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ABSTRACT 

Ecological interactions are rarely taken into account in environmental risk assessment. The 

objective of this work was to assess how interspecific competition affects the way plant species 

react to herbicides and more specifically how it modifies the concentration-response curves that 

can be built using ecotoxicological bioassays. To do this, we relied on the results of 

ecotoxicological bioassays on six herbaceous species exposed to isoproturon under two 

conditions: in presence and in absence of a competitor. At the end of the experiments, eleven 

endpoints were measured. We modelled these data using a hierarchical modelling framework 

designed to assess the effects of competition on each of the four parameters of the concentration 

response curves (e.g. the level of response at the control or the concentration at the inflexion point 

of the curve) simultaneously for the six species. The modelled effects could be of three types, 1) 

competition had no effect on the parameter, 2) competition had the same effect on the parameter 

for all species and 3) competition had a different effect on the parameter for each species. Our 

main hypothesis was that different species would react differently to competition. Results showed 

that about a half of the estimated parameters showed a modification under competition pressure 

among which only a fourth showed a species-specific effect, the three other fourth showing the 

same effect between the different species. Our initial hypothesis was thus not supported as species 
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tended to react in the same way to competition. The competition effect on plants was mainly 

negative, thus showing that they were more affected by isoproturon under competition pressure. 

This study therefore establishes how competition modifies plant responses to chemical stress and 

how this interaction varies from one species to the other. 

Keywords: hierarchical modelling, environmental risk assessment, isoproturon, herbicide, biotic 

interaction, multi-stress 

1. Introduction

Environmental Risk Assessment (ERA) is mainly based on data from monospecific bioassays. The 

obtained effect concentrations are usually divided by an Assessment Factor (AF) to compensate 

for processes not taken into account [Aagaard et al., 2013] such as biotic interactions, intraspecific 

variability or interlaboratory variability. The value of the applied AF depends on the method 

applied to calculate predicted no effect concentrations, the quality of the used data, the ecological 

relevance of these data and the type of ecosystem considered. For ERA in freshwater, the AF value 

is for example comprised between 1 (for data with high ecological relevance and method including 

numerous species and modelling process such as species sensitivity distributions) and 1,000 (for 

basic procedure keeping the lowest critical effect concentration value from three bioassays) 

[Amiard and Amiard-Triquet]. 

Interspecific competition is one of the biotic interactions that can have an important effect 

on plant development. It is defined by Aschehoug et al. as “the ability of individuals to usurp 

resources or otherwise suppress their neighbor’s fitness and include both resource and interference 

competition” [Aschehoug et al., 2016]. Even if this biotic constraint has been largely studied 

[Aschehoug et al., 2016], studies of its interactions with chemical stress remain scarce. For 

example, Boutin et al. studied how sublethal doses of two herbicides (glyphosate and metsulfuron 

methyl) could modify the competitive interactions between two plants (Centaurea cyanus L. and 

Silene noctiflora L.) [Boutin et al., 2019]. The results showed that competitive ability of S. 

noctiflora was negatively affected by glyphosate, leading to a competitive advantage of C. cyanus. 

Concerning metsulfuron methyl, interspecific competition was found to have an important effect 

on the herbicide effects on seed production. Another study, from Damgaard et al. tested the effects 

of glyphosate on growth and competitive effect of two grass species (Festuca ovina and Agrostis 

capillaris) in a semi-field experiment [Damgaard et al., 2014]. The results showed that 

competitive relationships were modified as the competitive effect of F. ovina increased whereas 



that of A. capillaris decreased with increasing doses of glyphosate. It is important to emphasise 

that the study of the interaction between interspecific competition and chemical stress 

encompasses two questions: whether the competitive ability is affected by the chemical stress or 

whether the tolerance to the chemical stress is affected by competition. Anyway, the previously 

mentionned studies show that monospecific bioassays can hardly encompass the true effects of 

herbicides on natural communities and that environmental risk assessment procedures can thus 

sometimes not be suitable enough to protect entirely these communities. Those studies however 

focus on only two species, thus limiting generalisations to other species. This assessment is further 

complicated by the fact that the applied modelling method usually considers the datasets obtained 

for the different species and measured endpoints independently. Independent 

concentration-response curves are built and a critical effect concentration (CEC) as the x percent 

effect concentration ( ECx ) is derived from each curve to summarize it. Those CEC are finally 

modelled into species sensitivity distributions (SSD) as for example in Baillard et al. [2020]. 

