

Global climate changes account for the main trends of conodont diversity but not for their final demise

Samuel Ginot, Nicolas Goudemand

▶ To cite this version:

Samuel Ginot, Nicolas Goudemand. Global climate changes account for the main trends of conodont diversity but not for their final demise. Global and Planetary Change, 2020, 195, pp.103325. 10.1016/j.gloplacha.2020.103325. hal-02996040

HAL Id: hal-02996040 https://univ-lyon1.hal.science/hal-02996040

Submitted on 17 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0921818120302162 Manuscript 930057c8393900b113d7b053168461d2

Global climate changes account for the main trends of conodont diversity but not for their final demise 1

2

- 3 Samuel Ginot^{1,2}, Nicolas Goudemand²
 - ¹ Laboratoire d'Ecologie des Hydrosystemes Naturels et Anthropises UMR5023, CNRS, UCBL 3-6 rue Raphael 4
 - Dubois, Batiments Darwin C & Forel, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France. 5
 - 6 ² Institut de Genomique Fonctionnelle de Lyon – UMR5242, ENS Lyon, CNRS, INRA, UCBL – 32-34 avenue Tony
 - 7 Garnier, 69007 Lyon, France.
 - E-mail: samuel.ginot@univ-lyon1.fr, nicolas.goudemand@ens-lyon.fr 8
 - 9
- 10 Keywords: Past climate, Court Jester, Abiotic drivers, Conodonta, Mass Extinction.
- 11
- 12 Abstract

13 Conodonts, one of the longest-lived early groups of vertebrates, have a very complete fossil record ranging from the late 14 Cambrian to the end of the Triassic and persisted through many global climatic and biotic events. In this paper, we 15 analyse a large dataset harvested from the Paleobiology Database to compute global diversity curves at the generic level 16 and explore patterns of conodont paleogeographic distribution. Our results partly confirm the most prominent findings 17 of earlier studies including the occurrence of an Ordovician acme, a Permian nadir and a short-lived Triassic recovery. 18 Major peaks of origination were found in the Early Ordovician and Early Triassic, while major extinctions occurred in 19 the Upper Ordovician and Pennsylvanian. Paleogeographical extent of conodonts was impacted by i) the position of 20 paleo-continents (notably impacting the latitudinal gradient of diversity), ii) the available continental shelf area and iii) ice sheets expansion. Diversity trends were mostly impacted by transitions between hothouse and icehouse ages, with 21 22 major glaciations and associated marine regressions co-occurring with major extinctions. The influence of global sea 23 level was less marked than that of temperature. However, the final demise of conodonts at the end of the Triassic did 24 not coincide with either a major glaciation or marine regression. This supports the view that extinction of the group was 25 mostly due to biotic factors such as competition with 'Mesozoic' taxa.

26

27 1. Introduction

28 Biodiversity is impacted by numerous interconnected factors, and disentangling their effects is a challenge for 29 biologists and paleontologists alike. In this regard, the relative importance of biotic and abiotic factors in the variation 30 of global biodiversity through geological times remains an open debate, often referred to as the Red Queen vs. Court 31 Jester debate. Biotic factors encompass aspects intrinsic to the living organisms, as well as interactions between 32 organisms, such as competition; while abiotic factors include extrinsic aspects, often related to climatic or geological 33 changes (Benton 2009). At high taxonomic levels and broad timescales, abiotic factors may play a larger role (Benton 34 2009). Yet, it remains difficult to test biotic effects in the fossil record, where the interactions between taxa are hardly 35 accessible, and the true null hypothesis, namely that diversity follows a random walk through time is generally ignored. 36 Simulations and modeling, which are employed more and more frequently, are a way to remedy to this. For instance, 37 they allow to assess how trophic relationships in paleo-communities may affect the stability of the considered 38 ecosystem to perturbations, for instance whether the extinction of a few taxa or functional groups may lead to cascading 39 effects and eventually to the collapse of the ecosystem (Roopnarine et al. 2007); or to determine how and when within a

clade history biotic interactions are most likely to control the dynamics of speciation, extinction and diversity (Aguilée
et al. 2018, Hoffman et al. 2019).

Another currently outstanding challenge is to anticipate the evolution of biodiversity to the current anthropogenic crisis, based on how biodiversity reacted in the past to global changes analogous to the ones Earth is experiencing today (Payne and Clapham 2012). How are different parts of the biosphere differentially affected by critical abiotic factors? Studies of the fossil record in correlation with major climatic and geological variables remain the most direct way to address this challenge. Historically, marine biodiversity has been the focus of such studies, essentially because the fossil record of marine organisms is more complete and better resolved than that of terrestrial organisms (e.g. Sepkoski 1981).

49

50 1.1. Conodont diversity through time

51 Despite its long and global record, the clade of conodonts remains understudied in terms of macroevolution. 52 Conodonts form an early and diverse group of marine vertebrates, most probably associated to extant cyclostomes 53 (lampreys and hagfishes; Miyashita et al. 2019). Ecologically, conodonts are generally considered to have been small 54 active swimmers, mostly nektonic, primary consumers (Purnell 2001). This broad picture is however probably not true 55 for all conodont species, considering their high morphological disparity and the variety of sedimentological facies in 56 which their remains are found (Purnell and Jones 2012, Ginot and Goudemand 2019). Through their long fossil record 57 (over 300 My, from Cambrian to the end of the Triassic; Dong et al. 2004, Zhen et al. 2018, Tanner et al. 2004), 58 conodonts as a group have faced some of the most prominent events in the history of Earth, including four out of five 59 mass extinction crises (end Ordovician, Late Devonian, end Permian, and end Triassic), and they survived all, except 60 the last, eventually disappearing at the end of the Triassic. As such, they constitute a good model organism to study how 61 the diversity of small, nektonic organisms may be impacted by major environmental changes. The responses of 62 conodont diversity to environmental changes have been generally studied at the scale of individual events only, often 63 with the biostratigraphic objective of defining biozones (e.g. Orchard 2007), rather than as a whole. Conodont diversity 64 trends have not recently been tackled over large timeframes (Clark 1983, 1987, Sweet 1988) – although conodont data 65 was included in much broader studies (Friedman and Sallan 2012, Whalen and Briggs 2018) - which is now made 66 possible and more exhaustive by the advent of global fossil occurrence databases (i.e. the Paleobiology Database), and 67 more reliable thanks to new methods for the quantification of diversity, origination and extinction (e.g. Alroy et al. 68 2008, Alroy 2010b). Here, we aim not only at updating the previously published trends of conodonts diversity, but also 69 at statistically testing their potential control by some abiotic variables (temperature, sea-level, paleogeography) for 70 which we collected quantitative data from the literature. Other abiotic parameters, such as water pH, bathymetry or 71 paleo-currents, may also play a role but because of a lack of available, appropriate, quantitative data, those were not 72 included here.

The rise of the 'Paleozoic Fauna' identified by Sepkoski (1981) started in the Ordovician, forming what we now call the Great Ordovician Biodiversification Event (GOBE). Although abiotic factors such as a cooling of sea water temperatures have been proposed to be linked to the GOBE, there is still no consensus about the causes of this event (Servais and Harper 2018). The 'plankton revolution' of the Early Ordovician, which represents the first major biodiversity event of the GOBE, may be linked to increasing sea level, oceanographic changes and oxygenation. The consequent increase in planktonic resources may have brought the diversification of other forms. Although the first conodonts arose during the Cambrian (Dong et al. 2004), their radiation is mostly part of the GOBE, and may be related

