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Abstract1

Species Sensitivity Distributions (SSD) are widely used in environmental risk2

assessment to predict the concentration of a contaminant that is hazardous for3

5% of species (HC5). They are based on monospecific bioassays conducted in4

the laboratory and thus do not directly take into account ecological interactions.5

This point, among others, is accounted for in environmental risk assessment6

through an assessment factor (AF) that is applied to compensate for the lack of7

environmental representativity. In this study, we aimed to assess the effects of8

interspecific competition on the responses towards isoproturon of plant species9

representative of a vegetated filter strip community, and to assess its impact on10

the derived SSD and HC5 values. To do so, we realized bioassays confronting six11

herbaceous species to a gradient of isoproturon exposure in presence and absence12

of a competitor. Several modelling approaches were applied to see how they13

affected the results, using different critical effect concentrations and investigating14

different ways to handle multiple endpoints in SSD. At the species level, there15

was a strong trend toward organisms being more sensitive to isoproturon in16
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presence of a competitor than in its absence. At the community level, this trend17

was also observed in the SSDs and HC5 values were always lower in presence of18

a competitor (1.12 to 11.13 times lower, depending on the modelling approach).19

Our discussion questions the relevance of SSD and AF as currently applied in20

environmental risk assessment.21

1. Introduction22

Long-term anthropogenic activities disrupt the environment. Due to the23

complexity of the interactions between living organisms, the accurate evaluation24

of the effects of these disturbances is delicate. Environmental Risk Assessment25

(ERA) is used to quantify the risk posed by contaminants and other environ-26

mental perturbations to living organisms. It mainly consists in the derivation27

of Predicted Environmental Concentration (PEC) and their comparison to Pre-28

dicted No Effect Concentration (PNEC) to assess the risk of chemicals on the29

environment (Amiard and Amiard-Triquet [2015]). Assessment factors (AF) are30

applied to secure the procedure. Such AF take into account the lack of real-31

ism of some conditions of classical ecotoxicological experiments and thus aim32

to extrapolate to realistic environmental conditions by including biotic interac-33

tions, intraspecific variability or intra and interlaboratory variability (Amiard34

and Amiard-Triquet [2015]). The different ERA methods are divided in 4 tiers35

(Aagaard et al. [2013]), the higher tiers using more ecologically relevant data.36

Results from methods of higher tiers (i.e. more environmentally relevant meth-37

ods) are divided by lower AF than those obtained by lower tier methods.38

The Species Sensitivity Distribution (SSD; Kooijman [1987], Posthuma et al.39

[2001]) is a tier 2 ERA method made to produce PNEC at the community level40

for a given contaminant using data obtained from monospecific tier 1 bioassays.41

The SSD is a distribution of CECs (Critical Effect Concentrations such as Ef-42

fective Concentrations (EC) or Benchmark Doses (BMD)) obtained for different43

species for a given contaminant. The species under study have to be chosen to44
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be consistent with the mode of action of the studied contaminant and represen-45

tative of the considered environment (Van den Brink et al. [2006]). The SSD46

can lead to the derivation of the Hazardous Concentration for five percent of47

the species (HC5). This value, after application of an AF (ranging from 1 to 548

for SSDs; Amiard and Amiard-Triquet [2015]), is commonly used in SSD-based49

ERA (for example in the United States of America: Stephan et al. [1985] and50

the European Union: European Chemical Bureau [2003]). The SSD method is51

however based on several assumptions listed in Forbes and Calow [2002] that52

still need to be tested.53

In particular, very few attempts have been realized to test the effects of54

biotic interactions on organisms response against contaminants. In the field, or-55

ganisms are however affected by different types of biotic interactions that can be56

intra or interspecific. Those interactions can have positive (comensalism, sym-57

biosis or facilitation for example) or negative (competition for example) effects58

on the organism fitness. Biotic interactions can therefore lead to modifications59

of the effects of contaminants the organisms are exposed to. For example, Foit60

et al. [2012] used a dose-response design to test the effects of intra and inter-61

specific competition on Daphnia magna and Culex pipiens molestus response62

to fenvalerate. They found that competition tended to increase the toxic effect63

of fenvalerate on the two tested organisms and modified community dynam-64

ics, meaning that toxic exposure might disturb natural community for a longer65

period than predicted by monospecific bioassays alone. Gust et al. [2016] inves-66

tigated the effects of intraspecific competition on Daphnia magna’s tolerance to67

copper and lead using a dose-response design. They concluded that intraspe-68

cific competition tended to increase Daphnia magna mortality caused by Cu69

and Pb. Viaene et al. [2015] modeled the effects of intraspecific competition,70

interspecific competition by B. calyciflorus and predation by Chaoborus sp. (at71

low and high densities plus control for each type of biotic interaction) on the72

response of Daphnia magna against pyrene. They found that predation had the73

highest negative effect on daphnia density under chemical stress and that com-74

petition and predation tended to have antagonistic effects on daphnia tolerance75
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to pyrene. One of the hypothesis for this unexpected effect was that pyrene76

would have modified the community composition, leading to reduced negative77

biotic interactions. These studies all used macroinvertebrate species and mostly78

