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 27 

Abstract 28 

 29 

Bioretention systems are increasingly used worldwide to mitigate the impacts of urban 30 

stormwater runoff on the water cycle. Being able to accurately model physical processes 31 

occurring within these systems is critical to their design and to being able to predict their 32 

performance. Most popular urban hydrological models must now integrate a low impact 33 

development (LID) toolbox to keep up with current practices. We aimed to develop and test 34 

a generic model of bioretention systems that can serve as a targeted compromise between 35 

oversimplification without any physical basis, on the one hand, and physical soundness 36 

requiring a large number of parameters for calibration, on the other. The model accounts for 37 

evapotranspiration, overflow, infiltration into the filter (single permeability behavior), 38 

exfiltration to surrounding soils, along with underdrain discharge. The model was tested 39 

against field data from a monitored bioretention basin in Melbourne, Australia. Based on 22 40 

rainfall events, results showed that the simulated underdrain outflow rates and their 41 

temporal dynamic were well replicated (for 20 rainfall events, median NSE = 0.74, median 42 

PBIAS = -22%, median RMSE = 0.48 l/s). Despite good performance for outflow rates, there 43 

was a discrepancy observed in magnitude between simulated and measured water levels 44 

within the bioretention basin. The model therefore seems a useful first step towards the 45 

design of a user-friendly model for assessing both performance and impact of bioretention 46 

basins for catchment-scale flow regime management. 47 

 48 
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Highlights: 52 

• We developed a hydrologic model for bioretention basins for modeling outflow rates. 53 

• The model was able to replicate piped outflows from a real case study with two 54 

parameters needed for calibration. 55 

• The accurate modeling of water level dynamics within the bioretention filter requires 56 

additional soil physical parameters and was not well replicated. 57 

 58 
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1. Introduction 64 

 65 

To mitigate the impacts of urbanization on the flow regimes and water quality of water 66 

bodies (Walsh et al., 2012), bioretention basins are increasingly used as part of a suite of 67 

stormwater control measures (SCMs). Bioretention basins are landscaped depressions filled 68 

with sand and gravel, often vegetated, that are designed to receive urban runoff (from roofs, 69 

roads, etc.). They provide storage and allow urban runoff to be released to the atmosphere 70 

by evapotranspiration and infiltrated in native soils rather than discharged in piped networks 71 

to urban streams or other receiving waters. As such, bioretention basins are extremely 72 

efficient at reducing urban runoff peak flows, stormwater volumes and pollutants loads (Liu 73 

et al., 2014; Roy-Poirier et al., 2010). Their application aims to restore lost fluxes of the 74 

water balance (evapotranspiration, infiltration) and to reduce stormwater runoff caused by 75 

creation of impervious areas and hydraulically-efficient drainage systems (Burns et al., 2012). 76 

Modelling the performance of bioretention basins is, however, a challenge, as physical 77 

mechanisms involved in these systems are complex. These requirements can often preclude 78 

their use by decision-makers, designers and practitioners, meaning that there is a need for 79 

models which can be simply but reliably calibrated using relatively easy-to-collect monitoring 80 

data. A model which is physically-based, yet easy to calibrate, could be attractive for urban 81 

water management practitioners in current and future cities. 82 

 83 

A wide range of tools exist to model Low Impact Development (LID) structures (Elliott and 84 

Trowsdale, 2007). The popular SWMM model includes a very flexible landscape-scale 85 

infiltration module, offering a choice of Hortonian, Green-Ampt or Curve-Number infiltration 86 

(Rossman, Lewis A., 2010; Rossman, Lewis A, 2010). The LID module in SWMM is based on 87 



  

the Green-Ampt infiltration from the surface into the filter media, followed by Darcy’s flow 88 

through the porous media below, with subsequent infiltration to groundwater assumed to 89 

be constant. To model retention in green roofs, Kasmin et al. (2010) present a conceptual 90 

process-based model, where the soil is described as a store with different soil moisture 91 

thresholds that drive hydrological processes (e.g. runoff produced when soil moisture is 92 

higher than field capacity). DRAINMOD is used extensively to model bioretention systems: 93 

infiltration is modeled with the Green-Ampt equation (Skaggs, 1980, 1985) and requires the 94 

user to specify the soil-water characteristic curve and saturated hydraulic conductivity 95 

(Brown et al., 2013). DRAINMOD was recently adapted to the urban case (Lisenbee et al., 96 

2020). Drainage is modeled with the Hooghoudt’s equation, taking into account lateral 97 

hydraulic conductivity and properties of the underdrain (particularly spacing and radius). In 98 

