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  Abstract

Word count: 206

 

Knowledge about the hematopoietic niche has evolved considerably in recent years, in particular through in vitro analyzes, mouse
models and the use of xenografts. Its complexity in the human bone marrow, in particular in a context of hematological
malignancy, is more difficult to decipher by these strategies and could benefit from the knowledge acquired on the niches of solid
tumors. Indeed, some common features can be suspected, since the bone marrow is a frequent site of solid tumor metastases.
Recent research on solid tumors has provided very interesting information on the interactions between tumoral cells and their
microenvironment, composed notably of mesenchymal, endothelial and immune cells. This review thus focuses on recent discoveries
on tumor niches that could help in understanding hematopoietic niches, with special attention to 4 particular points: i) the
heterogeneity of carcinoma/cancer-associated fibroblasts (CAFs) and mesenchymal stem/stromal cells (MSCs), ii) niche cytokines and
chemokines, iii) the energy/oxidative metabolism and communication, especially mitochondrial transfer, and iv) the vascular niche
through angiogenesis and endothelial plasticity. This review highlights actors and/or pathways of the microenvironment broadly
involved in cancer processes. This opens avenues for innovative therapeutic opportunities targeting not only cancer stem cells but
also their regulatory tumor niche(s), in order to improve current antitumor therapies.

   

  Contribution to the field

The microenvironment has a key role in tumor development. Complementary and synergistic to the many existing reviews
focusing on the tumor immune microenvironment, this review proposes to synthesize recent knowledge on the key structural
players in the niches of both solid tumors and hematological malignancies through an integrative and comparative approach
centered on i) the heterogeneity of carcinoma/cancer-associated fibroblasts (CAFs) and mesenchymal stem/stromal cells (MSCs), ii)
niche cytokines and chemokines, iii) the energy/oxidative metabolism and communication, especially mitochondrial transfer, and
iv) the vascular niche through angiogenesis and endothelial plasticity.
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ABSTRACT 

 

Knowledge about the hematopoietic niche has evolved considerably in recent years, in particular through in 

vitro analyzes, mouse models and the use of xenografts. Its complexity in the human bone marrow, in 

particular in a context of hematological malignancy, is more difficult to decipher by these strategies and 

could benefit from the knowledge acquired on the niches of solid tumors. Indeed, some common features 

can be suspected, since the bone marrow is a frequent site of solid tumor metastases. Recent research on 

solid tumors has provided very interesting information on the interactions between tumoral cells and their 

microenvironment, composed notably of mesenchymal, endothelial and immune cells. This review thus 

focuses on recent discoveries on tumor niches that could help in understanding hematopoietic niches, with 

special attention to 4 particular points: i) the heterogeneity of carcinoma/cancer-associated fibroblasts 

(CAFs) and mesenchymal stem/stromal cells (MSCs), ii) niche cytokines and chemokines, iii) the 

energy/oxidative metabolism and communication, especially mitochondrial transfer, and iv) the vascular 

niche through angiogenesis and endothelial plasticity. This review highlights actors and/or pathways of the 

microenvironment broadly involved in cancer processes. This opens avenues for innovative therapeutic 

opportunities targeting not only cancer stem cells but also their regulatory tumor niche(s), in order to 

improve current antitumor therapies. 
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INTRODUCTION 

 

The bone marrow (BM) is the site where hematopoietic stem cells (HSCs) sustain hematopoiesis after birth 

and all lifelong in mammals. From early progenitors to committed subsets of myeloid and lymphoid 

lineages, proliferation and differentiation mechanisms have been extensively studied. They were shown 

early on, through the use of in vitro cultures, to be controlled by cells from the BM microenvironment (1,2) 

comprising mesenchymal stem/stromal cells (MSCs), endothelial cells (ECs) and macrophages (3). Since 

the beginning of the 2000’s, the identity and organization of BM niches supporting hematopoiesis have been 

extensively studied through the use of reporter mouse models (reviewed in (4,5)). Furthermore, the 

heterogeneity of BM MSCs and ECs has recently been approached by single-cell RNA sequencing, which 

has confirmed the presence of multiple subpopulations within these two cell types (6–10). Beside this 

heterogeneity of the BM microenvironment, it is now moreover clear that the “one progenitor/one niche” 

rule does not prevail. Indeed, a single niche can support not only hematopoietic subsets at distinct 

developmental stages, but also mature immune cells homing back to the BM (5,10). 

Because of the contained location of the BM, knowledge on human hematopoietic niches is more 

limited even if strong similarities could be observed with mice (10–12). For the same reason, the nature of 

human leukemic niches and the molecular mechanisms regulated by/within them are still unclear and results 

strongly rely on in vitro cultures or on observations obtained in syngeneic or xenograft mouse models 

(reviewed in (13,14)). Furthermore, the immune microenvironment in tumoral BM is also poorly resolved 

and despite the tremendous progress that came with the use of immunotherapies, resistance and relapse in 

acute leukemia still concern many patients. Lessons could be learned from solid tumors for which the easier 

study of microenvironment (i.e., after surgery) has led to important advances. As in hematopoietic 

malignancies, a complex crosstalk exists between the tumor and the non-malignant cells in its 

microenvironment. Interestingly, BM is a haven not only for normal and pathological hematopoietic cells 

from the periphery, but also for metastatic cells from solid tumors, indicating that at least some properties 

or components of the tumor microenvironment must be shared between hematopoietic and solid tumors. 
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Tumor development depends on a multidirectional crosstalk between tumor cells, mesenchymal/ 

endothelial cells and immune cells. The immune landscape and modulation of immune responses exerted 

by tumor cells, directly or through systemic disruption, have been extensively studied (15–17). In this 

review, we propose to confront and combine the knowledge gained on stromal/endothelial niches of 

leukemic and solid tumors by focusing on the BM as a common niche. 

