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Abstract
Dietary plasticity can be a determining factor allowing species to cope with environ-
mental changes. Consequently, it is an important issue to consider in conservation 
biology. Despite this, it remains rarely addressed in the literature, potentially due 
to methodologies which were until recently rather limited. The advent of molecular 
approaches now makes it possible to get a precise picture of diet and its plasticity, 
even for endangered and elusive species. Here, we focused on the greater horseshoe 
bat (Rhinolophus ferrumequinum) in Western France, where this insectivorous spe-
cies has been classified as “Vulnerable” on the Regional Red List in 2016. We applied 
an eDNA metabarcoding approach to 1986 fecal samples collected in six maternity 
colonies on three sampling dates. We described the diet and investigated whether 
the landscape surrounding colonies and the different phases of the maternity cycle 
influenced the diversity and the composition of this diet. We showed that R. ferrum-
equinum feed on a much more diverse prey spectrum than expected from previous 
studies, highlighting how eDNA metabarcoding can improve our knowledge on the 
dietary habits of elusive species. Our approach also revealed that the diet of R. fer-
rumequinum seems to be composed of two distinct features: the core diet consisting 
of a few preferred taxa shared by all the colonies (25% of the occurrences) and the 
secondary diet consisting of numerous rare prey taxa that were highly different be-
tween colonies and sampling dates (75% of the occurrences). Constraints associated 
with the greater horseshoe bat life cycle, as well as insect phenology and landscape 
features, strongly influenced the diversity and composition of both the core diet and 
the diet as a whole. Further research should now explore the relationships between 
R. ferrumequinum dietary plasticity and fitness, to better assess the impact of core 
prey decline on R. ferrumequinum population viability.
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1  | INTRODUC TION

Food resources constitute a major environmental factor for animal 
populations (Hutchinson, 1957; Schoener, 1974). Both the quantity 
and quality of food resources are known to strongly impact the fit-
ness of individuals (Eeva et al., 1997; Serrano-Davies & Sanz, 2017; 
Sorensen et  al.,  2009) and in turn, the dynamics and viability of 
populations (Johnsen et al., 2017; Taylor & Schultz, 2008; Vickery 
et  al.,  2001). Understanding a species’ dietary requirements is 
therefore of critical importance when designing conservation 
strategies (Brown et al., 2014; Clare, 2014; Cravens et al., 2018; 
Groom et al., 2017). Several studies have even shown that some 
dietary characteristics could be related to elevated risk of spe-
cies extinction. In particular, species in higher trophic levels face 
greater exposure to the cumulative effects of pollutants along 
the food chain (Careddu et  al.,  2015; Mann et  al.,  2011; Purvis 
et al., 2000). Furthermore, a narrow and specialized trophic niche 
(i.e., the range of possible prey) can also increase the vulnerability 
of species: specialists can face greater constraints when respond-
ing to environmentally driven changes in resource availability 
than generalist species (Boyles & Storm, 2007; Clavel et al., 2011; 
Owens & Dittman,  2003; Pratchett et  al.,  2006; Twining 
et al., 2019). However, foraging can be a flexible activity. According 
to the optimal foraging theory, predators exploit resources that 
maximize the net energy intake while minimizing energetic costs 
through a trade-off between food profitability and searching time 
(Emlen, 1966; MacArthur & Pianka, 1966). Such dietary plasticity 
is crucial to cope with environmental changes, including seasonal 
fluctuations (Bergmann et al., 2015; Kartzinel & Pringle, 2015), cli-
mate change (Durant et al., 2007; Oliveira & Val, 2017) or anthro-
pogenic pressure (Hempson et  al.,  2017; Quéméré et  al.,  2013; 
Smith et al., 2018). However, a suboptimal diet can have negative 
impacts on individual fitness (Sasakawa, 2009). Dietary plasticity, 
despite its potential ecological and evolutionary importance, re-
mains scarcely addressed in the literature (Sousa et al., 2019; but 
see Shutt et  al.,  2020), potentially because dietary studies have 
long been constrained by methodological limits (e.g., low taxo-
nomic level, nondetection of soft-bodied prey, and limited number 
of processed samples; Nielsen et al., 2018). The development of 
molecular approaches for identifying prey DNA contained in feces, 
in particular environmental DNA (eDNA) metabarcoding, has over-
come most of the limitations associated with traditional methods 
(Clare,  2014; Khanam et  al.,  2016). Metabarcoding of fecal sam-
ples has become a commonly applied approach for studying bat 
diet (Sousa et al., 2019). Indeed, bats are nocturnal, elusive, highly 
mobile and most of them are threatened, making it challenging 
to gather detailed prey information based on direct observations 
(IUCN, 2019; Kunz et al., 1995, 2011). Insectivorous bats display 
a large range of foraging strategies, from specialists (e.g., moun-
tain long-eared bat, Plecotus macrobullaris; Alberdi et al., 2012) to 
generalists (e.g., big brown bat Eptesicus fuscus; Clare et al., 2014). 
Bat species qualified as generalists can show preference toward 
certain prey (e.g., Myotis daubentonii; Vesterinen et al., 2016) and 

be more selective when their favorite prey are available in the en-
vironment (e.g., Eptesicus fuscus; Agosta et al., 2003).

The greater horseshoe bat (Rhinolophus ferrumequinum) is an 
insectivorous bat species whose diet and foraging behavior have 
been previously explored, especially in Northern Europe where it 
has experienced severe declines this last century as the result of 
anthropogenic changes (Kervyn et al., 2009; Mathews et al., 2018; 
Pir, 2009). Previous studies based on microscopy analyses have 
shown that R. ferrumequinum feeds mainly on three orders of 
arthropods: Lepidoptera, Coleoptera, and Diptera (Flanders 
& Jones,  2009; Jones,  1990). They have also revealed that the 
proportion of each order of prey in the feces varied throughout 
the year with a preference for Lepidoptera when these were 
abundant in summer. An experimental study under controlled 
conditions showed that R. ferrumequinum can discriminate and 
select prey based on the size and relative abundance of the prey 
in the environment, using its very precise echolocation system 
(long constant-frequency calls enabling Doppler shift compen-
sation) (Koselj et  al.,  2011). Altogether these studies suggested 
that R. ferrumequinum might have a plastic foraging strategy to 
maximize energy intake while minimizing energy costs (optimal 
foraging theory; Emlen,  1966; MacArthur & Pianka,  1966). Yet, 
energy costs could fluctuate between and within seasons as pre-
viously shown for several bat species (e.g., summer peak of Myotis 
lucifugus energy expenditure during lactation; Kurta et al., 1989). 
The decrease in flight maneuverability of pregnant bat females, 
as well as the decrease in flight distance and the increase in re-
turns to the roosts of bat females during lactation period (Dietz 
& Kalko, 2007; Henry et al., 2002) could decrease bat selectivity 
during gestation and lactation. In addition, R.  ferrumequinum is 
very sensitive to the landscape surrounding its colonies, in partic-
ular to the vertical vegetation elements (Froidevaux et al., 2017; 
Pinaud et al., 2018; Wang et al., 2010), because of its short-dis-
tance echolocation system (up to 10 m; Ortega et al., 2016). They 
connect R.  ferrumequinum foraging areas to colonies and they 
also provide protection against wind and predators (Forman & 
Baudry,  1984; Holland & Fahrig,  2000; Lewis,  1969; Verboom 
& Spoelstra,  1999). Acoustic and radio-tracking studies con-
ducted around colonies (radius up to 10  km) indicated that de-
ciduous woodlands and pastures are preferential foraging areas 
for R. ferrumequinum (Dietz et al., 2013; Flanders & Jones, 2009; 
Jones, 1990; Pinaud et al., 2018). Such landscapes are known to 
harbor rich insect communities, notably thanks to livestock and 
reduced soil modification. Yet, landscape effects on R. ferru-
mequinum diet and dietary plasticity have never been explored. 
There is thus a growing need to simultaneously examine the tem-
poral and spatial variations of R. ferrumequinum diet, coupling im-
proved taxonomic resolution, and greater sampling to overcome 
the detection and identification biases associated with tradition-
ally used morphology-based microscopy analyses. Such studies 
should enable us to better understand the influence of energetic 
constraints associated with the life cycle and the foraging land-
scape on dietary plasticity, thereby helping to improve the design 
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of conservation strategies (e.g., preservation of key landscape 
and prey; Arrizabalaga-Escudero et al., 2015).

