Lastly, we 272 

quantified human disturbance at each site using human population density (CIESIN 2016) 273 

measured within a 10 km buffer following Schmidt et al. (2020a). 274 

Analysis. Structural equation modeling accommodates multiple dependent and independent 275 

variables in a model network, and directional paths connecting variables represent causal 276 
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relationships. The strengths of direct paths are regression coefficients (Shipley 2016), and 277 

indirect effects can be quantified by multiplying coefficients along paths of direct effects.  278 

We constructed a graph of our conceptual model laid out in the introduction (Fig. 1), which we 279 

then translated into a network of three linear models for body size, species richness, and genetic 280 

diversity. In it, body size is predicted by resource availability, and species richness and genetic 281 

diversity are each predicted by body size, heterogeneity, and human disturbance (Fig. 4a). We fit 282 

structural equation models using piecewiseSEM in R (Lefcheck 2016; Lefcheck et al. 2019) 283 

because this package accommodates complex model structures. We used a linear mixed-effects 284 

model with a random intercept for species to account for species-level variation in genetic 285 

diversity. PiecewiseSEM fits hierarchical models using the lme4 package (Bates et al. 2015). 286 

Body size and species richness models were initially fit as linear regressions, but residuals from 287 

both models were spatially autocorrelated at broad scales. We refit these regressions using 288 

simultaneous autoregressive models in spatialreg (Bivand et al. 2013) and this successfully 289 

removed spatial autocorrelation from the residuals. All variables were scaled and centered before 290 

analysis to obtain standardized regression coefficients, allowing us to compare the strength of 291 

relationships and the relative support for hypotheses across genetic and species levels. 292 

Our model includes variables measured at the site level (genetic diversity, species richness, 293 

heterogeneity, and human disturbance) and species level (body size, resource availability; Fig. 294 

2). This hierarchical data structure introduces spurious correlations between variables sampled at 295 

different levels that we know are not causal. For example, regressing human disturbance at sites 296 

on species body size would estimate an artefactual experiment (the size of species researchers 297 

choose to sample near cities)—not the effects of disturbance on body size. We can account for 298 

these known non-causal relationships by allowing variables to have correlated errors (Lefcheck 299 
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2016). Correlated errors indicate that a relationship exists between variables, but allow the 300 

direction of causality to be ambiguous: both could be caused by another factor not included in 301 

the model (e.g., researcher species choice). We specified correlated errors between body size and 302 

human population density, and body size and heterogeneity. 303 

The conceptual model is evaluated by testing whether additional links are needed between 304 

variables to make the proposed causal structure more consistent with the data. In piecewiseSEM, 305 

missing links are tested using tests of directed separation (Shipley 2016), where the null 306 

hypothesis is that two variables are independent conditional on other predictors in the model. A p 307 

value for the model network is obtained by testing Fisher’s C calculated from the p values 308 

summed across directed separation tests (Lefcheck 2016; Shipley 2016). A model-wide p < 0.05 309 

means the causal structure is not a good fit to the data and additional links are needed to resolve 310 

dependencies. If p > 0.05, the model is considered acceptable because we fail to reject our causal 311 

structure. This means that although we start with a focus on our conceptual model, the data can 312 

suggest the addition or removal of links and our hypotheses can be updated for future testing 313 

with new data.  314 

We assessed model fit using R2 values for each response variable in the model network. For 315 

genetic diversity, we used marginal R2 (R2
m) which measures the total variation explained by 316 

fixed effects, and conditional R2 (R2
c) which is the variation explained by both fixed and random 317 

effects. For spatial body size and species richness regressions, we report Nagelkerke pseudo-R2.  318 

 319 

Effect of heterogeneity on population divergence  320 

After detecting a negative effect of heterogeneity on intraspecific genetic diversity in our 321 

structural equation model, we performed a post hoc analysis to test whether environmental 322 
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heterogeneity also caused greater population differentiation within species. To test for 323 

differentiation we calculated population-specific FST (Weir and Goudet 2017) as a measure of 324 

genetic divergence using the hierfstat package (Goudet and Jombart 2015). Population-specific 325 