 

HETEROGENEITY OF CAFs / MSCs 

 

The term "mesenchymal" is widely spread in the literature to designate stromal cells from the 

microenvironment of many tissues. MSCs are stromal cells able to adhere in vitro to plastic and spread on 

culture plates as spindle-cells or fibroblast-like cells. Specific MSC shapes are associated with 

differentiation, for instance rounded MSCs during adipogenic differentiation (18). MSCs are characterized 

by a specific pattern of surface markers. Namely, they express CD105, CD73, CD90 and CD146 in the 

absence of CD45, CD34, CD14, CD11b, HLA-DR and lymphocyte-lineage markers. MSCs secrete 

components of the extracellular matrix (e.g. collagens, heparan sulphate, elastin, aggrecan) and 

metalloproteinases as well as a large variety of mitogenic growth factors, cytokines, chemokines and 

angiogenic factors (19). These cells have also retained the ability to differentiate into osteoblasts, 

chondroblasts and adipocytes (20). However, inconsistent definitions of MSCs and varying isolation and 

culture conditions have resulted in highly diverse outcomes and confusing data (21,22). The mesenchyme 

does not constitute a lineage but is an embryonic tissue able to give rise to connective tissue, blood vessels 

and blood cells that can have different embryonic origins. Therefore, there are no common MSCs in adult 

tissues, reflecting the fact that the nature and properties of the globally termed “MSCs” likely represent 

different cellular entities (21,22). Since their initial definition in the early 1990’s (23), the properties of 

MSCs have been largely explored and debated, even with an attempt at establishing a molecular signature 

(24). However, a consensus on the definition and use of the term “MSC” is unlikely to be reached. Indeed, 
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with the major improvement of “omic” technological tools in the past years, in particular at the single-cell 

level, it has become quite obvious that MSCs encompass different subpopulations and states of stromal cells 

and even fibroblasts. The recent molecular mapping of murine BM niche populations, under homeostatic 

conditions, by single-cell RNA sequencing, clearly demonstrated a great cellular heterogeneity of BM 

stromal cells (6–8,10). This heterogeneity was also identified in human MSCs (from umbilical cord), among 

which two groups were separated based on differentially expressed genes, including CD73. The first group 

is characterized by an enriched expression of genes involved in immune response/regulatory activities, 

muscle cell proliferation and differentiation, stemness and oxidative stress. The second presents a higher 

expression of genes involved in extracellular matrix production, osteoblast and chondrocyte differentiation, 

and bone and cartilage growth (25). 

In a malignant context, and more particularly in acute myeloid leukemia (AML), the most recent 

studies report functional abnormalities of human MSCs, which have a significant impact on the 

aggressiveness of the disease. Among these anomalies, growth deficiency, altered osteogenic differentiation 

ability and reduced capacity to support hematopoietic cells (26–31) have been described, as well as 

modifications of the secretome (28,32), which induce in vivo shaping of the stromal niche by leukemic cells 

(33). Moreover, single cell analyses of murine BM stromal cells recently revealed that leukemia remodels 

the BM stroma to the disadvantage of normal hematopoietic cells. This notably involves a blockade of the 

osteoblastic development, as well as of the pathway of bone morphogenetic proteins (BMPs), including 

Bmp4. It also induces a decreased expression of Cxcl12 and Kitl by leptin receptor expressing 

osteoprogenitors that regulate HSCs (7) (Figure 1). 

All solid tumors contain non-tumor stromal supporting cells which are also called tumor-associated 

stromal cells. In carcinomas, they are well-known as cancer-associated fibroblasts (CAFs). Heterogeneity 

of tumor-associated stromal cells between tumors and, more recently, within a single tumor, has been 

disclosed, essentially through flow-cytometry, sorting and single-cell RNA sequencing. Their role in tumor 

progression is still explored with the use of mouse models. In line with such analyzes, four CAF subsets 

have been identified in breast and ovarian cancers by combining the study of distinct CAF markers, 
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including the fibroblast activation protein (FAP), smooth-muscle α-actin (SMA) and integrin β1 (CD29) 

(34–37). Two subsets have also been detected in healthy tissues, reminiscent of normal fibroblasts, while 

two myofibroblastic subsets (FAPHigh SMAHigh CD29Med-High and FAPNeg SMAHigh CD29High) appear to be 

restricted to tumors (Figure 1). These CAF subsets are respectively characterized by their secretion and 

organization of extracellular matrix (ECM) components, in particular types 1, 3 and 6 collagen, and by a 

perivascular contractile gene signature (34,35,37). Importantly, the association of the FAPHigh SMAHigh CAF 

subset with poor outcome has been validated by different laboratories in mouse models, as well as in some 

types of human carcinoma (38–42), highlighting its relevance in distinct species and cancer types. 