In this study, we analyzed the diet of R. ferrumequinum in 
Western France, an area with a strong responsibility for the con-
servation of this species (Leuchtmann et  al.,  2019; Vincent & Bat 
Group SFEPM, 2014) classified as “Vulnerable” on the Regional Red 
List. This area is dominated by an agricultural landscape and has 
experienced important changes in landscape features due to agri-
cultural intensification since the 1960s (e.g., decrease of meadows, 
grasslands, and hedges; increase in the average size of cultivated 
fields, increase in pesticides use; Agreste,  2016). We focused on 
the maternity season, as it corresponds with a period of high en-
ergy expenditure and foraging constraints for female bats due to 
gestation and lactation (Henry et al., 2002; Hughes & Rayner, 1993; 
Kurta et al., 1989; Mclean & Speakman, 1999). We specifically ex-
plored whether R. ferrumequinum diet varied between the different 
phases of the maternity cycle and/or was associated with landscape 
features surrounding the colonies. First, we expected that R. ferru-
mequinum diet should be less diverse in June and July—because of 
higher energy expenditures and constraints associated with the ges-
tation and lactation—than in August when the young start to feed by 

themselves (Anthony & Kunz, 1977; Czenze et al., 2018; Whitaker 
et  al.,  1996). We then hypothesized that a favorable environment 
(semi-open habitat composed of hedgerows and permanent mead-
ows; Flanders & Jones, 2009; Froidevaux et al., 2017) should favor a 
more diverse diet than a less favorable environment where foraging 
could be more constrained by local insect richness and profitability.

2  | MATERIAL S AND METHODS

2.1 | Collection of guano samples

We collected 95 fecal pellets once a month from June to August 
2018 beneath seven maternity colonies of R. ferrumequinum in 
Western France (Figure 1). We selected the freshest pellets with re-
gard to their appearance (the least dry) and position on the plates 
(the most isolated ones from the other pellets) to limit degradation 
and cross-contamination between samples.

The three sampling dates coincided with gestation (end of May 
to mid-June), lactation (mid-July to end of July), and postlactation 
(mid-August to end of August) of R. ferrumequinum.

F I G U R E  1   CORINE land cover map of the colonies included in this study: Allonne (ALL), Annepont (ANN), Beaumont (BEA), Lessac (LES), 
Sainte-Gemme (SGE), Saint-Martin-les-Melle (SMM), and Xaintray (XAI). Buffer zone of seven kilometers corresponds to the maximum 
hunting distance of R. ferrumequinum females during the lactation period
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As R. ferrumequinum often shares its maternity colonies with the 
Geoffroy's bat (Myotis emarginatus) and as their droppings are indis-
tinguishable, the high number of fecal samples collected ensured 
a sufficient number of R. ferrumequinum samples for diet analyses. 
Each pellet was retrieved from paper plates, which had been left 
on the ground for 10 days, using single-usage forceps, and pellets 
were placed individually within a 96-well microplate. The 10-day 
time period is likely to lead to sample and DNA degradation (Oehm 
et al., 2011), but it could not be reduced because of logistical con-
straints and of the necessity to limit the disturbance of the colo-
nies. We selected this sampling interval in accordance with previous 
bat studies which detected high levels of nuclear and mitochondrial 
DNA amplification, and high-quality genotypes (up to 338 bp) from 
bat feces after 10 to 15 days (Puechmaille & Petit, 2007; Zarzoso-
Lacoste et al., 2018). Paper plates were renewed at each collection 
date. This protocol ensured that contaminations were minimized 
between sampling dates. Samples were stored at −20°C until DNA 
extraction.

2.2 | Characterization of the landscape surrounding 
bat colonies

We described 12 landscape variables around R. ferrumequinum colo-
nies within a buffer zone of seven kilometers, which corresponds 
to the average maximum hunting distance of R. ferrumequinum fe-
males during the lactation period (Pinaud et  al.,  2018): woodland, 
closed coniferous forest, closed deciduous forest, closed mixed 
forest, open forest, hedgerow, woody moor, poplar, orchard, per-
manent meadow, temporary meadow, and vineyard. Data were 
extracted from the two French “Institut Géographique National” da-
tabases: “BDTopo” database (2018 version) for permanent vegeta-
tion (hedgerows, forests, etc.) and “Registre Parcellaire Graphique” 
(Graphic Parcel Register, GPR, 2017 version) for agricultural land 
use (crops). Hedge proportions corresponded to the sum of the 
hedgerow areas around the colonies. For GPR crops, the catego-
ries “Permanent meadow—predominant grass” and “Long-rotation 
meadow (six years or more)” were combined to form the variable 
“Permanent meadows.” The categories “Other temporary meadow 
of five years or less” and “Ray-grass of five years or less” were clus-
tered into the variable “Temporary meadows.” Spatial operations on 
geographic entities were carried out using QGIS 3.4.6 Geographic 
Information System (QGIS Development Team, 2019). We then ap-
plied a Principal Component Analysis (PCA) on these variables to 
characterize the landscape surrounding colonies (sum of the surface 
occupied in hectares). We used the FactoMineR R package to per-
form this analysis (Lê et al., 2008).

