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Abstract

We study the asymptotic behaviour of the run and tumble model for bacteria movement. Experi-
ments show that under the effect of a chemical stimulus, the movement of bacteria is a combination
of a transport with a constant velocity, “run”, and a random change in the direction of the movement,
“tumble”. This so-called wvelocity jump process can be described by a kinetic-transport equation. We
focus on the situation for bacteria called E. Coli where the tumbling rate depends on a chemical
stimulus but the post tumbling velocities do not.

In this paper, we show that the linear run and tumble equation converges to a unique steady
state solution with an exponential rate in a weighted total variation distance in dimension d > 1.
We provide a constructive and quantitative proof by using Harris’s Theorem from ergodic theory of
Markov processes. The result is an improvement of a recent paper by Mischler and Weng [40], since
we are able to remove the radial symmetry assumption on the chemoattractant concentration. We
also consider a weakly non-linear run and tumble equation by coupling it with a nonlocal equation on
the chemoattractant concentration. We construct a unique stationary solution for the weakly non-
linear equation and show the exponential convergence towards it. The novelty of our paper consist
in our generalisation of the spectral gap result to dimension d > 1 under relaxed assumptions and
the methods we used in the linear setting; and, all the results in the non-linear setting.
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1 Introduction and main results

We consider a kinetic-transport equation which describes the movement of biological microorganisms
biased towards a chemoattractant. The model is called the run and tumble equation and introduced
in [1, 50| based on some experimental observations |5] on the chemotaxis of the bacteria called E. coli
towards amino-acids. The equation is given by

atf—l—v-vmf:/(T(t,m,v,v')f(t,x,v')—T(t,x,v',v)f(t,x,v)) dv/, t>0,zeRveV. (1)
1%

where f := f(t,x,v) > 0 is the density distribution of microorganisms at time ¢ > 0 at a position
r € R? moving with a velocity v € V C R%. We take V = B(0, V}), a centered ball with unit volume so
that |V| = 1. Microorganisms perform a biased movement along the gradient of the chemoattractant
with a constant speed and they change their orientation at random times towards the regions where the
chemoattractant concentration is higher. Experiments show that the duration of a run is longer than
of a tumble in general. When the microorganisms move towards a favourable direction, the duration of
the runs get even longer. On the other hand, if they are away from the regions of high chemoattractant
density, the number of jumps increase and the run times get shorter. The underlying process is also
called as the velocity jump process.

The tumbling frequency T describes the change in velocity from v to v' and we assume that it can

be written as
T(t,z,v,v") :=T(m,v,v") = \(m)K (v,v'), (2)

where A : R — [0,00) is the tumbling rate and m is the derivative of the external signal M along the
direction of v" and given by

m=v-V,M, (3)
where M depends on the chemoattractant concentration S via
M =mgo+logS, mg>0, (4)

where mg represents the external signal in the absence of a chemical stimulus. In (2), the turning kernel
K is a probability distribution on V and gives the probability of moving from velocity v to velocity v’
so that it satisfies

/ K(v,v')dv' = 1.
1%

More specific assumptions on K and A will be given in Section 1.1 (see Hypotheses 1 and 2).

We remark that in the physically relevant case, m = ;M + v’ - VM as it represent the change in
M Dbacteria experiences. However, we drop the 0;M term for simplicity as it is done in the previous
works.

Together with the above assumptions, Equation (1) takes the form

Of +v-Vof = / A" -V M(2))K (v,0") f(t,z,0v")dv' — A(v - V.M (2))f(t,z,v), (5)
1%
for t >0, x € R4, v € V and it is complemented with an initial data

f(Oax7U):f0(x7U)7 l’ERd,UEV. (6)

Throughout the paper, we consider fy to be a probability measure, i.e., fo € P(R? x V), where P(Q)
denotes the space of probability measures on a space §2.



If the chemoattractant density S is a fixed function of z, then the problem (1)-(6) becomes linear.
The linear run and tumble model was studied in numerous works including [11, 40, 42, 43]. In [11], the
authors proved the existence and uniqueness of a non-trivial stationary state and exponential decay to
equilibrium as ¢ — oo in dimension d = 1. The technique is based on the modified entropy approach
introduced in [22|. An example of a tumbling frequency satisfying the assumptions in [11] is given by

T(x,v,v") =14+ xsgn(x-v), x€(0,1), (7)

where y is called the chemotactic sensitivity. Recently in [40], this result was extended to higher
dimension d > 1 by considering splitting techniques due to [39]. These techniques are based on using
the Krein-Rutman theorem for positive semigroups which do not satisfy the necessary compactness
assumption. The general form of the tumbling frequency considered in [40] is given by

T(a,v,0) = 1 — xsgn(9S +v- V.8), y € (0,1). (8)

In [40], the authors further assumed that the concentration of the chemoattractant S(z) is radially
symmetric and decreasing in z such that S(z) — 0 as |z| — oo. This assumption simplifies the
tumbling kernel (8) to (7) since the radial symmetry assumption reduces the problem essentially to
dimension d = 1. In this paper, we are able to remove the radial symmetry assumption and obtain
the exponential convergence towards a unique stationary state in dimension d > 1. As in our case,
when the concentration of the chemoattractant S is a fixed function of  but not necessarily radially
symmetric or strictly decreasing in |z|, we refer to it as the linear problem. However we remark that,
in [40], the authors refer to a specific case of the run and tumble equation as the linear problem. What
we call the linear equation in this paper refers to more general form of the run and tumble equation.

If the microorganisms produce a chemical agent themselves as well, then the concentration of the
chemical agent S(t,x) is not a fixed, given function anymore, but it solves another equation. The
physically relevant assumption in this case is that S is the solution of a Poisson type equation with a
source term

—AS +aS =p(t,x) == /vf(t,xjv) dv, 9)

where o« > 0 is the chemical degradation rate and p is the spatial density of microorganisms. The
non-linear problem obtained by coupling (1) with (9) was first introduced in [1, 41] and further studied
in [19]. In [19], the authors proved the global existence of weak solutions in dimension d = 3 assuming
that

0<T(t z,v,0)<C(1+Stz+v)+Stz—1")),

for a nonnegative initial data fo € L' N L (R? x V). Then, the global existence of weak solutions in
dimensions d = 2 and d = 3 under similar bounds on T by the terms S(¢,z £ v) and |VS(t,z £+ v)|
was proved in [33]. Then in [9], the authors extended the global existence results of [19, 33| to more
general tumbling frequencies by using the dispersion and Strichartz estimates of [15]. Most notably,
they obtained the optimal global existence result in dimensions d = 3 and d = 4 for a sufficiently small
initial data in the difficult case of a tumbling frequency satisfying

0 < T(t,z,v,0) <C(|S(t,z£tv)|+|S{t x|+ |VS(tz )|+ [VS(t,z +0)]),

where any combination of signs is allowed in the right hand side. In [8], the authors improved the
global existence results of [19]. Moreover, in |7], the authors considered (1)-(9) and proved that there
exists a critical mass and the solutions blow up in finite time if the initial mass is above the critical
mass, whereas the solutions globally exist if the initial mass is below the critical mass. Their results



are given for a particular form of the tumbling frequency which is different than the ones previously
mentioned and for a spherically symmetric initial data in dimension d = 2.

In [10], the author studied the existence of traveling wave solutions of (1) coupled with two reaction-
diffusion equations for the concentration of amino-acid released by the bacteria and the concentration of
nutrient consumed by the population. The author showed that under certain conditions on the param-
eters, travelling wave solutions exist. This analytical result complements the experimental observations
and computational studies in [46, 47]. The results in [10] are however, restricted to dimension d = 1.
Some numerical counterexamples for existence and uniquness are also provided. We refer also to [8] for
a detailed review of existence and blow-up results for kinetic models of chemotaxis.

In the present paper, we are concerned with the long-time behaviour of the run and tumble equation
in the case that the solutions exist globally in time. Therefore we do not provide an existence result.
Nevertheless, since the tumbling frequency we consider can be bounded by the necessary terms (see
Hypotheses 1 and 2 in Section 1.1), the global existence result can be obtained by following the strategy
in [19].