Australia, MUSIC is the industry standard to model bioretention basins and other 99 

Stormwater Control Measures (eWater, 2014, 2020). Infiltration within bioretention basins is 100 

described in MUSIC by Darcy’s equation, accounting for impacts of soil texture and moisture, 101 

with infiltration calculated from both the base and sides, while underdrain flow is calculated 102 

from Darcy’s flow through the porous media, again accounting for texture and degree of 103 

saturation. Richards’ equation, that combines mass conservation and Darcy’s equation 104 

(Richards, 1931; van Genuchten, 1980), was used to model flow in bioretention cells to 105 

predict peak flow and volume reduction by He and Davis (2011). Other models used the 106 

Green-Ampt equations, e.g. Gülbaz and Kazezyılmaz-Alhan (2017). 107 

 108 

In general terms, bioretention models may be separated in two groups. The first group is 109 

made up of models that have no extensive physical basis and are mostly designed 110 

statistically for a given experimental site, thus requiring a low number of parameters to 111 



  

implement. However, these models are often case-specific, being difficult to extrapolate to 112 

other sites and having limited predictive capabilities. Conversely, the second group is 113 

composed of more complex models, that are based on the modeling of physical processes, 114 

and usually require significant effort for calibration (Alamdari and Sample, 2019) or access to 115 

specific soil parameters which are complicated to estimate (such as the soil water retention 116 

curve or the unsaturated hydraulic conductivity). There is thus a need for a third option: 117 

models that are simple to calibrate while offering a satisfying level of consistency with 118 

regards to the physics of water infiltration in the bioretention systems, the use of more 119 

sophisticated models not systematically improving modelling results, since more parameters 120 

are needed, and calibration becomes more difficult (Mourad et al., 2005) and thus less likely 121 

to be undertaken by decision-makers and system designers. 122 

 123 

The aim of this study was therefore to develop and test a simplified, physically-based model 124 

requiring low effort for calibration and capturing the hydraulic dynamic of bioretention 125 

systems. We report the development and testing of a physically-based hydrologic model 126 

against data obtained from a monitored bioretention basin (Wicks Reserve Bioretention 127 

system). The modelling approach describes the whole bioretention system as a series of 128 

reservoirs storing and exchanging water fluxes. The approach includes consideration of mass 129 

conservation (continuity equation), Darcy’s equation for the implementation of infiltration 130 

fluxes into the system and the soil below, orifice equation for the underdrain, with the 131 

computation of evapotranspiration, allowing the prediction of exchanges between the 132 

reservoirs, and thus the water level in the filter (body of the bioretention system) and the 133 

outflow rates. Therefore, we present a new model that explicitly accounts for physical 134 

processes (soil water storage, vertical gravity-driven infiltration, exfiltration, respect of mass 135 



  

balance) under unsteady flow conditions, to predict the outflow performance of 136 

bioretention systems. A key objective was to provide explicit and simplified formulation of 137 

existing modelling approaches and equations in order to create a physically-based model. 138 

  139 



  

2. Methods 140 

2.1. Model development  141 

The model is a physically-based representation of bioretention basins, based on reservoirs or 142 

storages in series, accounting for the water balance between storages and water fluxes 143 

between storages (Figure 1). All equations presented below were discretised using a first 144 

order, explicit numerical scheme, considering a fixed 6 minutes timestep, to fit with 145 

observed data. The complete algorithm and computation code (R scripts) are available as 146 

Supplementary material and the dataset used is publicly shared on the platform Zenodo 147 

(Bonneau et al. (2021) http://doi.org/10.5281/zenodo.4717453). 148 

 149 

Figure 1: Conceptual representation of the model  150 

First reservoir: the ponding zone 151 

The first reservoir corresponds to the ponding zone or the surface storage area. It is 152 

assumed to be a rectangular empty box (Figure 1). It receives the entering water fluxes that 153 

are routed to the bio-infiltration system (Inflow). The inflow hydrograph leads to water level 154 

in the ponding zone which acts as the upstream boundary condition. 155 



  