2.3 | DNA extraction, PCR, and library construction

DNA extraction was performed on pellet samples according to 
Zarzoso-Lacoste et al. (2018). Briefly, pellets were frozen at −80°C 

then bead-beaten for 2 × 30 s at 30 Hz on a TissueLyser (Qiagen) 
using a 5-mm stainless steel bead. DNA was extracted using the 
NucleoSpin 8 Plant II kit (Macherey Nagel) with the slight modifica-
tions recommended in Zarzoso-Lacoste et al.  (2018). We amplified 
a 178-bp COI minibarcode using the primer set proposed by Vamos 
et  al.  (2017) (fwhF1: 5′ YTCHACWAAYCAYAARGAYATYGG 3′; 
fwhR1: 5′ ARTCARTTWCCRAAHCCHCC 3′). These primers offer 
the best compromise to (a) maximize the detection and identifica-
tion of arthropod prey and (b) identified the bat species to separate 
R. ferrumequinum and M. emarginatus diets (Tournayre et al., 2020). 
We used the metabarcoding protocol described in Galan et al. (2018) 
with the PCR programs optimized in Tournayre et al. (2020). We in-
cluded a negative control for extraction (NCext), a negative control 
for PCR (NCPCR), and a negative control for indexing (Ncindex) in each 
96-well microplate. Amplifications (PCR1 and PCR2) were carried out 
three times per DNA extract (i.e., triplicates) using different dual-
indexes per replicate. PCR1, corresponding to the gene-specific am-
plification, was performed in 10 µl reaction volume using 5 µl of 2× 
Qiagen Multiplex Kit Master Mix (Qiagen), 2.5 µl of ultrapure water, 
0.5 µl of each mix of forward and reverse primers (final concentra-
tion: 0.5 µM each), and 1.5 µl of DNA extract. The PCR1 conditions 
consisted of an initial denaturation step at 95°C for 15 min, followed 
by 40 cycles of denaturation at 94°C for 30 s, annealing at 45°C for 
45 s, and extension at 72°C for 2min, followed by a final extension 
step at 72°C for 10 min. The PCR2 consisted of a limited-cycle ampli-
fication step to add multiplexing indexes i5 and i7 (8 bases each) and 
Illumina sequencing adapters P5 and P7 at both ends of each DNA 
fragment from PCR1. PCR2 was carried out in a 10 µl reaction vol-
ume using 5 µl of Qiagen Multiplex Kit Master Mix (Qiagen) and 2 µl 
of each indexed primer i5 and i7 (final concentration: 0.7 µM each). 
Then, 2 µl of PCR1 product was added to each well. The PCR2, cor-
responding to the sample-specific dual indexing, started by an initial 
denaturation step of 95°C for 15 min, followed by 8 cycles of dena-
turation at 94°C for 40 s, annealing at 55°C for 45 s, and extension at 
72°C for 2 min followed by a final extension step at 72°C for 10 min. 
PCR2 products for the same Illumina run were pooled with equal 
volumes and put on a low-melting agarose gel (1.25%) for excision. 
We used the PCR Clean-up Gel Extraction kit (Macherey–Nagel) to 
purify the excised bands. The DNA pool was quantified using the 
KAPA library quantification kit (KAPA Biosystems), normalized at 
4nM before loading 14 pM and 5% of PhiX control on a MiSeq flow 
cell with a 500-cycle Reagent Kit v2 (Illumina). We sequenced a total 
of five Illumina runs.

2.4 | Bioinformatics and taxonomic assignments

We used the R preprocessing script from Sow et  al.  (2019) to 
merge pair sequences into contigs using FLASH v.1.2.11 (Magoč 
& Salzberg,  2011) and to trim primers using CUTADAPT v.1.9.1 
(Martin,  2011). We then used the FROGS pipeline (“Find Rapidly 
OTU with Galaxy Solution,” Escudié et al., 2018) to create an abun-
dance table for Operational Taxonomic Units (OTUs). The FROGS 
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pipeline enabled to the following steps: (a) filter sequences by 
length (± 20 bp from the expected length), (b) cluster in very reso-
lutive OTUs the sequences using a maximum aggregation distance 
of one mutation with the SWARM algorithm (Mahé et al., 2014), (c) 
remove chimeric sequences using VSEARCH with de novo UCHIME 
method (Edgar et  al.,  2011; Rognes et  al.,  2016), and (d) filter by 
keeping only OTUs present in at least two libraries. In addition, we 
used isBimeraDenovo from dada2 (Callahan et al., 2016) to remove 
the residual chimeric sequences which were not detected using the 
FROGS pipeline. We also used the TCC and TFA thresholds approach 
proposed by Galan et al. (2016) to filter cross-contaminations dur-
ing the laboratory procedure and to filter the false assignments of 
reads to a PCR product due to the generation of mixed clusters 
during the sequencing, respectively. Lastly, we considered that a 
sample was positive for a particular OTU if all replicates (3 out of 3) 
were positive for this taxon. This procedure enabled the removal of 
inconsistent OTUs due to PCR or sequencing errors, and reduced 
the number of putative false-positive results (Alberdi et al., 2018; 
Tournayre et al., 2020). The expected mean number of reads after 
merging the three technical PCR replicates is around 20,000 reads 
per sample.

Taxonomic assignments were carried out using the NCBI 
BLAST + automatic affiliation tool available in FROGS pipeline, with 
the Public Record Barcode Database (data related to BOLD database 
http://v3.bolds​ystems.org in February 2019, with maximum 1% of 
N). Taxonomic assignments were considered for taxa with an iden-
tity percentage ≥ 97%, according to the confidence levels described 
in Galan et al. (2018) and a coverage percentage ≥ 90%. Arthropod 
species that were not referenced in Europe according to Fauna 
Europea (Jong et  al.,  2014) or INPN (Muséum national d’Histoire 
naturelle,  2003), as well microscopic species (e.g., Macrochelidae, 
Uropodidae, and Cheyletidae), were discarded from the dataset. 
Finally, among the identified prey, we looked for agricultural pests 
according to the Arthemis database (http://arthe​misdb.supag​ro.inra.
fr/; 2,185 species of insects listed as pests on the date of database 
extraction—04/10/2019).

2.5 | Diet analyses

Diet analyses were only conducted on R. ferrumequinum samples 
that were not contaminated by other vertebrate species (other bats, 
birds, or rodents).

2.5.1 | Reliability of the data

We checked for appropriate sequencing depth per sample to ensure 
reliable comparisons across samples using the function depth.cov 
from the R package hilldiv (Alberdi and Gilbert, 2019). This function 
gives the percentage of estimated diversity covered in each sample. 
Then, we assessed our efficiency in describing prey diversity with 
respect to sampling effort by generating taxa accumulation curves 

for each colony, sampling date, and considering each taxonomic rank 
(order, family, genus, and species). We used the function iNEXT of 
the R package iNEXT (Chao et al., 2014; Hsieh et al., 2016). Diversity 
measures based on Hill numbers were calculated for q = 0 and q = 1. 
For all curves, 95% confidence intervals were calculated based on a 
bootstrap method with 1,000 replications.

2.5.2 | Diet diversity and composition analyses

Alpha diversity
Alpha diversity analyses were carried out using Hill numbers in the R 
package hilldiv. Hill numbers enable to modulate the relative weight 
of abundant and rare OTUs through a single parameter q (the order 
of diversity). Alpha diversities were computed for (a) q = 0 (corre-
sponding to prey richness; the same weight is attributed to all OTUs) 
and (b) q = 1 (corresponding to Shannon diversity which considers 
both richness and evenness). For each level of taxonomic resolu-
tion, we tested the effects of sampling date, landscape (described 
as the coordinates of the colonies on the main axes of the PCA) and 
their interaction on alpha diversity using quasi-Poisson Generalized 
Linear Models (GLMs). We used the false discovery rate (FDR) to 
account for multiple testing (Benjamini & Hochberg, 1995). The ad-
justed p-value thresholds after FDR correction (pcritical) were esti-
mated following Castro and Singer (2006).