Some works however tried to implement more complex modelling techniques. For 

example, Kon Kam King et al. implemented a hierarchical model for six herbicides SSDs that 

include every concentration-response models [Kon Kam King et al., 2015]. One of the main 

advantages of this approach was that it integrated the whole information of the data in the models 

and not only a statistical summary as the EC10. It thus propagated the uncertainty in the different 

levels of organization of the data (the different species and contaminant concentrations used) and it 

gave insights about a global response of the community against the used contaminants. In this 

work, this approach was carried out further on a dataset previously used in Baillard et al. where 

herbaceous plants were exposed to isoproturon in presence/absence of a competitor [Baillard et al., 

2020]. We indeed tried to assess the effects of competition on plant responses to an herbicide by 

comparing the entirety of modelled concentration-response curves and analysing if and how the 

different parameters of said concentration-response curves (the level of the two asymptotes, the 

steepness of the curve and the position of the inflexion point) were modified by competition. To do 

this, we modelled at once the concentration-response curves for the different tested species and the 

two competition modalities to assess in an integrated manner the effects of competition on plant 

response against chemical stress. Our hypotheses were that, 1) such a modelling framework would 

be suitable to help understand the interaction between chemical stress and interspecific 

competition and 2) based on Baillard et al., interspecific competition would negatively affect plant 



responses to isoproturon [Baillard et al., 2020]. 

2. Materials and methods

2.1. Experimental design

The dataset used in this work has previously been published in Baillard et al., where further details 

can be found [Baillard et al., 2020]. Briefly, a series of ecotoxicological bioassays on herbaceous 

plants were carried out in two situations: 1) with plants isolated in each experimental device (i.e. 

without competition) and 2) with plants included in a standardized hexagonal matrix of 37 

seedlings of a competitor species Bromus erectus [Birch et al., 2007]. Six species of the Poaceae 

family, representative of plant diversity of grassland communities, were used for these 

experiments: Arrhenatherum elatius, Dactylis glomerata, Lolium multiflorum, Poa pratensis, Poa 

trivialis and Trisetum flavescens. Microcosms (three-liter-round microcosms, 20 cm diameter, 

12.9 cm height containing inert sterilized vermiculite as substrate) were used for the experiments 

and vegetalized by transferring seedlings at 2-leaves phenological stage, previously grown from 

seeds in absence of chemical stress. Exposure to isoproturon began after a 4-days acclimatization. 

Isoproturon was added to the microcosms via watering to induce chemical exposure to the roots. 

The watering protocol was as follows: 150 mL of contaminated nutritive solution [Hoagland basal 

salt mix (No2, Caisson Laboratories, Smithfield, UT, USA) at 0.82 g/L, pH6] twice a week during 

the 25 days experiment. Five isoproturon concentrations (0.25, 0.5, 1, 1.5 and 1.75 µM, 

corresponding to, respectively, 51.5, 103, 206, 309, and 360 µg/L) plus a control were used and for 

each concentration (six), competition modality (two) and species (six), eight replicates were 

realized, giving a total of 576 experimental devices. 

2.2. Endpoint analysis and dataset description 

After the exposure, a set of eleven endpoints were measured on each organism. These endpoints 

were chosen to assess the effects of the two tested factors (interspecific competition and chemical 

stress) on the species under study. A list of publications used to set up this endpoint list can be 

found in SI (A). Some endpoints were chosen for their expected response to both competition and 

herbicide. This was the case of maximal shoot height, root length, root dry mass (DM) and shoot 

DM, which represent global endpoints of plant performance as an outcome of functional trait 

responses. Some other endpoints were chosen mainly for their response to competition as 

functional responsive traits: Leaf Dry Matter Content (LDMC), ligula height (corresponding to 

stem height) and Specific Leaf Area (SLA). A third group of endpoints was chosen for its response 



mainly to herbicide: carotenoid and chlorophyll contents and maximum efficiency of photosystem 

II determined from Fv/Fm (later called Fv/Fm). A final performance endpoint, total DM, was 

calculated by adding together root and shoot DM. This was considered as a performance trait 

indicating plant ability to tolerate isoproturon and competition. We also measured B. erectus shoot 

DM at the end of the experiment to ensure that this DM was constant between the different 

isoproturon concentrations for each species and that competition pressure was thus constant all 

along each concentration-response curve. 