Up to the best of our knowledge, the analytical studies on the non-linear run and tumble model (1)
with the Poisson coupling (9) are restricted to those we mentioned above and references therein. As
for the analysis of the long-time behaviour in the case that solutions do not blow up in finite time, the
results are even more scarce. This is due to the fact that the non-linear problem is more challenging to
study mathematically. These challenges include proving the existence of equilibrium or non-equilibrium
steady solution or solutions and convergence results.

In this paper, apart from the linear equation, we consider a nonlocal non-linear coupling as a toy
model which serves as an intermediate step to treat the case with Poisson coupling (9). Let us call
p(xz) = [ f(x,v) dv the spatial marginal density of microorganisms. We consider

S = Sao(1+ 1N  p), (10)

where n > 0 is a small constant, N is a positive, smooth function with a compact support, and S, is
a smooth function. We refer to problem (5) with the coupling (10) as the weakly non-linear run and
tumble model. The reason for this coupling will be made more precise later in Section 4.

We show that there exist unique, non-trivial stationary solutions to both the linear and the weakly
non-linear equations and the solutions converge to these equilibria exponentially. First, we obtain a
unique stationary state for the linear equation as an application of Harris’s theorem. Then we build a
stationary state for the weakly non-linear equation (5)-(10) by a fixed-point argument and we show the
exponential convergence by a perturbation argument. Indeed, S in (10) can be treated as a perturbation
of the linear eqiuation whenever N * p is decreasing or 1 is small. The explicit rates of convergence can
be obtained in terms of constants given in the assumptions. Our proofs are all constructive and given
in the weighted total variation distances.

1.1 Assumptions and main results

In this section, we list the assumptions and the main results of the paper.

The first assumption is on the turning kernel K.

Hypothesis 1. We assume that the distribution of the change in the velocity due to tumbling is uniform.
Therefore we consider
K=1

whenever appears later in the computations.

The tumbling rate A (see Equation (2)) increases when the microorganisms move far away from the
regions where the chemoattractant density is high.



Hypothesis 2. The tumbling rate A\(m) : R — (0, 00) is a function of the form

A(m) =1—=xyp(m), x€(0,1) (11)

where 1 is a bounded, odd, increasing function and mi(m) is differentiable with |||l < 1.

Next, we assume that the chemoattractant density decreases as || — oc.

Hypothesis 3. We suppose that M(x) — —oo as |z| — oo, |V M(z)| is bounded, i.e., there exist
R >0 and m, > 0 such that whenever |z| > R we have

|V M(x)| > me.

Hypothesis 4. We suppose that Hess(M)(z) — 0 as |z| — oo and | Hess(M)(x)| is bounded.

Our last assumption is the following:

Hypothesis 5. There exist a constant X > 0, depending on ¢ and ||VoM| s, and an integer k > 0,
depending on v, such that

/ D' Ve M (@) - VoM (z) dv' = M@, [VaM |loo) [V M (). (12)
v
In order to explain where Hypothesis 5 comes from and justify its use we briefly prove it in two
cases.
Lemma 1.1. If¢(z) = sgn(z) then Hypothesis 5 holds with k =1 and
Vo rld=1)/2

A= /_vo oal (V5 = o)) ey -

If o is differentiable with 1'(0) > 0 then Hypothesis 5 holds with k = 2, and X depends on the exact
form of .

Proof. We look at
/ (' VoM ()" - Vo M(z)dv'.
v
Since V is a ball of radius Vj, by rotation we obtain

/Vl/J(v/ Ve M(2))v - Vo M(x)dv = /V¢(vl|VxM(:U)|)vl|VIM(:L")|]I{U§+,_+03<V02v%} dv;.

Integrating out vo, ..., vy gives
Yo 2 . 2\(d-1)/2 (=12

VoM V.M Vi — - dv;. 13
v, w(vll (x)‘)’l)l‘ (Z)‘( 0 1)1) F((d— 1)/2+1) U1 ( )

We can bound (13) below by

ﬁ(d_l)/2

I'((d—1)/2+2)

Vo/2
(Vo/2)t1 / I SN AYEILE

From this point we extract the first result on ¥ (z) = sgn(z).



/2

For the case where 1 is differentiable, we continue using the fact that 24D

Vod = 1 and changing
variables from v to y = v1|V,M]|, then the above bound is equal to

1 I(d/2+1) 1 /VolWMi/2

9d— L/rT((d=1)/2+1) V. M|V, Y(y)y dy.

—Wo|VzM|/2

Note that ¥(y)y is a positive, even function which is 0 at y = 0. We have an average of ¥(y)y
over —Vp|VoM|, Vo|VM| and it approaches to 0 as |V,M(x)| — 0. Since ¢ is differentiable then
vy (y) ~ 1’ (0)y? when y is small so as |V, M| — 0 we obtain

1 I'(d/2+1) 1 VolVeM|/2 1 rd/2+1) , 1
201 /7 T((d—1)/2 + 1) V. M|Vy /_VOVIM/Q YWYy~ S -2+ 1Y 0)75%"

This approximation only holds true as |VzM]| goes to 0, but since |V,M]| is a bounded function,

d/2+1) VoV M|/2 . . .
and 5= llfr((é /1)72+1 e MIVo I’ ?/L\vzz\l/vz Y(y)ydy is a continuous function of |V,M| we have the

result. O

Remark 1.2. Hypotheses 3, 4 and 5 can be verified also in the case where Poisson coupling (9) is
considered. The solution of —AWy(x) + aWy(x) = d, is called Yukawa potential and given by the
Green’s function

and

_ log Wy ()
Valzl
for dimension d > 1 (see [36], Theorem 6.23). We can see that |V, M (x)| and | Hess(M)(x)| are bounded

and Hess(M)(z) — 0 as |z] — oo, where M (x) = log Wy(x).
Moreover the solution of —AS(z) + aS(x) = p is given by

— 1 as |z| = co.

S(x) :=Wyxp= /Rd Wy (z)p(t,y) dy.

This case requires extra assumptions on p in order to verify Hypotheses 3, 4 and 5. Since we do not
deal with the Poisson coupling in this paper, we skip further details.

Main results We state the main results of the paper below.

Theorem 1.3 (The linear equation). Suppose that t — f is the solution of Equation (5) with initial
data fo € P(R? x V). We suppose that Hypotheses 1-5 are satisfied. Then there exist positive constants
C, o (independent of fo) such that

1t = foolls < Ce™ |l fo = fooll, (14)

where fs 15 the unique steady state solution to Equation (5). The norm || - ||« is the weighted total
variation norm defined by

|l := /Rd /V (1 —~v- VoM (z) — Byp(v- Vo M(z))w - Vo M(z)) e ™M@ do de, (15)



where v, 5 > 0 are constants which can be computed explicitly. Furthermore, if there exist positive
constants C1,Cs, and o such that

C1 — afz) < M(z) :=log(S(x)) < Cy — afz),

then using equivalence of norms we can show a contraction as in (14) (with different constants C' and

o) in the norm
il = / / ] do de, (16)
Re Jy

where § is a constant which is small enough depending on M and (x) = /1 + |z|2.

Theorem 1.4 (The weakly non-linear equation). Suppose that t — f; is the solution of FEquation (5)
with the weakly non-linear coupling (10) where we suppose that N is a positive, smooth function with
a compact support, n > 0 is a constant, and S is a smooth function satisfying for some C1,Cy, a0 > 0
that

C1 — ax) < My(x) :=log(Seo(z)) < Co — afx),

where (x) =1+ x2. We suppose that Hypotheses 1-5 are satisfied and that v is a Lipschitz function.
Then there exists some constant C depending on C1,Ca, and o such that if n < C then there ezists a
unique steady state solution to Equation (5) with the weakly non-linear coupling (10). Suppose further
that, any initial data fo € P(R? x V) satisfying

Vollwe < & ( o C*)
0] %% - - ’
4 \4nxVoD|[{' || s |V N ||

where o, D and C* are found in Theorem 1.3, Proposition 3.1 and Lemma 3./ respectively. Then we
have that

1fe = Fooller < Ce™ 2| fo = foollss,

where C' and o are some positive constants, and || - ||« is defined in (16).

Proofs of these theorems are given at the end of Sections 2 and 3 respectively.