Daphnia magna, and their conclusions need to be extended to other taxonomic79

groups. For plants, which represent a key compartment of the ecosystems, very80

few studies have been conducted to test interaction effects between biotic inter-81

actions, such as competition, and chemical stress responses. Such a question is82

however essential for sessile organisms like plants, since they need to be toler-83

ant to all local negative environmental conditions to survive and maintain their84

population. Results mainly highlighted the existence of interactions between85

chemical stress responses and competitive interactions between plant species86

(Boutin et al. [2019], Damgaard et al. [2014]), reinforcing the need to take into87

account such biotic interactions in ERA procedures.88

To our knowledge the effects of biotic interactions on SSD results were in-89

vestigated in only one study by De Laender et al. [2008]. In this study, the90

effects of ecological interactions on SSD results were assessed by a mechanistic91

dynamic ecosystem model involving two phytoplancton, three zooplancton and92

one fish compartments and interspecific interactions between them (predation,93

competition...). A toxic effect submodel, embedded in the ecosytem model, de-94

scribed the effects of the toxicants on the parameters of the ecosystem model95

(potentially affected parameters were mortality rate for zooplancton and fish96

and photosynthesis rate for phytoplancton). One thousand theoretical contami-97

nants were used with randomized 10% effect concentration (EC10) values drawn98

from a log-normal distribution (SSD without taking ecological interactions into99

account). Those EC10 values were used in the mechanistic dynamic ecosys-100

tem model, thus simulating the subsequent modifications of the ecosystem fate.101

New EC10 values derived from those simulations were calculated to obtain SSD102

taking ecological interactions into account. For about 25% of those 1000 con-103

taminants (254) taking into account biotic interactions led to a change in mean104

(190), standard deviation (94) or both (30) of the SSD compared to the one105

derived from EC10 produced without taking into account those interactions.106

4



Moreover, results showed that this trend was higher for herbicides, implying,107

that the derived HC5 would have great chances to be different. However, this108

work needs to be confirmed by data-based studies and to be extended to other109

types of communities.110

Large amount of pesticides are used worldwide to treat a wide diversity of111

human-made systems. This is the case of croplands to ensure high agricultural112

productivity, but also of vegetated sport fields and green spaces, to control113

specific plant composition (Alavanja [2009]). Pesticides have effects on the tar-114

geted organisms within the treated areas but also on non-targeted organisms115

outside those areas (Crone et al. [2009]). Indeed, due to drift, leaching, and116

runoff, those contaminants are found in terrestrial (Geiger et al. [2010]) but117

also largely in aquatic ecosystems (Anderson et al. [2015], Annett et al. [2014],118

McMahon et al. [2012]). Isoproturon, for example, is a substituted urea photo-119

synthesis inhibitor, which is often used as a pre- and post-emergence herbicide in120

cereal crops. Before its banning in the EU in 2017 because of potential ground-121

water contamination and risks to aquatic life (European Commission [2016]),122

isoproturon showed a median concentration of 0.02 mg/kg of soil in investigated123

European agricultural soils (Silva et al. [2019]). The degradation and fate of124

isoproturon has also been studied. Johnson et al. [1994] showed that 7 days125

after isoproturon treatment, concentrations were about 9 mg/kg of soil, after 78126

days this concentration was about 1 mg/kg of soil and after 155 days this con-127

centration was above 0.5 mg/kg of soil. More generally, isoproturon was also128

found to contaminate rivers from one year to another (Dragon et al. [2019]),129

and to persist in the soil for at least 3 years after application allowing it to be130

mobilised by increasing rainwater (Johnson et al. [2001]). It is thus clear that131

a wide diversity of communities, within or outside pesticide-treated areas, are132

exposed to numerous pesticides, with concentrations ranging from residual to133

acute levels. But these communities, associating several species, are also the134

site of numerous biotic interactions, such as competition. This is particularly135

the case for plant communities, which, as sessile organisms, may thus be sub-136

mitted simultaneously to both pesticide exposure and potentially strong biotic137
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interactions. Plant communities are therefore a relevant community model to138

test the assumption: "Interactions between species do not influence the sen-139

sitivity distribution" highlighted by Forbes and Calow [2002] about the SSD140

method. Considering the studies listed above, we expected that 1) interspecific141

competition would have a negative effect on organism responses to toxicants in142

our study and that 2) the protective concentration for 95% of species would be143

