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Cranial sutures play critical roles in facilitating postnatal skull development
and function. The diversity of function is reflected in the highly variable
suture morphology and complexity. Suture complexity has seldom been
studied, resulting in little consensus on the most appropriate approach for
comparative, quantitative analyses. Here, we provide the first comprehensive
comparison of current approaches for quantifying suture morphology, using a
wide range of two-dimensional suture outlines across extinct and extantmam-
mals (n = 79). Five complexity metrics (sinuosity index (SI), suture complexity
index (SCI), fractal dimension (FD) box counting, FD madogram and a wind-
owed short-time Fourier transform with power spectrum density (PSD)
calculation) were compared with each other and with the shape variation in
the dataset. Analyses of suture shape demonstrate that the primary axis of
variation captured attributes other than complexity, supporting the use of a
complexity metric over raw shape data for sutural complexity analyses. Each
approach captured different aspects of complexity. PSD successfully discrimi-
nates different sutural features, such as looping patterns and interdigitation
amplitude and number, while SCI best-captured variation in interdigitation
number alone. Therefore, future studies should consider the relevant attributes
for their question when selecting a metric for comparative analysis of suture
variation, function and evolution.
1. Background
The quantitative analysis of shape is a well-established approach to robustly
address questions across a breadth of disciplines and subdisciplines in biology,
with broad application in the study of evolution, ecomorphology, development,
biogeography, taxonomy and phylogenetics [1–10]. The ability to capture
complex shape data has been greatly expanded by advances in geometric
morphometric techniques which improve upon traditional morphometrics by
providing the ability to capture information about where the parts of the
shape are located with respect to each other in a Cartesian plane. These tech-
niques have grown a particular interest and have been successful in the study
of vertebrate morphology during the past three decades. Within the system
of the vertebrate skull, the overwhelming focus of morphometric studies has
been the bony structures themselves, with little attention given to the sutural
joints between these cranial bones [11–22].

As sites of intramembranous bone growth, sutures are actively responsible for
determining this cranial morphology via the facilitation of postnatal craniofacial
development [23]. An intrinsic relationship clearly exists between sutures and
cranial morphology, primarily due to sutures providing the principal growth
site, although the relationship is not restricted to this and extends to other critical
functional roles of sutures; facilitating brain development by allowing adequate
space for brain expansion, fusing for protection of the developed brain, providing
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shock absorption during locomotion and facilitating feeding by
providing joint mobility [24–26]. These suture functions have a
clear impact on the cranialmorphology.Despite their functional
importance, suture morphology has seldom been studied in a
comparative, quantitative framework and is considerably
underrepresented in comparison to the well-studied mor-
phology of the cranium. This stems from the lack of well-
defined homologous anatomical landmarks for non-osseous
and essentially featureless structures [27]while the open outline
nature of sutures further adds to the inherent difficulty in quan-
tifying their shape [28,29].

Suture morphology is known to be highly variable from
suture to suture, across development, between the sexes and
across species. When comparing suture to suture, those in the
facial region have been reported to have straight morphologies
compared to the interdigitated sutures of the braincase [30].
Looking across development, sutures have been suggested to
progress from straight to highly interdigitated morphologies
[31]. Sexual dimorphism of sutures has also been identified,
with males exhibiting greater levels of complexity for facial
sutures, thought to reflect the pressures of head-to-head fight-
ing [32]. Interspecific species variation has been described at
different levels, both within genus (Cebus) and within infra-
order (Caviomorpha), where suture morphology ranges from
low to high suture interdigitations [33,34]. Beyond this level,
very littlework has been conducted that addresses interspecific
variation across larger clades, although it has been postulated
that mammals have more intricate and interdigitated sutures
than reptiles [30]. Evidently, a huge degree of suture variation
has been observed at multiple levels of comparison.

The few papers that have quantified this variation in suture
morphology to date, have suggested a wide range of drivers
shaping suture morphological variation including innovation
over evolutionary time, novel biomechanical relationships
to ecological variation, mechanical strain from compressive
forces, patterns of growth and development, and responses
to environmental stress [29,30,35–38]. More specifically, the
aspects of complexity shaping this morphological variation
have been associated with a number of biological pressures.
These biological pressures create heightened biomechanical
stress across the skull, with the resultant effect being a defor-
mation of the sutures to an interdigitated morphology [39].
Interdigitations act as shock absorbers by increasing the
surface area for collagen and compression-resisting fibre
attachments to dissipate the strain experienced by surrounding
bones [39,40]. Biomechanical stress shaping this interdigitated
suture morphology is thought to be emergent from a number
of biological inputs: head-to-head fighting, tougher foods,
chisel tooth digging, jaw opening and closing during mastica-
tion, and masticatory muscle mass [30,33,34,40–42]. However,
very little is known about the forces generated from these
sources of biomechanical stress and the subsequent impact
on suture morphology [43]. Unmistakeably interdigitations
play a huge part in the biological relevance of suture mor-
phology. However, as both amplitude and frequency form
this interdigitated morphology [29], it is unclear from the
current studies whether one or both of these aspects of interdi-
gitation are functionally relevant to the suture and thus
biologically speaking important. Nevertheless, the suture
morphological variation appears to reflect adaptations to
mechanical demands from the environment, habitat and
ecological pressures. Thewider significance of how these press-
ures and biomechanical stresses impact suture morphology is
currently limited by the absence of comparative studies in a
phylogenetic framework which are necessary to place the bio-
logical interpretations into a broader evolutionary context [37].

