

Reactivity of vadose-zone solids to S-metolachlor and its two main metabolites: case of a glaciofluvial aquifer

Pauline Sidoli, Nicolas Devau, Rafaël Angulo-Jaramillo, Nicole Baran

▶ To cite this version:

Pauline Sidoli, Nicolas Devau, Rafaël Angulo-Jaramillo, Nicole Baran. Reactivity of vadose-zone solids to S-metolachlor and its two main metabolites: case of a glaciofluvial aquifer. Environmental Science and Pollution Research, 2020, 27 (18), pp.22865-22877. 10.1007/s11356-020-08579-6. hal-03013933

HAL Id: hal-03013933 https://univ-lyon1.hal.science/hal-03013933

Submitted on 7 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

±

1 Reactivity of vadose zone solids to S-metolachlor and its two main metabolites: case of a

2 glaciofluvial aquifer

- 3 Pauline Sidoli (1), Nicolas Devau (1), Rafael Angulo Jaramillo (2), Nicole Baran (1),
- 4 ⁽¹⁾ BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2
- 5 ⁽²⁾ LEHNA UMR 5023 CNRS ENTPE Université Claude Bernard- Lyon 1, Rue Maurice Andin, F-69518 Vaulx-
- 6 en-Velin
- 7 <u>Corresponding author</u> : Pauline Sidoli- p.sidoli@brgm.fr +33(0)238644607
- 8

9 ABSTRACT:

10 The vulnerability of groundwater to pesticides is governed in part by sorption mechanisms in the vadose zone, 11 commonly studied in soil but less well known in the geological solids. To alleviate this lack of knowledge, 12 adsorption of the herbicide S-metolachlor (SMOC), and of two of its metabolites-metolachlor ethane sulfonic 13 (MESA) and metolachlor oxanilic acid (MOXA)- were studied with batch equilibrium method on seventeen 14 surface soils and three geological solids of the vadose zone overlying a glaciofluvial aquifer. In grainsize terms, 15 the latter three were sand for the first two samples and gravel for the third. Adsorption is ordered as follows: 16 SMOC>>MESA>MOXA, except for one of the geological solids for which MESA adsorption was slightly 17 higher than that of SMOC ($K_d = 0.73 \text{ vs. } 0.44 \text{ L kg}^{-1}$). The low MOXA adsorption could only be quantified for 18 the gravel sample ($K_d = 0.74 \text{ L kg}^{-1}$), which was also more reactive than all the other samples to MESA and 19 SMOC ($K_d = 2.08$ and 28.8 L kg⁻¹, respectively). Statistical multivariate tests related the highest K_d values for 20 SMOC with the soils and geological solids with the highest organic-carbon and clay-fraction contents. The 21 highest K_d values for MESA were found in the samples containing high oxide concentrations. Our results shed a 22 new light on the adsorption of SMOC, MESA and MOXA suggesting that during their transfer to groundwater, 23 pesticides and metabolites can be adsorbed in the vadose zone on both soils and geological solids.

- Keywords (6 à 8): adsorption, pesticide, chloroacetanilide, metolachlor ESA, metolachlor OXA, groundwater,
 geological solids, reactivity
- 27

28 Acknowledgments:

- 29 This study received financial support from BRGM and the Rhône-Méditerranée-Corse Water Agency, as part of
- 30 the PENATH Project. We thank our BRGM colleagues who contributed to the work, and in particular L. Gourcy,
- 31 N. Maubec for the DRX analyses and G. Wille for the MEB work. H.M. Kluijver translated and edited the final
- 32 version of the paper.

34 **1. Introduction**

35 The contamination of groundwater by pesticides is a well known problem affecting many aquifers in numerous 36 countries (Kolpin et al. 1998a; Postigo and Barcelo 2015; Toccalino et al. 2014). The European Water 37 Framework Directive (2000/60) and its sister Directive (2006/118/CE) set the objectives to be reached for the 38 protection and conservation of groundwater masses. More generally, the protection of water resources and the 39 monitoring of groundwater quality is an issue to be treated at a world-wide scale, particularly where groundwater 40 is used for drinking. Today, many questions remain concerning the velocity with which contaminants are 41 transfered to groundwater, and its corollary of evaluating the risk of seeing contaminants re-appear years after 42 their application.

43 The mobility of pesticides in vadose (unsaturated) zone, and hence their transfer to groundwater compartment, 44 depends on the degradation and sorption processes on solid particles, well described for soils in the literature 45 (Arias-Estevez et al. 2008; Dubus et al. 2003). Until now, it has been assumed that pesticides and/or their 46 metabolites flushed from the soil will interact only little with geological solids in the underlying vadose zone 47 because of their low organic matter content, meaning that their transfer to groundwater is essentially controlled 48 by the hydrological conditions of aquifer recharge. Other work, though patchy, has shown that pesticides can 49 react with geological solids in the vadose zone (Baran and Gourcy 2013; Clausen et al. 2004; Coquet 2003; 50 Coquet et al. 2004; Janniche et al. 2010; Madsen et al. 2000; Papiernik et al. 2006; Sidoli et al. 2016a). As an 51 example among these previous studies, Sidoli et al. 2016a showed that transfer of herbicide S-metolachlor in 52 glaciofluvial solids is delayed compared to water tracer because of sorption processes. It is therefore essential to 53 collect data on how pesticides are adsorbed on geological solids of the vadose zone, to understand if interactions 54 in geological solids are negligible or contrary significant compared to the transfer through soil and thus if they 55 are matters or not for risk analysis or even quantitative solute transport simulations.

The few data available on the adsorption of metabolites in the vadose zone is a major hindrance for understanding how such molecules are transferred. The differences in physico-chemical properties between the metabolites and their parent molecule may cause a difference in reactivity to the solids in soil and the vadose zone. Such a change of physico-chemical properties between mother molecule and metabolites is observed for several pesticides, including metolachlor. This pesticide is electrically neutral whereas its two metabolites are negatively charged to the environmental pH. Metolachlor, applied as a mixture enriched in S isomer (Smetolachlor), is a selective herbicide used in particular on maize. Introduction of S-metolachlor (SMOC) in some 63 countries in replacement of rac-metolachlor (racemic mixture of R- and S- isomers) was motivated by its higher 64 herbicide efficiency (Blaser et al. 2007; Shaner et al., 2006). Metolachlor is massive used worldwide, and is one 65 of the most common organic compounds found in groundwaters in North America (Toccalino et al. 2014), in 66 Europe (Loos et al. 2010) and in France (Lopez et al. 2015). The retention of SMOC in soil is moderate and 67 mainly linked to organic matter content (Alletto et al. 2013; Baran and Gourcy 2013; Bedmar et al. 2011; Weber 68 et al. 2003). SMOC can also be adsorbed on geological solids, as was shown by the batch equilibrium method on 69 alluvial deposits (Baran and Gourcy 2013) and by column-percolation tests on glaciofluvial deposits (Sidoli 70 et al. 2016a). Metolachlor ethane sulfonic acid (MESA) and metolachlor oxanilic acid (MOXA) are commonly 71 quantified in groundwater at concentrations over that of metolachlor and which can reach 4,8 and 3,8 μ g L⁻¹ 72 respectively (Amalric et al. 2013; Baran and Gourcy 2013; Hancock et al. 2008; Hladik et al. 2008; Kolpin et 73 al. 1998b, 2004; Postle et al. 2004; Steele et al. 2008). The metabolites MESA and MOXA have very low 74 adsorption coefficients in soil (Krutz et al. 2004) and are more mobile in unsaturated media than their parent 75 molecule (Baran and Gourcy 2013; Sidoli et al. 2016a). However, the key parameters involved in the adsorption 76 of MESA and MOXA in soil are unknown. Few data exist for the adsorption of SMOC on geological solids in 77 the vadose zone, and almost nothing is known about the adsorption of MESA and MOXA in the vadose zone. 78 For those reasons, the role played by geological solids of the vadose zone in the transfer of pesticides and their 79 metabolites is difficult to establish today without more data on adsorption values.

The purpose of this study was to improve our understanding of role played by the vadose zone in retaining SMOC and its two metabolites MESA and MOXA. Our specific objectives are i) to quantify and compare the adsorption of all three molecules on soils and on geological solids collected in the vadose zone of a glaciofluvial aquifer and ii) to determine the factors governing molecular adsorption. Adsorption measurements (K_d values) were lead with batch laboratory experiments at equilibrium. We used multivariate analyses for linking the K_d values with soil and solid properties, to determine the factors governing molecular adsorption.