lowered by interspecific competition. To test these assumptions, a dataset of144

monospecific bioassays results on 6 herbaceous species exposed to isoproturon145

in presence and absence of competition was produced. We then built SSDs146

with and without competition and compared them. For this purpose, we tried147

to characterize the effects of interspecific competition on SSD results using a148

variety of CECs as well as endpoints and ways to handle them.149

2. Materials and methods150

2.1. Dataset151

2.1.1. Tested species and competitor species152

Six herbaceous grass species were chosen as representative of a model vege-153

tated filter strip community. They were selected to represent the natural plant154

diversity existing in terms of isoproturon tolerance and of competitive abil-155

ity: Dactylis glomerata, Lolium multiflorum, Arrhenatherum elatius, Trisetum156

flavescens, Poa pratensis, Poa trivialis. Bromus erectus was chosen as a com-157

petitor species to ensure a competitor pressure as constant as possible along158

the experiment duration. All the seeds were obtained from the Phytosem seed159

company (Gap, Hautes-Alpes, France).160

2.1.2. Experimental design161

The pesticide used for exposure was isoproturon, a phenyl-urea photosystem162

II inhibitor. Despite its recent banning in EU, isoproturon environmental per-163

sistence, use in some no-EU countries, and common mode of action, similar to164

numerous worldwide used herbicides, still make this molecule a relevant pesti-165

cide model to study (Alberto et al. [2018], Eker [2019], Johnson et al. [2001]).166
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Ecotoxicological bioassays were realized for the six tested species and the two167

competition modalities (absence or presence of the competitor). Experiments168

were realized in microcosms under controlled conditions (20°C ; 16 hours day169

of light at 120µmol photons/m2/s). Three-liter-round microcosms (20 cm di-170

ameter, 12.9cm height) containing inert sterilized vermiculite as substrate were171

vegetalised by transferring seedlings at 2-leaves phenological stage previously172

grown from seeds in the absence of chemical stress. For each microcosm, one173

seedling of the tested species was placed at the center of the enclosure, and174

for the competition treatment, 37 seedlings of Bromus erectus were planted175

according to a standardized hexagonal pattern corresponding to 3 circles of,176

respectively, 6, 12, and 19 seedlings at equal distance (Birch et al. [2007]). Mi-177

crocosm contamination with isoproturon began after a 4-days acclimatization.178

Plant exposure to isoproturon was carried out by substrate watering in order to179

induce root chemical exposure. Continuous chemical stress was performed by180

watering the device with 150 mL of contaminated nutritive solution [Hoagland181

basal salt mix (No2, Caisson Laboratories, Smithfield, UT, USA) at 0.82 g/L,182

pH6] twice a week during the 25 days experiment. Five isoproturon (Cluzeau183

Indo Labo, Sainte Foy la Grande, France) concentrations (0.25, 0.5, 1, 1.5 and184

1.75 µM, corresponding to, respectively, 51.5, 103, 206, 309, and 360 µg/L) plus185

a control were used. For each concentration (6 concentrations including the186

control) and each competition modality (absence or presence of competitor),187

eight replicates were realized, leading to 96 microcosms per tested species.188

2.1.3. Studied endpoints and metrics189

At the end of the experiment, eleven endpoints were measured on the tested190

species, and an additional metric of dry mass (DM) ratio was calculated. These191

endpoints were chosen in order to detect the effects of the different treatments192

(herbicide exposure, competition) applied to the tested species in light of the193

literature. In addition to global traits (DM traits, shoot height, root length),194

some traits were preferentially chosen for their responses to herbicide (meximum195

efficiency of photosystem II determined from Fv/Fm, pigment contents), and to196
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competition (root/shoot DM ratio, Specific Leaf Area (SLA), Leaf Dry Mat-197

ter Content (LDMC), and ligula height corresponding to stem height). Fv/Fm198

chlorophyll fluorescence and pigment contents were measured as previously de-199

scribed in Serra et al. [2013]. SLA and LDMC were quantified as described200

in Cornelissen et al. [2003]. Bromus shoot dry biomass was also weighted, for201

each microcosm, at the end of the experiment. Analysis of these DM data202

showed that mean Bromus shoot DM was similar between species and isopro-203

turon treatments, thus allowing to compare all treatment modalities carried out204

in the experiment.205

2.2. Data analysis206

Critical Effect Concentration values are the elementary components neces-207

sary to build SSD. Those CECs were obtained following a stepwise procedure: 1)208

transformation of data for some endpoints, 2) selection of responsive endpoints209

for a given species, 3) fitting of concentration-response curves, 4) derivation of210