Consistent with their accumulation in aggressive carcinomas, FAPHigh SMAMed High CAFs favor 

metastatic spread in breast and ovarian cancers by directly interacting with cancer cells, and the highly 

contractile FAPLow SMAHigh CAFs promote cancer cell invasion in 3-dimensions by remodeling the 

surrounding ECM (34–37,43–45). Osteosarcoma-associated stromal cells have been characterized by MSC 

markers and SMA expression, like their healthy counterparts, but with a higher osteoblastic potential and 

an increase in lung metastases in mouse models (46). Mimicking the acidity of tumor microenvironment 

has been shown to lead osteosarcoma-associated MSCs to acquire an inflammatory phenotype, with an 

increased secretion of IL-6 and CXCL8. Such conditions also promoted the stemness of osteosarcoma cells 

(47). By contrast, healthy MSCs did not modify the quiescent state of osteosarcoma cells (48). 

Osteosarcoma-associated MSCs were moreover shown to promote not only the invasiveness of 

osteosarcoma cells, but also angiogenesis through the activation, proliferation and/or differentiation of ECs 

(49). 

Myofibroblastic CAFs (SMA+) secrete type-I collagen that can modulate immune cells. In a mouse 

model of pancreatic adenocarcinoma, it was recently demonstrated that the reduction of total type-I collagen 

secreted by CAFs accelerated the emergence of carcinoma. This was shown to be due to an upregulation of 

the chemokine CXCL5 (see next section) in cancer cells, leading to the recruitment of myeloid-derived 

suppressor cells (MDSCs) and impairment of CD8+ cytotoxic T-cells (50). Conversely, the secretion of 
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matrix metalloproteinases (MMPs) can favor tumor cell mobility across collagen fibers and inhibit immune 

cell activity. Melanoma-associated fibroblasts have thus been described as negative immuno-modulators, 

through the secretion of MMPs decreasing tumor cell lysis by natural killer (NK) cells (51). The ECM 

composition can be modified by the protease activity of FAP, which is expressed by tumor and stromal cells 

in many human carcinomas and sarcomas (43,52,53). Consistent with these observations, FAPHigh SMA+ 

CAFs have been identified in aggressive carcinomas to exhibit immunosuppressive activities (43,44). 

Indeed, FAPHigh CAFs are associated with immunosuppression and resistance to immunotherapies in mouse 

models (37,54,55). Interestingly, the FAPHigh SMA+ CAF subset promotes immunosuppression by increasing 

the infiltration of regulatory T lymphocytes (Treg) in human cancers (34,35). Within the FAPHigh CAF 

subpopulation, two distinct subsets exhibiting either an ECM-producing myofibroblastic phenotype 

(myCAF) or an inflammatory profile (iCAF) were recently identified in different types of cancers (56–60). 

Importantly, recent single cell sequencing of FAPHigh CAFs from breast cancer cells allowed identifying 

eight different FAPHigh cellular clusters (59). Three of them were further shown to be specifically associated 

with resistance to immunotherapy in metastatic melanoma and in non-small cell lung cancer patients (59). 

Taken together, these findings highlight the existence of a network of numerous CAF and MSC 

subpopulations in solid tumors and underline their relevance in various cancer types and across species. 

 

NICHE CYTOKINES AND CHEMOKINES 

 

The BM is a major location where hematological malignancies affecting myeloid or lymphoid lineages 

develop and is also an important site of metastasis for solid tumors, especially breast, prostate, and lung 

cancers (61,62). The engraftment of metastatic cells from solid tumors into the BM can generate secondary 

tumors with either osteoblastic properties, notably in early stages of metastasis of prostate cancer, or 

osteolytic properties in the case of breast cancer (63–65). Osteoblastic lesions correspond to an increased 

bone mass at the lesion site whereas osteolytic lesions lead to a destruction of the bone structure. In the case 

of prostate cancer, there is a preferential accumulation of cancer cells in the lateral rather than medial 
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endocortical bone region. This former area is enriched in osteoblasts, which could explain this phenomenon 

(66). The segregation of bone metastasis location between prostate and breast cancers has been extensively 

studied. Although this differential tropism is still not completely understood, there is a consensus about the 

involvement of chemokines in this phenomenon. The activity of chemokines depends on their receptors, a 

family of G protein-coupled seven-transmembrane-spanning molecules. Chemokines are versatile secreted 

factors critically required to drive the migration of immune and non-immune cells, notably within lymphoid 

organs including the BM. Depending on the targeted cell type, they can foster an effective anti-tumor 

immune response or conversely contribute to a pro-tumorigenic microenvironment. Early work from 

Zlotnik’s lab has shown that high production of the chemokine CXCL12 (SDF-1) by the BM is sufficient 

to attract breast cancer cells expressing CXCR4, one of the cognate receptors of CXCL12 (67) (Figure 1). 