 156 

This reservoir has a maximum capacity. When the water level exceeds a given threshold, an 157 

overflow pit or weir diverts excess water out of the surface storage. In the model, a 158 

threshold level is set by the user so that when the water level in the surface storage is 159 

greater than this threshold, water is diverted producing an overflow rate computed by mass 160 

balance consideration (Eq. 1). 161 

�� ℎ���� < ℎ
�� , ���� = 0 162 

��ℎ������, ���� = ��� −  ���� (Eq. 1) 163 

Where ℎ����is the water level in the surface storage, ℎ
�� the height of the overflow 164 

weir, ���� the overflow rate, ��� the inflow entering the ponding zone, ���� flux of water 165 

infiltrating into the filter below.  166 

 167 

Second reservoir: the filter of the bioretention system: 168 

The second reservoir represents the filter that constitutes the main body of the bioretention 169 

system (Figure 1). The filter receives the infiltration flux from the surface storage, and loses 170 

water due to evapotranspiration, infiltration into the subsoils and to the outflow pipe 171 

collected by an underdrain.  172 

 173 

The infiltration from the ponding zone into the filter was modelled using a Darcian approach, 174 

which is simple and commonly used to compute water fluxes in porous media (Bear, 1972). 175 

The van Genuchten (1980) and Mualem (1976) models are among the most widely used for 176 

the water retention and the unsaturated hydraulic conductivity functions and read as 177 

follows (Eq. 2): 178 



  

�� = � − ��� − � = �1 + !"ℎ#$/!$&'#(&'!)*. 2-# 179 

.!��# = .���/ 01 − 11 − !��# $'2'34 !)*. 25# 180 

Where ��  is the saturation degree, �  the volumetric water content, ��  the saturated 181 

volumetric water content and �  is the residual water content, α a fitting parameter related 182 

to water pressure head; m (m = 0.5 for coarse soils, with the sand/gravels used for the filter 183 

and drainage layer) and τ (τ = 0.5, default values for tortuosity) are shape parameters, .  is 184 

the unsaturated hydraulic conductivity (m s-1), Ks the saturated hydraulic conductivity (m s-1).  185 

 186 

To diminish the number of parameters in the model, some simplifications were proposed, as 187 

described below. The behaviour of the filter media was simplified by considering that it 188 

behaves like coarse material with a stepwise water retention function, as mostly considered 189 

for coarse media (Lassabatere et al., 2021). In that case, the water profile takes the shape of 190 

a step function, with saturated conditions below the height of water and dry conditions 191 

above. Eq. 2a is then replaced with a stepwise function and the parameter α is no longer 192 

needed. Considering a stepwise profile, the average saturation degree can be linked to the 193 

height of water in the filter media (Eq. 3):  194 

��6 = 77'89   !)*. 3# 195 

Where ��6  is the average saturation degree at any time, F  the height of water in the filter, 196 

i.e., the positive hydraulic head from the bottom of the filter, and Fmax represents the total 197 

thickness of the filter layer. For simplicity, the term ‘filter layer’ is considered hereafter to 198 



  

include the drainage layer. The hydraulic conductivity was then derived by applying the 199 

Mualem model (Eq. 2b) to the average saturation-degree, leading to the following 200 

expression for the unsaturated hydraulic conductivity: 201 

. ; <=>?<@ABC = .� ; <=>?<@ABC/ D1 − E1 − ; <=>?<@ABC ?@F'G4   !)*. 4#  202 

We considered at any time i, the previous saturation degree��6 �&$ = <=>?<@AB. Note that the 203 

application of Darcy’s equation allowed the quantification of the infiltrating flux rate by 204 

multiplying the unsaturated hydraulic conductivity (Eq. 4) with the hydraulic gradient. 205 

However, during the considered time step, no more than the volume of water available in 206 

the surface storage can infiltrate. In addition, no more than the volume available in the filter 207 

can be filled by the infiltrating water. These two conditions impose two limitations (Eq 5b. 208 

and 5c.). Finally, the infiltration rate into the filter media was obtained using the following 209 

equation (Eq. 5): 210 

����,� = I�J
K
LL
M7'89 −  7�&$ +  ℎ����,�&$7'89 . ; 7�&$7'89C N      !)*. 5. -. #

!7'89 − 7�&$# N∆� Q� +  ∑ ��ST�,�       !)*. 5. 5. #  
ℎ����,�&$ × N∆� + ���,�  !)*. 5. V. #      W

XX
Y  211 

where A is the mean area of the bottom of the ponding store, ∆� is the time step, Q� is the 212 

mean porosity of the filter layer, Qin,i is the observed inlet flow rate at the time step i and 213 

∑ ��ST�,�the sum of all outflows from the filter media at the time step i (in this case 214 

underdrain outflow, evapotranspiration and exfiltration to the native soil). Eq 5.a. in the 215 

function “min” corresponds to the application of Darcy’s law, assuming the hydraulic 216 

conductivity detailed in equation (Eq. 4). Eq 5.b.and Eq 5.c were set to respect the mass 217 

balance of the system. Eq 5.b. enables computation of infiltration rate when the storage 218 