CEC values from the fits. The whole modelling process was implemented under211

the R environment (version 3.5.2; R Core Team [2019]).212

2.2.1. Data transformations213

Concentration-response curves fitting using non-linear regression assumes a214

Gaussian error model. Accordingly, the first step was to apply a transforma-215

tion on response for some endpoints as an attempt to improve homoscedastic-216

ity and residuals normality. For each endpoint, we built two ANOVA models217

where measured values were explained by species, competition modality and iso-218

proturon concentration combinations so that the remaining variability is only219

inter-replicate variability: one model was built with raw data and the other220

after transformation of the data.221

We then visually inspected the residuals of the models to see if the trans-222

formation improved homoscedasticity and residuals normality and in that case,223

we kept it. Different transformations were tested, depending on the considered224

endpoint. For the Fv/Fm chlorophyll fluorescence endpoint, which is a propor-225
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tion, we applied a logit transformation (log (p/ (1− p))) to change its scale, after226

having previously changed the 0 values (3 out of 471 Fv/Fm measurements) to227

0,01 (corresponding to about one fourth of the lowest non-zero value of 0,0395).228

For every other endpoint, a log transformation was tested.229

2.2.2. Selection of responsive endpoints230

Some of the measured endpoints did not present any variation against the231

isoproturon treatment. Concentration-response modelling was meaningless in232

such cases and led to numerical issues. A selection step was therefore applied233

to keep "responsive" endpoints for each species i.e. those that have exhibited234

variations according to isoproturon concentration. With six species, eleven end-235

points and two competition modalities, we had 132 subdatasets. It would have236

been complicated to inspect visually every subdataset to find the responsive237

ones. We thus decided to test for their responsivity numerically using the same238

procedure as in Larras et al. [2018]. We used a linear trend test to assess the239

significance of a regression line linking the endpoint values to the isoproturon240

concentrations. A Benjamini-Hochberg correction was applied on the p-values241

to reduce false positive selection, due to the high number of realized tests. A242

0.05 default threshold was used as false discovery rate. This procedure led to243

select different endpoints for each species. However, for a given species, an end-244

point was selected only if it was responsive with and without competition to245

enable a comparison of SSDs in both situations.246

2.2.3. Concentration-Response Curves modelling247

A concentration-response relationship was fitted on data for each selected248

endpoint, species and competition modality combination. Non-linear regressions249

were realized with the drc R package (version 3.0-1; Ritz et al. [2015]) using a250

log-probit model (see equation 1).251

yij = c+ (d− c) ∗ φ (b ∗ (log (xi)− log (e))) (1)
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where i refers to the ith isoproturon concentration and j refers to the jth repli-252

cate, xi is the isoproturon concentration, yij is the response level of the endpoint,253

φ is the cumulative probability density of the normal law, e is the concentra-254

tion at which the maximum slope occurs (equal to the EC50; > 0) b is a shape255

parameter. if b < 0, c is the response level at high concentrations and d is the256

response level at low concentrations. if b > 0, c is the response level at low257

concentrations and d is the response level at high concentrations. If b = 0, the258

whole model becomes a constant model set at the arithmetical mean between c259

and d.260

2.2.4. Critical Effect Concentration derivation261

For each dose-response curve, two types of CEC were calculated. First, the262

Effective Concentration which leads to x% of maximum effect (i.e. between the263

parameters c and d) (ECx), was calculated. It is the most commonly used CEC264

in ecotoxicology as it begins to be widely accepted that NOEC (No Observed265

Effect Concentration) and LOEC (Low Observed Effect Concentration) suffer266

from some important weaknesses (Jager [2012]). Although any x value could267

be used, we have here studied EC50, as it is the most widely used value in268

ecotoxicological studies and it is a direct parameter of the log-probit model we269

used, and EC10, as this value is often used as a no-effect concentration proxy in270

risk assessment (Iwasaki et al. [2015]).271

Secondly, we calculated the Benchmark Doses (BMDZsd) as an alternative to272

ECx. This CEC, described in the EFSA guidance (EFSA Scientific Committee273

et al. [2017]), has the advantage to take into account data variability. Indeed,274

the BMDZsd is the concentration at which the Benchmark Response (BMRZsd) is275

reached, the latter being equal to a change of z times the model residual standard276

deviation from the control mean. The z of BMDZsd is therefore theoretically277

speaking close to the x of ECx as it defines the level considered to have a critical278

effect. The EFSA guidance proposes to use a z value of 1 (EFSA Scientific279

Committee et al. [2017]), but we also calculated BMD2sd. This latter would280

correspond to a change up to one of the bounds of the 95% confidence interval281
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around the predicted value at the control (Larras et al. [2018]).282

2.2.5. SSD modelling283

SSDs were built via three different scenarios that are commonly used in284

scientific publications and regulatory texts. A fourth approach, adapted to our285

multiple endpoint dataset but not used in regulatory texts has also been tested.286