Beta diversity
The spatio-temporal variation of R. ferrumequinum diet composi-
tion was first explored using histograms of the frequency of prey 
occurrence, computed with the ggplot2 R package (Wickham, 2016). 
For each level of taxonomic resolution, we built Bray–Curtis dis-
tance matrices using the vegdist function from the R package vegan 
(Oksanen et al., 2019). Then we applied the permutational multivari-
ate analysis of variance (perMANOVA; 999 permutations) using the 
adonis (Analysis of variance using distance matrices) function to inves-
tigate whether diet composition differed between sampling dates 
and colonies. Homogeneity of variance was tested using the betadis-
per function of the package vegan. The adjusted p-value thresholds 
after FDR correction (pcritical) were estimated following Castro and 
Singer (2006). Dissimilarities between prey communities (Bray–
Curtis matrix) were visualized using the Nonmetric Multidimensional 
Scaling (NMDS) with the metaMDS function of the R package vegan 
(try = 20, trymax = 5,000). The quality of the solution was evalu-
ated based on the stress value: stress values lower than 0.05 indicate 
that the solution is of excellent quality and stress values higher than 
0.2 indicate solution of poor quality (Kruskal, 1964). Finally, as the 
landscape could influence the prevalence of taxa in the environment 
(e.g., presence or absence of prey ecologic requirements), we inves-
tigated whether diet composition between colonies was correlated 
with landscape composition using Mantel test (999 permutations) 
between diet and landscape dissimilarity matrices. Mantel tests 
were computed using the mantel.rtest function from the R package 
ade4 (Dray & Dufour, 2007).

http://v3.boldsystems.org
http://arthemisdb.supagro.inra.fr/
http://arthemisdb.supagro.inra.fr/
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3  | RESULTS

3.1 | Pretreatment of high-throughput sequencing 
data

3.1.1 | Data filtering

We obtained 26,737 OTUs (44,801,072 sequences) after applying 
the FROGS pipeline. 8,839 supplementary OTUs were ruled out 
because they were considered as chimera by iBimeraDenovo tools 
from dada2 (33.05% of the OTUs). After filtering using the controls 
and triplicates, we obtained 7,103 OTUs (41,216,468 sequences) for 
1,986 samples. Of the 7,103 OTUs 2,110 could not be taxonomically 
assigned due to low confidence level (< 97% identity and/or <90% 
coverage; 13% of the total number of reads) and 3,204 were absent 
from database (i.e., blast produced no result; 8% of the total number 
of reads). Among the 1,178 assigned OTUs, 72 OTUs were discarded 
because they were not referenced in Europe, were assigned by error 
to insect species in BOLD but correspond to bacteria (e.g., Wolbachia 
and Rickettsiales), or were likely to be environmental contaminations 
(e.g., mites).

3.1.2 | Identification of the predator

Among the 1,986 samples obtained after the filtering steps, 1,194 
corresponded to R.  ferrumequinum (60.1%), 381 to M.  emarginatus 
(19.2%), 32 to the greater mouse-eared bat (Myotis myotis; 1.6%), and 
one to the genus Serotinus (0.05%). 29 samples were identified as a 
mix of two bat species, including R. ferrumequinum, M. emarginatus, 
Serotinus sp., the long-eared bat (Plecotus auritus), the Bechstein's 
bat (Myotis bechsteinii), and the Natterer's bat (Myotis nattereri). 
Twelve samples were identified as rodents or a mix of rodents and 
bats (0.6%), 15 samples as birds (Hirundo sp.; 0.7%), and 91 samples 
as a mix of birds and bats (4.5%). Finally, we could not identify any 
predator for 178 samples (8.9%) and neither predator nor prey iden-
tification for 52 samples (2.6%), probably because OTUs of these 
samples were below the filtering thresholds used to clean the data 
(i.e., false negatives). The colony of Saint-Martin-les-Melle has been 
ruled out from the analyses because of an insufficient number of 
R. ferrumequinum sampled in June (N = 0) and in July (N = 1). Then, 
82 samples among the 1,115 from the six remaining colonies were 
discarded because of an absence of prey detection following the ap-
plication of previous filters.

3.2 | Landscape characterization

Principal component analysis of the sum of the vegetation surface 
surrounding the colonies (ha) clearly separated two types of land-
scapes with the first two PCA axes explaining the largest part of 
the total inertia (Table  S1). The first axis (Axis.1, 48.34%) repre-
sented a landscape gradient running from a habitat dominated by 

forests (Beaumont) to a semi-open habitat dominated by meadows 
and hedgerows (Lessac, Sainte-Gemme, Allonne, and Xaintray), with 
an intermediate situation in Annepont (Figure  2). The second axis 
(Axis.2, 25.90%) separated the colony of Annepont—character-
ized by vineyards and deciduous forests—from all other colonies 
(Figure 2).

3.3 | Diet analyses

3.3.1 | Reliability of the data

Our results revealed an appropriate sequencing depth per sample, 
with the estimated diversity covered in each sample at q = 0 (i.e., 
richness) and q = 1 (i.e., Shannon diversity; both richness and even-
ness) ranging between 95% and 100%.

The more precise the taxonomic level, the larger the sampling 
effort needed to recover all the diversity (Figure S1). At q = 0, the 
accumulation curves almost reached the plateau at the order level 
(around N ≈ 75 samples) but not at the family, genus, and species lev-
els (Figure S1). At q = 1, the accumulation curves reached the plateau 
at the order (N ≈ 25 samples) and family (N ≈ 50 samples) levels and 
almost reached the plateau at the genus (N ≈ 75 samples) and species 
levels (N > 75 samples) (Figure S1), except in Annepont where the 
plateau was reached at the order level only.

3.3.2 | Variability of whole and core diets

The final complete dataset included 1,033 R.  ferrumequinum sam-
ples corresponding to six colonies collected at three sampling dates. 
Most fecal pellets contained between one and four prey taxa (me-
dian = 4, min = 1, max = 19, mean = 4.44; Figure S2).

We identified 679 taxa from 17 arthropod orders, 124 families, 
434 genera, and 519 species (Figure 3). Three main orders were de-
tected: Lepidoptera (57% of the occurrences), Diptera (23%), and 
Coleoptera (13%). We identified an important number of agricultural 
pests with 133 species listed in the Arthemis database (Table  S2) 
representing 31.86% of the occurrences. Pest species were mainly 
Lepidoptera (70.9%; e.g., Thaumetopoea pityocampa and Archips 
podana), Coleoptera (13.9%; e.g., Curculio elephas and Melolontha 
melolontha), Diptera (12.2%; e.g., Tipula lateralis and Nephrotoma ap-
pendiculata) and Hemiptera (2.7%; e.g., Adelphocoris lineolatus and 
Fieberiella florii).