CXCR4 and CXCL12 are also critical for the homeostasis of the BM ecosystem, with a key role in 

controlling the production and mobilization of hematopoietic stem/progenitor cells (HSPCs) (68,69). 

Indeed, in the BM, HSPC niches are thought to be composed of perivascular stromal units associated with 

sinusoids and arterioles as reviewed recently (70). In particular, many studies have shown that a population 

of MSCs termed CXCL12-abundant reticular (CAR) cells overlaps with leptin receptor (LepR)-expressing 

cells. These CAR cells constitute a major component of HSPC niches by their capacities to produce such 

niche factors as CXCL12, SCF and IL-7. Similar stromal cells with salient features of CAR cells have been 

identified in human adult BM (71,72). In line with these findings, the CXCL12/CXCR4 axis is key in 

immunosuppression and metastatic spread in solid tumors, through reciprocal crosstalk between FAPHigh 

CAFs and regulatory T cells (Tregs), as well as FAPHigh CAFs and cancer cells, respectively (24,25,27). In 

addition to CXCR4 and CXCL12, numerous studies have shown that chemokines act at different levels in 

the progression of the primary tumor, modulating both tumor cell proliferation, apoptosis, invasion, 

angiogenesis, recruitment of immune cells and resistance to chemotherapy (73–77). It appears clearly that 

some kind of "chemokine storm" and sustained inflammation take place in the primary tumor. This comforts 

the notion of a complex interplay between cancer cells, cells from the tumor microenvironment (including 

CAFs, MSCs and ECs) and a variety of immune cells, such as macrophages, B- and T- lymphocytes, NK 
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cells, neutrophils and dendritic cells (74,76,78). The final outcome of the tumor with either sustained 

resistance of the host or immune escape of the tumor will depend on these interactions.  

Within the tumor microenvironment, MSCs are interesting for multiple reasons. First, as stated 

above, these cells are highly present in the BM but can also be found at lower levels elsewhere such as in 

adipose tissue, lung or umbilical cord blood. They are moreover detected in multiple types of primary solid 

tumors (e.g., breast, ovarian, pancreatic cancers) (79–82). Several studies have shown that BM or adipose 

MSCs (called adipose-derived stromal cells (ADSCs)) have a particular tropism for primary tumors (82,83). 

MSCs can either favor or inhibit primary tumor growth and metastasis (79,82,84–86)s. Recent evidence has 

also shown that the nature of tumor cells, in particular their low or high aggressiveness, dictates the type of 

interactions with MSCs and notably the production of multiple chemokines and prostaglandin E2 upon 

release of IL-1β by tumor cells. In turn, chemokines produced by MSCs can stimulate the invasiveness and 

potentially metastatic ability of tumor cells (82,87,88). Finally, with BM metastasis of solid tumors, 

interactions become possible with the other niches of BM MSCs. This interaction might favor a release of 

new MSCs from the BM to colonize primary tumors but may also affect the properties of MSCs themselves, 

notably by turning them into CAFs (82). 

As stated above, growing tumors establish a chronic state of inflammation that acts locally but also 

systemically. The BM responds to these stress signals by remodeling the stromal landscape and expanding 

myeloid cells endowed with anti-inflammatory/immunosuppressive functions, further sustaining tumor 

progression. Several studies have reported that distant solid or diffuse tumors interfere with hematopoiesis 

and immune regulation within the BM. Primary breast tumors have thus been shown to generate systemic 

signals that mobilize BM-derived cells promoting tumor growth and dissemination. Tumor-derived factors 

also interfere with BM myelopoiesis, increasing the generation of granulocytic-MDSC (89,90). In a 

spontaneous model of mammary carcinogenesis, Colombo’s lab revealed modifications of the 

representation of CXCL12-expressing BM-derived MSCs and CXCR4-expressing myeloid cells (91). Such 

changes in the hematopoietic compartment occurred as early as at preinvasive disease stages and were 

concomitant with a deregulation of circulating miRNAs. In addition, extracellular vesicles (EVs) produced 
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by follicular lymphoma B-cells have been shown to promote the polarization of BM-derived MSCs to 

secrete such factors as CXCL12 that could constitute in turn a BM follicular lymphoma permissive stromal 

niche (92). In AML xenografts, blast-derived EVs convey endoplasmic reticulum stress in vivo to the 

animal’s BM stroma. This drives a subsequent osteo-differentiation of MSCs through the incorporation and 

cell-cell transfer of BMP2 by AML-derived EVs, promoting BM niche remodeling (93). Conversely, many 

studies provide compelling evidence that the BM can sense distant tissue transformation at 

premalignant/preinvasive stages and influence cancer progression. Bone-making osteoblasts have the 

capacity to impact distant cancer progression outside the skeleton in such tumors as melanoma, lung, and 

breast carcinomas. CXCL12 might constitute one of the systemic bone-derived factors that would directly 

promote breast cancer cell proliferation and metastasis (94). Other studies indicate that cells of the 

osteoblast-lineage control cancer progression in the same tumor types at least in part by mobilizing tumor-

promoting myeloid cells (95,96). Finally, BM remodeling could be beneficial or detrimental, depending on 

the nature of targeted hematopoietic cells, i.e., healthy vs. malignant. For instance, Belkaid's lab recently 

showed that dietary restriction promoted memory T-cell accumulation in the BM. This was coordinated by 

glucocorticoids and associated with BM remodeling that involved an increase in such niche factors as 