Variation in suture morphology has been captured in a
range of biological systems, from the vertebrate cranium to
the ammonoid shell using methods that attempt to quantify
complexity [28–30,33,34,37,44]. The implementation of a
complexity metric, in contrast with using shape data, such as
semi-landmarks, offers the advantage of generating a single
quantitative value that provides the ability to easily make
direct comparisons across species, suture locales and
developmental ages. Moreover, shape incorporates many
other attributes beyond complexity, complicating functional
interpretations across diverse systems. For the purpose of our
study,we consider complexity tomeasure howa suture deviates
from its simplest form, a straight line, across its overall path.
By contrast, shape captures additional aspects such as orien-
tation and a reversal of the same morphology. While multiple
methods have been developed to describe suture morphology
as a complexity metric with this in mind, the transformation
of suture morphology into meaningful quantitative data still
does not come without its challenges. The intricate nature of
sutures produces patterns that are hugely diverse even within
an individual suture. Sutures reflect a tremendous degree of
natural complexity, making their morphology inherently diffi-
cult to quantify. The challenges, however, are not limited to
the suture morphology, but are further complicated by the
methods themselves. The methods previously applied, operate
on a variety of mathematical approaches, each of which adopts
different assumptions, therefore resulting in variation for
the definition and aspects of complexity captured. Moreover,
many previous methods attempt to quantify morphology by
means of a univariate statistical complexity value, whereby
disparate morphologies have been reported to be present with
near-identical complexity values, meaning it is impossible to
reconstruct the original suture morphology [45]. An outline of
the approaches and equations used here can be found in the
electronic supplementary material (electronic supplementary
material, text S1).