86 2. Materials and methods

87 2.1. S-metolachlor and its two main metabolites

The experiments were performed with S-metolachlor (purity $\geq 99.5\%$) purchased from Dr Ehrenstorfer (Augsburg, Germany), and MESA (purity $\geq 96.2\%$) and MOXA (purity $\geq 97.9\%$) from Sigma-Aldrich (Steinheim, Germany) (Table 1). Individual standard stock solutions of SMOC, MESA and MOXA (500 mg L⁻¹) 91 were prepared on a weight basis in methanol and stored at -20 °C. Solutions used for spiking samples were 92 prepared in a CaCl₂ 10^{-2} M aqueous solution with ultrapure water (MilliQ® Merck Millipore) and stored at 4 °C.

93 SMOC, MESA and MOXA concentrations were determined with an Acquity ultra-performance liquid 94 chromatography system (UPLCTM, Waters) interfaced to a triple quadrupole mass spectrometer (Quattro Premier 95 XE/Q, Waters). Online extraction was done with an SPE cartridge (Oasis HLB-Column 25 µm). 96 Chromatographic separation was done with a Waters Acquity UPLC BEH C18 column (2.1 mm x 150 mm, 97 particle size 1.7 µm). Mecoprop-d3 and simazine-d10 were used as internal standards for metabolite and 98 metolachlor analyses, respectively. The quantification limit was 0.025 μ g L⁻¹ for metolachlor and 0.050 μ g L⁻¹ 99 for both MESA and MOXA. The analytical method developed for off-line extraction is described in detail in 100 Amalric et al (2013).

101 **2.2. Sampling site**

102 The sampling site is located in a Quaternary glaciofluvial deposit (Würm age) of about 110 km², east of Lyon, 103 France. The regional aquifer is from 30 to 70 m thick and the water table is between 2 and 40 m below the soil 104 surface. Seventeen surface soils were sampled in different agricultural plots at up to 30 cm depth. The soils are 105 loamy to sandy-loamy characterized by large amounts of amorphous iron- and aluminium oxides (mean values 106 2.7 and 1.8 g kg⁻¹, respectively). They are chromic cambisols according to the WRB classification system 107 (2006). Sampling strategy and physico-chemical properties of the surface soils were described by Sidoli et 108 al. (2016b) and in Table 2.

109 The glaciofluvial solids (GFS) were collected in a quarry, several metres above the water table and 30 m below 110 ground surface. Two main lithofacies were earlier identified and sampled on site based on grain-size distribution 111 (Goutaland et al. 2008, 2013; Lassabatere et al. 2010; Sidoli et al. 2016a).

112 **2.3. Glaciofluvial solids analysis**

The particle size distributions of the two main lithofacies are, for one, a bimodal mixture of gravel and sand with grain sizes up to 100 mm diameter (Gcm,b) and, for the other, sand with grain sizes between 0 and 2 mm (S-x) (Goutaland et al. 2008). After air-drying, both samples (S-x and Gcm,b lithofacies) were sieved at 0 to 2 mm particle sizes (S-x and Gcm,b [0,2]). A coarser sieving diameter (2 to 10 mm particle size) was used on the bimodal gravel (Gcm,b]2,10]). For S-x, Gcm,b [0,2] and Gcm,b]2,10], the following chemical properties were analysed: pH_{KCl} , pH_{water} (AFNOR 10390 (2005)), CEC Metson (AFNOR X 31.130 (1999)), total organic carbon content (AFNOR 10694 (1995a)), available phosphate (Olsen P) (AFNOR 11263, 1995), crystallized oxy-hydroxides (Fe_{DCB} and Al_{DCB}) based on the Mehra-Jackson method (1960), and amorphous oxy-hydroxides (Fe_{Tamm} and Al_{Tamm}) based on the Tamm method (1992). The experimental pH, hereafter referred to as 'pH_{CaCl2}', was measured in batch supernatants with a pH microelectrode (Inlab Flex-Micro).

124 Mineralogical compositions were determined by X-ray diffraction (XRD) measurements with a Bruker D8 125 Advance diffractometer, equipped with a CuK α source (λ =1.5418 Å) operating at 40 kV and 40 mA, and a 126 Lynx-Eye 1D detector. XRD patterns were collected from 5° to 90° 2 θ , with a step of 0.02°2 θ and a time step of 127 139.2 s. XRD diffraction patterns were interpreted with DIFFRAC.Plus EVA software. SIROQUANTTM 128 quantitative X-ray diffraction analysis software processed the XRD spectra for quantifying the mineral phases. 129 Quantification was done with the Rietveld method.

Sample porosity was measured by mercury-porosimetry analyses (Auropore IV 9500 Micromeritics). The S-x,
Gcm,b [0,2] and Gcm,b]2,10] samples were quartered in order to obtain representative test samples of 5 to 7 g.
The sample porosity was measured on six replicates for Gcm,b]2,10] and on two replicates for S-x and Gcm,b
[0,2].

134 **2.4. SEM analysis**

135 Samples S-x, Gcm,b [0,2] and Gcm,b [2,10] were observed by scanning electron microscopy on a Tescan 136 Mira3XMU SEM with an Edax Pegasus EDS (Electron Dispersive X-ray Spectroscopy) microanalysis system using an Edax ApolloXPP Silicon Drift Detector (SDD) (resolution 126 eV @ Mn Ka) and EDS Edax TEAM 137 138 software. The samples were observed at different high-tension values (15 or 25 kV) adapted to the analyses. A 139 long acquisition time of 100 to 500 sec., with a counting rate of several thousand cps, was used for acquiring 140 EDS spectra in order to detect elements at several tenths of a percent. The Gcm,b [2,10] gravels were stuck on 141 aluminium pin stubs with a conducting carbon lacquer (PELCO® water-based graphite paint from Ted Pella). 142 The samples S-x and Gcm, b [0,2] were stuck by pressure on a conductive carbon adhesive (double coated 143 PELCO Tabs[™] carbon conductive tabs, Ted Pella). The samples were then covered with a 10 nm carbon layer, 144 using a carbon evaporator under a secondary vacuum (Cressington 208 Carbon) to ensure that the surface would 145 be conductive.

146 **2.5. Adsorption experiments**

147 Adsorption experiments were run according to a normalized method (OECD guideline 106, 2000). The tests 148 were run for a liquid/solid ratio of 1. Four grams of S-x and Gcm,b [0,2] solids were used. For Gcm,b]2,10], the 149 experiments were done with 10 g in order to obtain repeatable replicates despite the high heterogeneity of this 150 material. Dried solid samples were hydrated with a CaCl₂ background solution electrolyte. Dehydrated calcium 151 chloride (CaCl₂), purity ≥98%, was purchased from Merck. The hydration was done 16 h before spiking to reach 152 near-equilibrium conditions. Spiking was done with a pesticide solution diluted in 0.01M CaCl₂, shaken in a 153 head-over-head agitator at 20 °C in a dark box. Based on a kinetic study (data not shown), the equilibrium 154 adsorption experiments were conducted for 24 h for the seventeen surface soils, S-x and and Gcm, b [0,2], and 155 for 72 h in the case of Gcm,b [2,10]. Equilibrium adsorption was measured from a unique initial pesticide 156 concentration of 1 mg L⁻¹. After centrifugation at 3000 rpm for 30 min and filtration through a 0.22 µm acetate 157 cellulose filter, the supernatants were analysed for SMOC, MESA or MOXA concentrations.

158 The amount of pesticide adsorbed on the solid phase (Q_e , mg kg⁻¹) was calculated as the difference between 159 initial concentration and equilibrium concentration (C_e , mg L⁻¹). The distribution between the amount adsorbed 160 on solids and the supernatant concentration at equilibrium was expressed with the distribution coefficient K_d (L 161 kg⁻¹), calculated with Equation (1)

$$Q_e = K_d C_e \tag{1}$$

Solids blanks included in the experiments do not show any contamination of the samples before the experiments.
No adsorption was measured on tubes and filters used for batch experiments. Molecule stability in solution was
tested for the duration of the experiments, revealing any loss of molecules. Each experiment was carried out in
triplicate.

167 **2.6. Statistical analysis**

Due to the nature of the dataset, usual statistical analyses such as multiple regression done to quantify relationship between sorption properties of pesticides and/or metabolites and physico-chemical properties of soil could not be used in the present study. Indeed, these statistical analyses are not suitable for small dataset, which is the case notably for the GFS sub-dataset (Legendre and Legendre, 1998). To overcome this limit, unsupervised and supervised ordination analyses were performed. Unsupervised analysis enables us to explain how soil and GFS samples could be distinguished according to their physicochemical properties and how these properties are linked between them. Supervised analysis was devoted to determine how the physico-chemical properties of soils and GFS could explain their reactivity towards sorption of SMOC and MESA but not for MOXA as the amount of adsorbed MOXA could not be quantified. More details on these tools are given below.