A log-tranformation was applied on every endpoint but Fv/Fm. For this latter, as it is 

expressed as a proportion, a logit transformation was applied. Such transformations helped 

improve data normality and homoscedasticity as shown in Chiarini et al. [1998] and Baillard et al. 

[2020]. 

2.3. Data modelling 

2.3.1. Rationale 

The main objective was to derive parameter values for the concentration-response curves (CRCs) 

and to estimate the modification of those parameter values due to interspecific competition. When 

looking at CRCs independently, it is impossible to draw a global and statistically significant 

conclusion concerning the effects of competition. Here, we built a modelling framework allowing 

to take into account every data simultaneously and to produce, for each endpoint, a global answer 

to the questions “What is the effect of interspecific competition on herbaceous plant response 

toward an herbicide?” and “Are the effects of competition similar between the different tested 

species?”. For each endpoint, twelve CRCs were described within one single hierarchical model 

(six species * two competition modalities), allowing to describe every data point (i.e. for every 

species, competition modality, isoproturon concentration and replicate) and to study the effects of 

interspecific competition on the CRCs of all species at once. The modelling framework was built 

to assess the effects of competition on different elements of the CRC as for example the 

modification of the level of response at the control, i.e. without chemical stress, or the shift in EC50 

values. 

2.3.2. Presentation of the core model 

For each endpoint, a modelling framework was designed to encompass twelve CRCs. We used a 

log-probit model to describe those curves: 
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where i  indicates the species, j  indicates the competition modality (0 means there is no 

competition and 1 means there is competition), k  indicates the isoproturon concentration and l  

indicates the replicate. , , ,i j k ly  is the measured endpoint value, ,i jd  is the asymptotic response for 

low concentrations, ,i jdc  is the difference between ,i jd  and the response value at high 

concentrations, ,i je  is the concentration of the curve’s inflection point (corresponding to the EC50 

value) and ,i jb  is a shape parameter. More precisely, ,i jb  corresponds to the standard deviation 

of the law of concentrations in log scale of which   is the cumulative distribution function 

(assumed Gaussian). Hence, the lower is ,i jb , the steeper is the log-probit model. A summary of 

the role of these different parameters on the log-probit curves can be found in Figure 1. Because 

,i jb  and ,i je  values could take various orders of magnitude, they were manipulated in log scale. 

The notations ,i jlogb  and ,i jloge  will thus be used hereafter. For each species, replicate 

spreading around CRC is considered to be Gaussian and is characterized by a standard deviation 

iS  supposed to be constant inside a given species and thus independent of concentration and 

competition. The iresp  parameter indicates whether the log-probit model is necessary to describe 

the concentration-response relationship or if a constant model at the ,i jd  level describes the data 

sufficiently well. We considered that iresp  should be the same with and without competition for a 

given endpoint, so that this parameter is defined at the species level. 

Figure 1: Scheme of the role of the different parameters of the basic log-probit model, their 

modification by the competition parameters and how this is translated on theoretical CRCs 

showing a visible variation of parameters value with competition: the blue curve and the 

parameters named with the index 0 refers to the situation without competition and the red curve 

and the parameters named with the index 1 to the situation with interspecific competition. 