  

capacity within the filter limits the amount of water that could infiltrate (typically at the end 219 

of an event). Eq 5.c. enables computation of infiltration rates when all the ponded water can 220 

infiltrate during the time step i, typically at the start of an event with dry initial conditions. 221 

 222 

The remaining fluxes were computed as follows. The exfiltration of water by infiltration into 223 

the surrounding native soil was computed as a function of its hydraulic conductivity and the 224 

wetted surface of the filter: 225 

��9� = .� ���  �
�T !)*. 6# 226 

Where .� ��� is the saturated hydraulic conductivity of the surrounding soil and �
�T is the 227 

wetted area of the filter storage, i.e., the contact surface between water and the 228 

surrounding soil. The flow in the native soil was then considered gravity-driven without 229 

capillarity-driven infiltration. 230 

 231 

The evapotranspiration resulting from plant root systems developed in the filter was 232 

calculated from potential evapotranspiration (thus assuming a crop factor of 1.0) and 233 

modulated with a linear function between the wilting point and field capacity (Eq. 7) 234 

(Francés, 2008; Van der Lee and Gehrels, 1990): 235 

�� � <  �
, ��T = 0 236 

�� �
 < � <  ��[ , ��T = � −  �
  ��[ − �
 ��T� 237 

�� � \  ��[ , ��T = ��T�      !)*. 7# 238 

Where �
 and ��[  are the wilting point and the field capacity, respectively, taken as usual 239 

valued for sandy soils (FAWB, 2015), ��T is the real evapotranspiration rate and ��T� the 240 

potential evapotranspiration rate, sourced from a nearby meteorological station of the 241 



  

Australian Bureau of Meteorology (Station 086266, Lat -37.87, Lon 145.35, calculated with 242 

the Morton method, from the SILO database)(BoM, 2021; SILO, 2020). 243 

 244 

Lastly, the outflow collected by the underdrain was computed with an orifice equation (thus 245 

assuming the pipe itself does not limit flow), according to Eq. (8): 246 

��ST,� = ^�ST_2`a !)* 8# 247 

Where ^�ST is an orifice coefficient to be calibrated, g the acceleration due to gravity and H 248 

the difference between water level in the filter and the level of the underdrain orifice (Figure 249 

1).  250 

  251 



  

2.2. Case study 252 

2.2.1. Bioretention basin and catchment description 253 

Wicks Reserve Bioretention Basin (hereafter referred to as “the basin”) is located in the 254 

eastern suburbs of Melbourne, Australia (Bonneau et al., 2018). Stormwater enters the basin 255 

by two stormwater pipes draining a combined 5 ha of impervious areas (estimated using 256 

geographic information provided by the local municipality, and corroborated with rainfall-257 

runoff data) connected to a conventional, separate stormwater network, in a 33-ha 258 

residential catchment. The catchment responds to rainfall quickly, with flow in pipes 259 

observed around 30-45 minutes after rainfall. At the location of the basin, groundwater is 260 

deeper than 4 m below the surface. The basin is 1800 m2 in area, and on average 0.8 m deep 261 

(350 mm loamy sand-based filtration media overlaying 300 mm of 20 mm scoria gravel, with 262 

three 50 mm deep transition layers - medium-fine sand, coarse sand and 7-10 mm gravel - in 263 

between them). There is a slotted underdrain at the base of the infiltration system, which 264 

discharges through an elevated orifice in a discharge pit. The underdrain is connected back 265 

to the stormwater network (“Outlet”). The orifice is elevated by 500 mm from the invert of 266 

the basin, meaning that the bottom 500 mm acts as a ‘saturated zone’, with discharge below 267 

this depth occurring only through infiltration (Figure 2). Above this depth both infiltration 268 

and underdrain discharge may occur. The hydraulic conductivity of the surrounding native 269 

soil was measured by fitting recession events (water level drop in the filter) and confirmed 270 

with in-situ rising stage slug test with the Bouwer Rice method and found to be quite low, 271 

around 1 mm hour-1 or 2.8 x 10-7 m s-1. Large flows (> 200 L/s) are diverted from the basin 272 

into a bypass pipe via a weir (“Bypass pipe”) immediately upstream of the basin, to ensure 273 

excessively large flows do not damage the basin surface or vegetation.  274 



  

The runoff from the basin’s catchment is conveyed in two stormwater drains (Figure 2) and 275 

the inlet flow passes through a Gross Pollutant Trap (GPT) and a sedimentation pond before 276 

flowing onto the filter area of the bioretention basin. Indeed, the presence of the pond and 277 

the GPT delays inflow getting into the bioretention basin. In the model, we inserted a linear 278 

reservoir with a lag time of 15 min (assessed thanks to site observations and knowledge of 279 

the system) to account for the delay and the transformation of the inflow hydrograph due to 280 