Structure of the paper This paper is organised as follows. In Section 1.1, we listed the assumptions
which are needed throughout the paper and presented the main results. In Section 1.2, we mention the
novelty of our results and discuss our motivation and methodology. In Section 1.3, we revise macroscopic
models for chemotaxis briefly. We perform a parabolic scaling for (5) and show that in the limit we
obtain an aggregation-diffusion equation. Our convergence result in the linear case is given by Harris’s
theorem. In Section 2, after a brief introduction to the mathematical framework, we give the statement
of Harris’s theorem, and, later we show how we verify the hypotheses of Harris’s theorem for the linear
run and tumble equation in the subsequent two subsections. We give the proof of Theorem 1.3 at the
end of Section 2. Section 3 is devoted to the weakly non-linear case with nonlocal coupling. In this
section, we prove that there exists a unique stationary state solution and exponential convergence to
this solution. In Section 4, we discuss our results and their connection with the non-linear case when
different couplings for the chemoattractant density are considered. We also discuss future works.



1.2 Motivation, methodology and novelty

Motivation Our main motivation in this work is to show that there exist simpler and more efficient
methods allowing more generalisations and building an intermediate step to deal with stronger non-
linearities in the model corresponding to physically more relevant cases. We start with our motivation
to study the asymptotic behaviour of the linear equation, particularly, how it differs from similar
kinetic equations and requires different methodologies than those which have been used in the previous
literature.

The linear equation (5) has a structure similar to several equations appearing in the kinetic theory
of gasses. In particular we mention a linear Boltzmann equation of the form

Of+v-Vuf =V, V(z) V,f = (/ f(t,z,v") dv’) M) = f(t, z,v),
RQ

where f := f(t,z,v) is the density distribution of particles at time ¢ in the phase space (z,v), V(z)
is the confining potential, and M(v) is the Maxwellian velocity distribution. Long time behaviour for
such equations is studied in the field of hypocoercivity. We mention Villani’s memoire [51] as the work
which began the study of hypocoercivity as a coherent behaviour common to many kinetic equations.
The linear Boltzmann equation was first shown to converge to equilibrium by Hérau in [31] and also
falls under the scope of the powerful general theorem in [22|. In [16], written by the authors and others,
we show that Harris’s theorem from Markov process theory provides an alternative way of showing
convergence to equilibrium for the linear Boltzmann equation amongst other equations.

The run and tumble equation differs from the linear Boltzmann, and similar hypocoercive equations,
in two key ways. Firstly, the confinement mechanism in the linear Boltzmann is through a ‘confining
field” V.,V (z) whereas in the run and tumble equation the confinement is induced by the bias in
the tumbling rate. This more complex confinement mechanism in the run and tumble equation is
considerably more difficult to deal with. The second important difference between the linear Boltzmann
equation and the run and tumble equation is the nature of the steady states. The steady states for
the linear Boltzmann equation are simple and explicit and properties, such as Poincaré inequalities are
immediate for such states. For the run and tumble equation, existence of a steady state is a problem
in and of itself. The steady states for the run and tumble equation interact in a more complex way
with the tools of hypocoercivity. A good example of this is the fact that it is a condition for the
theorem in [22] that the steady state must be in the kernel of both the transport and collision operators
separately. This is not possible for a steady state of the run and tumble equation, although we define
the transport and collision parts of the operator. This behaviour is similar to non-equilibrium steady
states in kinetic theory such as the ones discussed in [2, 12, 13, 14, 25|. Harris’s theorem is well adapted
to dealing with complex non-explicit steady states, and gives the existence of a steady state and the
convergence to that steady state simultaneously. This fact was exploited by the first author in [26]
where we used Harris’s theorem to find existence of a steady state for a non-linear kinetic equation
with nonequilibrium steady states. Moreover, in [16], we showed that Harris’s theorem can be applied
efficiently to kinetic equations with nonlocal collision operators to obtain quantitative hypocoercivity
results. In conclusion, the classical tools from hypocoercivity are difficult to apply on the run and
tumble equation but Harris’s approach gives promising results.

Our motivation behind considering the weakly non-linear equation is to provide a useful intermediate
step to treat the biologically more realistic couplings by means of exploring how a similar approach to
ours in this paper can be applied to the fully non-linear case. This point is discussed in Section 4 in
detail.

Methodology We obtain the spectral gap result in the linear case by applying Harris’s thorem. In
our case the Foster-Lyapunov condition which is necessary to use Harris’s theorem is inspired from the



moment estimates in [40]. Using this type of argument to study asymptotic behaviour of biological mod-
els is a recent topic of research. One of the important recent results in this direction was [27] where the
author used Doeblin’s theorem to obtain a spectral gap result for the renewal equation. In [3, 4, 17, 20|,
Doeblin’s and Harris’s theorems were used for showing exponential contraction in weighted total vari-
ation distances for positive conservative and/or non-conservative semigroups, with several applications
in population dynamics including the growth-diffusion and the growth-fragmentation equations. In [18],
the authors used Doeblin’s theorem to show exponential convergence to equilibrium for elapsed-time
structured nonlocal PDEs describing the dynamics of interacting neuron populations. They considered
a perturbation of the linear case and obtained exponential relaxation results in the weakly non-linear
case as well. Although using perturbative techniques to study low- and high-connectivity regimes (cor-
responding to a weak and strong non-linearity respectively) for the networks of interacting neurons is
not new; the authors in [18] presented simplified and improved results on the weakly non-linear case.
The technique is promising for similar models. Their approach allows to construct a steady solution to
the non-linear equations based on an explicit smallness assumption on the connectivity parameter and
the uniqueness of the stationary solution is proved by a fixed point argument. The result on the asymp-
totic behaviour of the weakly non-linear case is treated by proving estimates on the difference between
the non-linear and the linear operators of the corresponding equations which can be understood as a
perturbation of the linear equation. The methodology used in the non-linear setting in this paper is
close to the ideas in [18]. Our fixed point argument is applied to a function which is a composition of
two functions, specifically a logarithm of a convolution of the spatial density of probability distribution
of bacteria with a smooth function. In this regard, the proof in our case is more involved as it requires
the use of Harris’s theorem and unlike in [18] Doeblin’s theorem does not work. Moreover, differently
than [18], our argument requires additional moment estimates for the perturbation term. We carry out
this by finding an appropriate Lyapunov functional in the non-linear case as well. This was not needed
in [18] as the authors could work with the steady solutions of the weakly nonlinear equation explicitly.

Novelty The main results of this paper are stated in Section 1.1. We give a spectral gap result for
the run and tumble model in the linear case and exponential convergence towards the steady state
solution. We use Harris’s theorem to obtain this result. Moreover, we prove that there exists a unique
steady state solution for the weakly non-linear run and tumble equation with a nonlocal coupling (10).
We show the exponential relaxation to the unique equilibrium in the non-linear case as well. The
latter result is given by a contraction mapping argument and a pertubation of the linerised case. We
give our results in the space of probability measures equipped with weighted total variation distances.
Our proofs are all constructive and the convergence rates are explicitly computable in terms of the
parameters given in the assumptions . The novelty in the present work is twofold. First, our results
in the linear setting is a general version compared to those in the literature concerning the long-time
behaviour of solutions of the run and tumble model. The result is an improvement of the recent work
[40] where the authors generalised the spectral gap result to dimension d > 1. However, their radial
symmetry assumption on the fixed chemoattractant density S collapses the problem into dimension
d = 1. Our results do not require this assumption to hold and generalise other assumptions made
in the previous literature. For example, the form of the tumbling frequency (8) we consider is more
general, including the common assumption involving the “sign function” in the linear setting. Second,
our results in the non-linear setting are new. A nonlocal coupling (10) has not been considered in the
literature before and there is not any explicit convergence result in the non-linear setting with any other
type of non-linearity. We believe that our results on the weakly non-linear run and tumble equation are
significant as they can be considered as an intermediate step towards studying the physically relevant
case with Poisson coupling (9) and also shows that the argument we use is robust. Our future goal is
to study the long-time behaviour of this case. We explain the details and future works in Section 4.