to both biotic (plankton diversification) and abiotic factors. The Ordovician diversification was interrupted by the end 80 81 Ordovician extinction, the first of the 'Big Five' extinctions. This two-pulse extinction is generally attributed to a major 82 glaciation associated with a regression (first pulse), followed by a transgression associated with anoxia (second pulse). 83 Although short-spanned (~1Ma), it caused important habitat loss and impacted conodonts, among others, at both pulses (Harper et al. 2014). However, the duration of this glaciation is debated, and may extend to 10Ma, which would have 84 85 put conodonts and the biosphere through an even greater challenge. The next major climatic episode may have been the 86 Middle Devonian 'super-greenhouse', although the nature of this event is now challenged (Joachimski et al. 2009): the 87 Early Devonian was already characterized by warm temperatures, and it now appears the Middle Devonian was in fact 88 characterized by a global cooling - without glaciation - followed by a global warming that led seawater temperatures to 89 reach two maxima around the Frasnian/ Fammenian boundary (Joachimski et al. 2009). The two Kellwasser 90 environmental events occurred before, and in-between those maxima and correspond to cooler and anoxic episodes. 91 These events are known to have affected both conodont diversity and morphology (Girard and Feist 1996, Balter et al. 92 2008). From the end of the Fammenian, and throughout the Carboniferous and Permian, a period known as the Late 93 Paleozoic Ice Age, the global climate was mostly cold and associated with glaciations and low sea levels, (Montanez 94 and Poulsen 2013). According to Buggish et al. (2008), the tipping point between the Devonian greenhouse and the Late 95 Paleozoic Ice Age was reached in the Mississippian. Two cycles of glaciation are recorded, the first peaking (coldest 96 temperatures) at the transition between the Mississippian and Pennsylvanian and the second around the Carboniferous / 97 Permian boundary (Buggish et al. 2008, Montanez and Poulsen 2013). These glacial events were accompanied by 98 important and rapid eustatic variations (e.g. Joachimski et al. 2006, Barrick et al. 2013, Montanez and Poulsen 2013, 99 Bahrami et al. 2014). During this ice age (Pennsylvanian), invertebrates showed low rates of origination and extinction 100 and diversity was low (Stanley and Powell 2003, Powell 2005, Alroy et al. 2008). Similar trends were reported by Clark 101 (1983) for conodonts, with a large drop in origination and extinction rates and in the number of genera between 102 Mississipian and Pennsylvanian.

103 There is evidence for episodic glacial deposits until the end of the Middle Permian, and deglaciation in the 104 upper Permian (~260Ma; Montanez and Poulsen 2013). Global temperatures increased and peaked at the P/T boundary, 105 linked with the volcanic activity of the Siberian Traps, causing global greenhouse warming, ocean acidification, 106 associated with episodes of anoxia or euxinia (Sun et al. 2012, Romano et al. 2013, van de Schootbrugge and Wignall 107 2016). Throughout the Permian only a handful of conodont genera remained, several of which crossed the P/T 108 boundary (Clark 1983, Orchard 2007), and thrived in the Early Triassic, in stark contrast with the majority of other 109 organisms at the time (e.g. Brayard et al. 2017, and references therein). The aftermath of the P/T crisis is marked by 110 generally unstable conditions, several cooling and warming episodes occurring in the Early Triassic (Goudemand et al. 111 2019). The transition between Early and Middle Triassic is marked by a global cooling and the appearance of 112 worldwide monsoon events, among which the Carnian Pluvial event was the largest (Preto et al. 2010, Sun et al. 2012). 113 These conditions were maintained through the Middle Triassic and Late Triassic, during which climate appears to have 114 been fairly stable (Preto et al. 2010). Conodont diversity apparently progressively declined throughout the Middle and 115 Late Triassic (e.g. De Renzi et al. 1996, Hallam 2002, Martinez-Perez et al. 2013, Van De Schootbrugge and Wignall 116 2016) and generally had high extinction rates during this interval, especially at the end of the Norian, which was previously considered to correspond to their final extinction (Tanner et al. 2004). Indeed the Rhaetian conodonts are 117 118 represented by a handful of species only, the last ones eventually going extinct near the Triassic / Jurassic boundary. 119 The slow decline of conodont diversity throughout the Triassic may appear surprising considering the relatively stable

120 conditions of the Triassic, as well as the fact that the explanations for the P/T and T/J boundary crises are more or less 121 convergent (Lucas and Tanner 2004, Mazza et al. 2010), but would fit the null hypothesis of diversity following a 122 random walk.

123

124 1.2. Previous studies and current problematics

125 Considering their status of early vertebrates, their amazing resilience, and their fairly anti-climactic disappearance, the global diversity of conodonts and its drivers have received surprisingly little attention since the end 126 127 of the eighties. Meanwhile, fossil occurrence and paleoenvironmental data have grown enormously. Clark (1983, 1987) already recognized two diversity maxima in the Ordovician and Devonian, and a 'last hurrah' in the Triassic. He further 128 129 observed that origination and extinction peaked in the Ordovician, Mississippian and Triassic, with the latter two 130 intervals corresponding to higher extinction than origination rates. Clark, however, did not comment at length on the possible drivers of conodont's diversity fluctuations. Sweet (1988) mostly agreed with the pattern Clark described, 131 132 although he split the Ordovician diversity peak into two 'long-term cycles'. Sweet went on to suggest that the final 133 extinction of conodonts was due to a sea level drop. On the contrary, De Renzi et al. (1996) showed that conodonts 134 declined progressively from the Middle through the Late Triassic, and therefore favored competition as the main player 135 in the disappearance of conodonts; an idea recently supported also by Martinez-Perez et al. (2013). In other words, the Court Jester vs. Red Queen debate applies also to the extinction of conodonts. In our opinion, the abundant conodont 136 137 data at hand therefore constitute a unique opportunity to understand how abiotic factors - including large catastrophes -138 may drive the diversity of nektonic animals, but also possibly how biotic interactions may be instrumental in explaining 139 the extinction of such a large taxonomic group.

In this study, we investigate whether the picture Clark (1987) and Sweet (1988) drew still holds today, using updated dataset and methods. Using current knowledge on paleoenvironment, we will also aim at identifying the main abiotic drivers of conodont diversity and associated paleogeographical patterns, and test whether those drivers may or may not account for the final demise of conodonts.

144

145 **2. Material and Methods**

146

147 2.1. Dataset

148 The data used in this study was obtained from the Paleobiology Database. The occurrences were downloaded 149 from the Paleobiology Database (https://paleobiodb.org) on 26 June 2018, selecting by taxonomy, with group name = 150 'Conodonta'. The resulting dataset included 23520 occurrences, with associated generic or specific accepted names, 151 time intervals, localities and paleo-coordinates computed by the GPlates model implemented in the Paleobiology 152 Database (Wright et al. 2013). The references on which the dataset is based cumulate a total of 357 unique first authors 153 (secondary bibliography available as supplementary material), the main contributors (> 500 occurrences) being Zhang 154 (N=1236), Barrick (N=1167), Männik (N=964), Ji (N=904), Suttner (N=871), Farrell (N=832), Bultynck (N=743), 155 Klapper (N=714), Aboussalam (N=602), Gouwy (N=507). The main enterers (> 1000 occurrences) of the data into the 156 Paleobiology Database were M. Krause (N=5735), S. Gouwy (N=3547), E. Jarochowska (N=3010), P. Nätscher 157 (N=1363), J. Sessa (N=1169), M. Foote (N=1149), and P. Novack-Gottshall (N=1086). All subsequent data 158 manipulation and analyses were run in R (R Core Team 2018). 159

160 2.2. Diversity, origination and extinction

161 From this data, diversity was estimated for genera at the series level. First, the dataset was trimmed of single 162 occurrences whose temporal resolution is not constrained to one series: their low stratigraphic resolution makes them 163 useless and possibly would distort the results. Therefore the sample was reduced to N=19737 occurrences. The genus 164 name was used even for occurrences identified at the specific level. A total of 265 unique genera were recorded in the 165 dataset, after checking for duplicates due to spelling mistakes. From this subset was produced a generic presence / 166 absence matrix. Generic diversity estimates were computed using Alroy's 'shareholder quorum sampling' (SQS; Alroy 2010a,b), running 1000 iterations while randomly resampling the presence / absence matrix with replacement. The final 167 168 diversity estimate was the average across these iterations, and the associated standard deviations were also computed. 169 SQS estimates for the Terreneuvian, Cambrian Series 2 and Lopingian could not be computed properly due to the very 170 low generic diversity, and are therefore replaced by raw generic counts. A similar analysis was run for occurrences for 171 which the resolution was at the stage level (N=15279). Because the resulting diversity curve was for a large part discontinuous, it is shown as supplementary material (SM1). Additionally, 'single-interval' diversity was computed (at 172 173 the series level) as the number of genera present in only one series. From the same subset, extinction and origination 174 rates were computed using the 'three-timer' formulas of Alroy (2010b). The use of SQS diversity estimates, and three-175 timer formulas aims at avoiding several biases present in most paleontological studies of diversity. These include the 176 edge and Signor-Lipps effects by which the diversity artificially drops before and rises after boundaries (especially 177 across mass extinctions), but not the Pull of the Recent effect, since conodonts do not have a fossil record in the Recent. 178 The Lagerstatte effect, and unique taxa due to taxonomic identification difficulties in conodonts, are taken into account 179 by calculating SQS and independently computing single-interval generic counts. Finally, poly-cohort contour graphs 180 (Brayard et al. 2009) were produced, which allow a different representation of diversity, extinction and origination 181 trends. The trends revealed by these graphs were similar to results from the SQS, origination and extinction curves, 182 therefore they are only presented as supplementary material (SM2, SM3).