We also noticed that the complete dataset included a large pro-
portion of rare prey: 59% of prey taxa were represented by only 
two (103 taxa) or even only one (300 taxa) occurrence in the 1,033 
samples. We therefore considered a smaller dataset (hereafter called 
“core diet”) composed of the most frequent prey species (frequen-
cies of occurrences > 5%). They represented 2.50% of all the taxa 
detected in the 1,033 samples, 24.89% of the occurrences, and 
46.26% of the total number of reads. In this core diet, we identified 
17 taxa from three orders (Lepidoptera, Diptera, and Coleoptera), 10 
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F I G U R E  2   Principal Component Analysis (PCA) of twelve features describing the landscape surrounding the colonies (radius = 7 km, 
surface in hectare). Representation of (a) the six colonies, (b) the landscape variables, and (c) the eigenvalue graph which indicates the 
percentage of variance explained by each axis of the PCA
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families, 14 genera, and 15 species (Figure 4; Table S3). Three agri-
cultural pest species and one vector of livestock disease were also 
identified: Serica brunnea, Tortrix viridana, Tipula maxima, and Musca 
autumnalis, respectively. Further analyses of alpha and beta diversity 
were performed both on the complete (whole diet) and restricted 
(core diet) datasets.

3.3.3 | Alpha diversity

Considering the whole diet, we found a significant effect of the first 
PCA axis (Axis.1) and of the sampling date (month) whatever the 
taxonomic level and q value considered.

The interaction between Axis.1 and sampling date was signifi-
cant for q = 0 and all taxonomic levels except family, and for q = 1 and 
the order level only (Table 1, Figure S3). Alpha diversity increased 
along Axis.1 in June and July, then slightly decreased in August at the 
order, family, and genus level but remained stable at the species level 
(Table 1). Alpha diversity remained almost constant throughout the 

summer in the two colonies located in landscapes dominated by for-
ests (left of Axis.1) while it was lower in August in the four colonies 
located in landscapes dominated by meadows and hedgerows (right 
of the Axis.1). At the family (q = 0 and q = 1), genus (q = 1) and spe-
cies (q = 1) levels, we observed a positive effect of Axis.1 on alpha 
diversity and a peak of alpha diversity in July (Table 1).

Considering the core diet, the effects of sampling date and land-
scape (Axis.1) were always significant whatever the taxonomic levels 
and q values considered (Table 1). We observed a negative effect of 
sampling date and a positive effect of Axis.1 on alpha diversity.

All results are detailed in Table 1 and Figure S3.

3.3.4 | Beta diversity

Considering the whole diet, the relative occurrence of Lepidoptera 
and Diptera showed opposite patterns of temporal variations with an 
increase and a decrease over the summer, respectively (Figure 4a). 
The core diet showed different patterns. The colonies of Annepont 

F I G U R E  3   Representation of the prey taxonomic diversity detected from R. ferrumequinum guano, considering six colonies and three 
sampling dates. (a) The two circles represent taxonomic ranks from the families outwards to the order in the center. Numbers correspond 
to the number of occurrences of each taxonomic family in the whole diet. (b) Taxonomic diversity of the arthropod orders expressed as the 
number of prey families, genus, species (left), and percentage of occurrences (right) in the whole diet. (c) The circles represent taxonomic 
ranks from the species outwards to the order in the center considering only the prey with an occurrence frequency > 5%. Numbers 
correspond to the number of occurrences of each taxonomic family in the core diet. (d) Relative representation of the frequent prey (core 
diet) expressed as the number of prey families, genus, species (left), and percentage of occurrences (right)
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(landscape dominated by vineyards and forest), Lessac, Allonne, 
Sainte-Gemme, and Xaintray (all characterized by hedgerows and 
meadows) exhibited a peak of Diptera and a minimum of Lepidoptera 
in July (Figure 4b). The colony of Beaumont (landscape dominated 
by forests) showed a singular pattern: whatever the sampling date 
considered, the prey community was dominated by a single order 
(Coleoptera in June, Lepidoptera in July and August) and a maximum 
of two species (Figure 4b).

PerMANOVA analyses revealed significant variations of R. fer-
rumequinum diet between sampling dates and colonies, for both 
the whole and core diets (Table 2). Note however that the variance 
between groups (colonies or sampling dates) was not homogeneous 
and R2 values were low (0.035 < R2 < 0.167; Table 2). NMDS plots 
built on the whole diet highlighted the presence of rare prey that 
exacerbated the dissimilarity between colonies and sampling dates 
(Figure  S4; see Figure  5a and b at the family and species levels). 
When considering the core diet, NMDS plots showed a high over-
lap of prey between sampling dates and colonies (Figure 5c and d). 
At the species level, NMDS plots revealed a high overlap between 
colonies but also suggested a pattern corresponding to the summer 
progression (from June to August), with less prey species shared be-
tween June (e.g., Tortix viridana and Zeiraphera isertana) and August 
(e.g., Triodia sylvina and Agrotis bigramma) (Figure 5d).

Finally, we observed a positive relationship between the beta 
diversity (differentiation between diet composition) and the dissim-
ilarity of the landscape surrounding the colonies when considering 
the whole diet (family: p = .006 and r = 0.015, genus: p = .003 and 
r = 0.015, species: p =  .002 and r = 0.012) or the core diet (order: 
p = .012 and r = 0.024, family: p = .029 and r = 0.013, genus: p = .001 

and r = 0.025, species: p = .001 and r = 0.020), except at the order 
level for the whole diet (p = .478 and r = 3.32e-05).

4  | DISCUSSION

Using eDNA metabarcoding, we have shown that R. ferrumequinum 
diet is much more diversified than previously described by micro-
scopic (Flanders & Jones, 2009; Jones, 1990) and molecular analyses 
(Alberdi et al., 2020; Aldasoro et al., 2019; Galan et al., 2018). We 
revealed a broader ecological and taxonomic variety of prey from 
the order to species levels of taxonomic resolution (519 species; 76% 
of the taxa affiliated at the species level). Diet included insects of 
varying size (from 1 mm to >70 mm), insects that emerge from water 
(e.g., Ephemeroptera, Odanata, or Trichoptera), hard and soft-bodied 
insect species as well as spiders.