FST can be interpreted as a relative estimate of the time since a population has diverged from a 326 

common ancestor. This metric required at least 2 sampled populations in the original studies to 327 

estimate, and due to this constraint 16 sites were excluded from this analysis. We controlled for 328 

isolation-by-distance by including MEMs significantly related to FST to account for spatial 329 

structure. We scaled and centered all variables, then used a linear mixed model controlling for 330 

species differences by including it as a random effect. 331 

 332 

Results 333 

Spatial patterns in genetic diversity and species richness 334 

There was no obvious relationship between latitude and nuclear genetic diversity (Fig. 3). 335 

Similar to patterns of species richness, a longitudinal gradient in genetic diversity was the 336 

dominant pattern for North American mammals—however, it appears regions with high species 337 

richness have lower genetic diversity. We detected spatial patterns at genetic and species levels 338 

of diversity. Sixty-five percent of the total variation in species richness and 24% of variation in 339 

genetic diversity was spatially structured (Fig. 3). Variance partitioning suggested that 85% of 340 

the total spatial variation in genetic diversity, and 32% of spatial variation in species richness 341 

was accounted for by spatial patterns shared at both levels of diversity. This shared variation 342 

implies that, to an extent, neutral genetic diversity and species richness are simultaneously 343 

shaped by spatially structured environmental factors, and these shared processes account for 344 

most of the spatial variation in genetic diversity. 345 
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 346 

Joint environmental causes of genetic diversity and species richness 347 

We present results from the model using a 5000 km2 heterogeneity buffer in the main text. 348 

Results from wider heterogeneity buffers can be found in SI Tables S1-S4. Our conceptual 349 

model, updated according to tests of directed separation, fit the data well (SEM p= 0.33, Fisher’s 350 

C= 2.245; Fig. 4, Table S1). Note that for structural equation models, p > 0.05 indicates that we 351 

fail to reject our model. There was no residual spatial autocorrelation in body size and species 352 

richness model residuals, and genetic diversity model residuals were spatially autocorrelated at 353 

local scales (genetic diversity Moran’s I = 0.01). These Moran’s I values indicate very weak 354 

spatial structure in the data, and so we decided not to integrate it into our model. Positive spatial 355 

autocorrelation at such short distances is likely an artifact of irregular site locations and the 356 

hierarchical nature of the data. A lack of strong spatial autocorrelation in the model residuals 357 

suggests that the spatial structure of the diversity data was well captured by our model’s 358 

environmental covariates (Fig. S3). All predicted links in our conceptual model were supported 359 

except that between body size and species richness (Fig. 4). Tests of directed separation 360 

suggested additional direct links from resource availability to species richness, and genetic 361 

diversity to species richness (Fig. 4). Effects of heterogeneity on genetic diversity were not 362 

detectable at broader scales (Tables S2-S4). These relationships were consistent using actual 363 

evapotranspiration as an alternative measure of resource availability (Table S5). 364 

Resource availability, heterogeneity, and human disturbance, acting both directly and indirectly 365 

through species population size, explained 20% of the variation in genetic diversity. The species-366 

level variation explained by the random effect brought the total variation in genetic diversity 367 

explained by our model to 78%. The same model explained 74% of the variation in species 368 
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richness. Genetic diversity was strongly negatively related to body size. The direct effects of 369 

resource heterogeneity on species richness and genetic diversity were of similar magnitude, and 370 

directions of effects were as expected if processes associated with greater resource heterogeneity 371 

reduce population sizes, lead to increased genetic drift, and facilitate local adaptation and 372 

coexistence (Fig. 4, Table S1). However, because gene diversity is not a measure of divergence, 373 

we additionally tested whether environmental heterogeneity predicted evolutionary divergence at 374 

the population level. Heterogeneity was positively related to genetic divergence, but the effect 375 

was not significant (β = 0.06 ± 0.04 SE). Finally, human disturbance negatively affected both 376 

species richness and genetic diversity, but its effects were stronger for genetic diversity (Fig. 4, 377 