GPT and sedimentation pond. 281 

 282 

Figure 2: A: Map of the catchment feeding the bioretention basin (source: Bonneau et al., 283 
2020) B: Monitoring system. C: Transect of the filter of Wicks Reserve Bioretention basin D: 284 
Photos of the basin (sourcre: Bonneau et al., 2020). 285 
  286 



  

2.2.2. Monitoring and data presentation 287 

The basin was monitored using four Sigma 950 flowmeters, one in each inlet pipe, and one in 288 

each of the bypass and outlet pipes (Figure 2), so that inflow to the basin and outflow 289 

through the underdrain could be measured and compared. Flow velocity was measured with 290 

a Doppler probe and water level with a pressure diaphragm. Small weirs were built in pipes 291 

to ensure the probes remained submerged. The flowmeters were manually calibrated: 292 

manual flow measurements were performed regularly for high and low flows to obtain the 293 

best relationship between the actual flow and the probe values (flow rate, level, velocity). 294 

Data were collected from March 2013 to September 2016 (Bonneau et al., 2020). In addition, 295 

water levels in the ponding zone and within the filter were also monitored, using Odyssey 296 

capacitance probes. An Odyssey rain-gauge monitored rainfall using a 0.2 mm tipping 297 

bucket. The basin was monitored from July 2013 to December 2016. Flow rate, water level 298 

and rainfall were recorded at a 6 minutes timestep. In total, 22 rainfall events were selected 299 

over the period to be used for the calibration (2 events) and validation (20 events) of the 300 

model, ranging from 1 mm to 46 mm, with a median rainfall total of 7.7 mm. 301 

  302 



  

2.2.3. Calibration and performance indicators 303 

The objective of the model was to replicate the measured outflows, since this is the variable 304 

of most interest for stormwater managers. The goodness of fit between observed and 305 

simulated outflows was assessed by calculating the Nash Sutcliffe Efficiency (NSE; Eq. 9, 306 

(Nash and Sutcliffe, 1970)). 307 

c�) = 1 −  ∑ �d��e� −  d���'(4f�g$∑ �d��e� −  dh�e�iiiiii(4f�g$
 !)*. 9# 308 

With d��e�  the observed outflow value, dh�e�iiiiii  the mean of observed value, d���'  the 309 

simulated value,  c the number of timesteps per event.  310 

For calibration, the model was run for thousands of combinations of parameters Ks and Cout 311 

(varied across their physically plausible range: Ks from 10-6 to 0.1 m/s, Cout between 0 and 312 

0.1) for the 2 rainfall events selected for calibration, with respective rainfall totals of 2 mm 313 

of rainfall, and 15 mm of rainfall, to cover the range of observed rainfall events. Parameters 314 

were adjusted to predict outflows, but the evolution of water levels was also checked to 315 

assess how well the model reflected the hydraulic gradient dynamics in the filter. Calibrated 316 

parameters Ks and Cout were obtained by maximizing the average of NSEQ for flows for both 317 

events. 318 

Table 1: numerical values of parameters used in the model (bold values refer to the 319 
calibrated parameters). 320 

Parameters Value 

Filter depth (m) 0.8 

Area of the ponding zone (m2) 900 

Area of the filter (m2) 1800 

Filter porosity 0.4 

Wilting point �
 0.1 

Field capacity ��[  0.2 

Surrounding soil hydraulic conductivity (m/s) 2.8 e-7 

Shape parameter m 0.5 

Tortuosity τ 0.5 

Saturated filter media hydraulic conductivity Ks (m/s) 5.10-4 



  

Orifice coefficient Cout 2 10-3 

 321 

For both calibration events, the saturated hydraulic conductivity of the filter Ks had less 322 

impact than the orifice coefficient parameter Cout. Nash Sutcliffe coefficients of efficiency 323 

were positive only for a certain range of tested values (Figure 3). The parameter Ks reached a 324 

threshold around 3.10-4 m s-1, from which it had very little impact on the performance of the 325 

model, and was fixed to 5.10-4 m s-1. The parameter Cout, reached ‘optimum’ values 1.2 x 10-3 326 

for the first calibration event and 2.5 x 10-3 for the second calibration event (Figure 3). 327 