Despite themanymethods proposed, there is no consensus
regarding which approach is the most appropriate for captur-
ing suture morphology as a quantified value of complexity,
and in particular if the different approaches capture various
aspects of the suture shape complexitywhichmay be appropri-
ate for addressing different biological questions. While we
know that complexity in the form of an interdigitated shape
has functional roles at the sutures, other aspects of complexity
may also be functionally significant but have not been recog-
nized in the limited previous work on this topic. Direct
comparison of the strengths and weaknesses of the alternative
approaches and identification of the different aspects of
complexity each approach captures, will inform further
research into suture morphology, development and evolution.
In addition, the direct comparison of the approaches will
offer the potential to integrate the results of studies implement-
ing different complexity metrics. Here, we compare five
methods for quantifying suture complexity: sinuosity index
(SI), suture complexity index (SCI), fractal dimension (FD)
box counting approach, FD madogram approach and wind-
owed short-time Fourier transform (STFT) with a power
spectrum density (PSD) calculation, using a dataset sampled
across a diverse range of mammal suture morphologies.
Mammal crania exhibit an incredible variety of shape and
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Figure 1. An example of skull and suture variation captured by the dataset from a broad range of mammalian taxa.
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Figure 2. Depiction of SI and SCI calculation [51].
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suture morphology, likely related to their complex mastication,
and dietary and ecological diversity [46]. To accompany this
cranial diversity, a wide range of suture morphologies are
observable across mammals. Moreover, they are abundant
and easily available in museum collections, thus providing
the ideal sample dataset for comparing the metrics for quanti-
fying suture morphology and complexity. Determining the
aspects of complexity captured by the various metrics and
which is the most appropriate approach for quantifying cranial
suture complexity on this diverse empirical dataset will allow
for future detailed study of the function, development and
evolution of sutures across mammals.
2. Methods
2.1. Data collection
A sample of 79 extinct (n = 34) and extant (n = 45) mammals was
generated to assess and test approaches available for quantifying
suture morphological complexity (electronic supplementary
material, table S1). Multiple sutures were sampled across this
sample dataset rather than a single homologous suture, as the
goal was to determine the most appropriate metric for a
sample with a broad range of morphologies and not to assess
the morphological variation within the sample dataset (figure 1).
Spirit preserved specimens were scanned using the X-Tek HMX
ST 225 µCT scanner (Nikon, Tokyo, Japan) and Go!Scan 20 (Crea-
form), Go!Scan 50 (Creaform) or EDGE ScanArm HD (FARO)
scanners were used for osteological specimens. Scans were recon-
structed in Avizo v.9.3 (FEI, Hillsboro, OR, USA), Geomagic
Wrap (3D Systems), and VXElements v6.0 (Creaform) and
cleaned in Geomagic Wrap leaving only the skull elements
in the three-dimensional isosurface. Two-dimensional images
(n = 79) of the multiple different sutures across the sample data-
set were captured using uniform positioning to minimize the
impact of parallax in the rgl R package [47]. Two-dimensional
semi-landmarks were manually positioned on the suture
images using the StereoMorph R package [48] and resampled at
500 semi-landmarks per suture to capture the open suture out-
line. Studies should first determine the number of manual
landmarks required to capture the entire suture curve profile
and resample to a number of landmarks that does not risk
losing morphological complexity. This is particularly important
as fractal-like sutures could be more sensitive to the number of
landmarks positioned. Generalized Procrustes analysis was per-
formed on the resampled two-dimensional semi-landmarks to
remove all non-shape elements using the ‘gpagen’ function in
the geomorph R package [49,50]. Using the two-dimensional
superimposed semi-landmarks, a principal component analysis
(PCA) was performed to determine the major axes of shape vari-
ation captured by the sample dataset and whether these reflected
variations in complexity.
2.2. Complexity analysis
The five complexity metrics were applied to the Procrustes
superimposed two-dimensional semi-landmarks. SI calculations
were implemented in base R (v.3.6.0; R Core Team, 2019) using
a standard distance between two points equation (electronic sup-
plementary material, textS2: equation 7) in order complete the SI
equation (electronic supplementary material textS2: equation 1,
figure 2) [51]. SI has also previously been referred to as total
sutural interdigitation [52] and relative suture length [33]. SCI
used the SI value calculated in base R (v.3.6.0; R Core Team,
2019) and a complexity factor multiplier which was calculated
from the interdigitation lobes (major and minor) [53] (figure 2).
FD was calculated in the fractaldim R package [54], using both
the box counting and madogram methods by implementing
the ‘fd.estim.boxcount’ and ‘fd.estim.madogram’ functions, respect-
ively. STFT was computed using the ‘stft’ function in the e1071
R package [55]. The PSD of each suture was calculated using
the STFT results, by averaging the squared STFT coefficients
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Figure 3. Principal components analysis of two-dimensional semi-landmark shape data with extreme suture morphologies for: (a) PC1 and PC2; (b) PC3 and PC4.
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over each frequency across the local transforms and summing the
averages at each harmonic, as described by Allen (2006) [29].
nterface
17:20200476
2.3. Comparative analysis of the complexity metrics
The appropriateness and effectivity of each metric was assessed
using multiple comparative approaches. Comparisons between
suture shape data and complexity scores were made to determine
whether the metrics captured functionally relevant suture mor-
phologies. Functionally relevant aspects of suture morphology
include, but are not limited to, the multiple features of interdigita-
tions (number and amplitude) thought to be shaped by
biomechanical stresses as a result of behaviour and diet. Correspon-
dence between complexity score and suture shape PC score were
quantified with Pearson’s correlation coefficient (r) and visualized
with a heatmap using the ‘corrplot’ function from the corrplot R
package [56]. The significance (p < 0.05) of the correlations were
tested using the ‘cor.mtest’ function [54]. A heatmap reflecting com-
plexity scores for each specimen was mapped onto the PCA of
Procrustes superimposed two-dimensional semi-landmarks to
further determine whether the complexity metrics captured the
functionally relevant aspects of morphological variation. Similarly,
correlations between the five complexity metrics were quantified
andvisualizedusing the ‘corrplot’ function in the corrplotRpackage,
significancewas tested using the ‘cor.mtest’ function [56]. Finally,we
conducted a further PCA on the specimen complexity scores, rather
than the shape data, using the factoextra R package [57]. The contri-
bution of each variable (n = 5; complexity metrics) on the PC axes
(i.e. the scaled PC loadings) were plotted on a correlation circle.
The PC loadings were superimposed onto the PCA, of the first
two axes, thus representing both variables (n = 5) and individuals
(n = 79) using the ‘fviz_pca_biplot’ function, in order to assess how
the approaches, relate to each other and the complexity across
the sample dataset. Further detail on the methodology is provided
in the electronic supplementarymaterial (electronic supplementary
material, text S2). The datasets generated and/or analysed through-
out our study are available in the Github repository: https://
github.com/HeatherEWhite/suture_metrics_comparison [58].
3. Results
3.1. Shape analysis
Shape analysis refers to variation in the shape variables
themselves, the Procrustes superimposed semi-landmarks.
PCA of the Procrustes superimposed two-dimensional semi-
landmarks (figure 3) identified 19 principal components (PCs)
that explained 99% of the shape variation (electronic sup-
plementary material, table S2). Of these PCs, the first four
each accounted for greater than 5% of the overall variation,
with PC1, PC2, PC3 and PC4 accounting for 59.7%, 10.2%,
9.8% and 5.2%, respectively. The main axis of variation (PC1)
was associated with an inversion of the suture morphology,
with the positive aspect of PC1 reflecting an ‘n’ shaped mor-
phology and the negative aspect reflecting a ‘u’ shaped
morphology (figure 3 and electronic supplementary material,
figure S2). Variation along PC2, PC3 and PC4 more clearly
reflected differences in the complexity of shape, such as looping
patterns, irregularity and straight to interdigitated sutures
(figure 3 and electronic supplementary material, figure S2).