177 First, a principal component analysis (PCA) was run to ordinate the 17 soils and the 3 GFS for each according to 178 the following physico-chemical variables: 1) pH measured in CaCl₂, water and KCl solutions (pH_{CaCl2}, pH_{water}, 179 pH_{KCl} ; 2) cationic exchange capacity (CEC); 3) solid texture (clay, silt and sand contents); 4) total organic 180 carbon (Organic C) 5) phosphorus contents extracted by the Olsen method (Olsen P); 6) contents in poorly 181 crystallized aluminium (Alox) and iron (Feox) oxides, and contents in well crystallized aluminium and iron oxides 182 (Al_{DCB} and Fe_{DCB}, respectively). This unsupervised exploratory method allowed finding the best low-183 dimensional representation of the variance associated with physico-chemical variables. Relationships between 184 observations and physico-chemical variables were investigated through the analysis of how such variables 185 contribute to the calculated principal components. Before doing so, the variables were centred and scaled. The 186 results were presented as a correlation circle for the physico-chemical variables and a biplot build on the two 187 principal axes to illustrate the ordination of the samples. The PCA was done on two distinct datasets, one 188 gathering both soil and GFS and the other focusing only on soil materials, to determine whether the GFS with its 189 specific physico-chemical properties could be analysed together with the soil material.

190 Then, a partial least squares linear discriminant analysis (PLS-DA) was done. This supervised multivariate 191 analysis computes the best discriminating functions based on the physico-chemical properties of the samples to 192 distinguish the K_d values measured on each of them. This statistical analysis was done for SMOC and MESA, 193 respectively. This statistical test implies first to group soil and GFS samples based on the values of the K_d 194 measured. For this purpose, we used a cumulative distribution function built from measured K_d values either for 195 SMOC or MESA. Based on the cumulative distribution function, the first and third quantile values as well as the 196 median values were calculated. These values were then used to separate measured K_d values into four groups, 197 enabling us to transform the two quantitative variables—corresponding to K_d-value measurements for SMOC 198 and MESA—into two categorical (discrete) variables. The first group, Kd_1, combines the K_d values below the 199 first quantile. The second group, Kd_2 , is for the K_d values above the first quantile and below the median, 200 whereas the third group, Kd_3, consists of the K_d values above those of the second rank and below the third 201 quartile. The remaining K_d values were aggregated into a fourth group, Kd_4.

The same physico-chemical variables than those used in the PCA were integrated in the discriminant analysis. These variables were transformed into latent variables based on a partial least squares regression algorithm that searched for maximum covariance, representing the relevant sources of data variability with linear combinations of the original variables. The plots used to present the results are similar to those used for PCA. A confusion matrix comparing the *a priori* (real) and *a posteriori* (calculated) classification of the observations was calculated using the cross-validation technique.

208 To complete the results from the PLS-DA, a non-parametric MANOVA based on permutation algorithm was run 209 on the dataset to statistically evaluate whether the whole physico-chemical properties of the soil or GFS are 210 statistically different according to the four groups derived from the K_d measurements done either on SMOC or 211 MESA, respectively. A Bray-Curtis similarity matrix was calculated on data that had been scaled and centred. A 212 permutation matrix for calculating pseudo-F ratios was built using Markov Chain Monte Carlo methods (999 213 permutations). This multivariate approach was conducted with and without accounting for GFS in the dataset, to 214 determine whether the results for soils and GFS could be interpreted simultaneously or not. In addition, a non-215 parametric Kurskal-Walis test was used on each of the 13 physico-chemical variables measured on samples by 216 accounting also for the categorical variable derived from measurement on sorption of SMOC or MESA, 217 respectively. In case of a significant difference, a Conover-Iman post-hoc test was done to identify which groups 218 differ from the others. This univariate approach was conducted in similar way that the non-parametric 219 MANOVA (presence or not of GFS). Results are shown in Appendix B. All statistical analyses were carried out 220 with R 3.4.2 software (R Development Core Team, 2017). The FactoMineR, MASS and mixOmics libraries 221 were used.

223 **3. Results and discussion**

3.1. Variability of the properties of vadose-zone solids

The first two PCA axes allow a correct description of much of the variance inherent in the soil and GFS observations as determined from their physico-chemical properties (Fig. 1). The inertia associated with these first two axes is 81%. Analysis of the variance/covariance matrix shows that the first axis is constructed by the following physico-chemical variables: pH_{KCl} , pH_{water} , pH_{CaCl2} , CaCO₃, Clay, Silt, CEC, Al_{ox}, Fe_{OX} and Organic C.

229 This first axis correctly separates the GFS points from soils, in particular those with a high calcium carbonate 230 content (≥178 g kg⁻¹ Table 2)—mainly calcite (Table 3)—, associated with high pH values. Compared to GFS, 231 the surface soils are decarbonated with lower pH_{values} (mean pH_{CaCl2} value of 5.9 vs. \geq 7.2) and a higher Organic C 232 (mean value of 13.6 vs. ≤ 2.5 g kg⁻¹), higher clay contents (mean value of 13.2% vs. $\leq 4.2\%$) and higher Al_{ox} and 233 Fe_{ox} contents (mean values of 1.8 and 2.7 vs. ≤ 0.7 and ≤ 1.2 g kg⁻¹, respectively) (Table 2). More details on the 234 soils are given in (Sidoli et al 2016a). The second axis has a lower inertia and is constructed by the Olsen P, 235 Al_{DCB} and Fe_{DCB} variables, but does not provide a clear separation between the soils, except for soils 11, 13 and 2 236 that have different physico-chemical properties. Compared to the other soils, 2 and 13 have the lowest P Olsen 237 $(\leq 5.6 \text{ mg kg}^{-1})$ and highest Al_{DCB} contents (11.1 and 10.6 g kg⁻¹, respectively). Moreover, except for soil 18, soils 238 13 and 11 have the highest Organic Carbon contents ($\geq 16.1 \text{ g kg}^{-1}$).

239 The GFS mineralogy as determined by XRD analyses mostly consists of quartz (>32%) and calcite (>18%) 240 (Table 3). To a lesser extent, feldspars, such as albite (sodic plagioclase) and microcline (potassic feldspar), and 241 clay minerals (smectite, kaolinite and chlorite) are present as well, as are illite-type minerals, illite sensu stricto 242 and/or micas. No trace of Fe or Al oxy-hydroxides was detected by DRX analyses, even though significant Fe 243 and Al concentrations were measured with the Mehra-Jackson (Fe_{DCB} and Al_{DCB}) and Tamm (Fe_{ox} and Al_{ox}) 244 extraction methods. These contrasting results indicate that Fe and Al oxy-hydroxides must be present, but that 245 their abundances in the mineralogical assemblages of the three fractions are low. The abundance of the main 246 mineral phases, quartz and calcite, is different between fraction S-x and the fractions Gcm,b[0,2] and 247 Gcm,b]2,10]. Fraction S-x is richer in quartz (54% vs. ≤36%), but calcite is less abundant (18% vs. 30 and 34%) 248 compared to the two Gcm,b fractions. No difference was apparent between the minor mineral phases in the three 249 fractions. Even though no mineralogical analysis was made of the soils, it is probable that they consist of an 250 assemblage of goethite, inherited clays of the smectite and illite types, potassic feldspars, ferro-magnesian micas and quartz, similar to the mineralogy of other, geographically close, fersiallitic soils, formed over glacio-fluvial
 materials and in the same stage of pedological evolution (Bornand 1978).

253 **3.2.** K_d values in the vadose zone profile

254 In soils, the K_d distribution coefficients of SMOC fall between 2.34 and 6.32 L kg⁻¹ (Table 4), a normal range of 255 K_d values as earlier measurements on different soil types provided a range of 1.02 to 8.7 L kg⁻¹ (Alletto et 256 al. 2013; Cassigneul et al. 2018; Krutz et al. 2004; Seybold and Mersie 1996; Vryzas et al. 2007; Weber et 257 al. 2003). Regarding the metabolites, the K_d values are very low for MESA ($K_d < 0.75 L kg^{-1}$) and below the 258 detection limit for MOXA (Table 4). The few available studies on these metabolites also showed very low 259 adsorption on soils, for MESA K_d values below 0.19 L kg⁻¹ (Kupfersberger et al. 2018). The adsorption on the 260 soils we studied follows the same decreasing order: SMOC>>MESA>MOXA, whereas Krutz et al. (2004) 261 mentioned comparable K_d values for MESA and MOXA in a clayey soil (average K_d value of 0.75 and 262 0.77 L kg, respectively). This adsorption difference might be due to the clayey nature of the soil, which may 263 have favoured the MOXA adsorption process.