183

184 2.3. Conodont evolutionary faunas

To refine the analysis of conodont diversity, we investigated the existence of several 'evolutionary faunas' based on the temporal range of the various genera, excluding the 'single-interval' genera. First, a Multiple Correspondence Analysis (MCA) was run on the generic presence / absence matrix at the series level, using the 'MCA' function implemented in R package 'FactoMineR' (Lê et al. 2008). Hierarchical clustering (function 'HCPC' of 'FactoMineR') was then used on the produced multivariate space to form clusters and assign genera to them, to define 'evolutionary faunas'. Clusters were defined arbitrarily, based on two criterias: inertia gain and non-overlapping of the groups.

Patterns of diversity were assessed for each evolutionary fauna, without using SQS, but only raw generic counts, excluding single-interval taxa. Scotese's (2016) paleomaps were used to look at the paleobiogeographical patterns of the different evolutionary faunas, by displaying the presence / absence of each group as different colors in the cells (see below).

196

197 2.4. Generic counts and SQS diversity

Excluding single-interval taxa, which are biased by taxonomic difficulties and Lagerstatte effects, raw generic counts at the series level were computed. The relationship between the decimal logarithm of these counts and that of the 200 SQS values was tested by a linear regression. The Terreneuvian, Cambrian Series 2 and Lopingian were excluded of 201 this model, since their SQS values could not be computed.

202

203 2.5. Paleobiogeographical patterns

204 To analyse paleobiogeographical patterns, we used the same approach as Kocsis et al. (2018). Scotese's 205 'PALEOMAPS PaleoAtlas' was downloaded and the paleomaps data for the Cambrian to Triassic period were imported 206 in R (Scotese, 2016). For each map in the atlas, we defined an age range, corresponding to the stage represented by the 207 map. Using R package 'icosa' (Kocsis, unpublished), a 2D penta-hexagonal grid was created, to be projected on the 208 maps, with 'cells' (faces) of approximately equal surfaces and an average side ('edge') length of 740.74km. These cells 209 were used as a coarse resolution unit for our paleogeographical investigations. Conodont occurrences whose range was 210 entirely included within the age range of each map (N=12448) were automatically assigned to the corresponding cells, 211 based on their paleolatitudes and paleolongitudes, using function 'locate' of package 'icosa'. The rest of the 212 occurrences, which could not be restricted to the same resolution as the paleomaps, were excluded in this part, to avoid 213 placing on the maps occurrences that may not have existed at the time represented by the paleomap.

The cells including areas of continental platforms and/or coast were manually counted for each stage as a proxy for the theoretically available area for conodonts. The number of cells was also computed for each stage, as a proxy of conodont geographical spread and occupation. The link between theoretically available area and occupied area was tested by a linear regression, out of which the residual variation was extracted to check for potential correspondence with other abiotic events. The maximal and minimal latitude occupied by conodonts were obtained as the latitudes of the center of the northernmost and southernmost occupied cells.

220

221 2.6. Abiotic variables trends

Sea surface temperature (SST) data were obtained from Song et al. (2019), and sea-level data were extracted from Hannisdal and Peters (2011) using the WebPlotDigitizer application (https://apps.automeris.io/wpd/). Data for the latter ultimately derived from Haq and Schutter (2008) and Haq et al. (1987). After extracting this data, we averaged it at the series level, to correlate it with our diversity, origination and extinction estimates. Those relationships were tested using linear models. The global mean annual temperature curve from Scotese (2015) was also extracted using WebPlotDigitizer and added for comparison with SST.

228

229 2.7. Latitudinal gradients

Finally, latitudinal gradients were investigated at the series level, by computing generic counts in bins of 10° latitude. No SQS was used here, the gradients represent raw generic counts. Latitudinal gradients of diversity were also computed for each evolutionary fauna as a whole (rather than by series), either as raw generic counts, or as proportion of their respective generic diversity. Bootstrapping of occurrence was used (10000 iterations) to test for significant differences between these gradients across the three evolutionary faunas. Finally, latitudinal gradients of extinctions (latest occurrence of a genus in the dataset) and originations (first occurrence in the dataset) were obtained and represented by kernel density plots (SM2).

237

- **3. Results**
- 239

240 3.1. Conodont generic diversity, origination and extinction

Conodont SQS diversity (Fig. 1A) shows three conspicuous peaks: throughout Ordovician, in the Early Devonian, and in the Early Triassic, matching with peaks of single-interval taxa diversity. Diversity is at its highest throughout the Ordovician. Major decreases occur across the Ordovician – Silurian boundary, Early – Middle Devonian boundary, and Carboniferous – Permian boundary. Peaks of conodont origination rates (Fig. 1B) are observed during the Early Ordovician, Early Silurian (Llandovery), Late Carboniferous (Pennsylvanian) and Early Triassic. Extinction peaks (Fig. 1B) are observed in the Late Ordovician, the Late Devonian (smaller peak) and Pennsylvanian (at which time it overcomes the synchronous origination peak).

There is a significant negative linear relationship between average SST and extinction rate (adjusted $R^2=0.265$, P=0.017, df=1, 16), and a positive relationship between average sea-level and SQS diversity (adjusted $R^2=0.195$, P=0.029, df=1, 18) at the series level. Other relationships between SST or sea-level and diversity, extinction and origination were non-significant (P > 0.05).

252

253 *3.2. Evolutionary faunas*

254 The multiple correspondence analysis, followed by hierarchical clustering, revealed three clusters, or 255 evolutionary faunas, based on temporal distribution of the genera (Fig. 2). The first (48 genera) is mostly restricted to 256 the Ordovician, the second (37 genera) also starts diversifying in the Early Ordovician, but reaches its acme during the 257 Silurian, and starts decaying progressively from the Early Devonian on (Fig. 3). The latest evolutionary fauna (48 258 genera) rises in the Early Devonian, reaches its acme in the Late Devonian, and then progressively goes down through 259 the Carboniferous, followed by a steeper decay during the Permian. This evolutionary fauna recovers and constitutes most of the diversity of the Triassic period. Following the classification proposed by Donoghue et al. (2008), the stem 260 261 Prioniodontida, Balognathidae, stem Ozarkodinida, as well as several Prioniodinina are for the most part included in the 262 early evolutionary fauna (Fig. 3C). The intermediate evolutionary fauna contains stem Ozarkodinina, stem 263 Polygnathacea, as well as some Prioniodinina (Oulodus). The late evolutionary fauna contains some Prioniodinina, and 264 most derived Ozarkodinina (Polygnathacea and the unamed superfamily containing 'gondolellids').

265

266 3.3. SQS diversity estimates and generic counts

The SQS diversity estimates (Fig. 1A) and total of non-single-interval genera (Fig. 3A) are significantly correlated at the series level, excluding the Terreneuvian, Series 2 and Lopingian ($R^2 = 0.4$, P < 0.01, df = 1, 17; Fig. 4). Discrepancies between SQS and generic counts are frequent. For the Series 3, Furongian, Guadalupian, and Early Triassic, generic counts are lower than expected. For the Middle Devonian, Late Devonian, Wenlock, Ludlow, and Llandovery counts are higher than expected. The most notable discrepancies are the Middle and Late Devonian, and the Guadalupian, during which SQS estimates and generic counts show opposite trends (Fig. 3A).