We could not exclude that among the 519 prey species, some 
detections might be due to environmental contaminants (Galan 
et al., 2018). For example, we were not able to filter the presence 
of coprophagous insect DNA contaminating guano before sample 
collection. However, environmental contaminants may only have 
a limited impact on our results due to the stringent filtering steps 
carried out before statistical analyses. We could not exclude either 
that some detections might be due to indirect predation (e.g., spider 
prey; Sheppard et al., 2005). Indirect predation could not be distin-
guished from direct predation but should not be ignored in conser-
vation perspectives. Indeed, indirectly consumed prey may exert a 
bottom-up control on R. ferrumequinum, through a direct impact on 
R. ferrumequinum prey (Frederiksen et  al.,  2006).Furthermore, our 

F I G U R E  4   Frequency of occurrences in each of the six colonies—sorted according to their coordinates on the Axis.1 of the PCA (Allonne 
“ALL,” Annepont “ANN,” Beaumont “BEA,” Lessac “LES,” Sainte-Gemme “SGE,” Xaintray “XAI”)—for the three dates of sampling (“6” = June, 
“7” = July, and “8” = August). (a) The whole diet considered at the order level of taxonomic resolution. (b) The core diet considered at the 
species level of taxonomic resolution. In both figures, the three most occurrent orders (Lepidoptera, Diptera, Coleoptera) are represented 
by an icon. The dominant landscapes—as determined by the axes 1 and 2 of the PCA—are indicated for each colony
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TA B L E  1   GLM results testing the effect of landscape variables (Axis 1 and 2 of the PCA), sampling months (June, July, August) and their 
interactions (represented by '*'), on the estimates of alpha diversity for q = 0 and q = 1 at each taxonomic level: order, family, genus and 
species. Significant p-values after correction for FDR multiple tests are represented in bold. (A) On the whole diet, (B) on the core diet

q = 0 q = 1

Df F p Df F p

(A)

Order Axis 1 1 18.040 2.360e−05 1 14.322 .0002

Month 2 35.875 8.7290e−16 2 25.973 1.077e−11

Axis 2 1 4.191 .041 1 4.190 .041

Axis 1 * Month 2 15.771 1.796e−07 2 12.853 3.132e−06

Axis 2 * Month 2 0.131 .877 2 0.0004 .999

Family Axis 1 1 18.001 2.408e−05 1 16.603 5.015e−05

Month 2 25.019 2.466e−11 2 30.548 1.457e−13

Axis 2 1 0.548 .459 1 1.944 .164

Axis 1 * Month 2 4.383 .013 2 1.814 .164

Axis 2 * Month 2 1.133 .323 2 0.962 .383

Genus Axis 1 1 19.247 1.269e−05 1 15.919 7.151e−05

Month 2 12.139 6.166e−06 2 25.249 2.152e−11

Axis 2 1 0.065 .799 1 1.693 .193

Axis 1 * Month 2 8.588 .0002 2 3.055 .048

Axis 2 * Month 2 4.232 .015 2 2.156 .116

Species Axis 1 1 23.805 1.238e−06 1 16.593 5.048e−05

Month 2 10.608 2.759e−05 2 17.081 5.259e−08

Axis 2 1 0.169 .681 1 1.503 .220

Axis 1 * Month 2 6.452 .002 2 2.179 .114

Axis 2 * Month 2 3.864 .021 2 1.670 .189

(B)

Order Axis 1 1 19.486 1.173e−05 1 17.848 2.743e−05

Month 2 21.638 7.617e−10 2 13.346 2.102e−06

Axis 2 1 0.107 .744 1 0.110 .741

Axis 1 * Month 2 2.266 .104 2 1.265 .283

Axis 2 * Month 2 3.592 .028 2 0.846 .429

Family Axis 1 1 38.443 9.663e−10 1 40.056 4.686e−10

Month 2 13.463 1.834e−06 2 10.945 2.126e−05

Axis 2 1 1.278 .259 1 1.918 .166

Axis 1 * Month 2 4.112 .017 2 1.513 .221

Axis 2 * Month 2 0.642 .526 2 0.178 .837

Genus Axis 1 1 36.904 2.042e−09 1 37.617 1.521e−09

Month 2 15.794 1.958e−07 2 11.086 1.854e−05

Axis 2 1 2.227 .136 1 3.221 .073

Axis 1 * Month 2 4.022 .018 2 1.451 .235

Axis 2 * Month 2 0.989 .372 2 0.002 .998

Species Axis 1 1 32.795 1.533e−08 1 33.239 1.286e−08

Month 2 12.358 5.338e−06 2 7.265 0.0007

Axis 2 1 0.461 .497 1 0.400 .527

Axis 1 * Month 2 3.781 .023 2 1.246 .288

Axis 2 * Month 2 1.943 .144 2 0.468 .626
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sampling effort did not enable a complete description of the whole 
prey diversity of R. ferrumequinum for each sampling date and col-
ony surveyed, despite the high number of pellets analyzed. The rea-
son was probably the high number of rare prey species (300 taxa 
with only one occurrence in the entire dataset) (Clare et al., 2009; 
Razgour et al., 2011; Vesterinen et al., 2013). This result suggested 
that the diversity of R. ferrumequinum diet could be even higher 
than described, and a greater sampling effort would be required to 

capture its full diversity (Mata et al., 2018). In this study, we captured 
most of the prey diversity at the order, family, and genus taxonomic 
levels. Accumulation curves suggest that about 25 samples might be 
sufficient to describe the main diversity at the order level, 50 sam-
ples at the family level, and between 75 and more than 100 samples 
at the genus and species levels. Because it is important to minimize 
disturbance and stress for bats, the number of samples is critical to 
assess prey diversity when using eDNA metabarcoding. Future bat 

TA B L E  2   Results of (A) permANOVA analyses and (B) homogeneity of variance analysis by permutation (999 permutations), based on the 
Bray–Curtis dissimilarity for each taxonomic rank tested. The interaction effect between sampling month and colonies is represented by '*'. 
Significant p-values after correction for multiple FDR tests are represented in bold. These analyses were performed on the whole diet and 
on the core diet

(A)

permANOVA

Df R2 F p

Whole diet Order Month 2 0.081 51.160 .001

Colony 5 0.042 10.527 .001

Month * Colony 10 0.074 9.401 .001

Family Month 2 0.062 38.527 .001

Colony 5 0.047 11.620 .001

Month * Colony 10 0.064 7.827 .001

Genus Month 2 0.049 28.939 .001

Colony 5 0.037 8.7538 .001

Month * Colony 10 0.062 7.38 .001

Species Month 2 0.043 24.992 .001

Colony 5 0.035 8.207 .001

Month * Colony 10 0.064 7.460 .001

Core diet Order Month 2 0.167 91.334 .001

Colony 5 0.081 17.592 .001

Month * Colony 10 0.118 12.845 .001

Family Month 2 0.098 46.668 .001

Colony 5 0.082 15.561 .001

Month * Colony 10 0.095 8.993 .001

Genus Month 2 0.112 54.269 .001

Colony 5 0.076 14.853 .001

Month * Colony 10 0.104 10.056 .001

Species Month 2 0.112 53.585 .001

Colony 5 0.074 14.235 .001

Month * Colony 10 0.106 10.181 .001

(B)

permTest

Df F p

Whole diet Order 17 11.066 .001

Family 17 8.819 .001

Genus 17 9.928 .001

Species 17 10.419 .001

Core diet Order 17 6.782 .001

Family 17 4.554 .001

Genus 17 4.5064 .001

Species 17 4.749 .001
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diet studies should rather rely on a large number of guano collected 
beneath colonies rather than on feces collected from captured bats 
(usually  <  30 samples; Alberdi et  al.,  2020; Aldasoro et  al.,  2019; 
Bohmann et al., 2018; Galan et al., 2018; Vallejo et al., 2019).