264 For the S-x and Gcm,b [0,2] samples, the K_d values for SMOC were lower than those for the soils, with 0.44 and 265 0.57 L kg⁻¹, respectively. The adsorption coefficients for MESA were 0.73 and 0.46 L kg⁻¹, respectively, within 266 the 0.03 and 0.74 L kg⁻¹ range we measured for soils. MOXA does not seem to sorb with the solid phases in S-x 267 and Gcm, b[0,2]. These results are coherent with an earlier study on the fine [0,2] mm fraction of other 268 sedimentary geological solids, that measured very low adsorption of MESA and no adsorption of MOXA (Baran 269 and Gourcy, 2013). Finally, the adsorption properties of the [2,10] mm fraction of Gcm,b are quite different from 270 the two fine fractions of S-x and Gcm,b[0,2]), as the former fraction appears to be very reactive for SMOC, 271 MESA and MOXA. The measured K_d values were 28.8, 2.08 and 0.74 L kg⁻¹, respectively. The coarse 272 [2,10] mm fraction of the Gcm,b lithofacies thus has a much higher retention capacity for SMOC, MESA and 273 MOXA than Gcm,b [0,2] and S-x, but also higher than those of the 17 soils studied. The adsorption order of the 274 molecules is SMOC>MESA>MOXA for the solids of the vadose zone, except for facies S-x where MESA 275 adsorption is slightly higher than that of SMOC. These results complete data obtained earlier during column-276 transfer experiments for the same solids (Sidoli et al. 2016a), with an identical adsorption order.

278 **3.3. Key factors for adsorption on vadose-zone solids**

279 3.3.1. Adsorption of SMOC

A discriminant analysis of the physico-chemical properties of the solids (soil and GFS) for the SMOC adsorption values (K_d) identified four value groups Kd_1, Kd_2, Kd_3 and Kd_4. In a univariate analysis (ANOVA), the solids for which the K_d values are over the median (Kd_3 and Kd_4 groups) have significantly higher Organic C contents than the solids of group Kd_1 (Appendix A). The solids of group Kd_4 also have a statistically higher CEC content than those of group Kd_1.

285 It should be noted that the sand fraction in the grainsize assemblage is significantly lower in the Kd_4 group 286 solids than in those of group Kd_1. The latter, though, have lower crystallized aluminium oxide (Al extracted 287 with the CDB method) as well as lower amorphous aluminium- and iron oxide contents (Al and Fe extracted 288 with the ammonium oxalate method) than the other groups. Such differences in Al_{CDB} contents are, however, 289 only significant in the solids of group Kd 3. Notwithstanding these correlations, this approach can only link the 290 K_d values to the physico-chemical properties of the solids on an individual basis. This consideration may be the 291 simplest view of the relationship between sorption processes and solids properties, which probably interact with 292 each other.

293 Therefore, the permANOVA aims at determining which collective physico-chemical properties have a 294 significant effect on the K_d values of SMOC; it shows that over 77% of the intra-group variance can be explained 295 by the first two discriminant axes (Fig. 2). The physico-chemical properties that contribute to these two axes 296 suffice for determining a significant difference between the groups, as was seen from the permANOVA results 297 that indicated a significant difference between groups. Most of the variance is explained by the first discriminant 298 axis constructed from the variables Clay, Feox, Alox Organic C, CEC and Silt, which correctly distinguishes three 299 units (Kd 1, Kd 4 and the Kd 2 + Kd 3 unit) (65%). The variance associated with the second axis is only 13%. 300 Analysis of the correlation circle (Fig. 2) confirms the results from the univariate approach (Appendix A), 301 showing that the solids in group Kd_1 stand out from the others by textures with less clay and silt, 302 concentrations of weakly crystallized iron and aluminium oxides, less Organic C and a lower CEC. The second 303 discriminant axis distinguishes groups Kd_1, Kd_2 and Kd_3 from group Kd_4. The Olsen P, Sand, Al_{DCB} and 304 Fe_{DCB} variables are the main contributors to this axis. The solids with the highest affinity for SMOC (Kd_4 305 group solids) contain phosphorus concentrations and higher concentrations of well-crystallized iron oxides 306 (Fe_{DCB}) than the other solids; they also contain less well-crystallized aluminium oxide and have a relatively
 307 depleted sand fraction.

The results obtained from a PLS-DA analysis, only considering data obtained from soil samples, are similar (Appendix B2), indicating that the soil- and GFS data can be processed in the same way. This implies that the mechanisms controlling the fate of SMOC are similar in soils and GFS.

311 The important role played by the organic-carbon content in SMOC sorption, shown by this study, had already 312 been mentioned in earlier work on soils (Alletto et al. 2013; Baran and Gourcy 2013; Bedmar et al. 2011; 313 Kodesova et al. 2011; Patakioutas and Albanis 2002; Sanchezcamazano et al. 1995; Si et al. 2009; Vryzas et al. 314 2007; Weber et al. 2003; Wood et al. 1987), but no work on geological solids had been reported as far as we 315 know. Cwielag-Piasecka et al. (2018) showed that metolachlor is strongly adsorbed on humic acids extracted 316 from soil. The earlier correlations between SMOC adsorption and clay content (Baran and Gourcy 2013; Si et 317 al. 2009; Vryzas et al. 2007; Weber et al. 2003) and CEC (Si et al. 2009) were incorporated in our statistical 318 work. In soil, organic matter and clays are arranged in a specific manner with oxides-hydroxides within organo-319 metallic complexes. This specific arrangement probably explains why iron- and aluminium oxides contribute to 320 discriminating the K_d variance, even though no correlation between SMOC- and oxide adsorption is shown by 321 classic univariate tests. The interactions between S-metolachlor and organic matter might be the result of 322 hydrogen interaction (Liu et al. 2000, 2002) showed that the adsorption of chloroacetanilide herbicides (alachlor, 323 acetochlor, propachlor, metolachlor) on the constituents of organic matter occurs through the formation of a 324 hydrogen bond between the carbonyl (-C=O) and/or nitrogen (C-N) groups of the herbicides and the carboxyl 325 and protonated hydroxyl groups of humic acids. The adsorption of chloroacetanilides on clays would be related 326 to the formation of hydrogen bonds with water molecules directly present on the surface of clay platelets, or with 327 water molecules that hydrate the exchangeable cations on platelet surfaces (Bosetto et al. 1993; Li et al. 2006; 328 Liu et al. 2000; Pusino et al. 1992). As the three molecules we studied are part of this family, it is possible that 329 the adsorption mechanisms are similar to those described in the above-mentioned studies.

330 3.3.2. Adsorption of the anionic metabolites MESA (ESA-metolachlor) and MOXA (OXA331 metolachlor)

A discriminant analysis shows that over 78% of the intra-group variance can be explained by the first two discriminant axes (Fig. 3). Most (65%) of the variance is explained by the first discriminant axis, the variance 334 associated with the second axis being only 13%. The first axis is mostly constructed by the variables Clay, Feox, Alox, Organic C and Silt. The parameters Fe_{DCB}, Al_{DCB} and pH_{CaCl2 - water} and _{KCl} contribute to both the first and 335 336 second axes. Even so, neither axis provides a significant distinction between the four groups Kd_ESA_1, 337 Kd_ESA_2, Kd_ESA_3, and Kd_ESA_4, as is outlined by the permANOVA results that show no significant 338 difference between the groups. Analysis of the correlation circle confirms the univariate results, showing that the 339 solids (soils or GFS) are not distinguished between the K_d groups when considering the physico-chemical 340 properties separately (Appendix A). The solids (soils or GFS) for which the K_d values are highest (group 341 Kd_ESA_4) thus do not have significantly higher physico-chemical properties than the solids of the three other 342 groups Kd ESA 1, Kd ESA 2 and Kd ESA 3. To summarize, the physico-chemical properties governing the 343 adsorption of MESA on GFS and soils cannot be identified in a significant manner.