Table S1).  378 

 379 

Discussion 380 

We found striking continental spatial gradients in nuclear genetic diversity, and show that these 381 

patterns are negatively correlated with patterns of species richness in North America (Simpson 382 

1964) (Fig. 3). A considerable portion of the variation in genetic diversity and species richness 383 

patterns could be explained by just three environmental factors: resource availability, resource 384 

heterogeneity, and human disturbance. This is strong empirical evidence suggesting that genetic 385 

diversity and species richness patterns emerge, in part, from the same environmental processes.   386 

 387 

Both our maps and our structural equation model suggest that resource availability and 388 

heterogeneity interact to produce biodiversity patterns at genetic and species levels. In North 389 

America, the threshold where environmental heterogeneity presumably becomes a more 390 

important determinant of species richness than resource availability lies roughly along the US-391 
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Canada border where potential evapotranspiration reaches ~1000 mm/yr (Kerr and Packer 1997). 392 

Near this threshold is also where we see longitudinal patterns of genetic diversity emerge. 393 

Although the negative correlation between spatial patterns of genetic diversity and species 394 

richness is most apparent in species richness hotspots (particularly in the southwest), structural 395 

equation modeling incorporating both hypotheses gives us a more nuanced view of the 396 

connections between these patterns. Indeed, effects related to resource availability and 397 

heterogeneity were of similar magnitude (Fig. 4). Population size and genetic diversity increased 398 

with resource availability, and though the link between species’ long-term effective population 399 

sizes and species richness was unsupported, species richness also increased with resource 400 

availability. Moreover, we detected a positive relationship between genetic diversity and species 401 

richness as predicted if population and community size increase with resource availability. It 402 

may be that effective population size, measured using species body size, is too coarse an 403 

indicator of census population size to detect an effect on species richness at sites—if so, site-404 

level measures of genetic diversity could be a better indicator of local population sizes.  405 

 406 

Our results suggest that once a minimum energy threshold is reached, populations can afford to 407 

specialize in heterogeneous environments while maintaining viable population sizes. In this way, 408 

the interplay between ecological limits and ecological opportunity simultaneously produces 409 

biogeographic patterns in genetic diversity and species richness. This interpretation of our results 410 

assumes that an environmentally set equilibrium between speciation, immigration and extinction 411 

has been reached. There is good evidence for this in North American mammals, where 412 

diversification rates have slowed as diversity increased (Alroy 2009; Brodie 2019). However, the 413 

specific ways environments shape nuclear genetic- and species-level diversity will likely differ 414 
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across taxa and regions depending on whether or not they have reached equilibrium (e.g., 415 

Schmidt et al. 2021). Though we measure contemporary genetic diversity, historical variation in 416 

resource availability and heterogeneity likely contribute to the patterns we detect because they 417 

reflect whether populations have experienced large contractions in the recent past (Hewitt 2000). 418 

However, in the past when communities may not have been at equilibrium, it seems likely that 419 

other processes could have been the predominant drivers of biodiversity patterns. Indeed, 420 

hypotheses about species richness patterns have likely been a topic of debate for so long because 421 

several processes operating with different importance across the timeline of diversification are 422 

capable of producing gradients (Etienne et al. 2019). It has been suggested that time for 423 

speciation should be most detectable more immediately following broad-scale environmental 424 

change, and when all regions are colonized, habitats that provide more opportunities for 425 

speciation should over time become the most diverse (Pontarp and Wiens 2017). As diversity 426 

increases, diversification rates slow as regions approach equilibrium (Brodie 2019). It follows 427 

that the relative importance of evolutionary time and diversification rates as contributors to 428 

biodiversity patterns varies with time with patterns ultimately affected by variation in ecological 429 

limits (Rabosky and Hurlbert 2015; Pontarp and Wiens 2017; Storch et al. 2018).  430 