273

274 3.4. Paleogeographical patterns of conodont diversity

Geographically, the first occurrences of conodonts are rather spread out (Fig. 1E, 5A). The number of cells occupied by conodonts sees an important rise in the Late Cambrian, which is sustained through the Ordovician despite a short term drop at the Cambrian – Ordovician boundary (Fig. 1C-D). The Hirnantian glaciation clearly reduces the geographical distribution of conodonts, both in its latitudinal extremes and number of occupied cells (Fig. 1C-E, 5C-D). The extent of conodonts then increases again from the Wenlock into the Early Devonian (Lochkovian), but is restricted

during the rest of the Early Devonian (Fig. 1C-E, 5F-G). A short-lived spread is seen in the Eifelian (Middle Devonian), 280 281 followed by a continued decrease during the remaining of the Devonian and the Mississippian (Fig. 1C-E, 5H, 6A-B). 282 The geographical spread of conodonts remains fairly stable through the Mississippian and Pennsylvanian transition 283 (Fig. 1C, E), although the available space becomes more and more restricted (Fig. 1C, D), it decreases again at the end of the Carboniferous, with conodonts being restricted to equatorial latitudes (Fig. 1E). An all-time low is reached during 284 285 the middle of the Cisuralian (Early Permian; Fig. 1C-E, Fig. 6D-E), associated with the near-total extinction of 286 conodonts (Fig. 1A), and despite ice sheets pulling back. A marked spread can be seen at the end of the Permian, notably towards the extreme latitudes (Fig. 1C-E, Fig. 6F-G). The extent of conodonts remains high in the Early 287 Triassic, then goes back down for a short time in the Middle Triassic (Fig. 1C-E, Fig. 6H), before re-increasing in the 288 289 Late Triassic. The number of occupied cells is significantly correlated to the number of theoretically available cells (R² 290 = 0.15, P < 0.01, df=1, 44), however with a large amount of residual variation (Fig. 1C-D), the latter being apparently 291 synchronous with the sea level curve until the Early Carboniferous (Fig. 1F).

292

293 3.5. Latitudinal gradients

294 Latitudinal gradients of generic diversity (LGGD) at the series level can be interpreted only from the Early 295 Ordovician on. In the Early Ordovician, the diversity is fairly spread out between -50 and 50°, with multiple modes, two 296 being found around 40° and -30° , and a third just north of the equator (Fig. 7). Two LGGD modes are also seen in the 297 Middle Ordovician, one just south of the equator, the other around 25°. During the Late Ordovician the LGGD flattens, 298 with conodont diversity spreading southward, only the northernmost latitudes being devoid of conodonts. Following the 299 Hirnantian, the southern occurrences disappear (Fig. 5D) and a fairly classical, mostly unimodal latitudinal gradient is 300 established, which is maintained until the Mississipian (Fig. 7). One particularity of this latitudinal gradient is that its 301 mode is not equatorial, but located in the Southern Tropics. The whole diversity of conodonts in this time frame seems 302 to concentrate in the Southern Hemisphere. In the Pennsylvanian, the distribution seems to shift slightly northward, but 303 conodont diversity is drastically reduced during the Permian (Fig. 6D-E). In the Early Triassic, a latitudinal gradient is 304 re-established but flatter than previously, with a small mode in the Northern Hemisphere. Diversity is again hit during 305 the Middle Triassic, before a more marked latitudinal gradient is established in the Late Triassic, with a mostly northern 306 diversity and a single mode in the Northern Tropics.

307

308 4. Discussion

309

310 4.1. Factors impacting conodont diversity and geographical patterns

311 The large conodont diversification after the Cambrian - Ordovician boundary occurs within a transgressive 312 cycle, peaking in the Middle Ordovician (Fig. 1F), combined with hot but decreasing temperatures. It constitutes a part 313 of the 'Great Ordovician Biodiversification Event' (GOBE, e.g. Harper et al. 2015), as conodonts may have been 314 among the first groups to colonize the water column. The increase in available shelf area may have enabled the 315 origination of many conodont taxa (Fig. 1B-C, Harper et al. 2015). However, it also appears that, at that time, some 316 conodonts colonized open sea environments (Fig. 5B), possibly via the increase in diversity and abundance of plankton, 317 and the likely establishment of open marine food chains (Harper et al. 2015, Servais et al. 2008). Either factors, or their combination, may explain the dramatic increase in conodont diversity. The level of conodont diversity reached during 318 319 the Ordovician was not equaled at any later time (Fig. 1A).

320 The Hirnantian / end-Ordovician extinction brought an end to the acme of conodont diversity. It was 321 synchronous with a large drop in seawater temperature and sea level, and with ice sheets spreading (Fig. 5C-D, Harper 322 et al. 2014). The conodonts' geographical distribution was greatly reduced at that time, especially in southern localities 323 that became covered by ice (Fig. 1E, Fig. 5D). This extinction mainly affected the early evolutionary fauna (Fig. 3), 324 while the intermediate evolutionary fauna remained diverse across the boundary, and diversified in the Early Silurian. 325 The global diversity plummeted due to the loss of early fauna genera, but the intermediate fauna rised. At a finer 326 temporal resolution, the drop in condont diversity appears as a two-step process, with one extinction event at the 327 Katian – Hirnantian boundary, and a second during the Hirnantian (Harper et al. 2014). It should be noted that the early 328 fauna taxa that disappeared shared their geographical and temperature distribution with the earliest intermediate fauna 329 taxa (Fig. 5C-E), suggesting that there was no fundamental difference in the temperature tolerance of the two groups. 330 Therefore the reason why some taxa survived and others not may instead be related to the presence of refugias, or to the 331 influence of temperature on the preys of the conodonts. The recovery fauna, which started to diversify at the end of the 332 Hirnantian may correspond to the early radiation of the intermediate evolutionary fauna. The turnover in conodont 333 diversity may therefore be explained roughly by the disappearance of early fauna taxa due to the drop in temperatures 334 and loss of available habitat (South Pole glaciation and sea level drop), leaving open ecological niches for intermediate 335 fauna taxa to diversify later on. Direct detrimental competition between the two faunas does not seem plausible, as both 336 were found in the same geographical areas earlier on (Fig. 5A-D). The Early Silurian peak of origination rate (Fig. 1B) 337 reflects the large increase in diversity of this intermediate fauna (Fig. 3A). Although it may have started in the 338 Hirnantian (Harper et al. 2014), most of the diversification coincides with a global increase of temperatures, associated 339 with ice sheets melting and a sea level rise (Fig. 1F).

In the Ordovician, conodonts constituted most of the nekton's diversity. The subsequent increase in nekton diversity during the Silurian / Early Devonian (Whalen and Briggs 2018, Klug et al. 2010) may have played a role in the limitation of the conodont's recovery via either predation pressures (the earliest known direct evidence of predation on conodonts dates from the Late Devonian; see Zaton and Rakocinski 2014, Zaton et al. 2017), and/or competition for ecological spaces. This scenario, if real, may converge with that of the final extinction of conodonts (see below).

345 The peak of conodont diversity in the Early Devonian occurred within a temperature decreasing trend (with 346 large variations) and coincided roughly with a lowstand (switch from a regressive to a transgressive trend) in the middle 347 Early Devonian (Fig. 1A, 1F). This series displayed stable standing diversity in the intermediate fauna taxa, while 348 several late fauna taxa appeared (Fig. 3A). Extinction and origination rates were almost equal, because several 349 intermediate fauna taxa disappeared by the end of the Early Devonian while the late evolutionary fauna was rising (Fig. 350 1B). Although there was an increase of occupied areas in the earliest Devonian, it was short lived (Fig. 1C-D), and was 351 not reflected in the latitudinal extremes of the distribution, which remained stable (Fig. 1E). This geographical pattern 352 may be explained by the position of the paleo-continents, which started to assemble. Areas occupied only by 353 intermediate fauna taxa were either emptied or became shared with late fauna taxa (Fig. 5F-H). This, combined with the 354 fact that intermediate evolutionary fauna taxa generally constitute groups that are basal to late fauna taxa along the tree 355 of Donoghue et al. (2008), could mean that some species of the intermediate fauna went through an episode of 356 speciation at that time and gave rise to the late fauna diversity, possibly linked with an increase in sea level (Fig. 3C).

The drop in diversity observed in the middle Devonian (Fig. 1A) is mostly explained by extinctions of intermediate fauna and single-interval taxa (Fig. 1A, 3A), which are not compensated by originations of late fauna taxa. This drop in global diversity happens despite the coeval sea-level high and may be related to the mid-Devonian hothouse (Fig. 1F), which may have negatively impacted the intermediate fauna taxa, while favoring late fauna taxa. The loss of diversity is not reflected by a notable extinction peak (Fig. 1B), possibly because single-series genera are not taken into account in the computation of the extinction rate (Alroy 2010b). The small peak of extinction rate in the Late Devonian, despite an increase of SQS diversity (Fig. 1A-B), may also be due to the loss of single-interval taxa and intermediate fauna taxa. Both intermediate and late fauna generic diversity go down across the Devonian – Carboniferous boundary although not reflected by SQS diversity estimates.