1) In a first scenario, the geometric mean of the obtained CECs for the different287

endpoints has been used for each species. This approach has the advantage to288

use all the information available for the different endpoints. This is also the289

most commonly used approach in SSDs in the literature (Xu et al. [2015]). 2)290

In a second scenario, we used the lowest CEC value obtained for each species.291

This method is very protective, but it is only using a single value, thus making292

it sensitive to potential outliers. 3) In a third scenario, only the total dry mass293

endpoint was considered for each species. This was a responsive endpoint for all294

of the species under study and is usually measured in ecotoxicological studies295

on herbaceous grass species (Del Signore et al. [2016]). 4) The fourth approach296

did not directly use CEC values. We first built sensitivity distributions of the297

different endpoints for each species (Arts et al. [2008], Hanson and Solomon298

[2002]) and called them "Endpoint Sensitivity Distribution" (ESD) by analogy299

to SSDs. We then calculated the fifth percentile of these distributions for each300

species as a protective concentration for 95% of the endpoints and used these301

values to build the SSDs themselves. This ESD-using approach was considered302

to be a good compromise between the two first approaches (i.e. the geometric303

mean approach and the lowest value approach) as it takes into account all of304

the available datapoints (like the geometric mean approach) but gives a more305

protective result (like the lowest value approach) without being too sensitive to306

outliers.307

SSDs have been modeled with log-logistic distributions. The fits were done308

using the fitdistcens function from the fitdistrplus R package (version 1.0-14;309

Delignette-Muller and Dutang [2015]) to integrate censored data and HC5 values310

were derived.311
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3. Results312

3.1. Data transformation313

After applying the procedure to chose which data to transform, the logit314

transformation was applied to Fv/Fm chlorophyll fluorescence and the log trans-315

formation to every other endpoints except chlorophyll and carotenoid contents.316

3.2. Selection of responsive endpoints317

Table 1 presents the results of the plant species screening and endpoint re-318

sponsiveness. Five to nine endpoints were selected depending on the species.319

Some endpoints were selected for all of the species. It is the case for Fv/Fm320

chlorophyll fluorescence and the dry masses of root, shoot and total. In con-321

trast, some endpoints were not responsive to isoproturon exposure, such as322

LDMC and pigment contents (Table 1). We noticed that some endpoints for323

some species were not selected because of the very high variability between324

replicates (for chlorophyll and carotenoid contents for example). In total, 42325

couples of (species, endpoint) were selected, leading to the construction of 84326

concentration-response curves (with and without competitor).327

Species P. trivialis P. pratensis T. flavescens A. elatius L. multiflorum D. glomerata

Ligula height X X X

Max shoot height X X X

Root length X X X X

LDMC X

SLA X X X X

Fv/Fm X X X X X X

Chlorophyll X

Carotenoid

Root DM X X X X X X

Shoot DM X X X X X X

Total DM X X X X X X

Root DM/shoot DM X X

12



Total selected 8 9 7 5 5 8

Table 1: Responsive endpoints for the different tested species. An "X" indicates that the

endpoint is considered responsive for the given species. DM stands for dry mass.

3.3. Concentration-response curves modelling328

Figure 1 shows an example of curve fitting for P. pratensis for the differ-329

ent selected endpoints. An example of fit for another species can be found in330

SI (A). No numerical errors were encountered with this fitting procedure and331

the models have been fitted correctly in every case. The different fits have332

been visually checked and were consistent with the data. For every endpoint,333

the concentration-response curve is decreasing with increasing isoproturon con-334

centrations, the only exception being SLA whose value is increasing with the335

isoproturon concentration.336

3.4. Critical Effect Concentration derivation337

Figure 1 also shows an example of CEC calculation for P. pratensis. The338

values of the different CECs calculated for the selected endpoints for each species339

can be found in SI (B). For BMD2sd, a value could not always be calculated340

as the BMRZsd was sometimes beyond the asymptote for high concentrations,341

meaning that the amplitude of the response was in that case lower than 2 (for342

BMD2sd) times the model’s residual standard deviation. This happened 12 times343

on 84 BMD2sd calculations and never happened for BMD1sd calculations even if344

it was conceptually possible. As the ECx effect level is a percentage of maximum345

effect (between the two asymptotes), it was successfully calculated in every case.346