CXCL12, erythropoiesis and adipogenesis. Consequently, this was associated with enhanced protection 

against infections and tumors (97). This work suggests a strategy to optimize immunological memory during 

nutritional challenges involving a spatiotemporal reorganization of the BM. Unfortunately, the safe haven 

of the BM can also be remodeled by malignant cells to disturb normal hematopoiesis. For instance, AML 

can shape the BM landscape to support malignant growth at the expense of normal hematopoiesis. Indeed, 

AML onset impaired osteogenesis as well as the production of such hematopoietic factors as CXCL12 (7). 

Likewise, altered cytokine expression such as a decrease of CXCL12 production in the BM of a mouse 

model of chronic myelogenous leukemia (CML) conferred a growth advantage to leukemia stem cells 

(LSCs) over normal stem cells (98). Finally, CXCL12 deletion from MSCs reduced normal HSC numbers 

but promoted LSC expansion and their elimination by tyrosine kinase inhibitor treatment (99). These 
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findings are consistent with cancer cells impairing normal hematopoiesis and provide a foundation for 

developing stromal-based therapies. 

The relevance of stromal-based therapies is also supported in hematological malignancies by data 

from Hasselbalch et al. suggesting that chronic inflammation can be a driver of clonal evolution in patients 

with myeloproliferative neoplasms (MPNs) (100). In primary myelofibrosis (PMF), disease severity and 

treatment complexity have mainly been attributed to the association of clonal myeloproliferation and 

profound changes in the BM stroma, associated with an excessive production of cytokines, chemokines, 

growth factors and ECM components. It was initially reported that stromal changes were reactional and 

secondary to growth factor production by clonal hematopoietic cells. However, the presence of molecular 

alterations of PMF MSCs has been shown to provide an “intrinsic” osteogenic signature and an increased 

differentiation into osteoblasts partly dependent on endogenous TGFβ1 production and activation 

(101,102). It has been suggested that the BM stroma of PMF patients is progressively inflammatory-driven 

by clonal hematopoietic cells towards an “autonomous” state where it becomes independent of 

hematopoietic cell stimulation. This in turn causes an alteration of the hematopoietic niche and participates 

in the amplification of the hematopoietic clone. The resulting inflammatory vicious circle becomes 

unbreakable in the absence of combined stroma targeted therapies (101,103). Therefore, Stephen Paget’s 

theory (104) of the “seed (cancer/leukemic cell) and soil (microenvironment)” is fully sustained. However, 

in PMF, the bad soil (altered MSCs) endorse the bad seed (clonal HSCs), revisiting Paget’s theory in the 

“bad seed in bad soil” concept (105,106). This strengthens the importance of stromal cells and their 

reciprocal interactions with clonal hematopoietic cells in the development and treatment of neoplasia (107). 

 

CELL METABOLISM AND COMMUNICATION 

 

While it has long been known that oxygen plays a key role in the proper functioning of mammalian cells, 

the mechanisms by which these cells adapt to the amount of oxygen available have only became to be 

understood since the 1990’s, thanks to the work of the three 2019 Nobel Prize winners in Physiology or 
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Medicine Drs Gregg Semenza, William Kealin and Sir Peter J. Ratcliffe (108–112). The notion of hypoxia 

in hematopoietic niches is even more recent. While the oxygen gradient created by vascularization is 

understandable in solid tumors, the idea of such a gradient took longer to emerge in the world of 

hematopoiesis. It is now accepted, but not necessarily integrated, that the oxygen (O2) concentration in the 

hematopoietic niche varies between 1 to 4% of oxygen, strikingly different from the peripheral blood 

concentration of 10 to 13% (113–115). As in solid tumors, the overexpression of hypoxia-inducible factors 

(HIFs) has been reported in leukemia to be a marker of poor prognosis. The metabolic adaptation of tumor 

cells is one of the hallmarks driving aggressiveness in cancer that is clearly emphasized by low oxygen 

concentrations. Solid tumor cells are often glucose-addicted as sugar provides metabolic intermediates that 

support proliferation and migration. Thus, lactate metabolism and acidosis, other characteristics of the 

hypoxic tumor area, must be highly hypoxically controlled to avoid cell death (116). Based on the work of 

Nobel Prize winner Otto Warburg in 1931 (117), it has been speculated for decades that mitochondria were 

failing during the tumor process. This theory finally materialized as the Warburg effect whereby anaerobic 

fermentation is preferred by some tumor cells. However, several studies have now proven that mitochondria 

function normally in cancer cells and that blocking oxidative phosphorylation (OXPHOS) is an adaptive 

event (118,119).  