 431 

Contemporary environmental change is our chance to explore pre-equilibrium processes. Cities 432 

are the newest and most rapidly expanding biome, and it is clear that they have already 433 

profoundly affected biodiversity patterns (Palumbi 2001; WWF 2018; Schmidt et al. 2020a). At 434 

this early stage of colonization it is unlikely that urban communities have reached equilibrium, 435 

suggesting processes related to evolutionary time and diversification will predominate until more 436 

niches are occupied. Indeed, there is some evidence that following an initial extinction debt after 437 
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rapid urbanization, older cities support higher species richness (Aronson et al. 2014). Human 438 

disturbance had a negative effect on genetic diversity in our model, and also reduces gene flow 439 

in mammals (Schmidt et al. 2020a). This suggests that there is potential for population 440 

divergence and local adaptation if new urban niches are exploited and spatially varying selection 441 

is sufficiently strong in cities. The extent to which urban populations adapt to local 442 

environmental conditions is an ongoing and active field of study, and no consensus has been 443 

reached (Lambert et al. 2021). Equilibrium levels of genetic diversity and species richness in 444 

urban communities thus seem likely to strongly depend on resource availability and 445 

heterogeneity both within and across cities, but these aspects of urban environments are not yet 446 

well defined or understood (Norton et al. 2016; Des Roches et al. 2021a). 447 

 448 

Notably, the negative correlation we find between spatial patterns of species richness and nuclear 449 

genetic diversity runs opposite the relatively consistent positive correlations found between 450 

species richness and mitochondrial genetic diversity gradients (Martin and McKay 2004; Adams 451 

and Hadly 2012; Miraldo et al. 2016; Manel et al. 2020; Theodoridis et al. 2020). Mitochondrial 452 

DNA has several idiosyncrasies associated with the specific biology of mitochondria that 453 

distinguish it from genetic diversity measured with neutral nuclear DNA (Schmidt and Garroway 454 

2021). The most commonly used mitochondrial markers are the protein-coding genes 455 

cytochrome oxidase I and cytochrome b, which very likely do not evolve under neutrality 456 

(Galtier et al. 2009). Unlike neutral nuclear DNA, mitochondrial genetic diversity is not 457 

consistently related to life history, ecological traits, or census and effective population sizes 458 

(Bazin et al. 2006; Nabholz et al. 2008; James and Eyre-Walker 2020). Mitochondrial genetic 459 

diversity is thus a very different quantity than the neutral nuclear diversity estimates we use here, 460 
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and its lack of relationship with population size makes it unsuited for testing hypotheses based 461 

on ecological limits. Using genetic diversity metrics estimated from neutral nuclear DNA allows 462 

us to more directly link environments to species richness through demography, population size, 463 

and by extension, species life history traits which partly set the effective population size.  464 

 465 

Ecosystem sustainability, given environmental perturbations occurring more frequently due to 466 

human causes, depends on the resiliency of landscapes, communities, and populations (Oliver et 467 

al. 2015). Our framework and the results presented herein suggest that we can understand 468 

continental patterns of species richness and genetic diversity using two simple measures of 469 

resource availability and heterogeneity. This is potentially informative for conservation practices 470 

aiming to conserve both of these levels of biodiversity at once. Maps of neutral nuclear genetic 471 

diversity can identify regions where long-term effective population sizes may have been 472 

historically small, indicating areas where low levels of neutral genetic diversity are not 473 

necessarily of immediate conservation concern (e.g., Yates et al. 2019). However, population 474 

declines due to recent human disturbance in areas with historically low genetic diversity may 475 

warrant specific attention. Furthermore, designing protected area networks based on species 476 

richness to maintain beta diversity, or variation between sites (Bush et al. 2016; Socolar et al. 477 

2016), will likely also capture differentiated populations with complementary genetic 478 

compositions. The connections between environments, species richness, and genetic diversity we 479 

find here suggest we should be able to make informed decisions for the joint conservation of 480 

species and genetic diversity with knowledge of few environmental parameters. 481 