Average value with Cout = 2 x 10-3 as an average of both previous Cout values was taken as the 328 

final calibrated value for Cout (Table 1).  329 

 330 

Figure 3: Evolution of the Nash Sutcliffe Efficiency between observed and simulated outflows 331 
for the two calibration events.  332 
 333 
The model was then tested and validated with these parameters against 20 monitored 334 

rainfall events, with two additional indicators calculated (Ahmadisharaf et al., 2019; Moriasi 335 

et al., 2015): percent bias (PBIAS; Eq 10) and the root mean square error (RMSE, Eq. 11), in 336 

order to validate the performance of the model. 337 

 338 

klmN� =  ∑ ;n=o=@& n=pqoCr=s?∑ n=pqor=s?  (Eq. 10)    tu�) =  v∑ �n=pqo& n=o=@(wr=s? f (Eq. 11) 339 



  

With d��e�  the observed outflow value, dh�e�iiiiii  the mean of observed value, d���'  the 340 

simulated value,  c the number of timesteps per event.  341 



  

3. Results and Discussion 342 

Validation over 20 rainfall events 343 

The performance of the model tested over 20 rainfall events (excluding the two calibration 344 

events) was satisfying (Figures 4 and 5), with a mean NSE of 0.53, a median NSE of 0.75 and a 345 

median RMSE of 0.48 l/s. The model tended to underestimate fluxes, with a median PBIAS of 346 

- 22% (Figure 5). Overall, the proposed model was able to well replicate outflows of the 347 

basin for most rainfall events (Moriasi et al., 2015). However, the model was not able to 348 

replicate water level dynamics in the filter (Mean and median NSE < 0). The water level 349 

dynamics in the filter were not broadly well simulated (Figure 6). To better capture observed 350 

water levels, additional soil hydrodynamic parameters would likely be required, allowing a 351 

better simulation of the complexity of infiltration behavior (e.g., capillarity effects, 352 

relationship between water content and hydraulic head, potential preferential flows or air 353 

entrapment, etc.), but such information is not always easily available to end-users (Fournel 354 

et al., 2013). The approach presented is a compromise between model parsimony and 355 

performance, between being able to replicate observed water levels (arguably less 356 

important than replicating observed outflows) and further complicating the model and its 357 

calibration in practice. Flow data is indeed of the most interest in terms of impacts on water 358 

quality and flow regimes of receiving waters (DeBusk et al., 2011). Poor replication of water 359 

levels within the filter media possibly indicated oversimplification of geometry of the basin 360 

and water infiltration, along with redistribution within the filter. 361 

  362 



  

 363 

Figure 4: Observed outflow hydrographs (black line with points = measured; red line = 364 
simulated with the proposed model) 365 
 366 
 367 

 368 
Figure 5: Distribution of the Nash Sutcliffe efficiencies, PBIAS and RMSE for all the rainfall 369 
events. 370 
 371 



  

 372 

Figure 6: Observed versus modelled water levels in the filter (black line with points = 373 
measured; blue line = simulated with the proposed model) 374 
 375 

Discussion of the values of calibrated parameters 376 

The calibrated value of Ks (5 x 10-4 m s-1) was one order of magnitude higher than expected, 377 

the design value of the sandy layers of the basin being 6.4 x 10-5 m s-1 (i.e., 230 mm. h-1). This 378 

high value of the saturated hydraulic conductivity compares to typical values for sandy or 379 

gravels lithofacies (Goutaland et al., 2013). This might be due to the fact that in reality, the 380 

filter is fully vegetated with mature plants and developed root systems. The role of 381 

vegetation in increasing the hydraulic conductivity of bioretention systems is well 382 

documented and understood (Di Prima et al., 2020; Le Coustumer et al., 2009; Virahsawmy 383 

et al., 2013). The root systems, combined with bioturbation (animal and insects burrows) 384 

and even potential constructed shortcuts (the monitoring bores), can act as preferential 385 

(macropores) flow paths for water, increasing the effective hydraulic conductivity of the 386 



  

filter. In this context, Ks represents the bulk saturated hydraulic conductivity, encompassing 387 

the soil matrix and the effect of macropores (Lassabatere et al., 2019). 388 

 389 

The calibrated orifice coefficient Cout (2 x 10-3) was within the order of magnitude of what 390 

could have been expected, usually found in the literature for perforated PVC pipes, though 391 

this value would be hard to estimate in reality. Perforated pipes have holes with a specific 392 

area around 2100 mm2/m (Department of Planning and Local Government of South 393 

Australia, 2010), which, for a 100 m long pipe, with a clogging factor of 0.5 and a discharge 394 

coefficient of 0.61, would result in Cout = 0.064. In reality, the contraction coefficient of a tiny 395 

slot in a PVC is not well known, and might be lower than expected (corresponding to more 396 

head loss resulting from more turbulence). In addition the actual state of clogging of the PVC 397 