366 Extinction rate culminates in the late Carboniferous, while some of the lowest temperatures and lowest sea level of the entire studied period are reached (Fig. 1B, 1F). Repeated or continuous glaciation(s) and regression(s) 367 368 marked the Carboniferous (Fielding et al. 2008). Those clearly had a large impact on conodont diversity, as well as on 369 their geographical extent, which was reduced to equatorial latitudes by the end of the Carboniferous (Fig. 1C-E, 6C-D). 370 Following the large extinction peak of the Pennsylvanian, conodont diversity was reduced to only a handful of genera 371 (Fig. 1A, 3A). Conodont diversity remained extremely low during the Early and Middle Permian, with conodonts being 372 restricted to a few refugia (Fig. 6E). In the Late Permian (Lopingian) conodont diversity was still very low (Fig. 1A), 373 but the geographical extent of conodonts started again to increase, possibly reflecting the increasing temperatures and 374 the concurrent melting of the ice sheets (Fig. 1C-F, 6F).

Finally, diversity rose again after the P-T boundary, with a peak of origination and large numbers of singleinterval taxa, mostly late fauna taxa (Fig. 1A-B, 3A-B). This occurred while the sea level was very low, and the temperatures very high (Fig. 1F). At a higher resolution, the widely fluctuating climate of the Early Triassic interval (e.g. Goudemand et al. 2019) may explain why so many taxa of this interval are single-interval only, and therefore produced a peak of origination. The fact that conodonts started to colonize new areas already in the Late Permian may have driven allopatric speciations following the extreme conditions of the P-T crisis.

381

382 It is clear from the paleomaps in Figs. 5 and 6 that conodonts were more abundant along coastlines and on 383 continental shelves. Not surprisingly, the paleogeographical spread of conodonts is significantly correlated to the extent 384 of continental shelves (Fig. 1C). Yet, conodonts were not restricted to these areas, as evidenced by the open sea 385 locations during the Ordovician and Devonian (e.g. Fig. 5B, 5G-H). Residual variation in the geographical distribution 386 of conodonts (Fig. 1D) corresponds with the sea level curve, and the ice ages of the end-Ordovician and Pennsylvanian 387 clearly brought restrictions to the extension of conodonts, especially in their latitudinal extremes (Fig. 1E). Overall, our 388 data suggest that conodonts were not ecologically restricted to coastlines or warm waters, but that they could not adapt 389 to very cold / glacial waters. Extremely hot waters may also have been lethal to conodonts, but in general, increased 390 temperatures seems to have favored conodont diversification.

391 It appears that the positions of paleo-continents had an influence on the evolution of the latitudinal gradient of 392 conodont diversity (Fig. 7). Throughout the Ordovician, the LGGD is rather symmetrical between the Northern and 393 Southern Hemispheres. Conodonts were then present in the northern extent of the Gondwanian continental shelf (Fig. 394 5B-C), around Laurentia and Baltica, and further North in the open ocean. From the Early Silurian (Llandovery) to the 395 Carboniferous, the LGGD became restricted mostly to the Southern Hemisphere, and was generally unimodal. This is in 396 accordance with the southern location of most coastlines and continental shelves from the Llandovery until the Early Carboniferous. Northern movements of Pangea during the Carboniferous, combined with the appearance of large South 397 398 Pole ice sheets produced a northward shift of the conodonts, and the LGGD became almost centered on the equator 399 (Fig. 6D, Fig. 7). When conodont diversity recovered in the Early Triassic, Pangea extended from North to South Pole,

400 with most continental shelves in the Northern Hemisphere (Fig. 6G-H). Consequently the LGGD moved to the 401 Northern Tropics, where it was maintained until the end of the Triassic (Fig. 7). This interpretation is in accordance 402 with studies of both past and present latitudinal diversity gradients that demonstrated a close link with the position of 403 continental shelves (e.g. Powell 2009, Chaudary et al. 2016).

404 Several of the major biases of the fossil record may affect our results. Notably, as we showed that most 405 conodonts occurrences are found in continental shelves environments, their diversity and paleogeographic patterns 406 might be related to the quantity of preserved sedimentary rock (Peters 2005). The correlation between SQS diversity 407 and sea-level, which is also known to impact the amount of sedimentary rock, may be an artifact of the preservation 408 bias, although we would favor a common-cause hypothesis (Peters 2005). Sampling effort bias is also probably playing 409 a role in the paleogeographic patterns observed, as conodont workers have mostly explored facies expected to yield 410 numerous fossils. Some paleo-environments (e.g. hypersaline) are undersampled, but can yield surprising diversity 411 (Jarochowska et al. 2017). Finally, although multi-element taxonomy has been adopted by conodont workers for several 412 decades now (Bergstrom and Sweet 1966), it is not always applicable, which may lead to taxonomic oversplitting and 413 overestimations of diversity. Notably, very few complete apparatuses are known for the oldest conodont genera and the 414 topological schemes used for establishing homologies between elements vary between earlier and later taxa (Donoghue 415 et al. 2008).

416

417 Keeping these caveats and biases in mind, it appears that, indeed, abiotic factors - temperature and sea-level, as well as paleocontinent positions – influenced conodont diversity, as it is clear that the largest peaks of origination and 418 419 extinction and diversity are synchronous with peaks or lows in the global temperature and/or sea-level curve. When 420 testing these relationships, however, only a negative link between temperature and extinction and a positive link 421 between sea-level and diversity were significant. Furthermore, both correlations were driven by extreme points. It is 422 interesting to note that it was not a necessary condition to combine both sea-level and temperature to positively impact 423 conodont diversity. For example, the Ordovician radiation corresponded with a large transgression and high 424 temperatures, the Early Triassic origination and diversity peak was concomitant with a very low sea level and hot and 425 variable temperatures, while the Early Devonian diversity peak (which was more limited) was synchronous with 426 variable but not particularly extreme sea-level and temperatures (Fig. 1A, 1F). This shows that either factors can be self-427 sufficient to have an influence. Additionally, our proxy of geographical areas available to conodonts (number of cells 428 including coast or continental shelf) was significantly related to occupied area (Fig. 1C), suggesting a partial 429 explanation of how sea level trends impacted the geographical spread of conodonts (Figs. 5-6). Conodont mobility may 430 have played a role in maintaining diversity in times of low sea level and glaciation. Our results suggest that the main 431 events in the history of conodont diversity were related to extreme abiotic conditions. Yet, much variation in diversity, 432 extinction and (in particular) origination remains unexplained, and could be due instead to biotic factors. Notably, the 433 first origination peak of the Early Ordovician, the Early Devonian peak of diversity and the final extinction of 434 conodonts require closer investigation, in particular regarding the interaction of conodonts with other marine groups.

435

436 4.2. Comparison with previous studies and remarks on the final extinction of conodonts

Our results regarding global conodont diversity trends are mostly in accordance with previously published
curves (Clark 1983, 1987, Sweet, 1988). Most of the major events of the group's history are recognized, in particular
the Ordovician acme, followed by a major drop in the Silurian. The Permian minimum, and the Early Triassic 'last

11

hurrah' of diversity are also corroborated. On the other hand, we note discrepancies for the Devonian and 440 441 Carboniferous. In particular, previous studies described diversity and origination as low in the Early Devonian and high 442 in the Late Devonian. Conversely, our results show a peak in diversity in the Early Devonian, followed by a drop in the 443 Middle Devonian and a very limited diversification in the Late Devonian (Fig. 1A). Likewise, previous studies 444 suggested important diversity drops during the Mississipian and Pennsylvanian, while our results suggest on the 445 contrary that diversity was fairly high and stable throughout the Carboniferous, with a major extinction between the 446 Pennsylvanian and the Permian (Fig. 1A). These discrepancies may be due to several factors: i) the geographical extent 447 of the dataset (e.g. Sweet, 1988 focused on North American data), ii) the taxonomic rank used (specific level in Sweet 448 1988, versus generic level in Clark 1983, 1987, and our study), iii) the sheer increase in size of the dataset, or iv) 449 methods to assess diversity and rates. Here, we chose to use advances notably promoted by Alroy (2010a,b) to limit the 450 impact of several biases: for example, Clark (1983) used a range-through counting method (although not defined as 451 such), which is subject to edge and Signor-Lipps effects (the Pull of the Recent having no impact on conodonts; Alroy 452 2010b) meaning that diversity estimates will tend to artefactually drop before and rise after boundaries, notably at mass 453 extinction events. Despite these biases, these older studies did manage to reveal the most prominent elements also 454 highlighted in the present work (Ordovician acme, Permian low and Triassic short-lived recovery), suggesting that these 455 trends are real, and robust to any kind of biases, as well as across taxonomic levels.