3.2. Complexity analysis
Complexity analysis captures variation in the complexity
scores across the dataset, which are estimated from the suture
shapes, but not the shapes themselves. The five methods pro-
duced different ranges of complexity across the sample
dataset, with the largest value indicative of the most complex
suture: 1.024 to 4.861 for SI; 0.205 to 87.963 for SCI; 1.055
to 1.120 for FD (box counting method); 1.452 to 1.657 for
FD (madogram method); 1.449 to 1.928 for PSD, extreme mor-
phologies for each metric are presented in electronic
supplementary material, figure S3. Full results for each
suture are presented in electronic supplementary material,
table S3, with a subset of sutures representative of the range
of suture complexity detailed further in figure 4.

Sutures recognized as ‘simple’ (figure 4a,b) following SI,
SCI, FD (box counting), FD (madogram) and PSD analysis pre-
sented with a largely straight morphology and very few
interdigitations. For each of the simple sutures, all metrics indi-
cated a low complexity value. The FD and PSD complexity
valueswere very similar to one another, with greater differences
observed for the SI, SCI and FD (box counting) metrics.

Sutures recognized as ‘moderately complex’ (figure 4c,d )
by all the applied metrics presented with a morphology that
deviated away from a straight line accompanied by a greater
number of interdigitations that were small in magnitude. All
methods quantified these morphologies with higher values
than for the simple sutures.

The ‘most complex’ sutures, recognized by the majority of
applied metrics, exhibited large magnitude interdigitations,
irregular repetitions and looping patterns (figure 4e,f ).
These more complex sutures had higher SI values than the
moderately complex sutures. SCI indicated that suture 31
(specimen ID 31), which had interdigitations of a heightened
magnitude, was highly complex compared to the relatively
simple suture 46 (specimen ID 46), which presented with
an irregular looping pattern. PSD, however, showed the oppo-
site, with suture 46 (specimen ID 46) being the most complex of
the two, although suture 31 (specimen ID 31) was still
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https://github.com/HeatherEWhite/suture_metrics_comparison
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Figure 4. Suture complexity variation from low (a) to high ( f ) complexity within the mammal skull sample (n = 79). Results presented for all five methods tested:
SI, SCI, FD box counting, FD madogram, PSD. Specimen ID and their species associations are detailed in electronic supplementary material, table S1.
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represented as complex. FD box counting and FD madogram
values returned very similar values for the two sutures consid-
ering them both to be similarly highly complex sutures.
Evidently, while both sutures were identified as complex by
the majority of metrics their morphologies were largely dispa-
rate. These differences in morphology appeared to be better
reflected by the SCI and PSD values, as these both ascribed
quite different complexity scores to the two sutures compared
to the values determined by SI, FD box counting and FDmado-
gram. Scenarios, where the five complexity metrics disagree,
undoubtedly become more evident with the more highly
complex sutures as a result of greater shape variety in the
more complex sutures which is not always limited to
interdigitations.
3.3. Comparative analysis of the metrics
Here, we consider how variation in shape compares to
variation in complexity, while addressing the relationships
between each complexity metric. PC scores for all specimens
were extracted from the PCA of suture shape variation
(figure 3), for the PCs that explained greater than 5% of the
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overall shape variation (PC1, PC2, PC3 and PC4) (electronic
supplementary material, table S4). Correlation analysis
between these PC scores and the method complexity scores
shows that PC2 aligns most strongly with all of the complex-
ity metrics, except SCI (figure 5, electronic supplementary
material, table S5). Of the five implemented complexity
metrics, PSD has the strongest correlation to PC2 (r = −0.766,
p < 0.001). When the specimen complexity scores are mapped
onto the shape morphospace using heatmaps, marked
differences across the different metrics relative to suture
shape are evident. Both SI and SCI returned relatively few
highly complex sutures (figure 5b,c), but these always fell in
the negative region of PC1 and PC2. For FD box counting,
FD madogram and PSD metrics the most complex sutures
clustered in the negative region of PC2, while the least com-
plex sutures appeared at the positive end of PC2. By contrast,
there was little association between complexity scores and the
shape variation described by PC1 for these three metrics.
Complex sutures were present on either end of PC1 for
both FD madogram and PSD, whereas for FD box counting,
it was the sutures with lower complexity that appeared at
both extremes of the PC1 axis. PCA of the two-dimensional
semi-landmarks using heatmaps to indicate complexity
(figure 5b–f ), support the correlation analyses (figure 5a)
that indicated the complexity metrics were most strongly cor-
related with the shape variation of PC2.