1.3 Macroscopic models for chemotaxis

In this section, we briefly mention the connection between the macroscopic and the kinetic descriptions
of chemotaxis. We provide a derivation of an aggregation-diffusion equation from (5) in the parabolic
scaling limit. In the macroscopic level, the bacterial chemotaxis is defined via PDEs describing the
time evolution of the population density depending on mean flux of the entire population. There is a
wide literature on the macroscopic models for chemotaxis dating back to Patlak [44], Keller and Segel
[35]. In [35], the authors study the aggregation behaviour of a population of a cell called D. discoideum
which performs amoeboid movement by changing its shape to engulf bacteria or other substances like
nutrients. They obtained a system of aggregation-diffusion equations given by

Op =V -(DVp—xpVS), (17)
0S8 = DsAS + g(pa S)) (18)

where p := p(t, z) is the cell density and S := S(¢, x) is the chemoattractant concentration for ¢ > 0 and
z € R% Insystem (17)-(18), D, > 0 and Dg > 0 are the diffusivity of the cells and the chemoattractant
respectively, x > 0 is the chemotactic sensitivity. Note that xy = 0 corresponds to the absence of a
chemical stimulus. Equations (17)-(18) model the dynamics of the chemoattractant density by means of
the diffusion of S and the function g which describes the production, degradation and consumption of S
by the cells. The system (17)-(18) is referred to as classical Patlak-Keller-Segel (PKS) model. Typically,
the cell population tends to move collectively towards the regions with higher nutrient density. After
consuming all the nutrient available in their environment, cells start to disperse uniformly over the
space. Then, after some time, they start to aggreagte and form clusters. The aggregation describes
the instability observed in the population level and it is analogous with many physical problems. The
significance of the PKS model comes from the fact that it allows to investigate aggregation behaviour
of the population.

The existence of solutions to the PKS model is a subject of many works. As we are not concerned
with the analysis of (17)-(18) in this paper we chose to skip many of them. We refer to [6, 32| and
references therein for extensive reviews of recent results.

Moreover, there are several results linking the mesoscopic and microscopic descriptions of chemotaxis
to the macroscopic one. In [1], the author derived Equation (17) in a general case of dimension d > 1
from a stochastic description of a specific model of chemotaxis. We also refer to [24, 49| for the
derivation of reaction- and aggregation-diffusion equations from interacting stochastic many-particle
systems in a general setting. In [42|, the authors developed a diffusion approximation of a kinetic-
transport equation of the from (1) where T' depends only on pre- and post-tumbling velocities v and
v respectively. In [43], the authors studied the limiting behaviour of the diffusion equation obtained
in [42]. They showed that the classical PKS model, with a given S which is smooth enough, can be
obtained formally from the limiting behaviour of a kinetic description of chemotaxis. This derivation is
carried out via the drift-diffusion expansion which is based on considering that the bias in chemotaxis is
a small perturbation of the unbiased part. More recently in [45], the authors derived Keller-Segel type
of macroscopic equations from two classes of kinetic-transport equations, the first one being (1). In
the second class of kinetic models, the tumbling frequency depends also on the intra-cellular molecular
content. In [45], the derivation of the second type of model from the first one with an appropriate scaling
was also carried out. For other recent results about the derivation of Keller-Segel type macroscopic
equations from kinetic-transport equations we refer to [34, 48, 52| and references therein.

The aggregation-diffusion equation Following [42, 43] we consider a parabolic scaling for the time
and space variables in Equation (5). The scaling is based on the assumption that in a unit time interval,
there are many jumps but a small net displacement. Considering this type of scaling is common when
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describing the asymptotic behaviour of a velocity jump process as a diffusion process. The existence of
the diffusion limit of (5) is guaranteed by the positivity of the so-called turning or tumbling operator

Of = —)\(m)f—{—/V)\(m)K(v,v')f(t,x,v’)dv'.

In [42] the authors analysed the diffusion limit of the run and tumble equation in dimension d = 1
when both the turning rate A and the turning kernel K are constants. In our case A is not constant.

We call 7 and £ the scaled time and space variables respectively. For a small ¢ > 0, 7 and & are
given by
T=¢e%, &=c¢t.
We define \°(v,&) := A(v- VM (§)) assume that as € — 0
A (0,8) 1 —exyp (v- (VaM)(E))-

This is consistent with the form of A we assumed in this paper (see Hypothesis 2).
We call F(7,v,&) the density distribution of microorganisms with the scaled variables and we have
the following equation for F,

e20,F +ev-V¢F = / N (V) K (0,0 ) F (7,0, &) dv — XN (v, €) F.
1%

We define the new spatial density,

(7.8 i= [ Flrv.6)do.
We then have by formal computations in the limit € — 0,

Orp = Ve~ (VE:O —uc(§)p), (19)

where the macroscopic chemotactic velocity u,. is given by
Ue = X/ V(v (Vo M)(€)) dv'.
1%
We can also write (19) as

0-p=V (Vp+pVU), VU= —u.().

or equivalently as a gradient flow of U

Orp— ¥ <pv (‘fg@))) o, (20)

where the entropy variable, i.e., the Fréchet derivative of U is defined as,

oU / ¢ ¢ . !
50 =UE) =~ / we(y) dy = —x / /V V(! - (V,M)(y)) dv/ dy.

Moreover, the following coupling for S can be considered along with (19)
€S =AS —aS+p, (21)

where « is the diffusion rate accross the surface. Assuming that the chemoattractant reaches the
equilibrium much faster than the density of bacteria, we take ¢ — 0 and (21) becomes a parabolic-
elliptic equation. We can write S = —W * p where we W is the Newtonian potential when o = 0 or
the Yukawa potential when o > 0.

11



e Newtonian potential for o = 0 is given by

- 5 log(|z]) d=2
o o ) )
d(2—d)wg ’ ’

where wy is the volume of the unit ball. In dimension d = 3, W,,(z) = —1/(4x|z|).

e Yukawa potential for a > 0 for x € R?\ {0} is given by

W, (x) = /0 - (zmiﬂ/? (-‘”;’2 _ ay> dy. (23)

Note that W, (z) = 1/(v/a)e Vel and W, (z) = 1/(4x|z|)e~V*?| in dimension d = 1 and d = 3
respectively.

2 Harris’s Theorem

In this section, we give the statement of Harris’s theorem based on [28, 29]. Harris’s theorem is a
probabilistic method which gives simple conditions on ergodic (long-time) behaviour of Markov pro-
cesses. The original idea dates back to Doeblin [21] where he showed mizing of a Markov chain whose
transition probabilities possess a uniform lower bound. We refer to this condition as Doeblin condition
and explain it below. The mixing of a Markov chain refers to the time until the Markov chain reaches
its stationary state distribution. In [30], Harris studied the necessary conditions for a Markov process
to admit a unique stationary state or an invariant measure. Later in |23, 37, 38|, this result was used
for the first time to obtain quantitative convergence rates based on verifiying a minorisation condition
and a geometric drift or Foster-Lyapunov condition. In [29], the authors provided a simplified proof
of Harris’s theorem by using appropriate Kantorovich distances. We state the theorems below in the
spirit of 28, 29].

We consider a Polish space € and denote ¥ as the o—algebra of Borel subsets of €. Then (2, %)
is a measurable space; and, endowed with any probability measure, €) is a Lebesgue space. We denote
the space of probability measures by P(f2).

A natural way to construct a Markov process is via a transition probability function.

Definition 2.1. A linear, measurable function M(z, A) is a transition probability function on (€2, X) if
for every z, M(x,-) is a probability measure on (€, %) and M(-, A) is a measurable function for every

AeX.

A Markov operator M and its adjoint M* can be defined by means of a transition probability
function M in the following way:

(Mp)(A) = /Q Mz, Aluldz,  (M*¢)(x) = /Q b(y) M(z, dy),

where ¢ : Q — [0, +00) a bounded measurable function.

Definition 2.2. A family of Markov operators (M;);>¢ is called a Markov semigroup if it satisfies the
following

i. My = Id or equivalently My(x,-) = 0, for all x € Q.

1. The semigroup property: Myis = MM, for t,s > 0.

12



i For every p € L', t — My is continuous.
We also note that Markov semigroups have
i. Positivity property: M; > 0 for any ¢t > 0
ii. Conservativity property: (M,f) = (f) for any f € Q where (f) := (f,1).

In our setting M;u will be the solution of the partial differential equation f at time ¢ with an initial
data p which is a probability measure. Moreover for every t > 0, if Myu = p, then the probability
measure /4 is called an invariant measure of (My)i>0 or equivalently a steady state solution of f.