 482 
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Table 1. Data summary. Summary of aggregated raw genetic data: mean gene diversity, mean number of loci, median number of 702 

individuals at sites per species. Species mass (kg); species richness = mean species richness at sites; energy = mean potential 703 

evapotranspiration across species’ ranges (mm/yr), heterogeneity = mean land cover diversity (Simpson’s Index) within a 5,000 km2 704 

zone around a site; human population = mean human population density across sites. Ranges of values are given in parentheses for 705 

species with multiple sample sites. 706 

Species (# sites) Gene diversity # loci # Individuals Mass 
Species 

richness Energy Heterogeneity Human population 

Alces alces (2) 0.47 (0.43–0.51) 10 44.5 (40–49) 481 34.5 (34–35) 694.5 0.81 (0.78–0.84) 134.79 (1.45–268.14) 

Antilocapra americana (1) 0.67 19 175 46.9 63 1615.39 0.73 3.42 

Bison bison (8) 0.47 (0.43–0.51) 29 26.5 (7–31) 620 47.62 (32–69) 745.94 0.68 (0.4–0.82) 1.3 (0.52–3.42) 

Canis latrans (41) 0.77 (0.69–0.82) 10 7 (5–10) 12 48.39 (40–55) 1039.97 0.7 (0.27–0.85) 134.92 (1.54–1463.37) 

Canis lupus (1) 0.66 12 62 35 44 642.5 0.78 5.85 

Glaucomys volans (8) 0.75 (0.65–0.81) 7 18.5 (6–120) 0.07 49.12 (47–51) 1287.09 0.68 (0.58–0.8) 7.31 (1.04–33.59) 

Lasionycteris noctivagans (1) 0.83 18 87 0.01 53 1252.72 0.71 2.4 

Lasiurus cinereus (1) 0.88 19 132 0.03 53 1126.83 0.71 2.4 

Leopardus pardalis (2) 0.47 (0.36–0.58) 10 35 (28–42) 11.9 51 (49–53) 2287.6 0.77 (0.76–0.77) 27.12 (18.73–35.51) 

Lepus americanus (39) 0.66 (0.48–0.76) 8 15 (7–100) 1.57 50.44 (2–73) 750.2 0.65 (0.27–0.81) 79.95 (0.69–2711.29) 

Lynx canadensis (33) 0.72 (0.46–0.75) 14.15 (14–15) 26 (13–328) 9.77 43.82 (6–50) 655.47 0.73 (0.61–0.81) 4.59 (1.04–56.48) 

Lynx rufus (65) 0.73 (0.56–0.79) 14.37 (9–17) 27 (7–141) 6.39 55.6 (33–81) 1459.73 0.62 (0.19–0.83) 189.69 (1.04–3540.4) 

Martes americana (29) 0.63 (0.54–0.67) 12 22 (11–47) 0.88 45.86 (42–50) 709.47 0.73 (0.65–0.79) 1.21 (0.69–2.27) 

Mephitis mephitis (1) 0.81 9 345 2.4 53 1230.39 0.73 34.19 

Microdipodops megacephalus (3) 0.78 (0.73–0.82) 11 62 (49–69) 0.01 64.33 (59–70) 1780.52 0.45 (0.37–0.56) 1.04 (1.04–1.04) 

Microdipodops pallidus (2) 0.73 (0.73–0.73) 10 52.5 (42–63) 0.01 59 (58–60) 2045.67 0.25 (0.24–0.27) 1.04 (1.04–1.04) 

Myotis lucifugus (65) 0.83 (0.72–0.9) 9.2 (8–11) 33 (11–167) 0.01 44.45 (32–66) 971.21 0.75 (0.21–0.86) 25.96 (0–493.88) 

Myotis septentrionalis (15) 0.87 (0.85–0.88) 5 54 (34–110) 0.01 42.13 (41–43) 952.73 0.82 (0.74–0.85) 16.05 (1.04–123.03) 

Odocoileus hemionus (67) 0.62 (0.2–0.72) 10.55 (10–18) 29 (7–262) 83.8 57.72 (2–87) 1356.11 0.61 (0.08–0.84) 36.97 (0.83–1213.54) 