Although glycolytic metabolic reprogramming is common in cancer cells, several types of cells 

have been reported to prefer OXPHOS for energy production (120–125). AML cells thus highly depend on 

OXPHOS to satisfy their heightened demands for energy. Mitochondrial and OXPHOS activities greatly 

influence the sensitivity and in vivo efficacy of chemotherapeutic agents (126). Increasing evidence reveals 

that stromal cells affect the characteristics of cancer cells in the tumor microenvironment (127–130). The 

niche plays an important role in cancer cell metabolism by secreting metabolites that are used for the 

tricarboxylic acid (TCA)/Krebs cycle (131). Moreover, CAFs enhance the Warburg effect by interacting 

with cancer cells and producing lactate used by cancer cells as a fuel for mitochondrial OXPHOS (Figure 

1). This concept is widely known as the reverse Warburg effect (132–134). Thus, the increase in reactive 

oxygen species (ROS) promotes the activation of HIF-1α, inducing autophagy, lysosomal degradation and 
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loss of stromal Cav-1, consequently contributing to glycolysis in CAFs. Besides, it has been recently 

reported that interactions between MSCs and leukemic cells increase oxidative stress in MSCs (135) with a 

concomitant activation of glutathione (GSH)-based antioxidant defenses, notably through overexpression 

of GPX3, a key determinant of leukemic cell self-renewal (136,137). These interactions also enhance 

leukemic blast bioenergetics by increasing OXPHOS and the TCA cycle (137). All these elements suggest 

that metabolic interactions within their niche are important for the maintenance of mitochondrial OXPHOS 

in cancer cells. 

Mitochondria are not only involved in energy production through the generation of ATP by 

OXPHOS. They also support important anabolic reactions and are crucial regulators of apoptosis via the 

expression of molecules of the BCL-2 family at their surface (138). Horizontal transfer between two cells 

of mitochondria and/or mitochondrial DNA (mtDNA) via nanotubes, EVs or freely, is likely to have 

fundamental consequences for the host (Figure 1). A first study showed that active mitochondria and/or 

mtDNA from human bone marrow MSCs could rescue respiration-deficient (r0) lung carcinoma cells (139) 

and apoptotic PC12 cells (140). This effect was described in several non-cancer situations where stressed 

cells, frequently experiencing hypoxic or ischemic conditions, could recover after the acquisition of 

mitochondria from their cellular environment (reviewed in (141)). For instance, BM-derived MSCs have 

been shown to protect lung epithelial cells from lipopolysaccharide-induced injuries through the donation 

of mitochondria (142). For cancer cells, two seminal publications have shown that r0 cancer cells have an 

impaired tumorigenic potential that can be restored, together with respiration, by the transfer of mtDNA 

(143) or active mitochondria (144) from surrounding cells, both in vitro and in vivo. Interestingly, it has also 

been demonstrated that CAF-derived EVs can transfer mtDNA to OXPHOS-deficient breast cancer cells, 

leading to the restoration of mitochondrial metabolic activities (145). MSCs moreover could transfer active 

mitochondria to AML leukemic blasts, especially upon sensitization of leukemic cells by chemotherapy, 

probably, among other still unclear mechanisms, via AML cell-derived ROS (146,147). It was also 

demonstrated that MSCs recognize damaged mitochondria released by leukemic cells under chemotherapy 
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as danger signals and react by stimulating mitochondrial biogenesis followed by transfer of active 

mitochondria to AML cells (148). Another interesting study showed that BM MSCs from acute 

lymphoblastic leukemia (ALL) patients harbor a CAF phenotype. Upon chemotherapy and ROS induction, 

they transfer mitochondria to ALL blasts to support their survival and resistance to chemotherapy (149). 

The uptake of mitochondria by leukemic cells can increase their mitochondrial mass by up to 14% (146) 

and is associated with better fitness and a higher resistance to chemotherapy. Since mitochondria-recipient 

cells become able to resist apoptotic signals, it is possible that this transfer could increase the pool of anti-

apoptotic molecules of the BCL-2 family in leukemic blasts. Another obvious effect of mitochondrial 

transfer is an increase in ATP content (148,150,151) and in other important metabolites. A recent study 

demonstrated that transferred mitochondria were important to sustain pyrimidine synthesis and cell 

proliferation via the dihydroorotate dehydrogenase (DHODH) enzyme present in the mitochondrial 

membrane (152). Exogenous mitochondria could also support resistance to ferroptosis cell death as DHODH 

appears to mediate an important protective pathway against ROS-induced lipid peroxidation that triggers 

ferroptosis (153). Finally, mitochondrial transfer could modulate immune responses as it has been reported 

that horizontal transfer from MSCs could trigger Treg differentiation to limit tissue damage and 

inflammation during graft-versus-host disease (154). Whether this phenomenon also occurs in the BM 

hematopoietic niche and affects other lymphoid cell subsets such as cytotoxic T-lymphocytes or NK cells 

during leukemia development remains to be studied.  

 

VASCULAR NICHE, ANGIOGENESIS AND ENDOTHELIAL PLASTICITY 

 

The vascular endothelium refuels the tumor mass with oxygen and metabolites and settles a favorable 

microenvironment for tumor growth. This is strikingly illustrated in tumors from the central nervous system, 

where homeostasis of the cerebral vasculature is crucial. As for embryonic and adult stem cells, cancer stem 

cells reside within a niche articulated around vascular units (155), defined as the vascular niche. This 

environment allows privileged control of metabolic conditions, secreted protein dosage as well as fine-tuned 
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regulation of cell adhesion and communication with the surrounding ECM and neighboring ECs (156). 