Theorem 2.3 (Doeblin’s Theorem). Suppose that we have a Markov semigroup (My)e>0 which satisfies

Doeblin’s condition: There exists a time T > 0, a probability distribution v and a constant
a € (0,1) such that for any zo in the domain

Mrd,, > av.
Then for any two finite measures 1 and ps and any integer n > 0 we have that

M7 (p1 = p2) oy < (1 =)™ [l = pllpy -

As a consequence, the semigroup has a unique invariant probability measure oo, and for all probability
measures (i

1M — ooy < O~ [l — ool s for all ¢ >0,
where C:=1/(1 —a) > 1 and 0 := —log(1 — «)/T > 0.

Doeblin’s condition sometimes referred as the strong positivity condition or uniform minorisation
condition. It means for a Markov process that the probability of transitioning from any initial state to
any other state is positive. Doeblin’s theorem gives a unique stationary state for a Markov process and
exponential convergence to this state once Doeblin’s condition is satisfied. However, proving such a
uniform positivity is often difficult. Especially when the state space of the Markov process is unbounded.
Harris’s theorem is an extension of Doeblin’s theorem to these cases. Instead of a uniform minorisation
condition, we show that Doeblin’s condition is satisfied only in a given region and verify that the
process will visit this region often enough. For the latter part we need to find an appropriate Lyapunov
functional, i.e., verify the Foster-Lyapunov condition.

Theorem 2.4 (Harris’s Theorem). Suppose that we have a Markov semigroup (My)e>o satisfying the
following two conditions

Foster-Lyapunov condition: There exists A > 0, K > 0, some time T > 0 and a measurable
function ¢ such that for all z in the domain

(M19)(2) < Ap(2) + K. (24)

Minorisation condition: There exists a time T > 0, a probability distribution v and a constant
a € (0,1) such that for any zp € C

MT(SZO > av, (25)

where C := {z : ¢(z) < R}, for some R >2K/(1 — a).
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Then there exist f > 0 and & € (0,1) such that

M7 (1 = p2)llp p < a@llpn = p2lly

for all nonnegative measures [ py = [ po where the norm || - || 43 is defined by

Il = [ L+ B0zl

Moreover, the semigroup has a unique invariant probability measure p~ and there exist C > 1, 0 >0
(depending on T, o, A\, K, R and [3) such that

| M (g — Moo)Hqs,,g < Ce M u— Moo”¢>,,37 for allt >0,

Remark 2.5. The constants in Theorem 2.4 can be calculated explicitly. If we set Ao € [\ + 2K/R, 1)
for any ag € (0, ) we can choose 8 = ap/K and @ = max{l — a — ag, (2 + RBXo)/(2+ RB)}. Then
we have C' := 1/a and 0 = —loga/T.

For the proofs of Theorem 2.3 and Theorem 2.4 we refer to |28, 29| and references therein.

In the following two sections we show how the Foster-Lyapunov condition and the minorisation
condition are verified for Equation (5). At the end of the section we give the proof of Theorem 1.3.

We use the notations z := (z,v) and [ dz := fRd fv dz dv for the rest of the paper whenever
convenient.

2.1 Foster-Lyapunov condition

In this section, we verify the Foster-Lyapunov condition (24) for Equation (5). In order to look at
Lyapunov functions let us fix some notation. We remark that by Lyapunov functions we do not refer
to scalar functions which are used for stability results in ODE theory. By a Lyapunov function in the
sense of Harris’s theorem, we want some function ¢(z) where ¢(z) — oo as |z| — oo and the existence
of some t >0, C' > 0 and « € (0,1) such that

/ ()1t 2)dz < a / 6(2)fol2)dz + C / folz) dz, (26)

for any initial data fo(z) € P(R? x V).
For f satisfying an equation

6tf = £f7
we can prove (26) by showing that
L < —v¢+ D, (27)

for some positive constants 7y, D.
Remark 2.6. We take the time derivative of (26) to obtain (27), so that o = ™" and C = D/~.
In (27), £* is the formal adjoint of £. In our case

Lf=-v-V.f+ /v AV -V M) f(z,0")dv' — Ao - Ve M) f(z,v). (28)
Therefore,
L¢=v-Vyp+ ANv- VM) </v o(x,v") dv' — ¢(a, v)) . (29)
Next, we show the following lemma.
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Lemma 2.7 (Foster-Lyapunov condition for Equation (5)). Suppose that Hypotheses 1-5 hold. Then
there exist constants v > 0 and 5 > 0 such that

$(x,v) = (1= v VoM (z) = Byp(v - VoM (2))v - Vo M (x)) e M),

is a function for which the semigroup generated by L in (28) satisfies the Foster-Lyapunov condition
(24) with = x/(1+ x) and

7<min{;\x(1_X)€ 1+x }

8(L+x) 22+ )VollVaM |l

with
mE2, if k<2,
£:=<1, if k=2,
Vo M|E2, if k> 2,

where my > 0 s found in Hypothesis 3.

Proof. We begin by briefly motivation of the form of ¢ in the proof. It is structurally similar to an
estimate in Lemma 2.2 in [40]. As the confining terms are bounded, we expect that we need to look for
a Foster-Lyapunov functional which has exponential tails, by analogy with parabolic reaction diffusion
equations with bounded drift terms. We can also guess this form by looking at the previous results on
similar equations including [40]. We choose a function of M which will have this behaviour, e =" and
seek a Foster-Lyapunov functional which is closely related to this. We derive the precise form of ¢ by
repeatedly differentiating [ f(t, z)e_VM(I) dz along the flow of the equation until we find a term which
doesn’t change sign. We then create our Foster-Lyapunov function from a combination of e~ ®) and
the key terms appearing in the derivatives of this moment along the flow of the equation.
First we compute the action of £* on the different elements.

L (E”M‘x)) = —y0 - Vo M(z)e "M@,
Furthermore,
£ (v- VaM(2)e M) = (o Hess(M)(2)o = 7(v - VoM (x))?) e 1M
— (1 = x¥(v- VaM(z)))v - VoM (z)) e 7M@),
Lastly,
£ (v VoM (@) va<x>e*”M<x>) = (¢/(v- VoM ()T Hess(M (2))vv - Vo M () e
+ (Y(v - Vo M(z))o" Hess(M)(z)v — yib(v - VoM () (v - Vo M(z))?) e 7M@)
+ (1= xY(v- VoM (x </ (' - VM ()W - Ve M(x)dv' — (v - Ve M(z))v - VxM(x)> o TM(@).
Putting everything together gives,
L ((1 — v VoM(z) — By(v- Ve M(z))v - va(z))e—me)

< - <ﬁv(1 - X)) /vw(v’ VoM (z))' - VoM (z) dv/) o~ 7M(2)

+ (Bv(1+X) =) (v - VoM (2)v - VoM (z)e M)
+ ("}/2(1) . Vch(a:))2 + 725w(v . VxM(:L‘))(U . va(x))Q) ef’yM(x)
— (Y4 By (v VoM (2))v - VoM (z) + Byp(v - VM) (z))o” Hess(M)(x)v) e 7M@),
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We also have (for 5 < 1)

— 7 = B (v VoM (z))v - VoM (x) — Byp(v - VoM (x))

<y+8y  sup (P(2)z+9(2) <ACLY, VM),
[2|<Vo Ve M |0

and
V(v - VoM (2))* + 2B (v - VoM () (v - VoM (2))* < 29|V, M.
Combining these and choosing § = x/(1 + x) we have,
£((1 =0+ Vo M(@) = By - VoM (2))v - Vo M())e M)
< <—ny5\(1 )| VaM[* + 292V M2 + A CyoT Hess(M)(w)v) e TM(@)

Let us write

mk=2, if k<2,
=41, if k=2,
IV M52, if k> 2,

where m, is coming from Hypothesis 3. Then, if we choose

< min J XA =€ 1+ x
- 8(1+x) 22+ x)VollVeM |l |

then we have, at least for x sufficiently large in the case k < 2 that,
£ (<1 — v VaM(z) = fy(v- Vo M(z))v - va)e-vM@))

<~ ( %w MI* + V2| Hess(M)(a;)) M @),

Then by Hypothesis 3 there exist R > 0 and m, > 0 such that when |z| > R we have

Y k
VoM| > m,, and |Hess(M)(z)| < M (30)
So we have,
£ (1= v VoM(2) = By (o VoM (@))o - VoM (z))e M@ )
< Alyjp)<ry — /\XS_Xgm ),
where
A= sup {1C1V}[Hess(M) () e} (31)

|lz|<R
Since we can compare e~ "M (@) to (1 — v - V,M(z) — Byb(v - VoM (x))v - VoM (x))e ™M) by
L+ V0| Ve M oo (1 + Bl|8o0)) ™M)

e M (@)

(1 — v - VoM (z) — Byp(v- Ve M(z))v - VoM (z))e "M@ <

—~

<

N W
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if we write

d(z,v) = (1 —yv - VoM (z) — Byp(v - VoM (z))v - VoM (z))e ™M @),

then
. YAx(1 = x)mk Yax( = x)mk
L9 < A = — A — @),
Gro *7 7 iy A9
where
2
A — 6~01V0—(1+X) {|Hess(M)(x)|e_7M(z)} .
Ax(1 = x)m |w\<R
Therefore

/f (t, 2)6(2) dz < A’ + exp (-Wt) </ Fol2)o(2) dz — A’> .