Odocoileus virginianus (64) 0.81 (0.76–0.84) 14 32.5 (10–79) 75 48.95 (46–52) 1243.86 0.55 (0.32–0.74) 57.42 (6.13–351.21) 

Oreamnos americanus (1) 0.52 22 102 71.3 37 743.39 0.79 2.06 

Otospermophilus beecheyi (3) 0.75 (0.72–0.78) 11 61 (40–104) 0.6 64.33 (57–69) 1634.31 0.6 (0.54–0.71) 6.18 (3.08–9.03) 

Ovis canadensis (16) 0.61 (0.48–0.67) 40.12 (16–210) 42.5 (10–276) 74.6 49.5 (44–63) 1553.5 0.38 (0.15–0.73) 1.27 (1.04–3.42) 

Pekania pennanti (34) 0.62 (0.52–0.66) 16 20.5 (7–48) 3.75 45.56 (3–51) 808.85 0.65 (0.25–0.8) 130.82 (0–2620) 
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Peromyscus leucopus (36) 0.82 (0.75–0.87) 13.19 (10–18) 20 (5–38) 0.02 44.83 (12–53) 1475.67 0.63 (0.3–0.83) 2412.04 (4.86–10000) 

Peromyscus maniculatus (10) 0.77 (0.75–0.8) 10.9 (10–11) 12.5 (6–31) 0.02 48.3 (47–51) 1139.04 0.75 (0.62–0.83) 9.44 (1.04–62.41) 

Procyon lotor (1) 0.84 10 330 6.37 51 1330.93 0.69 68.91 

Puma concolor (13) 0.48 (0.33–0.58) 33.62 (10–46) 51 (21–739) 53.9 61.77 (50–82) 1561.58 0.64 (0.43–0.85) 104.17 (1.04–691.74) 

Rangifer tarandus (82) 0.77 (0.45–0.87) 16.96 (14–21) 24 (5–283) 108 40.26 (5–63) 546.54 0.65 (0.28–0.83) 1.11 (0.69–5.11) 

Sylvilagus transitionalis (3) 0.42 (0.32–0.47) 10 48 (6–103) 0.81 50.33 (50–51) 1070.02 0.75 (0.7–0.8) 161.12 (43.25–244.49) 

Tamiasciurus douglasii (14) 0.65 (0.58–0.72) 9 10.5 (7–24) 0.22 65 (54–70) 1237.95 0.6 (0.53–0.82) 7.76 (1.04–93) 

Tamiasciurus hudsonicus (12) 0.66 (0.48–0.77) 9 11 (5–48) 0.2 62.58 (54–68) 804.72 0.61 (0.49–0.73) 1.71 (1.04–5.6) 

Taxidea taxus (12) 0.73 (0.43–0.82) 17.33 (12–20) 34.5 (19–649) 7.84 49.25 (39–56) 1403.56 0.59 (0.25–0.81) 44.68 (1.04–297.98) 

Ursus americanus (43) 0.72 (0.32–0.82) 15 (8–20) 18 (5–2444) 111 51.35 (0–86) 791.39 0.7 (0.23–0.84) 50.31 (0.52–1065.89) 

Ursus arctos (19) 0.67 (0.51–0.77) 9.89 (8–20) 48 (14–729) 196 36.68 (1–68) 568.29 0.6 (0.22–0.75) 1.25 (1.04–5.11) 

Ursus maritimus (35) 0.69 (0.56–0.8) 15.09 (8–24) 31 (6–1050) 375 9.17 (2–33) 369.94 0.55 (0.27–0.76) 0.82 (0–1.04) 

Vulpes lagopus (3) 0.72 (0.68–0.78) 9 28 (8–42) 3.6 25 (22–27) 455.51 0.73 (0.72–0.75) 1.04 (1.04–1.04) 

Vulpes vulpes (16) 0.65 (0.53–0.74) 11.44 (8–13) 30 (9–116) 4.84 44.81 (24–54) 836.89 0.71 (0.39–0.83) 882.65 (1.04–3667.27) 
 707 
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 708 