Direct comparisons across the five implemented complexity
metrics indicated that there were very few strong correlations
(r > 0.7) (figure 6a, electronic supplementary material, table
S6). The strongest correlation was unsurprisingly between SI
and SCI (r = 0.954, p < 0.001), as SCI is a modification of SI.
Interestingly, there was a further strong correlation between
the FD madogram method and PSD method (r = 0.823,
p < 0.001). This correlation was much stronger than the corre-
lation between the two FD metrics even though a similar
fractal method underlies both of the FD approaches, suggesting



FD box counting

0.49

0.36

0.45

0.41

0.82

0.69

0.53

0.55

0.31 0.95

– *** ** *** ***

– *** *** ***

– *** **

– ***

–

FD madogram

PSD

SI

SCI

FD
 b

ox
 c

ou
nt

in
g

FD
 m

ad
og

ra
m

PS
D

SI SC
I

–1.0

1.0

0.8

0.6

0.4

0.2

–0.8

–0.6

–0.4

–0.2

0

Figure 6. Correlation plot comparing complexity metrics indicating in the
lower half the correlation coefficients (r) and in the upper half the strength
of the correlation by colour and circle size, * p < 0.05, ** p < 0.01, *** p <
0.001.
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the two fractal metrics are largely different thus capturing vari-
ations in the suture shape complexity. Furthermore, the 95%
confidence intervals for these two comparisons (SI versus SCI
and FD madogram versus PSD) were small and thus empha-
sized a strong correlation. Only moderate correlations (0.3 <
r < 0.7) were identified for all other complexity metric compari-
sons, with correlation coefficients ranging between 0.314 and
0.689. These moderate correlation coefficients presented with
a wider 95% confidence interval than the stronger correlations,
emphasizing uncertainty in estimating the correlation coeffi-
cient between the majority of metrics. All results were
statistically significant (p < 0.01) (figure 6b).

PCA performed using the method complexity scores and
plotted with each metric as a variable (figure 5) indicated that
the five metrics captured a different aspect of complexity, evi-
denced by the diverging variables which reflect opposite PC
loadings on the first components (figure 7a,b). The first three
PCs explained 95% of the overall complexity variation (elec-
tronic supplementary material, table S7), with the first PC
accounting for 65% of the variation (figure 7a). The loadings
(i.e. the correlations between the PC scores and the complex-
ity data) of the five metrics on PC1 are all positively related
and show that this major axis of variation mostly explains
the range of values from the five metrics, with the least com-
plex sutures at the positive aspect and more complex sutures
at the negative aspect (figure 7c; electronic supplementary
material, figure S4a). However, the loadings on PC2 (17.8%)
show contrasting correlation patterns between the metrics
on this axis, seen by the diverging variables (figure 7a).
Specifically, SI and SCI are loaded together towards the nega-
tive aspect of PC2, whereas FD madogram and PSD are
associated in the opposite direction of PC2. A strong corre-
lation between the variation of PC2 and the SI, SCI, FD
madogram and PSD methods was identified from the four
variables approaching the outer circle limit. Of these load-
ings, PSD and SCI contribute the most to the overall
variation in PC2 (electronic supplementary material, figure
S4b). By contrast, FD box counting accounted for very little
of the variation explained by PC2 but is instead highly
loaded and aligns best with PC3, which explains 13.7% of
the overall variation (figure 7b, electronic supplementary
material, figure S4c). No other PC axis explained ≥5% of
the variance in the complexity metrics.

The opposite association between the complexity metrics
along PC2, from the PCA of suture complexity (figure 7c), indi-
cate that suture morphological complexity is multi-faceted,
whereby each of the various metrics are effective at capturing
different characteristics of suture morphological complexity.
Individual specimen complexity scores plotted onto this PCA
(figure 7c) show the extreme morphological complexities
captured by the various metrics. Specimen ID 7 (figure 7h)
reflects the extreme morphological complexity of SCI charac-
terized by numerous interdigitations along the suture
length with a heightened magnitude and a slight irregular
pattern. Specimen ID 31 (figure 7g) highlights the extreme
of SI morphological complexity characterised by a regular
repeating pattern, with numerous interdigitations of high
magnitude. Specimen ID 8 (figure 7f ) reflects the extreme
morphological complexity of the FD box counting method
and is characterized by a regular patterning, with many
small interdigitations. Specimen ID 64 (figure 7e) reflects the
extreme morphological complexity of the FD madogram
method, characterized by an irregular pattern with a heigh-
tened number of high magnitude interdigitations captured
by FD madogram complexity. Specimen IDs 46 and 77
(figure 7d) represent the extreme morphological complexity
of the PSD method, whereby PSD perceives morphological
complexity as a largely irregular pattern, with folds of high
magnitude and a looping morphology. Furthermore, along
PC2 where the methods diverge, the spread of the specimens
is positively associated to the FD madogram and PSD
method and negatively associated to the SI and SCI methods.
4. Discussion
Sutures play a critical role in the development and function-
ing of the skull throughout an organism’s life [23–26,59–61],
and thus suture morphology is important for understanding
skull morphology and function. Complexity, in particular, has
been discussed as a critical variable for skull function [30],
but approaches that quantify complexity and their relation-
ship to suture shape have not been directly compared. We
tested and compared five complexity metrics (SI, SCI, FD
box counting, FD madogram and PSD) based on different
mathematical approaches for quantifying suture complexity
across a range of mammalian cranial suture morphologies.
While there was some correspondence across methods, they
each captured different aspects of suture morphological com-
plexity, with PSD showing a particularly strong correlation
with PC2, which captured diverse aspects of complexity rep-
resented in this sample dataset. Therefore, studies should
consider which metric, or a combination of metrics is most
suitable depending on the aspect of suture complexity that
is of interest.