456

457 Clark (1983) suggested that the final extinction of conodonts may be linked to a drop in sea level, and was followed in this interpretation by Sweet (1988). However, sea-level was low throughout the Triassic, and its variations 458 459 are not agreed upon. Furthermore, recent studies suggest that it may have been rising, rather than dropping, during the Late Triassic (e.g. Van der Meer et al. 2017). Even if the regressive trend actually took place, its age was likely younger 460 461 than the start of conodonts' decline (Middle Triassic; Martinez-Perez et al. 2013). Furthermore our results suggest that 462 regressive trends do not necessarily correlate with major conodont extinctions. Global temperatures in the Late Triassic 463 were fairly similar to those in the Early and Middle Triassic, and the world was ice-free at that time, as was generally 464 the case in times when conodonts were thriving. Based on our results, considering the absence of glaciation and a late 465 drop in sea level and CAMP province influence, we may conclude that two of the most important abiotic factors 466 (temperature and sea-level) cannot be considered as sufficient to explain the extinction of conodonts. Other abiotic 467 factors, which are more difficult to assess, such as water salinity or pH may have played a role. Alternatively, and in 468 agreement with De Renzi et al. (1996) and Martinez-Perez et al. (2013), biotic factors such as predation by, or 469 competition with groups of the 'Modern Fauna' (Sepkoski 1981, Hu et al. 2011, Brayard et al. 2017), e.g. Neopterygian 470 fishes and Neoselachian sharks that started radiating in the Middle Triassic (Cuny and Benton 1999, Xu et al. 2013), 471 may have driven the last conodonts to extinction.

472

473 5. Conclusion

Our analysis confirms the influence of abiotic factors on conodont diversity at a large scale. Notably, despite their mobility, these early vertebrates were strongly impacted by sea-level variations as well as major glaciations, which restricted the extent of their favored coastal habitat and probably limited the possibility of allopatric speciation. Biases of the fossil record should however be kept in mind as potentially confounding or correlated factors. These abiotic factors do not however explain particular conodont events such as their Ordovician radiation or their final demise at the end of the Triassic. Instead it is likely that biotic factors played a prominent role in the extinction of conodonts. Despite

- 480 the fact that biotic interactions arguably take place locally in time and space, the sum of their effects may ultimately
- 481 emerge as large-scale patterns, leading for example to the extinction of a highly successful group like conodonts, which
- 482 had thrived in oceans for more than 300 Ma.
- 483

484 Acknowledgements

- 485 This work was supported by a French Agence Nationale de la Recherche @Raction grant (ACHN project
- 486 EvoDevOdonto ANR-14-ACHN-0010)/

- 487 **References**
- 488
- Aguilée, R., Gascuel, F., Lambert, A., & Ferriere, R. (2018). Clade diversification dynamics and the biotic and
 abiotic controls of speciation and extinction rates. *Nature communications*, 9(1), 3013.
- Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., ... & Kosnik, M. A. (2008). Phanerozoic
 trends in the global diversity of marine invertebrates. *Science*, *321*(5885), 97-100.
- Alroy, J. (2010a). The shifting balance of diversity among major marine animal groups. *Science*, *329*(5996), 11911194.
- 495 Alroy, J. (2010b). Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. *The*
- 496 Paleontological Society Papers, 16, 55-80.
- 497 Bahrami, A., Boncheva, I., Königshof, P., Yazdi, M., & Khan-Abadi, A. E. (2014). Conodonts of the
 498 Mississippian/Pennsylvanian boundary interval in Central Iran. *Journal of Asian Earth Sciences*, 92, 187 499 200.
- 500 Balter, V., Renaud, S., Girard, C., & Joachimski, M. M. (2008). Record of climate-driven morphological
- 501 changes in 376 Ma Devonian fossils. *Geology*, 36(11), 907-910.
- 502 Barrick, J. E., Lambert, L. L., Heckel, P. H., Rosscoe, S. J., & Boardman, D. R. (2013). Midcontinent Pennsylvanian
- 503 conodont zonation. *Stratigraphy*, *10*(1-2), 55-72.
- Benton, M. J. (2009). The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors
 through time. Science, 323(5915), 728-732.
- Bergstrom, S. M. (1966). Conodonts from the Lexington Limestone (Middle Ordovician) of Kentucky, and its
 lateral equivalents in Ohio and Indiana. *Bulletin of American Paleontology*, 50(229), 271-441.
- 508 Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., ... & Guex, J. (2009). Good genes
- and good luck: ammonoid diversity and the end-Permian mass extinction. *Science*, *325*(5944), 1118-1121.
- 510 Brayard, A., Krumenacker, L. J., Botting, J. P., Jenks, J. F., Bylund, K. G., Fara, E., ... & Charbonnier, S. (2017).
- 511 Unexpected Early Triassic marine ecosystem and the rise of the
 512 3(2), e1602159.
 513 Modern evolutionary fauna. Science Advances,
- 513 Buggisch, W., Joachimski, M. M., Sevastopulo, G., & Morrow, J. R. (2008). Mississippian δ13Ccarb and
- 514 conodont apatite δ 180 records—their relation to the Late Palaeozoic Glaciation. Palaeogeography,
- 515 Palaeoclimatology, Palaeoecology, 268(3-4), 273-292.
- 516 Chaudhary, C., Saeedi, H., & Costello, M. J. (2016). Bimodality of latitudinal gradients in marine species richness.
- 517 *Trends in ecology & evolution*, *31*(9), 670-676.
- 518 Clark, D. L. (1983). Extinction of conodonts. *Journal of Paleontology*, 652-661.
- 519 Clark, D. L. (1987). *Phylum Conodonta*, in R. S. Boardman; A. H. Cheetham & A. J. Rowell (eds.), Fossil
- 520 Invertebrates, Blackwell Scientifie Publications, Oxford: 636-662.
- 521 Cuny, G., & Benton, M. J. (1999). Early radiation of the neoselachian sharks in Western Europe. *Geobios*, 32(2), 193522 204.
- 523 de Renzi, M., Budurov, K., & Sudar, M. (1996). The extinction of conodonts in terms of discrete elements at the
- 524 Triassic-Jurassic boundary. Journal of iberian geology: an international publication of earth sciences, (20),
- 525 347-366.