Cancer stem cells are indeed located in the close vicinity of tumor blood vessels where ECs are suspected 

to dictate stem cell identity (157,158). The concept of (peri)vascular niche is also highly significant in the 

BM and has evolved through the better characterization of HSPCs. In mice, the HSPC compartment is 

functionally and molecularly heterogeneous, due in part to an extrinsic control by the BM 

microenvironment, including ECs. Indeed, recent advances in cell imaging and HSPC reporter-mice have 

revealed the association of HSPCs with at least two types of blood vessels. The latter are central endothelium 

featuring sinusoids (159) and an endosteal arterial/arteriolar endothelium which is close to bone diaphysis 

and epiphysis and defines transition vessels (160) (Figure 1). Sinusoidal and endosteal ECs differ 

phenotypically, the latter expressing high levels of endomucin and CD31, while sinusoidal ECs display low 

levels of both these markers. The location of endosteal ECs in bone metaphyses, close to osteoprogenitor 

cells, allows for an efficient coupling between osteogenesis and angiogenesis. Furthermore, sinusoidal and 

endosteal ECs are surrounded by unique specific perivascular MSCs. Although most CXCL12 and SCF in 

the BM is produced by CAR/LepR+ cells (161,162), ECs are also a source of both niche factors and hence 

are involved in the hematopoiesis process. Arterial and transition vessel ECs by displaying such a higher 

expression of CXCL12 and SCF maintain HSPC quiescence, while sinusoidal vessels, fenestrated and more 

permeable, promote BM cell trafficking (160,163,164). 

Several studies have revealed the role of the BM vasculature in the development of leukemia and 

chemoresistance. In AML, vascular niches provide signals that regulate proliferation and stem cell-like 

properties (165,166). In a reciprocal way, AML cells release inflammatory cytokines that activate the 

vascular endothelium, inducing the expression of such adhesion molecules as VCAM1, promoting AML 

proliferation and chemoresistance (167,168). External cues emanating from ECs can regulate the fate of 

cancer stem cells both in solid tumors and leukemia. In cerebral tumors, exploration of the endothelial 

secretome identified the vasopeptide apelin (APLN) as a central regulator for endothelial-mediated 

maintenance of patient-derived glioma stem-like cells in vitro and in vivo (169). Further studies confirmed 

the instrumental role of APLN to sustain tumor cell expansion and progression (170). Likewise, a 
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subpopulation of APLN-expressing ECs in the BM orchestrates HSPC maintenance, and further 

repopulation in the therapy-induced damaged bone microenvironment (171). In luminal breast carcinoma, 

the BMP2 was found to be overproduced by ECs from the tumor stroma. This factor is an important actor 

of the stem cell niche, participating also in the initiation of stem cell transformation (172).  

In hematological malignancies, sinusoidal ECs from the BM vascular niche of patients with chronic 

myeloid leukemia have been shown to be the main source of BMP2 and BMP4, involved in the maintenance 

and expansion of leukemic stem cells (173). BMP4 overproduction in the AML microenvironment 

furthermore contributes to blast cells “reprogramming” towards a stem-cell like phenotype (174). In 

addition, BMP4 produced by the leukemic microenvironment is involved in leukemic stem cell quiescence 

mediated by Jak2/Stat3 signaling and contributes to relapse and tumor escape (175) (Figure 1). Similar data 

in solid tumors, from many laboratories, have identified the BMP-signaling pathway as a major driver of 

BM dormancy (176).  

Seed and soil interactions have to be considered as reciprocal, signals provided by cancer cells 

impacting ECs and vice versa. The influence of cancer cells towards EC is to promote angiogenesis and 

increase vascular permeability to respectively provide the oxygen required for growth and allow for cell 

dissemination. In solid tumors, pro-angiogenic factors (VEGF, Sema3A), either soluble or delivered through 

tumor-derived EVs, contribute to an increase of both angiogenic potential and permeability (177,178). 

Malignant hematopoietic cells are high consumers of oxygen and evolve in a hypoxic environment that 

favors angiogenesis. An increase in BM vascular density and angiogenic markers (VEGF-A, FGF2, VEGF-

R) has been highlighted in several hematological malignancies (179,180). The sites of active angiogenesis 

in tumor BM niches are still not fully characterized, but ECs in the transient zone close to the endosteal 

niche could mediate the local growth of blood vessels in normal bone (160). In MPNs and leukemia, neo-

vessels are also characterized by an abnormal tortuous architecture (180,181). In MPNs, increased 

microvascular density and expression of VEGF have been reported to correlate with the allelic charge of 

JAK2-V617F mutation (182,183). In a subset of thrombotic MPN patients, this mutation has been detected 

in hepatic and splenic ECs as well as in endothelial progenitors, suggesting their clonality (184). More 
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recently, introduction of the JAK2-V617F mutation in ECs has been shown to modify these cells towards a 

pro-adherent and pro-thrombotic profile (185,186). These results suggest that, similarly to MSCs, ECs may 

have acquired intrinsic modifications that participate in the activated/inflammatory state within the BM 

niche and in leukemic progression. An aberrant increase in permeability is an additional striking feature of 

tumor blood vessels (187) which strongly alters drug delivery in solid tumors (188). An increased 

permeability of BM vessels, induced by leukemic cells, could also be associated with an impaired perfusion 

hampering normal hematopoiesis and supporting malignancy as shown in an AML patient-derived xenograft 

model (168).  