2.3.3. Modelling of competition effects, parameter definition and model choice 



For each species (index i ), two sets of basic log-probit parameters ( ,i jd , ,i jdc , ,i jloge  and 

,i jlogb , this group of parameters later denoted as ,i j ) were estimated, one in absence ( j  = 0)

and the other in presence ( j  = 1) of competition, these two sets of parameters later denoted as ,0i

and ,1i . For each parameter, the difference of value between the two competition modalities (the 

difference between ,0id  and ,1id  for example) were defined by competition parameters named 

compd  for ,i jd , comp dc  for ,i jdc , comploge  for ,i jloge  and complogb  for ,i jlogb  (this 

group of parameters later defined as comp , see SI B). For a given endpoint, we considered that 

each comp  parameter could be of three different types. First, it could be a null effect and thus be 

equal to 0 for every species as it was possible for interspecific competition to have no visible 

effects on the parameter for the given endpoint. Second, it could have a fixed value among the 

different species (generic effect) meaning that modelling the same non-null effect of competition 

on CRC best described the data. Finally, the competition parameter could have a different value for 

each species (random effect, i.e. species-specific) as reaction to competition is not necessarily the 

same for every species. In that last case, competition parameters became respectively 
icompd , 

icomp dc , icomploge  and icomplogb  (this group of parameters later defined as icomp  

parameters) as they had different values for the different species. 

The effects of those competition parameters on the CRC can be highlighted and translated 

into biological terms. compd  translates the modification of the response level at the control (i.e. 

without chemical stress) and thus shows the effects of competition alone on the monitored 

endpoint. The three other comp  parameters ( comp dc , comploge  and complogb ) are for 

their part translating a modification of the toxic effects by competition ( ,i jdc , ,i jloge  and ,i jlogb

being contaminant-related parameters) as comp dc  translates a change in the amplitude of the 

toxic response, comploge  a change in the concentration at which is situated the inflection point of 

the curve (and thus the effects of competition on EC50 which is commonly used in ERA) and 

complogb  a change in the concentration-response curve steepness. 

,i j parameters were defined at the species level, meaning that each parameter had a

different values for each species, but these values were assumed to follow a same Gaussian law, as 

frequently hypothesized in Species Sensitivity Distribution modelling [Posthuma et al., 2001]. 



Likewise, when comp  parameters were defined as random (i.e. species-specific parameters), 

they were defined at the species level and assumed to follow Normal laws. 

The type of each competition parameter was defined by calculating the DIC (Deviance 

Information Criterion, a criterion of fit quality for hierarchical models using Bayesian inference 

penalized by the model complexity) of models built using every different combination types for 

each competition parameter and selecting the model with the lowest DIC. When DIC values were 

close (with a difference of less than two, as commonly applied for the AIC criterion in frequentist 

inferences), the simplest model was kept. For a global view of the built models, a summary of the 

defined nodes and their definition and an example of a probabilistic Directed Acyclic Graph 

(DAG) can be found in SI B. 

2.3.4. Inference and parameter estimation 

Bayesian inference was carried out to estimate model parameters. This method provides estimates 

as posterior distributions, based on prior distributions and observations. In this work, mainly 

weakly informative priors based on the experimental design were chosen to keep inferences in a 

reasonable range. The details of how those priors were defined and the explanations of these 

values can be found in SI C. Posterior parameter estimation by Bayesian inference were realized 

with Markov Chains Monte-Carlo techniques [Gilks et al., 1996] using JAGS [Plummer, 2003] 

and Rjags [Plummer, 2018] under the R environment [R Core Team, 2019]. Three independent 

chains were generated. For each model, a Raftery and Lewis diagnostic [Raftery and Lewis, 1991] 

was done to define the number of iterations necessary to reach a good convergence in our 

simulations. For each endpoint, chain convergence was checked visually and using Gelman and 

Rubin convergence diagnostic [Gelman and Rubin, 1992]. To take into account potential 

autocorrelation of iterations, we applied a “thin” on the chains, consisting in keeping only one 

simulated point every thin number. The precise procedure and settings used for simulations can be 

found in SI D. DIC values were calculated using the same number of iterations and thin. Parameter 

estimation was realized in two steps since, because of its boolean nature, the estimation of iresp

at the same time of the other parameters caused convergence difficulties for these parameters. 

First, the simulations were run as described above but only the estimated values of the iresp

parameter were kept. Those values were considered to be of good quality after a visual inspection 

of the CRCs. In a second time, the simulations were run again with iresp  values fixed at 0 or 1 



according to the results of the first simulation. 