- 526 Dong, X., Repetski, J. E., & Bergström, S. M. (2004). Conodont biostratigraphy of the middle Cambrian through
- 527 lowermost Ordovician in Hunan, South China. Acta Geologica Sinica- English Edition, 78(6), 1185-1206.
- Donoghue, P. C., Purnell, M. A., Aldridge, R. J., & Zhang, S. (2008). The interrelationships of 'complex'conodonts
 (Vertebrata). *Journal of Systematic Palaeontology*, 6(2), 119-153.
- Fielding, C. R., Frank, T. D., & Isbell, J. L. (2008). The late Paleozoic ice age—a review of current
 understanding and synthesis of global climate patterns. *Geological Society of America Special Papers*, 441,
 343-354.
- 533 Friedman, M., & Sallan, L. C. (2012). Five hundred million years of extinction and recovery: a Phanerozoic survey
- of large-scale diversity patterns in fishes. *Palaeontology*, 55(4), 707-742.
- 535 Ginot, S., & Goudemand, N. (2019). Conodont size, trophic level, and the evolution of platform elements.
- 536 *Paleobiology*, *45*(*3*), 458-468.
- 537 Girard, C., & Feist, R. (1996). Eustatic trends in conodont diversity across the Frasnian–Famennian boundary in
- the stratotype area, Montagne Noire, Southern France. *Lethaia*, 29(4), 329-337.
- 539 Goudemand, N., Romano, C., Leu, M., Bucher, H., Trotter, J. A., & Williams, I. S. (2019). Dynamic interplay
- 540 between climate and marine biodiversity upheavals during the early Triassic Smithian-Spathian biotic crisis. *Earth*-541 *Science Reviews*.
- 542 Hallam, A. (2002). How catastrophic was the end-Triassic mass extinction?. Lethaia, 35(2), 147-157.
- 543 Hannisdal, B., & Peters, S. E. (2011). Phanerozoic Earth system evolution and marine biodiversity. Science,
 544 334(6059), 1121-1124.
- Haq, B. U., Hardenbol, J. A. N., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. *Science*, 235(4793), 1156-1167.
- 547 Haq, B. U., & Schutter, S. R. (2008). A chronology of Paleozoic sea-level changes. *Science*, 322(5898), 64-68.
- 548 Harper, D. A., Hammarlund, E. U., & Rasmussen, C. M. (2014). End Ordovician extinctions: a coincidence of
- 549 causes. Gondwana Research, 25(4), 1294-1307.
- 550 Harper, D. A., Zhan, R. B., & Jin, J. (2015). The Great Ordovician Biodiversification Event: reviewing two
- decades of research on diversity's big bang illustrated by mainly brachiopod data. *Palaeoworld*, 24(1-2), 75-85.
- Hofmann, R., Tietje, M., & Aberhan, M. (2019). Diversity partitioning in Phanerozoic benthic marine communities. *Proceedings of the National Academy of Sciences*, *116*(1), 79-83.
- 554 Hu, S. X., Zhang, Q. Y., Chen, Z. Q., Zhou, C. Y., Lü, T., Xie, T., ... & Benton, M. J. (2010). The Luoping biota:
- exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. *Proceedings of the Royal Society B: Biological Sciences*, 278(1716), 2274-2282.
- Jarochowska, E., Viira, V., Einasto, R., Nawrot, R., Bremer, O., Männik, P., & Munnecke, A. (2017). Conodonts in
- 558 Silurian hypersaline environments: Specialized and unexpectedly diverse. *Geology*, 45(1), 3-6.
- Joachimski, M. M., Breisig, S., Buggisch, W., Talent, J. A., Mawson, R., Gereke, M., ... & Weddige, K. (2009).
- 560 Devonian climate and reef evolution: insights from oxygen isotopes in apatite. *Earth and Planetary Science Letters*,
 561 284(3-4), 599-609.
- 562 Joachimski, M. M., von Bitter, P. H., & Buggisch, W. (2006). Constraints on Pennsylvanian glacioeustatic sea-
- 563 level changes using oxygen isotopes of conodont apatite. *Geology*, *34*(4), 277-280.
- 564 Klug, C., Kröger, B., Kiessling, W., Mullins, G. L., Servais, T., Frýda, J., ... & Turner, S. (2010). The Devonian
- 565 nekton revolution. *Lethaia*, *43*(4), 465-477.

- 566 Kocsis, Á. T., Reddin, C. J., & Kiessling, W. (2018). The biogeographical imprint of mass extinctions.
- 567 *Proceedings of the Royal Society B: Biological Sciences*, 285(1878), 20180232.
- Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R package for multivariate analysis. *Journal of statistical software*, 25(1), 1-18.
- 570 Lucas, S. G., & Tanner, L. H. (2004). Late Triassic extinction events. Albertiana, 31, 31-40.
- 571 Martínez-Pérez, C., Plasencia, P., Cascales-Miñana, B., Mazza, M., & Botella, H. (2013). New insights into the
- 572diversity dynamics of Triassic conodonts. *Historical Biology*, 26(5), 591-602.
- Mazza, M., Furin, S., Spötl, C., & Rigo, M. (2010). Generic turnovers of Carnian/Norian conodonts: Climatic control
 or competition?. *Palaeogeography, Palaeoclimatology, Palaeoecology, 290*(1-4), 120-137.
- 575 Miyashita, T., Coates, M. I., Farrar, R., Larson, P., Manning, P. L., Wogelius, R. A., ... & Currie, P. J. (2019).
- 576 Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological- molecular conflict in early
- 577 vertebrate phylogeny. *Proceedings of the National Academy of Sciences*, *116*(6), 2146-2151.
- 578 Montañez, I. P., & Poulsen, C. J. (2013). The Late Paleozoic ice age: an evolving paradigm. *Annual Review of*
- 579 *Earth and Planetary Sciences*, *41*, 629-656.
- 580 Orchard, M. J. (2007). Conodont diversity and evolution through the latest Permian and Early Triassic upheavals.
- 581 Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2), 93-117.
- Payne, J. L., & Clapham, M. E. (2012). End-Permian mass extinction in the oceans: an ancient analog for the
 twenty-first century? *Annual Review of Earth and Planetary Sciences*, 40, 89-111.
- Peters, S. E. (2005). Geologic constraints on the macroevolutionary history of marine animals. *Proceedings of the National Academy of Sciences*, *102*(35), 12326-12331.
- Powell, M. G. (2005). Climatic basis for sluggish macroevolution during the late Paleozoic ice age. *Geology*,
 33(5), 381-384.
- Powell, M. G. (2009). The latitudinal diversity gradient of brachiopods over the past 530 million years. *The Journal of Geology*, *117*(6), 585-594.
- 590 Preto, N., Kustatscher, E., & Wignall, P. B. (2010). Triassic climates—state of the art and perspectives.
- 591 Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4), 1-10.
- 592 Purnell, M. A. (2001). Scenarios, selection, and the ecology of early vertebrates. *Major events in early vertebrate*
- 593 evolution: Palaeontology, Phylogeny, Genetics and Development. Systematics Association Species Volume Series,
- 594 $n^{\circ}61$. Ahlberg, P.E. (ed), Taylor and Francis, London, pp. 187-208.
- 595 Purnell, M. A., & Jones, D. (2012). Quantitative analysis of conodont tooth wear and damage as a test of ecological and
- 596 functional hypotheses. *Paleobiology*, *38*(4), 605-626.
- 597 R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical
- 598 Computing, Vienna, Austria. URL https://www.R-project.org/.
- 599 Romano, C., Goudemand, N., Vennemann, T. W., Ware, D., Schneebeli-Hermann, E., Hochuli, P. A., ... &
- Bucher, H. (2013). Climatic and biotic upheavals following the end-Permian mass extinction. *Nature Geoscience*, 6(1), 57.
- 602 Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., & Hertog, R. (2007). Trophic network models explain instability of
- 603 Early Triassic terrestrial communities. Proceedings of the Royal Society B: Biological Sciences, 274(1622),
- 604 2077-2086.

605	Scotese, C. R. (2015). Some thoughts on global climate change: the transition from icehouse to	hothouse.
606	PALEOMAP Project, 21a, 1(2).	
607	Scotese, C. R. (2016). Tutorial: PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter	Program.
608	Sepkoski, J. J. (1981). A factor analytic description of the Phanerozoic marine fossil record.	Paleobiology, 7(1),
609	36-53.	
610	Servais, T., & Harper, D. A. (2018). The Great Ordovician Biodiversification Event (GOBE):	definition, concept
611	and duration. Lethaia, 51(2), 151-164.	
612	Servais, T., Lehnert, O., Li, J. U. N., Mullins, G. L., Munnecke, A., Nuetzel, A., & Vecoli, M.	(2008). The
613	Ordovician Biodiversification: revolution in the oceanic trophic chain. Lethaia, 41(2), 99-109.	
614	Song, H., Wignall, P. B., Song, H., Dai, X., & Chu, D. (2019). Seawater temperature and dissolve	d oxygen over
615	the past 500 million years. Journal of Earth Science, 30(2), 236-243.	
616	Stanley, S. M., & Powell, M. G. (2003). Depressed rates of origination and extinction during the	late Paleozoic ice
617	age: a new state for the global marine ecosystem. <i>Geology</i> , <i>31</i> (10), 877- 880.	
618	Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., & Lai, X. (2012).	Lethally hot
619	temperatures during the Early Triassic greenhouse. <i>Science</i> , <i>338</i> (6105), 366- 370.	
620	Sweet, W. C. (1988). The Conodonta: morphology, taxonomy, paleoecology, and evolutionary	history of a long-
621	extinct animal phylum (Vol. 10, pp. 1-212). Oxford: Clarendon Press.	
622	Tanner, L. H., Lucas, S. G., & Chapman, M. G. (2004). Assessing the record and causes of Late	Triassic extinctions.
623	Earth-Science Reviews, 65(1-2), 103-139.	
624	van de Schootbrugge, B., & Wignall, P. B. (2016). A tale of two extinctions: converging end-	Permian and end-
625	Triassic scenarios. Geological Magazine, 153(2), 332-354.	
626	Van der Meer, D. G., van Saparoea, A. V. D. B., Van Hinsbergen, D. J. J., Van de Weg, R. M. B.,	Godderis, Y., Le Hir,
627	G., & Donnadieu, Y. (2017). Reconstructing first-order changes in sea level during the	Phanerozoic and
628	Neoproterozoic using strontium isotopes. Gondwana Research, 44, 22-34.	
629	Whalen, C. D., & Briggs, D. E. (2018). The Palaeozoic colonization of the water column and the	rise of global nekton.
630	Proceedings of the Royal Society B: Biological Sciences, 285(1883), 20180883.	
631	Wright, N., Zahirovic, S., Müller, R. D., & Seton, M. (2013). Towards community-driven	paleogeographic
632	reconstructions: integrating open-access paleogeographic and paleobiology data with	plate tectonics.
633	Biogeosciences, 10(3).	
634	Xu, G. H., Zhao, L. J., Gao, K. Q., & Wu, F. X. (2013). A new stem-neopterygian fish from the	Middle Triassic of
635	China shows the earliest over-water gliding strategy of the vertebrates. Proceedings of the Royal	Society B: Biological
636	Sciences, 280(1750), 20122261.	
637	Zatoń, M., Broda, K., Qvarnström, M., Niedźwiedzki, G., & Ahlberg, P. E. (2017). The first direc	t evidence of
638	a Late Devonian coelacanth fish feeding on conodont animals. The Science of Nature, 104(3-4)	, 26.
639	Zatoń, M., & Rakociński, M. (2014). Coprolite evidence for carnivorous predation in a Late	Devonian pelagic
640	environment of southern Laurussia. Palaeogeography, Palaeoclimatology, Palaeoecology, 3	394, 1-11.
641	Zhen, Y. Y., Percival, I. G., Woo, J., & Park, T. Y. S. (2018). Latest Cambrian-earliest Ordovicia	n conodonts
642	and microbrachiopods from northern Victoria Land, Antarctica: Handler Ridge revisited. Palaeo	world.
643		