4.1. A complexity metric could be more useful than raw
shape data for studying sutures

The complexity metrics were most strongly correlated with the
shape variation of PC2, rather than PC1 which accounted for
approximately 60% of the overall shape variation. The shape
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variation of PC1, from the PCA of two-dimensional semi-land-
marks, captured an inversion of shape or mirror image (‘n’
versus ‘u’ shaped morphology at the opposite extremes of
PC1 on figure 3a) and did not appear to capture functionally
relevant variation in complexity, such as looping patterns,
straight morphologies and interdigitations. The largest vari-
ation in shape complexity, rather than a reversal of the same
shape, was captured by PC2. As nearly all of the complexity
metrics correlated most strongly with this axis of variation, it
is clear that the complexity metrics are capable of capturing
the predominant variation in morphological complexity.

Indeed, the complexity metrics are only extracting part of
the suture shape information, but these metrics are most
highly correlated with the features of suture shape that have
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the highest functional relevance to the suture. This suggests
that using the raw shape data alone to understand sutural com-
plexity and morphological variation could be misleading and
instead supports the use of a complexity score. The use of a
complexity score which provides a single value is a useful
tool to make direct comparisons across diverse datasets.
Attempts to use complexity scores to make comparisons
of suture complexity across different species from various pub-
lished studies has previously been attempted [30,37]. However,
these studies have been performed on various taxa using var-
ious methods, thus with little overlap, meaning comparative
data are sparse despite the consensus to evaluate complexity
based on interdigitations. Therefore, determining a single com-
plexity metric, as our study aimed to do, will prove incredibly
useful to make such comparisons. Moreover, the comparisons
made by our study of the previously implemented complexity
metrics, identify which aspects suture shape each approach
captures. This will further prove useful for future studies,
to aid in the determination of the most appropriate metric
dependent on the biological questions and empirical dataset
proposed by the study.

4.2. Different complexity metrics capture different
sutural features

Comparing the distributions of complexity scores for the five
metrics and their correlations with each other and with suture
shape allows us to identify which aspects of suture complexity
each approach captures. PSD greatly contributed to the major
axes of complexity score variation and therefore describes a
very high level of variability in suture complexity across a
range of mammal suture morphologies. Moreover, from the
PCA analysis of raw shape data, PSD correlated most strongly
with PC2,which largely reflected variation in suture complexity
rather than a mirroring of the suture shape, as captured by PC1
(figure 3a).While the othermetrics also correlated stronglywith
PC2, PSD appeared to bemore sensitive to differences in suture
shapes, such as looping, at higher end of complexity scores. As a
result, we observed that PSD discriminates among disparate
morphologies that were scored as equally complex by non-
Fourier methods (FD box counting and FD madogram). This
difference between PSD and FD approaches, shown here with
mammal cranial sutures, supports previous analysis of ammo-
noid sutures where a difference between SCI and PSD was
also identified [29,45,62]. Therefore, PSD may be the most
appropriate metric when diverse aspects of complexity are pre-
sent, as in mammal cranial sutures. It may be unsurprising that
our analyses identified PSD as the most appropriate method
for quantifying suture complexity, given that the method is
based on awindowed STFTapproach [29,45]. The Fourier foun-
dation of PSD suggests that this approach is mathematically
robust, as the statistical transformations, such as windowing
techniques, account for profiles in nature, such as suture mor-
phology, that are discrete and non-stationary [63]. Therefore,
PSD provides a mathematical description of the suture mor-
phology, by implementing a Fourier transform approach, that
is unique to each suture morphology [45].