3. Results

3.1. Modelling quality indicators

For a majority of endpoints, the procedure was able to return CRCs that described well the data. 

The exceptions were for chlorophyll and carotenoid contents that exhibited high variability and for 

which responses varied very little against the isoproturon concentration. Those endpoints were 

thus excluded from the analysis (raw data plots for those two endpoints can be found in SI E), thus 

leaving nine remaining endpoints for the modelling. 

With a maximum value of about 1.04, the results obtained for the Gelman and Rubin 

indicator were low enough to indicate a good convergence of the Bayesian inference. Detailed 

results are provided in SI F. Table 1 shows which effect type was applied on each ,0i  parameter 

(in absence of competition) to obtain its ,1i  counterpart (in presence of competitors). This table 

shows that, for every endpoint, at least one comp  parameter was defined to have a fixed or 

random effect, evidencing that an effect of interspecific competition was visible for each endpoint. 

However for two endpoints (root length and root DM) this competition only modified the response 

at the control ( compd ), meaning that the other aspects of the modelled CECs were not 

significantly affected by the competition. 

Table 1: In the first part: models chosen by the procedure described in this article. It is indicated for 

each endpoint which was the effect type for each comp  or icomp  between null (represented 

by a “-” sign), fixed and random effect. In the second part: summary of the chosen competition 

effect type of each estimated comp  or icomp  parameters. 

Competition effect on parameter 

Endpoint compd  or 

icompd

comp dc  or 

icomp dc  

comploge  or 

icomploge

complogb  or 

icomplogb

Fv/Fm - - - Fixed 

LDMC - - Fixed Fixed 

Ligula height - Fixed Fixed Fixed 

Max shoot Random Fixed - - 



height 

Root DM Fixed - - - 

Root length Fixed - - - 

Shoot DM Random - Fixed - 

SLA Fixed - Random - 

Total DM Random - Fixed - 

Effect type 

Total null 3 7 4 6 

Total fixed 3 2 4 3 

Total random 3 0 1 0 

Two examples of fit can be found in Figure 2, for the performance endpoint root DM in 

Figure 2a and for SLA in Figure 2b (the CRCs fitted for every other endpoint are provided in SI G). 

These two examples were chosen because they were good examples of how the different effect 

types applied by the modelling framework were translated in CRCs. For root DM (and for root 

length), the data were better described with a null effect of competition on ,i jdc , ,i jloge  and 

,i jlogb  and with a fixed effect on ,i jd . We can see on Figure 2a that this is visible on the CRC with 

only a vertical shift between curves with and without competition. For the competition responsive 

functional endpoint SLA, the data were better described with a null effect of competition on ,i jdc

and ,i jlogb , a fixed effect on ,i jd  and a random effect on ,i jloge . The effect on ,i jloge  is 

translated on Figure 2b by an horizontal shift of the curve to the left traducing a decrease of the 

EC50 values, this shift being different for each species contrary to the vertical one, the same 

vertical shift that for root DM being also visible. These two shifts mean that for SLA, interspecific 

competition modified the way plant responded to isoproturon by making the different species more 

sensitive to herbicide ( icomploge  parameter). The only exception is for P. trivialis which 

exhibited no response against isoproturon with or without competition (and therefore had a iresp

value of zero, corresponding to a constant curve). Shoot and total DM performance endpoints had 

a pattern close from the one displayed by SLA. Indeed, competition had an effect on the same two 

parameters, but here, this effect was random on icompd  meaning that competition alone had a 



different effect on the different species, and a fixed effect on comploge  meaning that the 

horizontal shift of the curves with and without competition was the same from one species to 

another (SI G). On the four remaining endpoints, three of them, Fv/Fm, LDMC and ligula height, 

had respectively 1, 2 and 3 parameters with a fixed effect. They had a fixed effect on complogb . 