Thus we prove (26) for a = exp (—%%ﬁmﬁt) and C = A’

2.2 Minorisation condition

(32)

In this section, we show the minorisation condition (25) for Equation (5). We consider two semigroups

(Tt)t>0 and (S¢)e>0. Let (T¢)i>0, represents the transport part, be associated to the equation
Of+v-Vaof +Az,v)f =0,

which means that the solution of (33) can be written as for ¢ > 0

fo(z —vt,v) exp( fo —v8,v) ds) , x>t
07 x < vt.

Tefo(z,v) = {
Let (St)¢>0 be associated to the equation
Ohf+v-Vaof +Av,2)f = /V)\(:c,v’)f(t,x,v')dvl.
Then the solution of (35) is
Flt2.0) = Sufolo0) = Tifo) + [ ool s, 00) s,
where J f(t,x,v) := fv f(t,z,v")dv' is the jump operator. Remark that we have

Jf(t,x,v) = /V)\(m,v')f(t,x,vl)dv' >(1-— X)]l{|v|gvo}/vf(t,m,v’) dv'.

By applying Duhamel’s formula iteratively we obtain

t S
F(t,2,0) = Sefolw, v) > (1 — x)2e (0! / / e T Toer T To fol, ) dr ds.
0 0

Lemma 2.8. Given any time tg > 0, for all t > tg it holds that

1
—(1 t
Aﬁ (620 () L gjug <1y (v)) dv > e” (X 1B (V)| a0l <Vor} for any xo,vo > 0.
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Proof. Note that we have
Tifo(z,v) > 6_(1+X)tfo(:x —ot,v), t>0.
For an arbitrary starting point and a velocity (xg,vg), xo > 0, v9 € B(Vp) (ball of radius Vj) we have
7o (0o ()1 g <1} (V) = €70 (2 — 08) g <vz)-

By integrating this and changing variables we obtain

/v Ti (O (2) L <vpy) dv > e~ HHY! /V Oy (& = VE) 1y <1} (v) dv

1
>e 0t~ / 8 ()1 gy 2 dy.
2O B feayey W I 20} () W

This gives the result. O
Now, we prove the minorisation condition for (5) below.

Lemma 2.9 (Minorisation condition for Equation (5)). For every R, > 0 we can take t = 3 + R, /Vj
such that any solution of Equation (5) with initial data fo € P(R?x V) with f\x|<R* Jy fo(z,v)dzdv =1
satisfies B

B 1
ft,z,v) > (1 —x2)e (HX)tWﬂﬂx\g%}ﬂﬂmgv@}' (37)

Proof. We take fo(z,v) = 0(gy,4,) Where (zo,v0) € R? x V, is an arbitrary point with an arbitrary
velocity. We only need to consider zg € B(0, Ry), then the bound we obtain depends on R,. First we
have that

ﬁfO > 67(1+X)r5(10+7“vo7vo)‘
Applying J to this we get
ITrfo> (1~ X)e_(1+X)r610+TU0 (-77)]1{|v|§V0}'

We then apply Lemma 2.8 and obtain

1
Ty dTofo> (1 —x)e Ut —  _q, .
A fO = ( X)e (S—T)d|B(‘/b)| {\x xo T‘Uo‘SVo(S 7”)}

This means that

(L)s 1
I Teer T Tofo > (1 = x)2e” ) Ww]l{lw—m—rvdﬁw(s—r)}]l{\U\SVO}'

Lastly we have that

B 1
Ties I Toer T Trfo > (1 — x)%e (1+X)tmnﬂx—(t—s)v—xo—mo|§V0(s—r)}]l{|v\§V0}'

Since we have (remembering that all the velocities are smaller than Vp)

|z —v(t —s) —x9 — rvg| < (s — 1)V,
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implies that
lz| < (s —r)Vo — (t = s)Vo — Vo — R..
Then if we ensure that (s —r) > 2+ R, /Vp, r < 1/2 and (t — s) < 1/2 we will have

) 1
Ties I Tor T Trfo = (1= X)%e (”X”mﬂ{lxwgmﬂwsvﬂ}-

Therefore let us set ¢ = 3 + R,/Vp. Then we can restrict the time integrals to r € (0,1/2), s €
(5/2+ R./Vh,3 + R./Vp). Then we get

t s
f(t,2,0) > / / TioT Toer T Tr folir,v) dr ds
0 JO

A / / T ap Hle 1y, drds
o sj21m. v o (s —)A[B(Vy)|  trIsvelHlisvol

1

2 —(1
2 (L= s el<vay Ll <vo)-

This gives the uniform lower bound we need for Harris’s theorem. We can extend this from delta function
initial data to general initial data by using the fact that the associated semigroup is Markov. O

Proof of Theorem 1.3. We verify the two hypotheses of Harris’s theorem in Lemmas 2.7 and 2.9. The
contraction in the || - ||« norm and the existence of a steady state follow again by Harris’s theorem.
Moreover Lemma 2.7 gives that for the steady state f,, obtained by Harris’s theorem we have

/ 6(2) fro(2)dz < A

Our conditions on v ensure that

le*’YM(w) <¢<

2 ¢.

Therefore we obtain
/eVM(I)foo(z) dz <24/,

and this leads to

o] N
/e_“/M(x)f(t, 2)dz < 2A" + 3exp <—Wt> /e_VM(z)fo(z) dz,

which gives the contraction in the || - [|.« norm. We remark that in this proof v only depends on M
through A and ||V, M||s. So if ¢/(0) > 0 we can choose v uniformly over sets of M where VM is
bounded uniformly.

O
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3 Weakly non-linear coupling

3.1 Stationary solutions

In this section, we build a stationary state for the run and tumble equation (5) with the weakly non-
linear coupling (10). We know by Theorem 1.3 that there exists a unique steady state solution to the
linear equation satisfying the assumptions listed in Theorem 1.3. For each fixed M, we call SM the
semigroup on measures associated to the linear equation and £ its unique stationary solution. Then
we see that f satisfies

v Vo fM(z,0) 4+ Ao - VoM (2) M (z,v) — /)\(v' VoM (2)) M (2,0") dv’ = 0. (38)

We define a function G : C?(R) — C%(R) given by
G(M) =1og (So (1+nN * p™)) (39)

where S, a smooth function, having exponential tails with some fixed parameter, n > 0 a small
constant, N a positive, compactly supported, smooth function, and pM := / fé\g (x,v)dv’. We see that
if M is a fixed point of G then f will be a steady state of the non-linear equation.

Proposition 3.1. Suppose that M is of the form M = M., +log (140N x p) for some p € P(R?).
Then if n is small enough in terms of | N||w2., we have that

IS Flls < D™ f s,

where D, o are strictly positive constants only depending on My, N, and n. Furthermore, if fM is the
steady state of SM then

1538 [l < C, (40)

where C' is a constant depening on My, N and 7).