The results obtained from a PLS-DA analysis when considering only the data from soil samples are similar (Appendix B3), indicating that GFS and soil data can be processed in the same way. This result also implies that the mechanisms controlling MESA adsorption are similar in soil and GFS. Only few data were published on MESA adsorption coefficients in soil (Baran and Gourcy 2013; Krutz et al. 2004) and no adsorption mechanisms were described for this metabolite.

Nevertheless, we can question the potential role of iron- and aluminium oxides, and of clays, on MESA adsorption in soils and GFS. With a pKa of 1.8 (Table 1), MESA effectively is an anionic molecule with respect to the surrounding pH values. And, the adsorption of anionic molecules in soil is known to occur on protonated hydroxyl groups on oxide surfaces and clay-platelet edges (MacKay and Vasudevan 2012). As the gradients in contents of iron- and aluminium oxides are very slight between the different groups of soil or GFS solids (Kd_ESA_1, Kd_ESA_2, Kd_ESA_3 and Kd_ESA_4, Appendix A), their role in the adsorption of MESA is probably masked in the PLS-DA statistical analysis, the results appearing to be non-significantly different.

pH contributes to the correlation circle (Fig. 3). Its impact is on the oxide charges, but it has no effect on the
MESA charge as the negative charge of the molecule conferred by the sulfonate group is constant under the
environmental pH (Table 1).

Concerning MOXA, no adsorption value could be determined for either surface soils, or the fine fractions [0,2] mm of GFS (S-x and Gcm,b[0,2]), adsorption appearing to be extremely limited. No statistical analysis could be carried out on the single K_d value obtained for Gcm,b]2,10]. No description was found in the literature 362 concerning the parameters governing its adsorption. Even though both MOXA and MESA are anionic molecules 363 at environmental pH (pKa of 1.8 and 4.8, respectively, Table 1), their adsorption is different in the solids of the 364 vadose zone. As is suspected for MESA, iron oxy-hydroxides might play a role in adsorbing the anionic MOXA 365 molecule, even though this is very slight, or even unmeasurable, in our study. The nature of the functional 366 grouping of the negatively charged molecule might be at the origin of the difference in adsorption between the 367 two molecules. MESA has an anionic sulfonate group that may be more reactive to the protonated hydroxyl 368 groups of oxides and clays than the anionic carboxyl group of MOXA. This hypothesis is supported by work that 369 showed that, on the surface of goethite, the affinity constant of the carboxylic group (logK=1.26; (Filius et 370 al. 1997) is much weaker than the affinity constant of a sulphate (log K=19.5; (Geelhoed et al. 1997)). Such 371 affinity constants are coherent with the adsorption order of MESA and MOXA observed on the soil or GFS 372 solids of our study.

373 **3.4. Influence of the GFS adsorption interface on herbicide adsorption**

374 In the permANOVA analysis, the K_d variance between the different groups of solids was studied using physico-375 chemical property contents, in order to identify the mechanisms involved in SMOC and MESA adsorption. As is 376 standard when identifying the adsorption of pesticides in soil, the next step would be to draw up the pedotransfer 377 rules that lead to predictive values for adsorption (Wauchope et al. 2002; Weber et al. 2004). The fact of 378 considering the total sample mass in pedotransfer rules can be criticized when dealing with a soil rich in 379 aggregates, where pesticide molecules would not have access to the central part of the aggregate (Wauchope et 380 al. 2002); in fact, such an approach would not be representative of the real composition of the soil/pesticide 381 interface available for adsorption. For such fluvioglacial solids with low porosity (<2%, Table 3), the adsorption 382 interface is smaller. Therefore, it is impossible to draw up predictive adsorption values for SMOC, MESA and 383 MOXA when using only physico-chemical mass properties measured via general analyses of a solid. For a 384 quantitative prediction of the adsorption of these molecules, one should consider the adsorption interface on the 385 surface of the solids rather than their overall composition, which, by itself, is insufficient for a precise 386 understanding of their reactivity.

For this reason, we carried out MEB-EDS analyses to complete the mineralogical and other data, in order to understand if potentially reactive mineral phases might be present on the surfaces of fluvioglacial solids. We identified iron oxides on the surface of S-x, Gcm,b [0,2] and Gcm,b]2,10] grains (Fig. 4). The morphology of these iron oxides and/or -hydroxides on the surface of the S-x and Gcm,b [0,2] samples seems relatively similar, with dimensions of about a dozen microns, whereas those on the surface of Gcm,b]2,10] are much smaller—
 around one micron—and assembled in clusters.

However, without more mineralogical information on the nature of these oxides, we can draw no conclusions on differences in reactivity. The clay platelets on the surface of Gcm,b]2,10] grains could also adsorb SMOC. Concerning S-x and Gcm,b[0,2], no clays were observed, but the MEB-EDS analyses were not exhaustive. The higher adsorption of SMOC, MESA and MOXA on Gcm,b]2,10] could be explained by either a different chemistry, or by a different structural arrangement of the clay minerals, iron oxides and reactive organic matter, more favourable for the adsorption of molecules than that of the adsorption interfaces of Gcm,b[0,2] and S-x.

Thus, rather than the content in overall mineral and organic phases of the solid, it may be the difference in chemistry and reactivity at the adsorption interface that should be looked for and defined. This new approach should lead to a more precise explanation of the adsorption differences between solids and, more generally, to the construction of future predictive models of the adsorption of pesticides and their metabolites for both soils and geological solids.

404 **4. Conclusions**

The adsorption properties in the vadose zone of the herbicide S-metolachlor (SMOC) and its ethane sulfonic (MESA) and oxanilic acid (MOXA) metabolites, were measured on surface soils as well as on heterogeneous geological solids. The latter are glaciofluvial (GFS) deposits with grain sizes ranging from sand (samples S-x and Gcm,b[0,2]) to gravel (Gcm,b]2,10]).

The adsorption coefficients K_d are variable, from low values (0.03 to 2.08 L kg⁻¹) to values below the detection limits for the metabolites, and from low to high values for SMOC (0.44 to 28.8 L kg⁻¹). For all three molecules, gravel is the most reactive solid matrix of the vadose zone. These variations of adsorption in soils and GFS seem to be mainly related to the presence and reactivity of iron oxides for the negatively charged molecules MESA and MOXA. For the neutral molecule SMOC, the highest K_d values were measured on solids with higher organic matter contents and reactivity values than the others, even in the case of GFS. Clay minerals also contribute to increasing the reactivity of solids in the vadose zone for SMOC adsorption.

416 In view of our results showing the importance of the solid/liquid interface in characterizing the reactivity of GFS 417 for SMOC and its metabolites, it is probable that—even when increasing the number of samples—it would not be possible to apply pedotransfer rules. In fact, as the geological solids have a very low to nil porosity, the physico-chemical parameters taken as a whole do not reflect the physico-chemical composition of the SMOC adsorption interface and of that of its metabolites. It is thus essential to define the spatial distribution and reactivity of the mineral and organic phases located at the reactive adsorption interface, in order to arrive at a precise definition of the sorption capacity of complex solid matrices, such as GFS.

We provide new data on the adsorption of SMOC, MESA and MOXA on geological solids of the vadose zone. In addition, we have added to the few available data on soils for both MESA and MOXA. Geological solids are often hardly considered when studying pollutant transfer to groundwater, but our work shows that such relatively deep solids can be more reactive than the surface horizons of soils. Integrating the sorption parameters of pesticides and their metabolites on geological solids in predictive transfer models will lead to a more precise estimate of the transfer time of molecules to groundwater, leading in turn to a more reliable long-term monitoring of the changes in groundwater quality.

In short, refining the temporal predictions of groundwater quality, will improve the suitability and quality ofmanagement measures.

432

433

435 **References**:

- 436 AFNOR (1995) Soil quality- Determination of organic and total carbon after dry combustion (elementary
 437 analysis). NF ISO 10694.
- 438 AFNOR (1995) Soil quality- Determination of phosphorus- Spectrometric determination of phosphorus soluble439 in sodium hydrogen carbonate solution. NF ISO 11263.
- 440 AFNOR (1999) Soil quality- Chemical methods- Determination of cationic exchange capacity (CEC) and
 441 extractible cations. NF X 31-130.
- 442 AFNOR (2005) Soil quality- Determination of pH. NF ISO 10390.