pipe was not known, particularly given the potential for plant roots to have penetrated the 398 

orifices. The uncertainty around the design value for Cout is therefore not negligible, but the 399 

calibrated value seemed in line with the site features. 400 

 401 

Description of processes at the scale of rainfall events.  402 

In the previous paragraphs, the full capability of the model to simulate observations was 403 

assessed. Modeled data analysis can be used to understand processes at the scale of rainfall 404 

events. At the start of every event, when the volume of water entering the surface storage 405 

was low, all the inflow volume could enter the filter media, with an infiltration rate 406 

controlled by Eq. 5c. In other words, the limiting factor for water infiltration was the amount 407 

of water available at surface that was not enough to supply the quasi-infinite water fluxes 408 

predicted by Darcy’s equation. Infinite water fluxes in relation with infinite hydraulic 409 

gradients (difference final minus initial water pressure heads spanned over small depths at 410 



  

short times) are typical of infiltration rates into soils without additional restrictions 411 

(Lassabatere et al., 2009). Eq. 5c was then lower than the potential flux computed by Eq. 5a 412 

(Darcy’s law) and governed the quantity of infiltrated water.  413 

 414 

Afterwards, as more water entered the filter profile, such a gradient diminished and the 415 

related amount of water to be infiltrated at surface decreased. The infiltration was then 416 

controlled by Darcy’s law and the unsaturated hydraulic conductivity of the filter. In other 417 

words, not all the volume of water available at surface could be infiltrated, and any new 418 

volume of entering water might add to the remaining volume of water. As a result, the water 419 

began to pond at the surface, making the water levels rise. Meanwhile, the infiltrated water 420 

increased the water level in the filter up to the level required for the onset of the underdrain 421 

flow (Figure 7, left panels). Even with underdrain outflow, the water level in the filter was 422 

not necessarily constant, but could continue to increase right up to the top of the filter 423 

surface (Figure 7). In this case, the infiltrating water flux exceeded the sum of the outflow 424 

rate, evapotranspiration and exfiltration to subsoils. As time passed and the rainfall events 425 

ended, the inflow fluxes began to decrease, stopped in most cases, and became lower than 426 

the infiltrating fluxes, thus limiting the amount of water available at the surface for 427 

infiltration. Eq. 5c became again the limiting factor for infiltration into the filter. Meanwhile, 428 

the water level decreased at surface (see the tail of Figure 7, left and right panels). 429 

 430 

For some events (Figure 7, right panels), the basin filled up, with water levels getting close to 431 

the surface. Consequently, the amount of water to be infiltrated was then truncated to the 432 

space available in the filter. The equation Eq 5b became the minimum among equations (5), 433 

thus driving the infiltrated volume. In the case of large rainfall events, the water levels in the 434 



  

filter eventually reached the surface, increasing water ponding, sometimes up to the 435 

overflow level. The system was then fully saturated. Afterwards, following the decrease in 436 

entering fluxes, the volume of water in the filter decreased by evapotranspiration, 437 

exfiltration and underdrain flow, allowing the water from the surface to infiltrate again. With 438 

the decrease of water levels in the filter, the space available in the filter was no longer 439 

limiting. The infiltration shifted back to Darcy’s law. Figure 7 also illustrates the fact that the 440 

shape of modelled outflow is the same as the shape of the sum of the water levels in the 441 

filter media and at the surface. The underdrain outflow rate (Eq 8) is controlled by the orifice 442 

coefficient Cout,, which proved to drive most of the behaviour of the model of the 443 

bioretention basin. If Cout was too high, the orifice would limit the water level in the filter, 444 

preventing it from reaching the surface, which was not consistent with some observations. 445 

Conversely, too low values of Cout would lead to full saturation of the bio-retention system 446 

even for small rainfall amounts.  447 

 448 



  

Figure 7: For two rainfall events (right/left): Top: Infiltration fluxes from the surface store to 449 
the filter media. Middle: Water levels at the surface (black line) and in the filter media (blue 450 
line). Bottom: Modelled and observed outflows  451 
  452 



  