Proof. The result follows from Theorem 1.3. We recall that the constants in Lemma 2.9 in the mi-
norisation part do not depend on M, whereas, the costants in Lemma 2.7 in the Foster-Lyapunov part
depend on M through ||V;M ||, R, and m, so that for all || > R we have (recalling (30)),

Ax(1 — x)mk

|VoM| > m,, and |Hess(M)| < m.
We want to verify this for M solving (10). We can control |V M| and | Hess(M)| by considering
M = My, +log (1 +nN % p) ~ My, + 1N % p™.
Provided that n < ||N||2, which we can choose it to be, by Taylor expansion we have that
|M = Moo| < 0N+ p < 1[| N| oo

In a similar way, we can take gradients to get

VN xp
V.M =V, M _—
Then
VN xp
— T | <||VaN < ||\ VN || so-
”1+nN*pHoo_H APl = IVl
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So we can ensure that
|VaM — Vi Moo| < nl|[VeN||oo- (41)
We can also compute the Hessian to get

n(Hess(N) * p) +n” (N * p)(Hess(N) * p) = (VN % p)(VoNT % p))

Hess(M) = Hess(Mo) + (11 7N * p)2

Therefore, the difference between Hess(M) and Hess(My,) is controlled by n||N||j2.c. Suppose that
there exist Ro, and meo such that for all |x| > R, we have

Ax (1 — x)mk,

VieMoo| > Moo, d |H My)| < —/———F—=.
| | >m and | Hess( )| 3201(1+X)V02

Then by choosing 7 small enough in terms of || N||y2. and setting m, = ms/2 and R = R we have
my and R in (30) only depend on My, N, 7.
Furthermore, by Theorem 1.3 for the steady state f we have

/e’yM(x)foj\g(z) dz <24,
where

2
A= w sup {]Hess(M)(:c)]e_WM(x)} .
(1= x)m¥ jz/<R

We can bound A’ only in terms of My, N,n. We already know this is true for m, and R. Moreover,
as v < 1 we have

sup {| Hess(M)(@)]e M@} < sup { (| Hess(Mao) ()] + 9| Nypz) e M0V
lz|[<R lz|<R

which we can bound in a way that only depends on M, N, 7. Therefore,
/ e~ Moo (®) fM () 4 < (MlIN oo / =M@ £ (1) g

and we can compare YMx () to § in Theorem 1.3. So this lets us control || f2||.« in terms of A’ up to
factors only depending on My, N, 7. This finishes the proof. O

Then we can prove

Proposition 3.2. We consider Equation (5) with the weakly non-linear coupling (10) where we suppose
that N is a positive, smooth function with a compact support, n > 0 is a constant, and Sso s a smooth
function satisfying for some C1,Co, 0 > 0 that

C1 — a(xr) < My (z) :=log(Sx(z)) < Cy — afx), (42)

where () = /14 x2. Then there exists some constant C depending on Ci1,Cy, a such that if n < C
then there exists a unique steady state solution to Equation (5) with a weakly non-linear coupling.
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Proof. We want to use the contraction mapping theorem to show that G, defined by (39), has a fixed
point. Let us take for i = {1,2},

M; = My + log (1 + N * pMi) . where pMi= / Mz, ) do.
v

We also know that M, satisfies (42). Then we show contractivity of G by using the fact that
IG(M1) = G(Ma)||oo < ChIIN + p™ — N+ p*2[|og < Cl|N ool p™ = p™2 s,

where C' > 0 is a constant.

Let us call StM i, for i = {1,2}, the semigroups associated to the linear equation with M; := log S;.
Then, we choose ¢ sufficiently large so that StM ! is a contraction. By Proposition 3.1 we know that
there exist D,o > 0 such that

IS (f = 9l < De™ ! f — gl

The constants D, o only depend on M, N,n because it was shown in Lemma 3.1, the bounds on M
required to prove Theorem 1.3 are preserved by G and do not depend on M except through, M., N, 7.

We recall
e = [ [ (20 az e

where § = 87. Note that the defnition of § comes from the fact that we essentially weight by e~ 7Me(*)
and Mo (z) ~ —B(z). Let us call fMi are the steady state solutions of the linear equation with M; for
i ={1,2}. Then

PR = £l = ISP £ = SPR F2 e S USP (PR = F22) e + (S = S2) f302 s
leading to
(1= De™ )| f3 = falllee < NS = §M2) £32 s (43)

So it only remains to show that for a fixed time period, SM is continuous in M.
Let us write

Als, £, M) (x, v) :/ Mo Vo Mi(z — v(t — 7)) dr,

and

TMi(f)(x,v) = / AW - Vo M;(2)) f(z,0) do'.

%
Then we have

t
SMf = e MOPMIT f 4 / e MM M, (SM f ds,
0

where (T )¢>0 is defined in (35). Consequently we have

’Sle SMQf’ < ( (07t,M1) _ e—A(O,t,Mz)) ﬁf
t
+/ (efA(s,tMl) _efA(s,t,M2)> TMT M1 ds
0
t
+/ e*A(S,t,MQ)(le . jMZ)'E_SS;V[lde
0

t
- / e MsbM) M2 (GM1 _ GM2) £ s,
0
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We can see that for s,¢ < T there exists a constant Cr > 0 depending on T so that
e MM _ oA LM) | < OV, My — Vi Moo

We also have trivially that
e—A(S,t,M) < 1

Turning to the jump operator J we have
[(TM = T2l < A - Vo M1) — A - Vo M) [lo |l fllsx < CIV2My — VM ||ool| f ||,
and
1T Fllaw < (1421 Fllss-

We also have

1Tef s < €Y1 f s

Therefore we obtain, for t < T,

t
|(si = sM2) || < CrlIvatts = Vadballucli £ +/ Crl|(si = 82 f]),, ds
*k 0
Then Gronwall’s inequality gives,
(o).

where C/. > 0 a constant depending on T'.
Using (43) and (44) we obtain an estimate on the steady states given by

S OplIVa My = Vo Molloo £, (44)

*

128" = f22 Nl < (1= D7) T CF[|Va by — Vo Ma ool £ |-
Now we can see that
1p™ = M2 e = [ £28 = F32 s (45)
Consequently we have,
IG(M1) = G(Mz) oo < Cl| VM — Vi Ma|loo 0™ s

Similarly
IVoG(M1) = VoG(Mo)||oo < Onl|VeMy = VoMa|oollp™ s

By Proposition 3.1, we also have that
1P e = 1 f2]lx < C.
So we choose 7 sufficiently small to get
1
IG(M1) = G(Ma)[[wree < 5 [[My — Mol

This gives a unique fixed point of GG; and, as for the weakly non-linear equation, a steady state solution.
O
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3.2 Perturbation argument

In this section, we prove that the solution of Equation (5) with the weakly non-linear coupling (10)
converges exponentially to its unique steady state soluntion obtained in Proposition (3.2).

Let us call M the fixed point of G we found in Proposition 3.2 and fs, = fM the steady state of the
linear equation associated to M which is by construction also the steady state of the weakly non-linear
equation. We showed, in Proposition 3.1, that we can find R, m, and bound ||V;M ||~ uniformly over
the set of log-chemoattractants of the form

M = My +log(1 +nN x* p),

for some probability density p on R%. This means that we can also fix, v and A uniformly over this set
since we show in the proof of Proposition 3.1 that they only depend on these bounds.

Let us first look at a moment estimate for the weakly non-linear equation (5)-(10). We would like
to show an inequality analogous to (26) for the solution f of the weakly non-linear equation. That is
to say we show

/ e M@ £(1 1)y < @ / e M=) fy(2) dz + C / fo(z) dz. (46)

Let us define two operators £y, and £y, associated to the weakly non-linear equation and the equation
for the stationary solution (38) respectively. Then we have

EMtf = —U- fo + / A(U, : V:EM)f(t7$7’Ul) d’Ul - >‘(’U ' va)f(ta xﬂ-’)v (47)
where M is given by (10). Similarly Ly is given by
Ly f=-v-Vof + / A VoMo f(t, z,0")dv' — ANv - VieMyo) f(t, x,v). (48)

We carry out a similar argument to the one in Section 2.1 for the linear equation. We show

Lemma 3.3. Suppose that Ly, and Ly, are given by (47) and (48) and Ly, L3, denote their
formal adjoints respectively. Then let

$(w,0) = (1 =y - VoM () = By (v - VoM ())v - VoM (z))e M), (49)
and My = My +1og(1 + 1N * p;) where py := [, f(t,2,v)dv. Then we have
Me® < Lage®+ A Vollt! oo VoV oMo, (50)
Proof. First, using (41) we obtain
V(v VeMoo) = (v - Vo M)| < [[1)]|oo|0||VaM = VaMos| < nVoll¥ oo VeV |- (51)

Then, we see that
L340~ L= N0+ Va8) = 2w Tt ([ ot a0 = o(0.0))

=XV Velly) = (v VaMoo)) < /v d(z,v) dv’ — ¢(a, v>>
< A Vo[t [lo |V N [|oce™ 7Moo (),

In the last line of the above inequality, we used the fact that ~ is chosen so that ¢ < 2e~7Meo (#) | This
gives (50). O
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Lemma 3.4. Let f be the solution of Equation (5) with the coupling (10). If n is sufficiently small,
then there exists a constant B > 0 (not depending on 1) such that

/@ tzdw<+em/¢ ) fol(z (52)

where A is given by (31) in the proof of Lemma 2.7 and ¢ is given in (49). In fact we have the bound

A
11l < %5 + [l foll« (53)
Using equivalence of norms we also have
[l < C + 4| foll s,

for C* > 0 a constant.