In addition, for LDMC and ligula height, a fixed effect was applied for comploge . The comploge  

and complogb  parameters together define the species sensibility against the contaminant and are 

the most important to assess the effects of competition on species response. Finally, ligula height 

also had a fixed effect on comp dc . This parameter is more complicated to interpret as it reflects 

a change in response amplitude between the two asymptotes of the curves. However, as there was 

no effect on the compd  parameter, it meant that the species were more strongly impacted by high 

doses of isoproturon when the competition constraint was present. The remaining endpoint is the 

maximum shoot height on which were applied a random effect for 
icompd  as for shoot and total 

DM endpoints and a fixed effect on comp dc . It is difficult to interpret this situation directly. The 

fitted CRCs for this endpoint (SI G) shows that some species are less affected by high 

concentrations of isoproturon in presence of a competition constraint. 

Figure 2: Example of concentration-response curves produced using parameters of the model built 

for the Root DM and SLA endpoints. Open circles represent the data point, plain circles represent 

the mean of data points for each concentration, the lines are the CRCs drawn using the mean 

estimated value of each parameter and the vertical plain lines are the 95% Credible Interval (CI) of 

the model response at each tested concentration (abscissa values were modified for those lines not 

to superimpose on the data points). In blue are the data/model without competition and in red the 

data/model with competition. 

The second part of Table 1 summarizes the number of null, fixed and random effects of 

competition on each of the four parameters of CRCs for the nine endpoints. We can see in this 

table that adding a competition effect in the concentration response curves described the data 

better for 16 parameters on 36. These effects were mainly fixed effects (12 parameters on 36) and 

random effects were rarely selected by the modelling framework (4 parameters on 36). A small 

majority of competition parameters was determined as corresponding to null effects (20 



parameters on 36), meaning that data were not described better when effects due to interspecific 

competition was taken into account for these parameters. 

Graphs showing the estimated competition effects for each comp  and 
icomp  

parameter can be found in Figure 3a for fixed effects (i.e. generic effects) and 3b for random 

effects (i.e. specific effects). We can see on these two figures that observed competition effects 

could be positive or negative depending on the measured endpoints. In some cases, for example for 

icompd  of shoot DM (Figure 3b), this effect was positive for some species (L. multiflorum) and 

negative for the others, showing a variety of reaction against competition not only in intensity, but 

sometimes also in direction. Another important point was that for every random effect on 
icompd

(this trend was less visible on 
icomploge  ), the rank of intensity of this effect between the 

different species was similar: D. glomerata and P. trivialis showed the most negative effect, A. 

elatius, P. pratensis and T. flavescens an intermediate effect and L. multiflorum the most positive 

effect, thus providing information about the difference of response to competitor of these species 

(species have been ordered on Figure 3b to highlight this point). 

Figure 3: Figures showing median (point) and 95% IC (solid line) of the estimated comp  and 

icomp  parameter value according to the effect type, the endpoint and the species (for random 

effect only). The vertical grey dashed lines highlight the zero value. For the fixed effect parameters 

(a), each graphic represents the information for a given comp  parameter and each line give the 

associated value for a specific endpoint. The word “random” means that the parameter was defined 

to be random and is thus represented on Figure 3b. No information means that the parameter was 

defined to be of the null type. For the random effect parameters (b), each graphic represents the 

information for a given icomp  parameter and endpoint combination. On each line is shown the 

informations for a specific species. 

4. Discussion

Despite recent advances [Boutin et al., 2019; Damgaard et al., 2014], the effects of competition on 

plant response to chemical stress remain poorly characterised. In this work, we modelled in a 

single modelling framework data from monospecific bioassays in presence and absence of 

competitor for six phylogenetically close species. The aim was to see how competition modifies 



the CRCs of those species for the studied contaminant. This hierarchical modelling showed that an 

effect of interspecific competition on plant response to herbicide was visible for every species and 

selected endpoint, highlighting the importance of using multi endpoint and/or multi species 

approaches in ERA. This effect was applied by the modelling framework on close to a half of the 

total estimated CRC parameters and only 25% of these effects varied from one species to another, 

the others being defined as constant between the different species. 