Our results also suggested the existence of a core diet poten-
tially constituting the foundation of R. ferrumequinum diet, and of a 
secondary diet composed of numerous rare prey taxa mainly occur-
ring once at all colonies and sampling dates. Rhinolophus ferrumequi-
num core diet included 15 common prey species shared by all the 
colonies, from medium to large size (10 to 40 mm long for Coleoptera 
and Diptera, and 15 to 100 mm width for Lepidoptera). A previous 
study based on microscopic analyses of R. ferrumequinum feces from 
England suggested that various moths, beetles, tipulids, and ich-
neumonids could be considered as “key prey” or “secondary prey” 
(Ransome & Priddis, 2005). However, these terms were not clearly 
defined and this classification was mainly based on the prey abun-
dance estimated from the percentage of prey volume in the feces. 
Most of the key prey described by Ransome and Priddis (2005) were 
also found in the core diet (e.g., moth, beetles, and tipulids), but 
some differences were observed. For example, we did not detect 
Geotrupes sp. and ichneumonids in the core diet, although Geotrupes 
spiniger (36 occurrences) and ichneumonids (19 taxa with one to 
12 occurrences) were detected in the secondary diet. Conversely, 
in the core diet we found dipteran families (Limoniidae, Muscidae) 
that were not identified by Ransome and Priddis (2005). The dif-
ferences between the two studies probably arise from two biases. 
First, the inability of the microscopic approach to detect and iden-
tify some prey of the core diet with precise taxonomic resolution: it 

may bias the relative importance of each prey in R. ferrumequinum 
diet (Andriollo et al., 2019; Nielsen et al., 2018). Second, delineating 
the contours of the core and secondary diet, based on occurrence 
frequencies, still remains arbitrary. This issue deserves further ded-
icated studies that could provide objective criteria to discriminate 
between the core and secondary diets.

Our results corroborated the assumption that prey availability 
might be an important factor influencing the diversity, composition, 
and spatio-temporal variations of R. ferrumequinum diet. Previous 
studies suggested that food availability is a main factor regulating 
the timing of parturition in insectivorous bats, and, as a conse-
quence, reproductive success in bats is highly dependent on syn-
chronizing reproduction with peaks of food availability (Arlettaz 
et  al.,  2001; Nurul-Ain et  al.,  2017). The ability to adjust foraging 
behavior with reproductive conditions, and hence energy require-
ments, has already been shown in some bat species including R. fer-
rumequinum (Dietz & Kalko, 2007). In this study, the peak of prey 
diversity observed in the whole diet in July might be explained by 
the variations of insect abundance over the summer. Indeed a peak 
of insect diversity is often observed at, or near, the middle of this 
season (Wolda, 1988). Moreover, the presence of some prey species 
in the core diet well reflected the phenology of these insects (e.g., 
Agrotis bigramma and Zeiraphera isertana). Consequently, the com-
position of the core and secondary diets might strongly reflect the 
natural availability and abundance of insects in the foraging range of 
R. ferrumequinum. The ensuing decrease of diet diversity in late sum-
mer has already been observed for several bat species, for example, 
Plecotus auritus (brown long-eared bat; Andriollo et  al.,  2019) and 

F I G U R E  5   Representation of the Bray–Curtis dissimilarity using NMDS. (a) Whole diet at the family level of taxonomic resolution (top 
left), (b) Whole diet at the species level of taxonomic resolution (top right), (c) Core diet at the family level of taxonomic resolution (bottom 
left), (d) Core diet at the species level of taxonomic resolution (bottom right). Due to the high overlap of points, family and species names 
are not represented in 5a and 5b. Abbreviation: 6 = June (yellow), 7 = July (blue), 8 = August (purple), ANN = Annepont (circle cross), 
ALL = Allonne (square), BEA = Beaumont (star), LES = Lessac (diamond), SGE = Sainte-Gemme (triangle point up) and XAI = Xaintray 
(triangle point down)



     |  289TOURNAYRE et al.

Myotis lucifugus (the little brown bat; Clare, Symondson, Broders, 
et al., 2014). All these bat species seemed to consume a greater vol-
ume of a limited number of prey taxa, which can lead to a decrease in 
diet diversity. Bats need to rapidly accumulate body reserves before 
the onset of winter and hibernation. Therefore, the feeding strategy 
in August should target abundant and profitable prey species (e.g., 
rich in fatty acids; Krüger et al., 2014; Levin et al., 2013) and be as-
sociated with hormonal, metabolic and gut microbial composition/
diversity changes (Kronfeld-Schor et  al.,  2000; Levin et  al.,  2013; 
Srivastava & Krishna, 2008; Xiao et al., 2019).

However, the composition of the core diet and its temporal vari-
ations did not seem to be explained by insect availability only. For 
example, Copris lunaris was scarcely detected in July, although fly-
ing adults are naturally abundant from spring to autumn. Selective 
feeding and seasonal variations in selectivity have previously 
been described for insectivorous bat species (e.g., Myotis lucifugus: 
Anthony & Kunz, 1977; Myotis daubentonii; Vesterinen et al., 2016). 
Some studies have shown that bats selectively ate their favorite prey 
when these were available in the environment (e.g., Eptesicus fus-
cus; Agosta et al., 2003; R. ferrumequinum; Jones, 1990), and were 
less selective when these favorite prey were rare. Rhinolophus fer-
rumequinum exhibits a great capacity for prey selection, linked to its 
particular echolocation call structure. This enables to accurately dis-
criminate insects, their speed, and trajectory while compensating for 
the Doppler shifts induced by its own flight (Barataud, 2015; Emde & 
Menne, 1989). Based on previous encounter experiences with prey, 
R. ferrumequinum is able to link prey-specific echo information with 
prey profitability, and to use this information for informed hunting 
decisions from its perch (Koselj et al., 2011). Rhinolophus ferrumequi-
num could hence exploit some preferred taxa (core diet) while si-
multaneously developing an opportunistic strategy and consuming a 
wide range of available prey (secondary diet). This could rely on the 
two hunting tactics used by R. ferrumequinum, that is, prey search-
ing in flight and prey searching from a perch (Jones & Rayner, 1989). 
Because the first tactic induces a greater metabolic cost than the 
second one, R. ferrumequinum is expected to be more selective on 
size and/or prey behavior while perch-hunting (low cost—high yield 
tactic; Nadjafzadeh et al., 2016) compared to actively searching in 
flight (Koselj et al., 2011; Voigt et al., 2010).

In this context, the secondary diet might play a role of diet 
completion to enable survival when essential prey are scarce (e.g., 
Mirhosseini et al., 2015). The role of the secondary diet in energy 
completion is well known in human nutritional ecology (Fanelli & 
Stevenhagen,  1985; Koehler et  al.,  1989; McGowan et  al.,  2012; 
Taylor et al., 2005) but remains unexplored in other animal species. 
Thus, further studies combining ecological and nutritional analyses 
will be of great interest to better assess the relative importance of 
a core and a secondary diet in providing energy and mineral intake 
of insectivorous bats. To what extent the core/secondary diet par-
tition can be generalized to insectivorous bat species and whether 
the echolocation system and hunting tactics of bats are associated 
with such diet partition remain important issues that need to be ad-
dressed in the future.