Proof. From Lemma 2.7, inequality (32) we know that

. XA =x)mE @)
<A- Mos (@),
At = AT T ¢

Using (50) in Lemma 3.3 we obtain

" Ax(1— mf _ .
o <A (’M - 4nx%llw’!ooHVxNHoo> ),

Therefore, if we take ) such that

"< Ax(1 — x)m*
A8 (1 + ) Vol loo I Ve N | oo’

then we have for some constant B > 0

3 e < -8 [o@s ) a4 [ s

Therefore, by Gronwall’s inequality we obtain (52). We can also turn this into an exponential decay on

/e”M“(I)f(t, z)dz.

This gives the result. O

Lemma 3.5. Suppose that f; is the solution of Equation (5) with the coupling (10) and f its steady
state solution. Suppose that n is small enough so that Lemmas 3.3 and 3.4 are valid. Suppose also that

o2 )
k3 C* 5 54
I ol (477XV0D|WHOOHV N (54)

where g, D and C* are found in Theorem 1.3, Proposition 3.1 and Lemma 3./ respectively. Then we
have for some C' > 0 that

||ft - foo”** < Ce_at/Q”fO - foo”**
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Proof. We rewrite the weakly non-linear equation (5)-(10) as

8tf(t,$,’[)) = EMtf(tl'an) = EMf(t,lL‘, U) - ([’M - EMt)f(t7$7U)a
where M is the fixed point of G which is defined in (39). Let us call the last term h = h(t,z,v) :=
(L7 — Lu,)f- Then by Duhamel’s formula we have

fi=flt,x,v) = Sthg(:L‘,v) + /Ot Stj‘ilsh(s,x,v) ds. (55)

where (SM);>0 is the semigroup associated to Equation (35). Using definitions (47) and (48) we have

At w,0) = x ( [ (90 Vad) = 0/ V0D ft,,0) 0" = ({0 M) = (- VD)) f) .
1%
Then, using (41) and (45) from Propositions 3.1 and 3.2 respectively, we have

Bllss < 2X01% [loa Vol Va My — Vo M| oo| f ||+
< 2x]|¢ |0 Vol | V2 log (1 4+ 0N  p) — Vg log (1 + NN * poo) |loc || f
< 2Voll Y [loo Ve N [looll ft = foollswxl.f [l -

Therefore we obtain

[l < Cnllfe = Foollwsll fell s (56)

where C' is a constant depending on x, 1, Vp, N. Now we subtract fo, from both sides of (55) and take
the norms to get

~ t -
1o = Foollee = IS5 fo — Frcllun + H | sttnas

(57)

*k

We can bound the first term in the right hand side of (57) by the result of Theorem 1.3 and the second
term by (56). Therefore we obtain

t

I1fe = fooller < Cre™ fo — foolls + Cp / O fy — foollwell fill s ds,

e
0
where C' > 0, the constant in (56), depends on x, ¥, Vo, N. By the constraint (54) on 7, and the bound
on || ft||«x from Lemma 3.4 we have

t
g
= Folee < Cre™ o= frlos + 5 [ e OIf = el

By Gronwall’s inequality this leads to
Hft - fooH** < Ce_gt/z”f() - foo”**
for some constant C' > 0. This finishes the proof. O

Proof of Theorem 1.4. Proposition 3.2 gives a unique steady state solution for the weakly non-linear
equation (5)-(10). The exponential relaxation to the steady state solution follows from Lemma 3.5.
This completes the proof. O
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4 Discussion and future research

In this section we discuss the relationship of our work to the much more challenging problem of finding
steady states to the run and tumble equation with the fully nonlinear coupling of the form

—AS+ S5 =p.

Note that, this corresponds to the case where the chemical degradation rate o = 1 in (9) for simplicity.
Our goal is to describe hopeful direction for future research as well as giving an idea of why we consider
the weakly non-linear coupling studied here as a possible stepping stone towards this more complex
model. In this regard, we believe that a Schauder fixed point argument is a plausible strategy for
finding a steady state of the fully non-linear coupling. We suggest looking for fixed points of the
following function G(M) = log S where S is the solution to

A S+ 5= pMa

where pM is the spatial marginal of the unique steady state of (5) with the log-chemoattractant M.
The first step is to determine if the estimates we obtain in Section 2.1 (the Foster-Lyapunov part)
would be good enough to run such a fixed point argument, that is, we would like to see if the bounds

we find on
[ oz,

are sufficient to find a compact, convex set of possible chemoattractant densitites which is preserved by
G. Since there is a one-to-one correspondence between G(M ) and pM | this is equivalent to finding a
set of possible pM. A standard way of showing the necessary compactness would be to show tightness
of the measures p* | and this can be achieved by proving moment estimates (such as are found in the
Foster-Lyapunov part). However, we encounter a problem that at each iteration of such a scheme we
lose weight in our moment estimate. Suppose that we have a spatial density p which we know satisfies
a moment bound of the form

/e“mp(:c) dz < C,

for some constants « and C. Then we know that the tails of S, the solution to —A,S + S = p, are at
least as fat as p, so we can imagine that the tails of S ~ e~ Then if we look at the M = log(.5)
and the steady state of (5) associated to this solution, our estimates from Lemma 2.7 will give us

/ea7<m>p(as) dr <

where v < 1 comes from Lemma 2.7 and we have v < 1.

Although our discussion above shows that we would need a new moment estimate on the steady
state of the linear equation in order to make such an argument work, we believe that such a fixed point
argument could be carried out. Finding such an estimate is the subject of our ongoing research. In this
paper, we experiment with a toy non-linear model, where we could use the estimates coming from the
Foster-Lyapunov part to be able to use a fixed point argument. This gives us a better understanding
of how this type of argument should work. We briefly describe our process for choosing this coupling.

The first idea was to come up with a perturbative setting to try a coupling of the form

—AS+ S = p.+np, (58)

where p, is a fixed spatial density and 7 is a small number. However, we notice that this coupling has
essentially exactly the same problem with a loss of weight as the fully non-linear coupling. In order to
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create a coupling we can deal with, the np in the right hand side of (58) needs to be multiplied by a
function of x that decays sufficiently fast at infinity. Therefore, we can try a coupling that looks like

—AS+ S = p.(1+np). (59)
Then, S, which is the solution of (59), is given by

S =N x(p«(1+np)), (60)

where N = F~1(1/(1 + [£|?)), and F represents the Fourier transform. Then, we further simplify (60)
as

S =81 +nN xp)

where N is now a positive, smooth function and S is a smooth function. Considering this simplification
allows us to keep algebra simple without losing the behaviour of (60). By this strategy we obtain the
weakly non-linear, nonlocal coupling introduced in (10). Even though this weakly non-linear coupling
serves as a toy model we still retain the idea of a fixed point argument on the chemoattractant profile.

Our contraction mapping argument is an adaption of what was originally an argument to show
continuity of a map G defined on a fully non-linear coupling. In order to carry out a Schauder fixed
point argument, continuity of such G would be needed.

Finally, the toy model we introduced, even though biologically not realistic, allows us to understand
better how to use the arguments presented in this paper in the fully non-linear setting. This is a subject
of ongoing work.
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