This approach had the advantage to estimate the values of every parameters for a given 

endpoint at once. The CRCs of the six species and two competition modalities are defined all 

together and are thus interdependent. This is not the case in classical ERA approaches as in 

Baillard et al. where CRCs were defined independently[Baillard et al., 2020]. In our study, this 

approach had the advantage to integrate the competition effect for the different species in the four 

parameters of the sigmoid CRCs, allowing to track down on which aspect the interspecific 

competition had an effect. An interesting approach would have been to model the whole available 

dataset inside a unique modelling framework. It was however impossible in those conditions as the 

different endpoints exhibited a range of values that were each too different from the other, thus 

limiting the shrinkage possibilities. It would have been possible to transform the data to bring them 

in the same range, for example by calculating percentage of variation compared to the control, but 

we made the choice not to superimpose different transformation types as we already applied one to 

improve residuals normality and homoscedasticity. This would also have been problematic for 

SLA that varies in the opposed direction against isoproturon compared to the other tested 

endpoints. 

In our modelling process, integrating the competition effect in the models better described 

the dataset. Indeed, for each endpoint analyzed, at least one parameter varied under competition, 

which led to a significant effect of competition on half of the 36 parameters tested, each of the nine 

endpoint being associated to 4 parameters (Table 1). In particular, among the 16 parameters 

modified by competition, ten corresponded to parameters involved in plant responses to 

isoproturon ( comp dc  or icomp dc , comploge  or icomploge  and complogb  or icomplogb

parameters), whereas six were independent from herbicide exposure ( compd  or icompd

parameters). In addition to confirm the existence of interspecific competition in the experimental 

design used, these results thus showed that the presence of competitors modified the way plants 

respond to chemical stress. Moreover, the responses of shoot-related endpoints to competitors in 



the absence of chemical stress ( compd  or 
icompd  parameters) indicated that competition mainly 

acted on aerial parts of plants. Indeed, the increase of both shoot height and SLA under 

competition (Figure 3) is characteristic of response to shading, allowing increasing light 

interception [Fan et al., 2019, Yang et al., 2019]. This was also relevant with the fact that the 

experiments were conducted under non-limiting water and mineral nutrient conditions at the root 

level. 

The responses of plant endpoints to chemical stress can depend on the mode of action of 

the contaminant. Although the existence of multiple targets cannot be ruled out [Ramel et al., 

2012], the phenylurea herbicide isoproturon is known to target photosynthesis through PSII, with 

subsequent generation of triplet chlorophyll, singlet oxygen and ROS cascades [Grouselle et al., 

1995, Rutherford and Krieger-Liszkay, 2001]. Moreover, root-level application of herbicides can 

lead to shoot impact by whole-plant distribution through the xylem flow [Sulmon et al., 2007]. 

Given its effects on PSII, the present isoproturon exposure can therefore be seen as a situation of 

leaf PSII perturbation and photooxidative stress with a cascade of regulatory and developmental 

consequences involving metabolic, hormonal and shoot-root signalling mechanisms. Aerial parts 

of the plants were thus directly targeted by both isoproturon treatment and interspecific 

competition (through shading). This explains the results of Table 1 where isoproturon-related 

parameters exhibited a competition effect only for the shoot-related endpoints. In the model, the 

,i je  parameter corresponds to the EC50 value of the concentration-response curve. The comploge  

or icomploge  parameters, estimating the modification of CRC EC50 values under competition, 

can thus be taken as a relevant marker of chemical stress – competition interaction. These 

parameters were found to be significant for the shoot-related endpoints LDMC, SLA, ligula 

height, and shoot and total DM (Table 1), competition inducing in each case a decrease of EC50 

values (Figure 3, SI G). As functional traits directly involved in competition response [Fan et al., 

2019, Yang et al., 2019], the leaf-dedicated LDMC and SLA endpoints were particularly affected 

by competition. This makes them particularly relevant endpoints to conclude that interspecific 

competition increases the inhibition effect of isoproturon on plant species or makes them more 

sensitive to isoproturon. In contrast, shoot and total DM, which also exhibited a competition effect 

on ,i jloge , consisted in more global endpoints of plant performance, resulting from the integration 

of functional trait responses to competition and chemical stress exposure. The complogb  and 



icomplogb  parameters also demonstrated interesting effects of interspecific competition on 

mainly leaf-related endpoints (Table 1). Competition was thus found to increase CRC steepness of 