Fig. 1. Framework integrating genetic diversity into ecological limits hypotheses. We focus on 709 

two major ecological limits pathways which stem from resource availability (the more 710 

individuals hypothesis) and resource heterogeneity. Under the more individuals hypothesis, 711 

resource availability across a species range positively affects species’ long-term effective 712 

population sizes (1). Nuclear genetic diversity increases with the effective population size (2). If 713 

population size is regulated by resource availability, it will be positively associated with 714 

community size and thus species richness (3). In heterogeneous environments, populations and 715 

species specialize to different niches but have smaller population sizes (4). Specialization 716 

reduces gene flow (5) and enhances species’ ability to coexist (6). Human land transformation 717 

reduces wildlife habitat (7) and gene flow among populations (8). 718 

  719 
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 720 

Fig. 2. Methodological workflow detailing data sources and our series of analyses. For structural 721 

equation models, variables were either measured at each of 801 sample sites for which genetic 722 

diversity data was available, or at the species level (n = 38 species).723 
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 724 

Fig. 3. Spatial patterns of biodiversity and environmental factors. (Top row) Locations of 801 North American mammal populations 725 

for which raw microsatellite data was available in public repositories. Point color indicates predicted values of genetic diversity and 726 

species richness based on spatial patterns detected in the data. The variation partitioning plot shows the proportion of variation in 727 

genetic diversity and species richness which can be explained by spatial factors. Spatial variation is further broken down into shared 728 
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and non-shared spatial variation. (Bottom row) Major environmental features of North America. Note land cover is categorical and 729 

colors represent different types. Elevation is shown for reference, but was not included in our models. 730 

 731 
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Fig. 4. Structural equation models. (a) Our conceptual hypothesis network, modified from Figure 

1 to accommodate variables measured at species and site levels. Single-headed arrows represent 

unidirectional relationships between variables. Grey double-headed arrows indicate variables 

with correlated errors that were excluded from model evaluation (see Methods). (b) Structural 

equation model results. Green and black lines are positive and negative relationships, 

respectively, and the grey line is an unsupported link. Line widths reflect partial regression 

coefficients, which are listed for each path with standard errors. R2 values are the amount of 

variation explained for each response variable. Genetic diversity was fit with a random effect for 

species: R2
m is the variation explained by fixed effects only, and R2

c is the variation explained by 

fixed and random effects. 
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Supplementary Information for: Genetic and species-level biodiversity patterns are linked by 

demography and ecological opportunity 

 

Includes: 

Figures S1-S3 

Tables S1-S5 
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Figure S1. Plot of gene diversity vs. sample size. Gene diversity as a metric of genetic diversity 

depends on allele frequencies and is minimally affected by sample size. Larger populations have 

more rare alleles, which contribute little to gene diversity.
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Figure S2. Maps of raw genetic diversity (gene diversity) and species richness data for each site. Clear gradients are visible in species 

richness but not genetic diversity. This is because most (65%) variation in species richness was spatial, in contrast to genetic diversity 

where comparatively less (24%) variation was spatially structured (Fig. 3).  
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Figure S3. Correlation coefficients for spatial patterns (MEMs) and environmental variables measured at the site level: potential 

evapotranspiration (PET), land cover diversity, and human population density. MEMs describe spatial patterns in genetic diversity, 

species richness, or both (shared spatial patterns). MEMs are ordered from broad (MEM1) to fine scale (MEM194) patterns. Strong 

correlations indicate that environmental variables included in structural equation models account for broad scale spatial patterns 

present in genetic diversity and species richness.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 4, 2021. ; https://doi.org/10.1101/2020.06.03.132092doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.132092


40 

 