There were however cases where the calculated ECx or BMDZsd were above the347

maximum concentrations. We considered those values as censored values in the348

interval [maximum tested dose; +∞ [. This happened 3 times among the 84349

calculated EC10, 20 times among the 84 calculated EC50 and 10 times among350

the 84 calculated BMD2sd. This did not happen for BMD1sd. Figure 2 shows the351

values of BMD1sd calculated for the different species and endpoints (an example352
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for another CEC given in SI (C)). In most cases, the calculated CEC values were353

lower in presence of a competitor, thus showing that interspecific competition354

had a negative impact on organisms tolerance on most of the studied species355

and endpoints.356

We calculated for each BMDZsd value the corresponding percentage of re-357

sponse (i.e. the x in ECx corresponding to each BMDZsd value). BMD1sd358

corresponded in average to EC29.7 values (interquartile range of x equivalent359

for BMD1sd: [16.5, 38.3]) whereas BMD2sd corresponded in average to EC49.0360

values (interquartile range of x equivalent for BMD2sd: [32.4, 64.3]).361

Figure 3 summarizes the CEC values calculated for the different CEC types,362

species and endpoints and displays the value with competition against the value363

without competition. All CEC being pooled, about 10% of points are between364

the two dashed lines, thus showing that, in this case, competition had here mi-365

nor or no effect (less than a 5% variation in one way or another). Many more366

points are below the dashed lines (70%) than above (20%), thus showing that367

interspecific competition had mostly a negative effect on organism tolerance to368

chemical stress in our experiment. This is consistent with the hypothesis stated369

in introduction. This trend toward negative effect can be seen for every calcu-370

lated CECs and every species and endpoints tested even if it is not systematic.371

This trend toward negative effect however seems less visible for EC50 (44%)372

than for other CECs (69% for EC10, 73% for BMD1sd and 74% for BMD2sd).373

3.5. ESD and SSD modelling374

An example of the fitted ESD for the different species for BMD1sd is shown375

in Figure 4. An exemple of figure for another CEC can be found in SI (D).376

Figure 5 shows examples of SSDs calculated from BMD1sd and using the different377

methods for handling multiple endpoints (minimum, mean, total dry mass and378

"ESD"). An example of SSD obtained for another CEC is shown in SI (E). Table379

2 summarizes the shifts between HC5 values with and without competition380

through the ratios between HC5 values without competition and HC5 values381

with competition. We can see in this table that every shift ratio was above one,382
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Figure 1: Examples of concentration-response fits for P. pratensis. The points represent

the mean of data for each concentration and the curves the fitted models. Data without

competition and with competition are highlighted in grey and black respectively. The dashed

vertical lines represent the EC50 levels and the plain vertical lines the BMD1sd levels. EC10

and BMD2sd are not displayed here for reasons of clarity. DM stands for dry mass.

thus showing that the interspecific competition tended to lower plant tolerance383

at the community level. We can also see that the competition effect can lower384

the HC5 up to 11-fold, which strongly surpasses the Assessment Factor of 5385

typically used in SSD-based ERA. This however happened only once and for386

the least robust method.387
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EC10 EC50 BMD1sd BMD2sd

Min value 0.112/0.011 (11.13) 0.285/0.231 (1.23) 0.212/0.101 (2.11) 0.261/0.218 (1.19)

Mean value 0.197/0.090 (2.19) 0.435/0.388 (1.12) 0.291/0.196 (1.48) 0.494/0.371 (1.33)

Dry mass 0.125/0.077 (1.63) 0.180/0.130 (1.38) 0.219/0.113 (1.94) 0.215/0.187 (1.15)

ESD 5th percentile 0.084/0.022 (3.84) 0.156/0.121 (1.29) 0.159/0.096 (1.66) 0.167/0.126 (1.33)

Table 2: Summary of HC5 values (in µM) for the different CEC and multiple endpoints

handling methods. The value before the slash is the HC5 without competition, the value after

the slash the HC5 with competition and the value between brackets the ratio between the two

HC5.
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Figure 2: BMD1sd values for the different species and endpoints. A black "X" indicates

that the endpoint was not selected for the considered species and that no CEC values was

calculated. The grey marks are the CEC values without competition and the black ones

are the values with competition. The lines linking those two marks for a given species and

endpoint combination are solid lines when competition had a negative effect on organisms

tolerance (CEC with competition lower than CEC without competition) and are dashed lines

when competition had a positive effect on organisms tolerance (CEC with competition higher

than CEC without competition), thus leading to rather facilitation for the species. DM stands

for dry mass.
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Figure 3: Comparison of calculated CEC values in presence of a competitor (y-axis) against

the CEC values in absence of a competitor (x-axis) for the four types of calculated CECs.