Beside their role in angiogenesis, ECs may also engage in the dynamic process of endothelial-to-

mesenchymal transition (EndMT), which drives reprogramming of ECs towards a mesenchymal phenotype 

(189). Initially described in normal cardiac development, this plasticity has been highlighted in several solid 

tumors in response to tumor environmental soluble and/or mechanical cues, as well as upon therapeutic 

assaults (190). EndMT may provide a source of CAFs (191) and contribute to metastasis dissemination by 

destabilizing the endothelial barrier (192). Furthermore, EndMT has been described as a tumor arm to resist 

chemo- and radio-therapies (193,194). Recent data support such a transition process in regenerative human 

BM, as a subset of ECs in trabecular sinusoid vessels has been shown to display an EndMT transcriptional 

signature (195). Importantly, this endothelial derived-mesenchymal population harbors properties of 

pluripotent stromal cells, with multi-lineage differentiation capacity (adipocyte, osteoblast, chondrocyte) 

and supportive capacity of hematopoiesis. Whether EndMT plays a role in hematological cancer is not 

confirmed yet, but this process surely could participate in the reconstitution of the hematopoietic BM niche 

after therapy (195). In the BM and spleen of PMF patients, the presence of microvascular ECs showing 

functional and morphologic changes associated with the MSC phenotype is in agreement with the potential 

contribution of EndMT to the BM fibrosis process that characterizes this disease (196). 

 

CONCLUSION 
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This review highlights how knowledge is progressing, in both solid tumors and hematological malignancies, 

in identifying the role of the multiple subsets of cells widely referred to as “cells of the microenvironment”. 

The latter clearly constitute a network of interacting subsets, which are increasingly well identified, but still 

incompletely understood. From cytokine/chemokine release patterns to interactions with angiogenesis and 

oxygen regulation, much remains to be deciphered. However, this review clearly highlights that solid tumors 

and hematological malignancies use similar strategies to survive in a microenvironment dedicated to their 

suppression, in particular by modifying the microenvironment to adapt it to tumor growth, while altering its 

physiological role. 

Information generated by single-cell analyses can be used as a blueprint for the identification of 

CAFs or MSCs subtypes in various organs in different pathological conditions. Comparison of CAF 

subtypes' molecular profiles with those of MSCs will be useful to identify potential mechanistic similarities 

in tumor inflammation and niche alterations across malignancies. Much remains to be done however before 

transposing the results obtained in mouse models to the primary cells of human tumors and hematologic 

malignancies. 

It is obviously still needed to discover specific means to interfere with the intricate interplay 

between niche actors that affect cancer/leukemic growth and prevent leukemia relapse. The power of multi-

omic analyses of the tumor microenvironment, associated with a pan-tumor integrative approach of cancer 

niche abnormalities could be decisive in proposing new therapeutic strategies targeting niches in order to 

eradicate cancer cells. 
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FIGURE LEGEND 

 

Figure 1: Paralleling the microenvironment and actors of the solid tumor and bone marrow niche. On 

the left part of the diagram, the solid tumor is governed by cellular components such as healthy cells and 

tumor cells juxtaposed with immunosuppressive or neutral cancer-associated fibroblasts (CAFs) and 

myeloid-derived suppressor cells (MDSCs). The different gradients of oxygen, pH and growth factors 

(BMP2, BMP4) then participate in the tumor cell fate (proliferation, metastasis...). On the right panel, 

healthy hematopoietic stem cells (HSCs), bone marrow-mesenchymal stem/stromal cells (BM-MSCs) 

immune cells and tumor cells (attracted from a solid tumor by chemokine gradients such as CXCL12) or 

leukemia cells, quiescent or not, will be confronted with gradients of oxygen, pH, growth factors (BMP2, 

BMP4, SCF, APELIN) and cytokines (CXCL8, CXCL12, IL-1b) in a similar way as cells within the solid 

tumor. All these interrelations and interconnections, controls and feedbacks, will allow the tumor cell to 

proliferate and spread. Oxygen gradients, on the left, result from diffusion of oxygen from the blood vessels 

(vascular niche) as tumors grow outward from the local vascular architecture. Vascular niche may also be a 

source of factors favoring tumor growth (i.e Apelin) in solid tumor and in the bone marrow niche. On the 

right, there is a double gradient between arterioles and sinusoids. The cells will adapt their metabolism along 

these gradients and create, as a counterpart, a pH gradient due to the release of lactate and H+ protons. 

Bottom part: As crucial powerhouses for cell metabolism and tissue survival, mitochondria will transfer 

horizontally from stromal cells to cancer and/or immune cells, via nanotubes, EVs or freely, to allow 

recipient cells to adapt and modify their metabolism (mitochondrial respiration, ATP, pyrimidine synthesis) 

to meet different stresses (oxidative stress) and energy demands. 
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