Amalric L, Baran N, Coureau C, Maingot L, Buron F, Routier S (2013) Analytical developments for 47
pesticides: first identification of neutral chloroacetanilide derivatives in French groundwater. International
Journal of environmental analytical chemistry 93: 1660-1675

- 446 Alletto L, Benoit P, Bolognesi B, Couffignal M, Bergheaud V, Dumeny V, Longueval C, Barriuso E (2013).
- 447 Sorption and mineralisation of S-metolachlor in soils from fields cultivated with different conservation tillage
- 448 systems. Soil and tillage research 128: 97-103
- 449 Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto J-C, Garcia-Rio L (2008)
- 450 The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture
- 451 Ecosystems and Environment 123: 247-260.
- 452 Baran N, Gourcy L (2013) Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and
- 453 vadose zone solids: Consequences on groundwater quality in an alluvial aquifer (Ain Plain, France). Journal of
- 454 contaminant hydrology 154: 20-28
- 455 Bedmar F, Daniel PE, Costa JL, Gimenez D (2008) Sorption of acetochlor, S-metolachlor and atrazine in surface
- 456 and subsurface soil horizons of Argentina. Environmental toxicology and chemistry 30: 1990-1996
- 457 Blaser HU, Pugin B, Spindler F, Thommen M (2007) From a chiral switch to a ligand portfolio for asymmetric
- 458 catalysis. Accounts of Chemical Research 40: 1240-1250

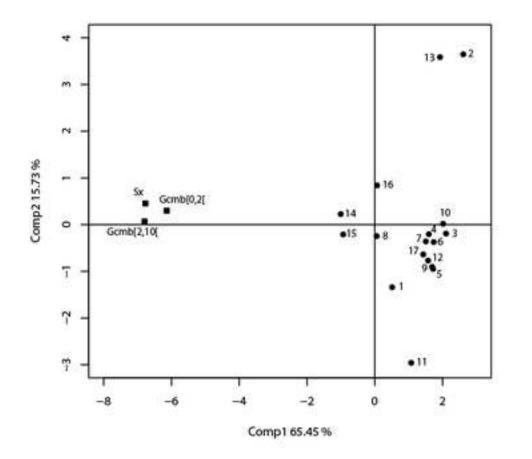
Bornand M. (1978) Altération des matériaux fluvio-glaciaires, genèse et évolution des sols sur terrasses
quaternaires dans la moyenne vallée du Rhône. Rapport de thèse de l'Université des Sciences et Techniques du
Languedoc, Montpellier, France. 327p.

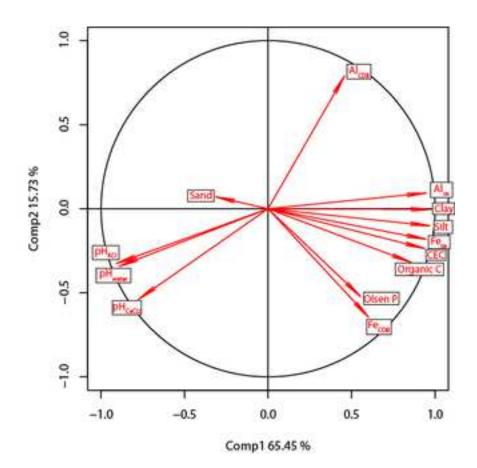
- 462 Bosetto M, Arfaioli P, Fusi P (1993) Interactions of alachlor with homoionic montmorillonites. Soil science 155:
 463 105-113
- Cassigneul A, Benoit P, Nobile C, Bergheaud V, Dumeny V, Etievant V, Maylin A, Justes E, Alletto L (2018)
 Behaviour of S-metolachlor and its oxanilic and ethane sulfonic acids metabolites under fresh vs. partially
 decomposed cover crop mulches: A laboratory study. Science of the total environment 631-632: 1515-1524
- 467 Clausen L, Larsen F, Albrechtsen HJ (2004) Sorption of the herbicide dichlobenil and the metabolite 2,6-
- dichlorobenzamide on soils and aquifer sediments. Environmental science and technology 38: 4510-4518
- 469 Coquet Y (2003) Sorption of pesticides atrazine, isoproturon, and metamitron in the vadose zone. Vadose zone
 470 journal 2: 40-51
- 471 Coquet Y, Ribiere C, Vachier P (2004) Pesticide adsorption in the vadose zone: a case study on Eocene and
 472 Quaternary materials in Northern France. Pest management science 60: 992-1000
- 473 Cwielag-Piasecka I, Medynska-Juraszek A, Jerzykiewicz M, Debicka M, Bekier J, Jamroz E, Kawalko D (2018)
- 474 Humic acid and biochar as specific sorbents of pesticides. Journal of soils and sediments 18: 2692-2702
- 475 Dubus IG, Brown CD, Beulke S (2003). Sources of uncertainty in pesticide fate modelling. Science of the Total
 476 Environment 317: 53-72
- Filius JD, Hiemstra T, Van Riemsdijk WH (1997) Adsorption of small weak organic acids on goethite: modeling
 of mechanisms. Journal of colloid and interface science 195: 368-380
- 479 Geelhoed JS, Hiemstra T, VanRiemsdijk WH (1997) Phosphate and sulfate adsorption on goethite: Single anion
- 480 and competitive adsorption. Geochimica et cosmochimica acta 61: 2389-2396
- 481 Goutaland D, Winiarski T, Lassabatere L, Dube JS, Angulo-Jaramillo R (2013) Sedimentary and hydraulic
- 482 characterization of a heterogeneous glaciofluvial deposit: Application to the modeling of unsaturated flow.
- 483 Engineering geology 166: 127-139

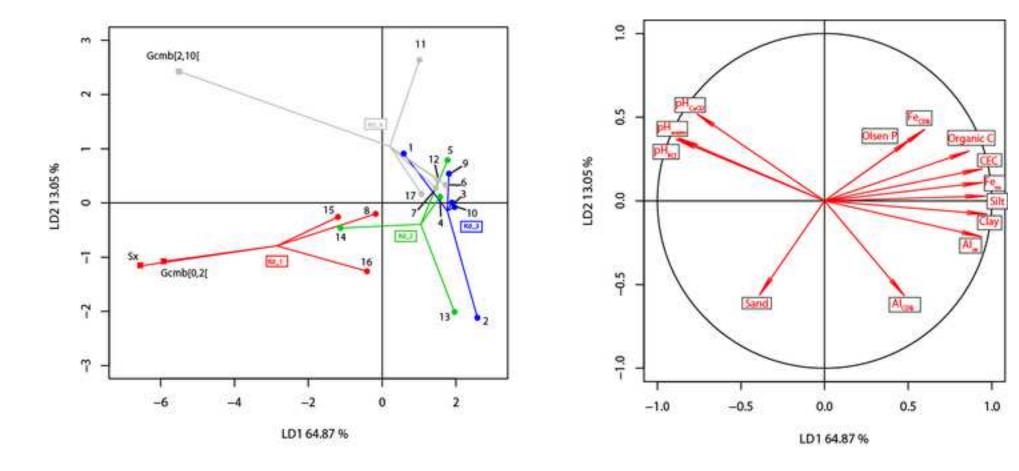
- 484 Goutaland D, Winiarsky T, Dubé JS, Bièvre G, Buoncristiani JF, Chouteau M, Giroux B (2008)
 485 Hydrostratigraphic characterization of glaciofluvial deposits underlying an infiltration basin using ground
 486 penetrating radar. Vadose zone journal 7: 14
- Hancock TC, Sandstrom MW, Vogel JR, Webb RMT, Bayless ER, Barbash JE (2008). Pesticide fate and
 transport throughout unsaturated zones in five agricultural settings, USA. Journal of environmental quality 37: 3
- Hladik ML, Bouwer EJ, Roberts AL (2008) Neutral degradates of chloroacetamide herbicides: occurrence in
 drinking water and removal during conventional water treatment. Water research 42: 4905-4914
- Janniche GS, Mouvet C, Albrechtsen HJ (2010) Acetochlor sorption and degradation in limestone subsurface
 and aquifers. Pest management science 66: 1287-1297
- 493 Kodesova R, Kocarek M, Kodes V, Drabek O, Kozak J, Hejtmankova K (2011) Pesticide adsorption in relation
- 494 to soil properties and soil type distribution in regional scale. Journal of hazardous materials 186: 540-550
- Kolpin DK, Schnoebelen DJ, Thurman EM (2004) Degradates provide insight to spatial and temporal trends of
 herbicides in ground water. Ground water 42: 601-608
- Kolpin DW, Barbash JE, Gilliom RJ (1998a) Occurrence of pesticides in shallow groundwater of the United
 States: Initial results from the National Water-Quality Assessment Program. Environmental science and
 technology 32: 558-566
- Kolpin DW, Thurman EM, Linhart SM (1998b) The environmental occurrence of herbicides: the importance of
 degradates in ground water. Archives of environmental contamination and toxicology 35: 385-390
- Krutz LJ, Senseman SA, McInnes KJ, Hoffman DW, Tierney DP (2004) Adsorption and desorption of
 metolachlor and metolachlor metabolites in vegetated filter strip and cultivated soil. Journal of environmental
 quality 33(3): 939-945
- Kupfersberger H, Klammler G, Schuhmann A, Bruckner L, Kah M (2018) Modeling subsurface fate of Smetolachlor and metolachlor ethane sulfonic acid in the westliches leibnitzer feld aquifer. Vadose zone journal
 17: 12.