The different species and the different endpoints are respectively described by different point

shapes and by their shade of grey. The black solid line represents the first bisector and the two

black dashed lines give a 5 percent variation above and below the first bisector. We considered

that the points situated between those two dashed lines showed no variation with regard to

the competition modality. DM stands for dry mass.
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Figure 4: Example of Endpoint Sensitivity Distribution fits for BMD1sd and the six tested

species. The stairs represents the empirical cumulative distribution function of the data used

to model the ESDs and the curves gives the ESDs themselves. In grey are the data without

competition and in black the data with competition. The vertical dashed lines represent the

fifth percentile.
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Figure 5: Example of Species Sensitivity Distribution fits produced with BMD1sd. The stairs

represents the empirical cumulative distribution function of the data used to model the SSDs

and the curves give the SSDs themselves. In grey are the data without competition and in

black the data with competition. The vertical dashed lines represent the HC5 levels. Each

graphic displays a way to handle multiple endpoints: "Dry mass" is the SSD produced using

the total dry mass for each species, "ESD" is the SSD produced using the 5th percentile from

Endpoint Sensitivity Distribution of each species, "Mean" is the SSD produced using the

mean value for each species and "Minimum" is the SSD produced using the minimum value

for each species.
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4. Discussion388

4.1. Ecotoxicological relevance of bioassays389

Usual ecotoxicological designs for plants only monitor very few endpoints390

as root length (ISO/TC 190/SC 4 Caractérisation biologique [2012]) or mass391

and seedling emergence (OCDE [2006]) and consider they are either represen-392

tative of the organism health (total dry mass for example) or they are primary393

maker in response to contamination compared to the other possible endpoints394

and are thus involved in the plant health (Krewski et al. [2011]). Among the395

eleven (or twelve if including the DM ratio, cf Table 1) endpoints measured, dry396

mass endpoints were found responsive to chemical stress for every species, thus397

reflecting plant health in accordance with the literature. In this study, CECs398

related to dry masses were often the lowest among the different endpoints for399

each species (Figure 2), advocating for their use in environmental risk assess-400

ment. The Fv/Fm photosystem II efficiency endpoint was also responsive to401

herbicide exposure. This endpoint, with regards to the mode of action of iso-402

proturon which specifically inhibits photosystem II reaction center (Grouselle403

et al. [1995]), is thus a relevant early endpoint to monitor such specific con-404

taminations in plants. In our study, pigment content endpoints exhibited low405

responsiveness compared to previous works using photosystem II inhibitor her-406

bicides (Ramel et al. [2009], Sulmon et al. [2004]). LDMC was also found weakly407

responsive to chemical exposure, confirming that this parameter was not rele-408

vant for plant ecotoxicity tests. Finally, the responsiveness of Root/Shoot DM409

ratio, SLA, and of length endpoints was found to be species specific underlying410

the involvement of species specific pattern of organ allocation in response to411

stress (Eziz et al. [2017], Xiong et al. [2018]).412

A similar pattern of responses was observed for some of the endpoints. These413

different groups of endpoints could be discriminated based on their responsive-414

ness in the different species as well as the ranking of species in terms of tolerance.415

A first group contained the ligula height, the maximum shoot height and the416

root length. They were indeed selected for the same species: D. glomerata, P.417
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pratensis, P. trivialis (root length was also selected for A. elatius) (Table 1).418

These endpoints also shared the same tolerance ranking for concerned species:419

D. glomerata > P. pratensis > P. trivialis (Figure 2). A second group gath-420

ered the dry masses (root, shoot and total) and concerned all species (Table421

1). Again, a common tolerance ranking was observed: L. multiflorum > D.422

glomerata > A. elatius > P. pratensis > P. trivialis. The tolerance values of T.423

flavescens was however more variable between those different endpoints. Shoot424

and total dry masses were also the only endpoints where a clear positive effect425

of competition on tolerance was visible on Figure 2 for L. multiflorum.426

Our experimental design allowed to test the effects of competition on the427

responses of tested species to chemical stress. As Bromus erectus was pre-428

identified as the most tolerant to isoproturon and the most competitive species,429

it was used as competitor to ensure a constant competition pressure. The com-430

petition tested was thus interspecific competition. One could possibly argue431

that the competition effects identified could not be differentiated from intraspe-432

cific competition. Indeed, an interesting experimental design would have been433

to also test intraspecific competition by exposing the tested species in presence434

of other individuals of the same species. However, aside from the fact that it435

would have considerably overburdened the experimental design, it would then436

have been impossible to interpret correctly the results as the different species437

display different competitive abilities and isoproturon tolerances. At high iso-438

proturon concentrations, species with low tolerance would have been highly439

affected, thus resulting in a reduced competition pressure.440

4.2. Relevance of SSD approaches in the context of ERA441

The number of species used in this study is under the classical SSD standards.442