Fv/Fm whereas decreasing it for LDMC (SI G). These results thus suggest that competition 

relieves isoproturon effect on photosynthesis, as herbicide-targeted process, and emphasizes its 

effect on a more global leaf physiology-related endpoint (LDMC). Competition, by inducing leaf 

shading, has been shown to change leaf physiology, leading to an increase of chloroplast number 

and grana layer thickness [Fan et al., 2019]. As these changes may increase the number of PSII and 

consequently the number of D1 proteins targeted by isoproturon, the herbicide would thus be less 

efficient in inhibiting a higher number of D1 targets. LDMC represents a proxy of leaf density 

[Ryser, 1996], which is strongly related to its biochemical composition and in particular to its 

protein content [Wilson et al., 1999]. Yet, this endpoint has been shown to be decreased by shading 

under competition [Yang et al., 2019]. Thus, changes in leaf components, and especially the 

decrease in leaf protein content suggested by LDMC decrease under competition, may explain the 

increase of plant sensitivity to isoproturon since plants need numerous cell compounds 

(antioxidants, chaperone proteins, antioxidant enzymes) to respond to chemical stress and 

particularly to PSII inhibiting herbicides [Ramel et al., 2009, 2007]. The ,i jdc  parameter was the 

least affected by competition. Indeed, this parameter, which estimates the inhibitory effect of the 

highest isoproturon treatment (1.75µM), exhibited a positive competition effect only for the 

shoot-related height endpoints (ligula height, max shoot height; Table 1, Figure 3a), which were 

more inhibited by isoproturon under competition than without. It thus seemed that competition 

weakly affected plant responses at high chemical stress intensity, in accordance with previous 

studies on abiotic stresses demonstrating that competition acts mainly under low stress intensity 

[Callaway and Walker, 1997, Choler et al., 2001, Jung et al., 2009, Liancourt et al., 2005]. 

Moreover, the fact that competition had reversed effects on isoproturon response for shoot height, 

adverse for low concentrations and advantageous for high concentrations (SI G) strongly 

suggested the involvement of energetic trade-offs under combined chemical and biotic stresses. 

This study was carried out by using six species of the Poaceae family in order to be 

representative of some plant biodiversity in grass communities and in order to consider the 

potential diversity of responses to chemical stress and to competitors. This experimental design 

thus showed that most competition effects identified for parameters related to chemical stress 



responses (i.e. effects on ,i jdc , ,i jloge  and ,i jlogb  ) were characterized as fixed (i.e. as 

comp dc , comploge  and complogb ), and thus species-independent. In contrast, three out of the 

four random competition effects were applied on ,i jd  parameter, which is chemical 

stress-unrelated. For most of the endpoints analyzed, it thus seemed that, under chemical stress, the 

competition effect remained constant whatever the species targeted, and whatever its effect in the 

absence of chemical stress, thus suggesting a role of chemical stress in homogenizing competition 

effects. Given the focus of our study on Poaceae, the characterization of generic parameters of 

chemical stress-competition interactions will be particularly useful for ERA and plant dynamics 

modelling of grazed pasture or grassland plant communities, which cover a large fraction of the 

Earth’s land surface [Barbehenn et al., 2004]. Moreover, induction of situation of PSII 

perturbation is also known to occur in a number of abiotic stresses, such as high light, drought, 

salinity, or heat [Pospíšil and Prasad, 2014], which are known to be significant components of 

climate change constraints [Bigot et al., 2018]. Competition-herbicide interactions at the level of 

PSII therefore also suggest the potential interference of competition with climate change responses 

[Bigot et al., 2018, D’Alessandro and Havaux, 2019, Munné-Bosch et al., 2013, Noctor and 

Mhamdi, 2017]. 

5. Conclusion

This study helped understand better how competition modifies the way that herbaceous plants 

respond to chemical stress and how this response varies from one species to another. Competition 

effects were observable on every endpoint and these effects could be tracked down on the different 

parameters of the fitted concentration-response curves. This innovative approach had the major 

advantage to integrate every information given by the dataset and to propagate uncertainty from 

one hierarchical level to another. This work thus gives new insights for the integration of realistic 

supplementary factors, such as competition, into ecotoxicological bioassays and environmental 

risk assessments. 
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