- 508 Lassabatere L, Angulo-Jaramillo R, Goutaland D, Letellier L, Gaudet JP, Winiarski T, Delolme C (2010) Effect
- 509 of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma 156: 316-325.
- 510 Legendre P, Legendre L, (1998) Numerical ecology, Developments in Environmental Modelling 20. Elsevier
 511 Science
- Li H, Teppen BJ, Laird DA, Johnston CT, Boyd SA (2006) Effects of increasing potassium chloride and calcium
 chloride ionic strength on pesticide sorption by potassium- and calcium-smectite. Soil science society of
 America journal 70: 1889-1895
- Liu WP, Gan JY, Papiernik SK, Yates SR (2000) Structural influences in relative sorptivity of chloroacetanilide
 herbicides on soil. Journal of agricultural and food chemistry 48.
- 517 Liu WP, Gan JY, Yates SR (2002) Influence of herbicide structure, clay acidity, and humic acid coating on
- 518 acetanilide herbicide adsorption on homoionic clays. Journal of agricultural and food chemistry 50: 4003-4008
- 519 Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M,
- 520 Gawlik BM (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in
- 521 ground water. Water research 44: 4115-4126
- 522 Lopez B, Ollivier P, Togola A, Baran N, Ghestem JP (2015) Screening of French groundwater for regulated and
- 523 emerging contaminants. Science of the total environment 518: 562-573
- MacKay AA, Vasudevan D (2012) Polyfunctional ionogenic compound sorption: challenges and new
 approaches to advance predictive models. Environmental science and technology 46: 9209-9223
- 526 Madsen L, Lindhardt B, Rosenberg P, Clausen L, Fabricius I (2000) Pesticide sorption by low organic carbon
- 527 sediments: a screening for seven herbicides. Journal of environmental quality 29: 1488-1500
- 528 Mehra OP, Jackon ML (1960) Iron oxide removal from soils and clays by a dithionite citrate system buffered
- 529 with sodium bicarbonate. Clays clay mineralogy 7: 317-327
- 530 OECD Guideline 106 (2000) Adsorption desorption using a batch equilibrium method

- 531 Papiernik SK, Koskinen WC, Cox L, Rice PJ, Clay SA, Werdin-Pfisterer NR, Norberg KA (2006) Sorption-
- desorption of imidacloprid and its metabolites in soil and vadose zone materials. Journal of agricultural and food
- 533 chemistry 54: 8163-8170
- 534 Patakioutas G, Albanis TA (2002) Adsorption-desorption studies of alachlor, metolachlor, EPTC, chlorothalonil
- and pirimiphos-methyl in contrasting soils. Pest management science 58: 352-362
- 536 Postigo C, Barcelo D (2015) Synthetic organic compounds and their transformation products in groundwater:
- 537 occurrence, fate and mitigation. Science of the total environment 503: 32-47
- Postle JK, Rheineck BD, Allen PE, Baldock JO, Cook CJ, Zogbaum R, Vandenbrook JP (2004)
 Chloroacetanilide herbicide metabolites in Wisconsin groundwater: 2001 survey results. Environmental science
 and technology 38: 5339-5343
- 541 Pusino A, Liu WP, Gessa C (1992) Influence of organic-matter and its clay complexes on metolachlor
 542 adsorption on soil. Pesticide Science 36: 283-286
- Sanchezcamazano M, Arienzo M, Sanchezmartin MJ, Crisanto T (1995) Effect of different surfactants on the
 mobility of selected nonionic pesticides in soil. Chemosphere 31: 3793-3801
- 545 Seybold CA, Mersie W (1996) Adsorption and desorption of atrazine, deethylatrazine, deisopropylatrazine,
- 546 hydroxyatrazine, and metolachlor in two soils from Virginia. Journal of environmental quality 25: 1179-1185
- 547 Shaner DL, Brunk G, Belles D, Westra P, Nissen S (2006) Soil dissipation and biological activity of metolachlor
- and S-metolachlor in five soils. Pest Management Science 62: 617-623
- Si Y, Takagi K, Iwasaki A, Zhou D (2009) Adsorption, desorption and dissipation of metolachlor in surface and
 subsurface soils. Pest management science 65: 956-962
- 551 Sidoli P, Lassabatere L, Angulo-Jaramillo R, Baran N (2016a) Experimental and modeling of the unsaturated
- transports of S-metolachlor and its metabolites in glaciofluvial vadose zone solids. Journal of contaminant
 hydrology 190: 1-14
- Sidoli P, Baran N, Angulo-Jaramillo R (2016b) Glyphosate and AMPA adsorption in soils: laboratory
 experiments and pedotransfer rules. Environmental science and pollution research 23: 5733-5742


- 556 Steele GV, Johnson HM, Sandstrom MW, Capel PD, Barbash JE (2008) Occurrence and fate of pesticides in
- 557 four contrasting agricultural settings in the United States. Journal of environmental quality 37: 1116-1132
- Tamm O (1922) Eine Methode zur bestimmung der anorganischen Komponenten des Golkomplex in Boden.
 Medd. Statens skogforsoksanst 19: 385-404.
- Toccalino PL, Gilliom RJ, Lindsey BD, Rupert MG (2014) Pesticides in groundwater of the United States:
 decadal-scale changes, 1993-2011. Ground water 52: 112-125,
- 562 Vryzas Z, Papadopoulou-Mourkidou E, Soulios G, Prodromou K (2007) Kinetics and adsorption of metolachlor
- and atrazine and the conversion products (deethylatrazine, deisopropylatrazine, hydroxyatrazine) in the soil
 profile of a river basin. European journal of soil science 58: 1186-1199
- 565 Wauchope RD, Yeh S, Linders J, Kloskowski R, Tanaka K, Rubin B, Katayama A, Kordel W, Gerstl Z, Lane M,
- 566 Unsworth JB (2002) Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability.
- 567 Pest management science 58: 419-445
- Weber JB, McKinnon EJ, Swain LR (2003) Sorption and mobility of C-14-labeled imazaquin and metolachlor in
 four soils as influenced by soil properties. Journal of agricultural and food chemistry 51
- 570 Weber JB, Wilkerson GG, Reinhardt CF (2004) Calculating pesticide sorption coefficients (K-d) using selected
- 571 soil properties. Chemosphere 55: 157-166
- 572 Wood LS, Scott HD, Marx DB, Lavy TL (1987) Variability in sorption coefficients of metolachlor on a captina
- 573 silt loam. Journal of environmental quality 16: 251-256
- 574 WRB (2006) World reference base for soil resources 2006. World Soil


Figure 1: Principal component analysis performed on physical and chemical properties measured for soils (samples 1 to 17) and glaciofluvial solids (S-x, Gcm,b[0,2] and Gcm,b]2,10])


Figure 2: Partial Least Square-Discriminant analysis of physical and chemical properties for the K_{d} group, K_{d} group, K_{d} group, K_{d} group, K_{d} group and K_{d} group defined according to the sorption capacity of soils (samples 1 to 17), and for glaciofluvial solids (S-x, Gcm,b[0,2] and Gcm,b]2,10]) towards metolachlor.