However, 6 species are enough regarding regulatory guidance of some countries443

such as Australia and New Zealand (Australian and New Zealand Environment444

and Conservation Council and Agriculture and Resource Management Council445

of Australia and New Zealand [2000]; minimum 5 species). Forbes and Calow446

[2002] have also proposed that the quality of data is at least as important as its447
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quantity and the fact that the six species studied here come from a consistent448

community and that several endpoints have been measured for each may be449

arguments in favor of the quality of our dataset. Finally, the built SSDs are not450

intended to have a direct regulatory use but to address the effect of interspecific451

competition on SSD. Even with only six species, our study was able to provide452

some insight about this question.453

Our study used a great number of endpoints. Such approach provides new454

insights to assess the importance of measured endpoints in ERA through our455

innovative proposal for handling multiple endpoints. Indeed, by mixing several456

endpoints at once in our SSD building, we challenged their relevance and their457

relative individual sensitivity. It seems important to note that the effect of using458

different endpoints and ways to combine them into SSDs have not been studied459

yet (Del Signore et al. [2016]). Our results showed that HC5 calculated with460

the ESD 5th percentile was the lowest for 7 of the 8 CEC types and competition461

modalities (Table 2). Its constructions should also ensure that it is robust462

towards potential outliers. Regulatory guidances usually propose to use the463

minimum values or the geometric mean of the different values for each species464

to build SSDs, the latter being the most commonly used in practice. In light465

of our work, the 5th percentile from ESD method we investigated here could466

be proposed as a decent alternative. This method is however not applicable467

if the number of endpoints is low (≤ 5). Such a method would also allow to468

construct more realistic SSD, adjustable to target communities, and suitable to469

the diversity of contaminants and related mixtures found in ecosystems. Indeed,470

using a larger set of endpoints enables to include general, species specific, and471

also contaminant specific endpoints, regarding both community diversity and472

contaminant mode of action.473

Another issue is the question of the "non-responsive" endpoints. We made474

the choice to exclude them from the analysis, considering that they would not475

present a response to the isoproturon concentration, even above the maximum476

concentration of our experimental design. Excluding those data from our dataset477

could lead to possible biases. Indeed, this exclusion implies that they are not478
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relevant for our study whereas they may be only sparsely or not at all sensitive,479

thus meaning we may underestimate the total tolerance of tested species and480

related community.481

An interesting continuation of this work would be to set up this experimen-482

tation again using other pesticides, especially not banned ones as isoproturon483

is. This would be of great help to assess if our conclusions on isoproturon could484

be extended to other compounds or if the responses we observed were specific,485

notably concerning the selection of "responsive" endpoints. It would also sup-486

port the potential need to measure more endpoints to assess the plant health487

and give new insights on the ESD method we propose.488

Interspecific competition had a negative effect on organism responses to489

chemical stress, as shown by the different CEC values calculated. It can also490

be seen in Table 2 that this negative effect was propagated from single CEC491

values to HC5 produced from SSDs. The effect of interspecific competition we492

evidenced is robust, since HC5 values always exhibited the same trend, even493

if its intensity depended on the CEC that was used and on the multiple end-494

points handling method. Those results are consistent with the fact that, in495

SSDs, biotic interactions should have important effects on organism responses496

to herbicides and other pesticides targeting low trophic levels (De Laender et al.497

[2008]). Competition effect is not taken into account in the first two tiers of ERA498

as the first consists in using the lowest CEC of classical bioassays and the sec-499

ond in incorporating those bioassay results in predictive models. It is however500

included in the other tiers as those tiers are not based on monospecific bioas-501

says. The third ERA tier uses results from experiments in mesocosms where502

different species coexist. Those species are therefore interacting with each other503

and biotic interactions are occurring. The fourth ERA tier uses data from real504

ecosystems and is therefore considered as the most environmentally relevant by505

integrating real interactions and sources of variability. Those two tiers how-506

ever consider data from specific environments and conclusions can be difficult507

to expand to other situations.508
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5. Conclusion509

This study showed that competitive interactions affected, both at the species510

level (bioassays results) and the community level (SSD results), the responses of511

plants to isoproturon. Such results thus highlight the relevance of accounting for512

biotic interactions to construct SSD models in a context of community dynamics513

prediction and of ERA. SSDs could thus be used more efficiently to design and514

predict the evolution of key plant communities, such as vegetated filter strips.515

They are indeed natural or sown plant communities whose function is to protect516

aquatic ecosystems by preventing pesticide leaching from crops to surrounding517

rivers. Installation of these grass strips between croplands and rivers is now518

regulatory (European Council [1991]). In this context, SSD models could be a519

relevant tool to predict plant community dynamics under conditions of recurrent520

pesticide exposures, in order to design and maintain functional buffer grass521

strips. More data are however necessary to assess these points and research522

must be carried on those topics.523

Associated content524

Supporting information. SI A: Example of concentration-response fits for525

L. multiflorum; SI B: Table of all the CEC values calculated; SI C: Graphical526

summary of EC50 values; SI D: ESD produced with EC50 values; SI E: SSD527

produced with EC50 values.528

Figures equivalent to Fig 1 but for other species and figures equivalent to529

Fig 2, 4 and 5 but for other CEC are available upon request to the authors.530
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