Table S1. Path coefficients and standard errors for structural equation model presented in main 1 

text (Fisher’s C = 2.25, p = 0.33, 2 degrees of freedom). Heterogeneity is measured within 5000 2 

km2 of a site. 3 

 Response Predictor Estimate ± SE 

genetic diversity human population density -0.16 ± 0.03 

genetic diversity body size -0.56 ± 0.15 

genetic diversity heterogeneity  -0.06 ± 0.02 

body size PET -0.17 ± 0.03 

species richness body size 0.02 ± 0.02 

species richness heterogeneity 0.05 ± 0.02 

species richness human population density -0.05 ± 0.02 

species richness PET 0.04 ± 0.02 

species richness genetic diversity 0.06 ± 0.02 

Correlated errors  Partial correlation coefficient 

body size human population density 0.10* 

body size heterogeneity -0.02 

  4 
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Table S2. Path coefficients and standard errors for structural equation model; heterogeneity is 5 

measured within 20000 km2 of a site (Fisher’s C = 2.09, p = 0.35, 2 degrees of freedom). 6 

 Response Predictor Estimate ± SE 

genetic diversity human population density -0.16 ± 0.03 

genetic diversity body size -0.57 ± 0.15 

genetic diversity heterogeneity  -0.04 ± 0.03 

body size PET -0.17 ± 0.03 

species richness body size 0.02 ± 0.02 

species richness heterogeneity 0.06 ± 0.02 

species richness human population density -0.05 ± 0.02 

species richness PET 0.05 ± 0.02 

species richness genetic diversity 0.06 ± 0.02 

Correlated errors  Partial correlation coefficient 

body size human population density 0.10* 

body size heterogeneity -0.03 
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Table S3. Path coefficients and standard errors for structural equation model; heterogeneity is 8 

measured within 50000 km2 of a site (Fisher’s C = 1.78, p = 0.41, 2 degrees of freedom).  9 

 Response Predictor Estimate ± SE 

genetic diversity human population density -0.17 ± 0.03 

genetic diversity body size -0.57 ± 0.15 

genetic diversity heterogeneity  0.00 ± 0.03 

body size PET -0.17 ± 0.03 

species richness body size 0.02 ± 0.02 

species richness heterogeneity 0.06 ± 0.02 

species richness human population density -0.06 ± 0.02 

species richness PET 0.05 ± 0.02 

species richness genetic diversity 0.06 ± 0.02 

Correlated errors  Partial correlation coefficient 

body size human population density 0.10* 

body size heterogeneity -0.03 

 10 
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Table S4. Path coefficients and standard errors for structural equation model; heterogeneity is 12 

measured within 100000 km2 of a site (Fisher’s C = 1.54, p = 0.46, 2 degrees of freedom).  13 

 Response Predictor Estimate ± SE 

genetic diversity human population density -0.18 ± 0.03 

genetic diversity body size -0.56 ± 0.15 

genetic diversity heterogeneity  0.04 ± 0.03 

body size PET -0.17 ± 0.03 

species richness body size 0.02 ± 0.02 

species richness heterogeneity 0.05 ± 0.02 

species richness human population density -0.05 ± 0.02 

species richness PET 0.04 ± 0.02 

species richness genetic diversity 0.06 ± 0.02 

Correlated errors  Partial correlation coefficient 

body size human population density 0.10* 

body size heterogeneity -0.03 

 14 
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Table S5. Path coefficients and standard errors for structural equation model using actual 16 

evapotranspiration (AET) as a measure of resource availability. Heterogeneity is measured 17 

within 5000 km2 of a site (Fisher’s C = 0.53, p = 0.77, 2 degrees of freedom). Genetic diversity 18 

R2
m = 0.20; R2

c = 0.78; body size R2 = 0.48; species richness R2 = 0.74. 19 

 Response Predictor Estimate ± SE 

genetic diversity human population density -0.16 ± 0.03 

genetic diversity body size -0.56 ± 0.15 

genetic diversity heterogeneity  -0.06 ± 0.02 

body size AET -0.33 ± 0.03 

species richness body size 0.03 ± 0.02 

species richness heterogeneity 0.04 ± 0.02 

species richness human population density -0.05 ± 0.02 

species richness AET 0.05 ± 0.02 

species richness genetic diversity 0.05 ± 0.02 

Correlated errors  Partial correlation coefficient 

body size human population density 0.09* 

body size heterogeneity -0.01 

 20 
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