Genericity of the proposed model, limitations and future research 453 

The proposed model may be applied to any bioretention system. Indeed, it requires the 454 

calibration of two key parameters to fix a priori: the saturated hydraulic conductivity of the 455 

filter – usually obtainable - and the coefficient Cout that characterizes the underdrain – much 456 

harder to estimate. All the other parameters can be easily described from readily-available 457 

design information (see table 1). Most of them are standard design features of the 458 

bioretention system (area, thickness, etc.). The filter porosity, wilting point, and field 459 

capacity can be easily fixed as a function of the type of material constituting the filter, based 460 

on widely known properties. We advise keeping the specific parameters m and τ to the 461 

values of 0.5, which suits an extensive range of coarse materials. The low number of 462 

parameters to calibrate reduces concerns regarding parameter equifinality and non-463 

uniqueness (Pollacco, J.A.P. et al., 2013; Pollacco et al., 2008). These parameters should be 464 

estimated using a few rainfall events. The proposed model can be considered as a sound 465 

basis for further developments. First of all, the model focuses on the simulation of the piped 466 

outflow fluxes including the overflow and the underdrain outflow. However, modelling of 467 

water levels in the filter must be improved. The proposed model was not able to deal with 468 

empty initial conditions. For events with very little water in the filter initially, the initial 469 

effective saturation was set to the wilting point (Eq 2a), but such values were too low for the 470 

infiltration to ‘start’ (Eq 4 resulting in very low unsaturated hydraulic conductivity). This 471 

resulted in water staying in the ponding zone and not entering into the filter, and therefore 472 

there was no outflow modeled at all (see event of April 2015, 3rd row and 3rd column on 473 

Figures 4 and 6). Better accounting for initial conditions is necessary for future versions. 474 

 475 



  

To alleviate such problems, we suggest working on the implementation the concomitant fit 476 

of water fluxes and water levels to estimate the model input parameters. Several weighing 477 

procedures could be tested to see the improvement on fits and estimates (Pollacco, J.A. et 478 

al., 2013). We also suggest working on the improvement of approximations considered for 479 

the modelling of complex processes. First of all, capillarity effects were simplified and the 480 

water retention curves were approximated to stepwise functions. Following such 481 

approximation, a bulk saturation degree was uniformized and evenly distributed along the 482 

whole filter profile. Then, the bulk hydraulic conductivity was computed from the average 483 

saturation degree using Mualem capillary models. Meanwhile, the hydraulic gradient was 484 

discretised at the scale of the filter, by dividing the difference in water pressure head by the 485 

filter depth. This process of “averaging” at the scale of the filter, considered as one “box”, is 486 

far from the precise description of the downward movement of wetting fronts and 487 

infiltration processes. The loss of precision on water level due to the gain in simplicity should 488 

be investigated in more depth, using for instance numerically generated data. In addition, 489 

the model is based on the single permeability approach, whereas preferential flow may 490 

occur in reality (due to the presence of macropores). Dual porosity or dual permeability 491 

systems could thus be considered (Gerke and Van Genuchten, 1993), as is done for models 492 

of water infiltration into soils (Lassabatere et al., 2014). The implementation of dual 493 

permeability approaches for the modelling of preferential flow, as potentially induced by 494 

plant root systems, will be the subject of further studies (Asry et al., 2021). 495 

 496 

 497 



  

4. Conclusions 498 

A hydrologic model of a bioretention basin was built, based on equations representing all 499 

the components of the hydrological balance (water infiltration, evapotranspiration, 500 

underdrain outflow, overflow, exfiltration) in the different components of the studied basin 501 

(surface basin, filter). The main conclusions and observations, after a thorough field 502 

validation of the model, are as follows: 503 

• It is possible to replicate outflows of a bioretention basin with a relatively simple 504 

model provided it is calibrated. Only 2 rainfall events were used for the calibration, 505 

making it suitable for a wide range of applications where resources for calibration are 506 

limited. 507 

• The model performed well in reproducing the overall hydrological behaviours of the 508 

basin with respects to water outflows, and in particular the main features of 509 

contrasting scenarios. 510 

• Further improved performance (such as improved replication of water level 511 

dynamics) would require additional parameters to describe the physical functioning 512 

of the basin, in terms of water transfers between the surface, the filter and the 513 

underdrain, taking into account the whole complexity of physical processes 514 

governing water infiltration into the filter. However, these parameters will degrade 515 

the model parsimony and require additional calibration effort. 516 

• This proposed model could be readily incorporated into an LID toolbox of catchment-517 

scale hydrological software, which are becoming increasingly used around the world.  518 

• The model performance is particularly sensitive to one parameter, the orifice 519 

coefficient of the underdrain perforated PVC pipe, which is very hard to physically 520 



  

estimate. Further research should focus on appropriate methods for characterizing 521 

this coefficient.  522 

With the proposed approach, we provided the first step towards the design of a user-523 

friendly model for the operation of low-impact drainage systems, leading to manage 524 

stormwater in urban areas better. The proposed model was validated against experimental 525 

data and showed promise for further development and validation on different types of 526 

stormwater control measures. 527 

 528 
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