Of the two FD methods implemented (box counting and
madogram), it was perhaps unsurprising that the madogram
method most closely followed the loadings of the PSD vari-
able, given its reported efficiency and robustness over other
FD methods, including the box counting and ruler dimension
methods [64]. Interestingly, the FD ruler dimension approach
is more commonly applied to suture complexity data
[30,37,42] than the FD box counting approach [65], despite
it having been argued that such an approach should not be
implemented on observational data [63]. Despite its robust-
ness, the FD madogram method has not been previously
applied to the suture complexity problem. As FD madogram
has been previously identified to be the most robust of the FD
methods, this supports our findings of a stronger correlation
between FD madogram and PSD, than the FD box counting
approach and PSD. However, it was surprising that the stron-
ger correlation was observed between the FD madogram and
PSD metrics than between the two FD metrics which are
based upon very similar fractal methods.

The FD box counting metric mapped well to both the
features reflected by PC2 and PC3 of shape variation. Of
the approaches, this metric appears least sensitive to the
extreme forms sampled within the dataset thus producing
well-behaved results. However, it has been described as less
robust and efficient than the FD madogram metric [64].
There is, however, a critical issue in the use of fractal analysis
for patterns in nature, such as suture morphology, because
natural forms are well documented to be intricate and often
do not follow the self-similarity assumptions of fractal analy-
sis [29]. More specifically, serrated sutures generally do not
follow self-similarity but can be very intricate. Of the FD
approaches, FD madogram has been suggested to align
better with the self-similarity assumptions [63] suggesting a
potential advantage over the other FD methods.

Regardless of the issues with the FD methods, previous
studies still identified FD as a better objective descriptor of
suture complexity than SCI [65]. While SCI calculates com-
plexity based on a length ratio measurement (SI), it also
includes a subjective and arbitrary measure of interdigitation
number and indentation. This likely results in the insensitiv-
ity we observed to other aspects of geometric complexity,
which is also an issue for the SI approach that provides the
foundation for SCI. The resultant effect of a linear length
measurement for complexity is that shallower lobes would
give similar complexity values to fewer deeper lobes [53] in con-
trast to PSD. Nevertheless, SCI is effective at determining
complexity based on interdigitationnumber, due to its inclusion
of a complexity factor multiplier [53]. This disparity between
SCI and PSD was also identified in a previous study [29] com-
paring SCI and PSD for ammonoid suture morphology.

The lack of very strong correlations among the tested
methods indicates that the five methods capture different
aspects of suture morphological complexity. Suture mor-
phology is hugely diverse from straight to incredibly intricate
morphologies, each with varying complexity scores. Of the
features forming suture morphological complexity, previous
work has implied that interdigitations are themost biologically
relevant feature of a suture form. This is because inter-
digitations are thought to reflect the biomechanical stress
associated with diet [30,33,34,42], extrinsic mechanical factors
[40,43,59,66,67] and also suture development [68]. From the
PCA analysis of complexity, SI and SCI were most strongly
associated with the interdigitated morphologies. For these
methods, the more complex sutures were those with a greater
number of interdigitations.

Interdigitation complexity is not, however, defined simply
as the number of interdigitations. The SI and SCI methods
focus on this one aspect and disregard the other features
that form these interdigitations, such as amplitude. While SI
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and SCI captured well the number of interdigitations, PSD
offered the ability to capture both heightened interdigitation
number and greater interdigitation amplitude as complex
[29]. FD box counting and FD madogram also captured inter-
digitation magnitude to a greater extent than SI and SCI, as
well as capturing interdigitation number. Therefore, while all
approaches are able to account for the interdigitations
formed as a result of biomechanical stress from external
inputs including diet and behaviour [33,40], PSD and both
FD metrics likely better capture the details interdigitations
are comprised of. As interdigitation is thought to reflect
biomechanical stress produced from a number of biological
pressures [30,33,34,39–42], it is likely that complexity score
reflects skull function. More specifically, sutures exhibiting a
higher complexity score are likely to possess a greater ability
to absorb stress from external dietary and behavioural inputs.
Moreover, we expect that a greater degree of complexity may
accumulate with developmental age, as functional pressures
on skulls increase. Beyond interdigitations, further aspects of
complexity, such as irregularity, are incorporated into the
PSD method definition of complexity [29] but have been
seldom discussed in previous studies. It is possible that these
previously disregarded additional aspects of complexity are
biologically important or entirely irrelevant to the suture func-
tioning, but this is currently unknown.

Eachmetric has strengths andweaknesses relative to differ-
ent aspects of suture complexity. Therefore, in future studies,
the appropriate metric should be determined based on the
questions posed. For the sample dataset of mammalian cranial
sutures, spanning a range of morphologies, used in our study,
we prefer PSD, due to its ability to discriminate between dispa-
rate morphologies based on multiple aspects of complexity.
However, a combination of metrics could also prove useful,
such as PSD and FD box counting, to ensure the range of
suture morphologies across the major axes of complexity vari-
ation (PC2 and PC3) are captured. Understanding the features
of suture complexity captured by each of the methods will
assist in making direct comparisons across the literature
where various approaches have previously been employed.