Finally, our results suggested that landscape features are import-
ant drivers of prey availability, and as such, they seemed to influ-
ence the diversity, composition, and spatio-temporal variations of 
R. ferrumequinum diet. Insect species richness and abundance are 
strongly influenced by landscape features such as plant species rich-
ness or landscape heterogeneity (Rundlöf & Smith,  2006; Schuldt 
et al., 2019). For example, the lepidopteran Laothoe populi is known 
to be mainly associated with forests. As such it was much more 
detected in the two forested colonies (Beaumont and Annepont) 
than in the other ones. Conversely, the coleopteran Copris lunaris, 
which is associated with dung in meadows, was less abundant in the 
two forested colonies. We found that R. ferrumequinum diet diver-
sity was lower in colonies surrounded by forests than by meadows 
and hedgerows. Thus the contrasting patterns of prey composition 
and diversity observed between the colonies dominated by for-
ests and those by meadows and hedgerows were likely to reflect 
the adaptation of R. ferrumequinum to semi-cluttered foraging habi-
tats (e.g., echolocation, hunting strategies; Dietz et al., 2013; Jones 
& Rayner,  1989). The large concentration and diversity of insects 
provided by hedgerows in agricultural fields should enable the con-
sumption of a wider variety of local prey (Forman & Baudry, 1984; 
Holland & Fahrig, 2000; Lewis, 1969; Verboom & Spoelstra, 1999). 
Therefore, it is likely that these differences in prey communities as-
sociated with landscape features lead to the selection of different 
profitable prey (Clare et al., 2011; Danks, 2007; Kolkert et al., 2020).

Overall, we detected a significant positive correlation between 
differences of diet between colonies and differences in landscapes 
between these colonies. However, the colonies surveyed were het-
erogeneously distributed along a forest-meadow landscape con-
tinuum. These relationships between diet diversity and landscape 
may therefore potentially be driven by the two most differentiated 
colonies: Beaumont (mostly surrounded by forests) and Annepont 
(surrounded by forests and vineyards). Assessing R. ferrumequinum 
diet in more colonies that would better represent the landscape con-
tinuum could be particularly useful to deepen our understanding of 
this relationship between diet diversity and landscape.

At this point, we lack critical information on insect availability 
(abundance and nutritional composition) throughout the maternity 
period of R. ferrumequinum. Comparing such data with the prey 
identified in the R. ferrumequinum diet would help to confirm/re-
fute the influence of the biological processes proposed above to 
explain dietary plasticity. In particular, it would enable the evalu-
ation of the degree of selectivity in the R. ferrumequinum forag-
ing strategy (Emlen, 1966; Koselj et al., 2011; Tracy et al., 2006; 
Vesterinen et  al.,  2016). Furthermore, analyzing inter-individual 
dietary variations in greater depth, by collecting a larger number 
of samples, would be of particular interest. Indeed, as described 
for other bat and mammal species, local patterns might be influ-
enced by the specialization of different individuals within col-
onies (Bolnick et  al.,  2003; Johnston & Fenton,  2001; Thiemann 
et al., 2011). Differences in echolocation characteristics, flight and 
hunting performances between juveniles and adult bats may, for 
example, contribute to a wider spectrum of prey when young start 
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to feed themselves compared to adults (Arrizabalaga-Escudero 
et al., 2019; Czenze et al., 2018; Rolseth et al., 1994; Salsamendi 
et al., 2008).

Conservation perspectives

This study confirmed the high dietary plasticity as well as the wide 
spectrum of arthropods consumed by R. ferrumequinum. Hence, 
it might seem reasonable to consider that this bat species should 
not be at high risk when facing environmental changes affecting its 
prey distribution and abundance (Boyles & Storm, 2007; Owens & 
Dittman, 2003; Pratchett et al., 2006; Twining et al., 2019). However, 
our results have emphasized the existence of a core diet—potentially 
essential for optimizing R. ferrumequinum fitness—which could be 
threatened by the modification of the landscape, the indirect effect 
of cattle anti-parasite drugs on the beetles, and more globally the 
use of pesticides (Dietz et al., 2013; Finch et al., 2020; Froidevaux 
et  al.,  2019; Geiger et  al.,  2010; Gonzalez-Tokman et  al.,  2017; 
Pocock & Jennings, 2008). Rhinolophus ferrumequinum is also vulner-
able as it is a long-lived species (up to 30 years) with a low reproduc-
tive rate (maximum of one pup per year) and a late sexual maturity 
(two to five years) (Caubère et al., 1984; Ransome, 1995; Wilkinson 
& South,  2002). Further studies are therefore needed to evaluate 
the effects of the core and secondary prey variations on bat life-
history traits and fitness. In particular, it is critical to assess whether 
these variations might significantly impact the demography and vi-
ability of R. ferrumequinum populations (Schweiger et al., 2015). This 
is all the more important given that it has recently been shown that 
some populations at the edge of the R. ferrumequinum distribution 
might be at higher risk of extinction in the near future (Tournayre 
et al., 2019).

Our results support a growing literature illustrating the poten-
tial role of insectivorous bats in arthropod pest control (Aizpurua 
et  al.,  2018; Cohen et  al.,  2020; Kolkert et  al.,  2020). Some large 
and/or chitinized pests had already been identified in previous R. 
ferrumequinum diet studies, such as the Coleoptera Serica brunnea 
and Melolontha melolontha or the Diptera Tipula maxima (Aldasoro 
et al., 2019; Galan et al., 2018; Jones, 1990). However, no study has 
described as many deleterious or potentially deleterious insect spe-
cies (one third of all occurrences) in the R. ferrumequinum diet. Thus 
our results confirmed that R. ferrumequinum may be not only be im-
portant as a sentinel of agricultural insect pests (chirosurveillance) 
but also as an efficient agent of pest control (Cohen et  al.,  2020; 
Maslo et al., 2017; Weier et al., 2019). This role may not only be im-
portant in the future because climate change is expected to favor 
the establishment and proliferation of many deleterious insects 
(Trumble & Butler, 2009). Our results also provide evidence of the 
presence of arthropods beneficial to agriculture (i.e., natural enemy 
of pests) in the insectivorous bat diet (Cohen et al., 2020; Kolkert 
et al., 2020). Beneficial arthropods are rarely addressed in bat diet 
literature, probably because of the scarcity of detailed databases, 
but it is likely that insectivorous bats eat both pests and beneficial 

arthropods. Kolkert et  al.  (2020) showed that the diet of several 
Australian insectivorous bat included 1% of beneficial insects (pred-
ators, parasitoids, pollinators), emphasizing the service rather than 
the disservice these bats provide to agriculture. Assessing the im-
pact of R. ferrumequinum on pest populations and determining which 
category of prey insectivorous bats eat, that is, the relative quanti-
ties of pest and beneficial arthropods consumed, will be needed to 
further evaluate the effectiveness of R. ferrumequinum as agent of 
pest control.
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