644 Figure legends

645 Figure 1. Synthetic view of diversity and paleobio-geographical patterns through the Phanerozoic. Alternating gray and 646 white areas delimit the boundaries between series. A) Black line: average SQS generic diversity \pm std. dev. over 1000 647 iterations (gray outline). Blue dashed line: count of single-series genera (i.e. genera which occur in only one series). B) Origination (red) and extinction (black) rates, computed using the 3-timer approach of Alroy (2014). C) Blue line and 648 649 area: geographical area theoretically available to conodonts, as the number of cells of the paleomap including 650 continental shelf or coast. Black line and area: geographical area where conodonts occur, computed as the number of 651 cells including at least one occurrence of conodont (see Material and Methods). Available and occupied space are not at 652 the same scale. D) Residual variation of a linear regression of number of cells occupied against number of cells 653 available, i.e. variation in the occuped area after removing the effect of continental shelf / coastal area. E) Median 654 northern (red) and median southern (blue) paleolatitudes of conodont occurrences, dashed lines are the maximal and 655 minimal paleolatitudes occupied by conodonts, computed as the middle latitude of the northern-most and southern-most 656 occupied cells. F) Phanerozoic global sea surface temperature curve, from Song et al. (2019; red curve and points, 657 dashed red line is the series-averaged cruve), global mean temperature modified from Scotese et al. (2015; black line), 658 and global sea level curve, modified from Haq and Schutter (2008; blue line and area).

659

Figure 2. First two axes of the Multiple Correspondance Analysis (MCA) run on the generic time series presence / 660 661 absence matrix, excluding single-series taxa. Hierarchical clustering was used on this MCA, and three clusters were 662 retained based on the inertia gain and non-overlap of the groups. Abbreviations represent the series in which genera 663 were present. Csrl: Cisuralian, ErlD: Early Devonian, ErlO: Early Ordovician, ErlT: Early Triassic, Frng: Furongian, Gdlp: Guadalupian, Ldlw: Ludlow, Llandovery: Llnd, Lpng: Lopingian, LtDv: Late Devonian, LtOr: Late Ordovician, 664 665 LtTr: Late Triassic, MddD: Middle Devonian, MddO: Middle Ordovician, Mddt: Middle Triassic, Msss: Mississippian, 666 Pnns: Pennsylvanian, Prdl: Pridoli, Srs2: Series 2, Srs3: Series 3, Trrn: Terreneuvian, Wnlc: Wenlock. The first cluster (magenta triangles) forms the 'Early Evolutionary Fauna'. The second cluster (yellow circles) forms the 'Intermediate 667 668 Evolutionary Fauna'. The third cluster (black squares) forms the 'Late Evolutionary Fauna'. See Fig. 3 for more details 669 on these clusters.

670

671 Figure 3. Diversity trends of the three 'evolutionary faunas'. A) Raw generic count (excluding single-series taxa) by 672 series for genera assigned to the different 'evolutionary faunas' (full lines), and the sum of these curves (dashed line). 673 Gray outline shows the SQS diversity estimate std. dev. (see Fig. 1A) for comparison. B) Percentage represented by the 674 faunas in the total diversity in each series. The 'Early Fauna' dominates through Cambrian and Ordovician, but is 675 replaced by the 'Intermediate Fauna' at the start of the Silurian. Finally the 'Late fauna' becomes dominant in the 676 Middle Devonian, although remnants of earlier faunas survive until the Triassic. C) Tree modified from Donoghue et al. 677 (2008), with genera highlighted according to their evolutionary fauna. Genera not highlighted could not be included in 678 the analysis (i.e. single-series taxa).

679

Figure 4. Plot of raw generic counts (excluding single-series taxa) against average SQS diversity estimate, by series. Black line shows the linear regression line ($R^2 = 0.40$, P < 0.01), dashed red lines represent 95% confidence intervals. Named points are those outside of the 95% C.I., i.e. series in which the raw counts do not follow the predicted relationship with the SQS estimates.

18

684

685 Figure 5. Paleobiogeographic evolution of conodont diversity from end-Cambrian to Late Devonian. Paleomaps from 686 Scotese et al. (2015) are divided into a grid of 362 pentagonal and hexagonal 'cells' (faces) with approximately equal area and 'side' (edge) length. Average side length is 740.74 km. Conodont occurrences were automatically assigned to 687 688 the corresponding cells, based on their paleolatitudes and paleolongitudes from the Paleobiology Database. Each cell 689 occupied by a colored circle includes at least one occurrence. Multi-colored circles denote the presence of conodont 690 genera belonging to the different 'Evolutionary Faunas' described herein. Note that the proportions of each color are 691 entirely arbitrary and *do not* relate in any way to the proportions of local generic diversity. Circles were plotted at the 692 center of the cells and their position do not imply that the occurrences are actually found together at a finer scale (i.e. 693 within a cell).

694

695 Figure 6. Paleobiogeographic evolution of conodont diversity from Late Devonian to Middle Triassic. Paleomaps from 696 Scotese et al. (2015) are divided into a grid of 362 pentagonal and hexagonal 'cells' (faces) with approximately equal 697 area and 'side' (edge) length. Average side length is 740.74 km. Conodont occurrences were automatically assigned to 698 the corresponding cells, based on their paleolatitudes and paleolongitudes from the Paleobiology Database. Each cell 699 occupied by a colored circle includes at least one occurrence. Multi-colored circles denote the presence of conodont 700 genera belonging to the different 'Evolutionary Faunas' described herein. Note that the proportions of each color are 701 entirely arbitrary and do not relate in any way to the proportions of local generic diversity. Circles were plotted at the 702 center of the cells and their position do not imply that the occurrences are actually found together at a finer scale (*i.e.* 703 within a cell)..

704

Figure 7. Left panel. Paleolatitudinal gradients of conodont diversity through the Paleozoic, computed as raw generic counts for each series, binned by 10° of latitude. Each generic diversity point is plotted against the corresponding midbin value. The right panel shows the extent of epicontinental seas, computed as the total number of grid cells including

coastlines. The figure as a whole follows stratigraphic order in relative terms, but does not represent absolute ages.

Dim 1 (16.1%)

Time (Mya)

log10 SQS diversity estimate

Α.

Late Ordovician - 'Caradoc' \ominus

Β.

D.

F.

Late Silurian

Α.

C.

G.

Β.

F. Late Permian

Η.