While we found PSD to be a promising metric for
comparative quantitative analysis of suture morphological
complexity, we only compared mammalian taxa, and thus
other methods may prove more appropriate for other systems.
Nevertheless, we have no reason to believe that the PSD
method would be unsuccessful for other taxa, in particular
since it has been previously identified as a useful method
for ammonoid sutures [29]. Furthermore, this study compared
sutures covering a broad range of morphologies and thus
may not be as powerful for detecting minor differences in
sutures, such as those that may be encountered in an intraspe-
cific dataset for a single suture, depending on the attributes of
interest. From our analysis, it appears as though the sampled
percentage of the sutural segment plays a role in determining
the suture complexity score. Different regions of sutures may
display different complexities. For example, sampling a smal-
ler segment of suture 46 (specimen ID 46) would likely
generate a lower complexity score. Therefore, it is imperative
that future studies consider and are consistent with the scale
of sutural complexity analysis by separating out macro-/
meso-/micro-scale suture sampling. Moreover, our analysis
is currently limited to two-dimensional data, due to the cur-
rently available implementations of each method. In many
systems, analysis of two-dimensional data closely
approximates that of three-dimensional data [69], but it is
not possible to assess this for suture morphology at present.
It is hoped that the recent advances in three-dimensional geo-
metric morphometrics [21,70–72] will quickly broaden the
quantification of sutures in three dimensions. When this
becomes possible, it will be important to compare the results
of two-dimensional and three-dimensional studies of suture
morphology and assess whether the same methods work
well with both approaches, as has occurred in recent years
with studies of skull and body shape [73–75]. Given that
sutures provide the main joints of the skull, consideration
of their three-dimensional complexity could be crucial in
understanding their overall functioning. Despite our use of
X-ray microtomography and laser surface scanning to
produce the dataset, all five complexity metrics could
equally be implemented on high-quality (two-dimensional)
photographs. When implementing the metrics on two-
dimensional datasets, it would be critical to consider the
possible effects of parallax. As a result of this two-dimensional
implementation, each of the compared complexity metrics
can be easily applied to a wide range of datasets and systems
covering an array of scientific fields.

Finally, while many of the methods used here have been
previously applied to quantifying suture complexity in a
limited number of taxa, including caimans, primates,
caviomorph rodents and ammonoids [30,65,76], this is the
first study to apply and compare these methods across a
wide range of extant and extinct mammal species and a
breadth of suture morphologies. It is surprising that there
have been so few prior quantitative studies of suture mor-
phology in mammals, given the huge diversity of the group
in terms of cranial morphology, diet, habitat and life history,
all of which are known to generate variety in suture mor-
phology [34,77,78]. Moreover, mammals are extremely well
studied in terms of quantification of cranial morphology
[79–84], cranial development [85–87] and cranial mechanics
[88,89]. Therefore, the work presented here will be instrumen-
tal in bringing the quantitative analysis of suture morphology
into the already rich field of mammalian cranial evolution.
Our future work will apply the results of this study to a
large-scale analysis of suture development and evolution
across mammals.

5. Conclusion
Suture morphology has received relatively little attention in
comparative biological studies, in comparison to the abun-
dance of work focused on cranial morphology. While it has
been well recognized that the quantification of cranial mor-
phology with geometric morphometrics can offer invaluable
insights into evolutionary patterns, ecomorphology, develop-
ment, taxonomy and phylogenetics. It is also known that
suture development and morphology play active roles in facil-
itating postnatal cranial development, skull function, feeding
and shock absorption during locomotion. Indeed, it is for all
these functional reasons that ecomorphological reconstruc-
tions, taxonomy and phylogenetic reconstructions have been
performed for the skull. Consequently, it is highly likely that
shape analysis of sutures can offer important insights for
reconstructing the evolution and development of the skull.

In this study, we have provided the first comprehensive
comparison of the available methods for quantifying suture
morphology. Our analyses found that windowed STFT with



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200476

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 N

ov
em

be
r 

20
21

 

a PSD calculation best captured the multiple aspects of suture
complexity observed across diverse mammalian taxa and
suture forms. PSD captured all aspects that form interdigita-
tions, which are biologically important as they are strongly
associated with high biomechanical stresses. Sutures with
high PSD scores likely possess a greater ability to absorb
stress from external biological pressures, than those with
lower PSD scores. Nevertheless, all the metrics studied here
capture some key aspects of sutural complexity, while all pro-
viding a univariate score which can be easily implemented
for comparisons across sutures and taxa. Therefore, future
studies attempting to quantify suture complexity, should first
outline which features of suture shape are most relevant to
address the questions of the specific study, in order to deter-
mine the most appropriate complexity metric. Quantifying
suture morphology with a complexity metric in a comparative
phylogenetic framework has great potential for bringing the
understudied field of suture morphology into the vibrant
fields of evolutionary and developmental biology.
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