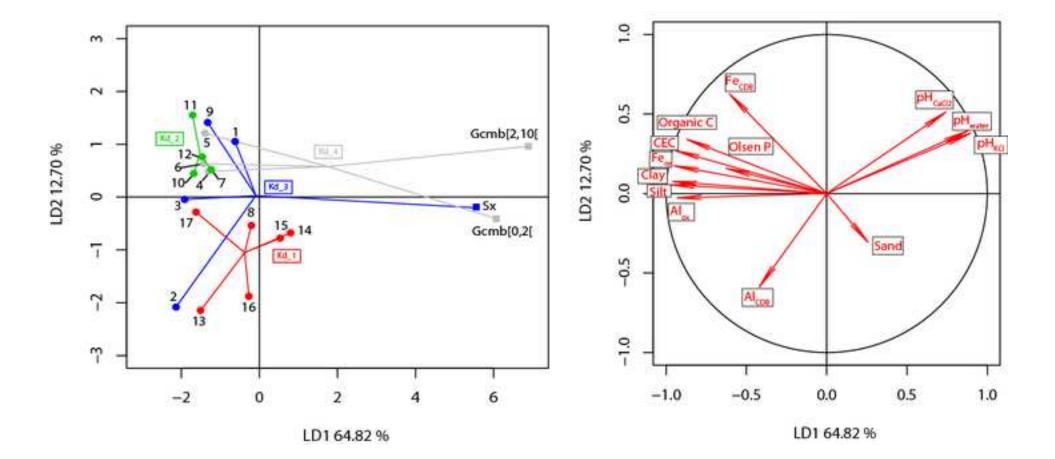

Figure 3: Partial Least Square-Discriminant analysis of physical and chemical properties for the K_d_1 group, K_d_2 group, K_d_3 group and K_d_4 group defined according to the sorption capacity of soils (samples 1 to 17), and for glaciofluvial solids (S-x, Gcm,b[0,2] and Gcm,b]2,10]) towards MESA.

Figure 4 : Scanning electron microscope (SEM) observations of iron oxides and/or hydroxides (white) on grain surfaces: a) in S-x, b) in Gcm,b[0,2]mm, and c) in Gcm,b]2,10]mm, as well as d) of clay leaflets on grain surfaces in Gcm,b]2,10]mm.

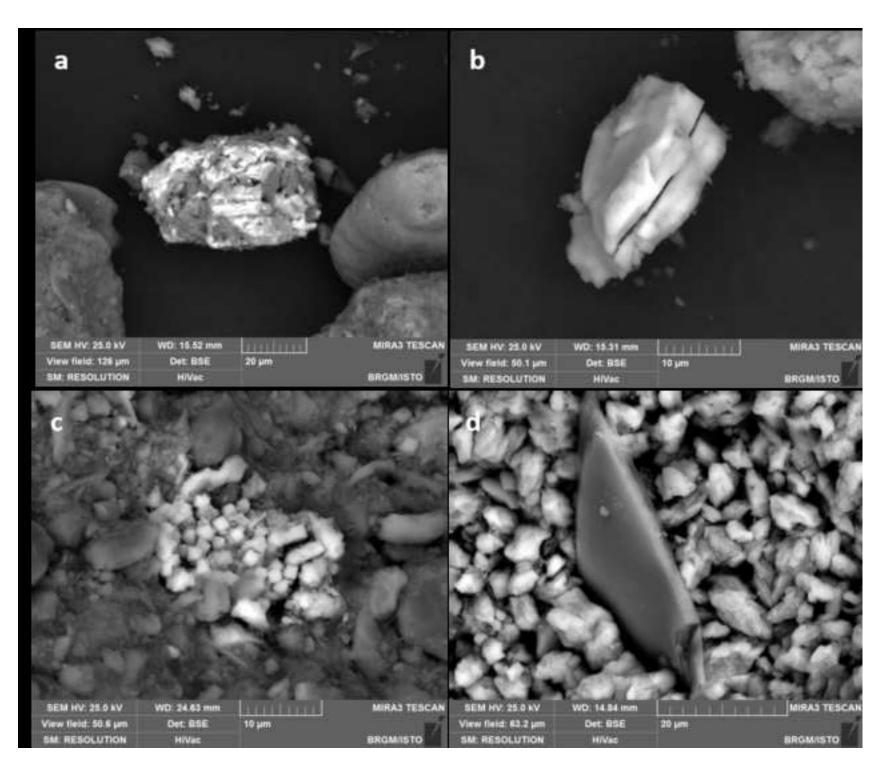
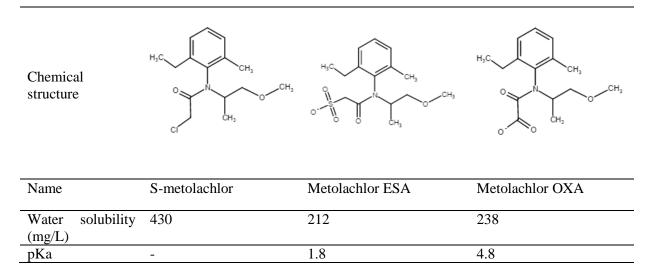



Table 1: Chemical structures of herbicide S-metolachlor (SMOC) and its anionic metabolites ESAmetolachlor (MESA) and OXA-metolachlor (MOXA)

Table 2: Main physical and chemical properties of vadose zone solids

					%			g kg ⁻¹						
	pH CaCl ₂ a	pH water	pH KCl c	CEC ^d (meq 100 g ⁻¹)	Clay	Silt	Sand	Organic C	Olsen P	Al _{CDB}	Fe _{CDB}	Al _{ox}	Feox	CaCO ₃
Surface soils n=	=17													
Min	5.1	6.1	4.9	4.4	8.9	29.5	40.8	7.2	0.04	1.5	2.1	1.2	2.1	<1
Max	7.0	8.0	7.2	9.6	15.4	42.3	60.4	23.1	0.20	11.1	13.5	2.2	3.2	<1
Mean	5.9	7.0	6.1	7.4	13.2	36.4	48.4	13.6	0.09	3.1	9.3	1.8	2.7	<1
<u>GFS</u>														
S-x	7.2	9.2	8.8	1.2	2.1	2.2	95.7	2.5	<lq< td=""><td>0.6</td><td>3.0</td><td>0.5</td><td>0.9</td><td>178</td></lq<>	0.6	3.0	0.5	0.9	178
Gcm,b [0,2]	7.3	9.1	8.6	1.9	4.2	4.3	91.5	1.1	<lq< th=""><th>0.7</th><th>4.0</th><th>0.7</th><th>1.2</th><th>233</th></lq<>	0.7	4.0	0.7	1.2	233
Gcm,b]2,10]	7.3	9.2	8.9	1.1	-	-	-	1.2	<lq< td=""><td>0.4</td><td>3.1</td><td>0.0</td><td>1.0</td><td>356</td></lq<>	0.4	3.1	0.0	1.0	356

a pH measured in 1:1 soil/0.01 M CaCl2 solution (w/w) ratio.

a pri measured in 1:1 sollovit M cach solution (w/w) ratio
 b pH measured in 1:2 soil/water (w/w) ratio.
 c pH measured in 1:2 soil/0.01 M KCl solution (w/w) ratio
 d Cationic exchange capacity.

n.q. not quantifiable

Table 3: Mineralogical composition (semi-quantitative XRD analysis) expressed as a percentage of the total of sand (S-x) and both [0,2] and [2,10] bimodal gravel fractions and intra-granular porosity (%)

_		Mineralogical XRD composition									
	Quartz Calcite Albite Microcline Illite Chlorite Smectite Kaolinite Antigorite Halite								(%)		
	(±3%)	(±3%)	(±3%)	(±3%)	/micas	(±5%)	(±5%)	(±5%)	(±5%)	(±3%)	
					(±5%)						
S-x	54	18	7	8	5	3	3	2	-	-	n.q.
Gcm,b [0,2]	36	30	5	4	4	1	13	6	tr.	1	$1.5 - 1.6^{**}$
Gcm,b]2,10]	32	34	4	5	8	2	7	8	tr.	tr.	1.8±0.2***

tr. Traces ** duplicate

***triplicate

Table 4: Values of the K_d (L kg⁻¹) distribution constants at equilibrium of SMOC, MESA and MOXA measured on the ZNS solids. Average values of the experimental triplicates for an initial doping concentration of 1 mg/L.

	mean K₀ SMOC	mean K₀ MESA	mean K _d MOXA
Surface soils			
1	4.23	0.23	n.q.
2	4.01	0.35	n.q.
3	4.01	0.40	n.q.
4	3.63	0.52	n.q.
5	3.90	0.70	n.q.
6	4.97	0.74	n.q.
7	4.74	0.17	n.q.
8	2.34	0.05	n.q.
9	4.21	0.27	n.q.
10	4.36	0.15	n.q.
11	6.32	0.10	n.q.
12	4.46	0.06	n.q.
13	3.50	0.03	n.q.
14	3.30	0.04	n.q.
15	2.84	n.q.	n.q.
16	2.90	0.04	n.q.
17	5.60	0.05	n.q.
<u>GFS</u>			
S-x	0.44	0.73	n.q.
Gcm,b [0-2] mm	0.57	0.46	n.q.
Gcm,b]2-10] mm	28.8	2.08	0,74
n a not avantifiable			

n.q. not quantifiable