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ABSTRACT

The plant microbiota may differ depending on soil type, but these microbiota probably share
the same functions necessary for holobiont fitness. Thus, we tested the hypothesis that
phytostimulatory microbial functional groups are likely to co-occur in the rhizosphere, using
groups corresponding to nitrogen fixation (nifH) and l-aminocyclopropane-1-carboxylate
deamination (acdS), i.e. two key modes of action in plant-beneficial rhizobacteria. The analysis
of three maize fields in two consecutive years showed that quantitative PCR numbers of nifH
and of acdsS alleles differed according to field site, but a positive correlation was found overall
when comparing nifH and acdS numbers. Metabarcoding analyses in the second year indicated
that the diversity level of acdS but not nifH rhizobacteria in the rhizosphere differed across
fields. Furthermore, between-class analysis showed that the three sites differed from one
another based on nifH or acdS sequence data (or rrs data), and the bacterial genera contributing
most to field differentiation were not the same for the three bacterial groups. However, co-
inertia analysis indicated that the genetic structures of both functional groups and of the whole
bacterial community were similar across the three fields. Therefore, results point to co-selection
of rhizobacteria harboring nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate

deamination abilities.

Keywords: microbiota; phytostimulation; functional group; functional microbiota; holobiont;

ITSNTS theory
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INTRODUCTION

Plant Growth-Promoting Rhizobacteria (PGPR) colonize plant roots and implement a range of
plant-beneficial traits, which may result in enhanced plant development, nutrition, health and/or
stress tolerance (Almario et al. 2014; Cormier et al. 2016; Gamalero and Glick 2015; Hartman
et al. 2018; Vacheron et al. 2013). As a consequence, PGPR strains have received extensive
attention for use as microbial inoculants of crops (Bashan et al. 2014; Couillerot et al. 2013).

Plant-beneficial effects exhibited by PGPR are underpinned by a wide range of modes
of actions, which include (i) enhanced nutrient availability via associative nitrogen fixation
(Puri et al. 2016, Deynze et al. 2018) or phosphate solubilization (Arruda et al. 2013), (ii)
stimulation of root system establishment through phytohormone synthesis (Cassan et al. 2014)
or consumption of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) via an
enzymatic deamination (Glick 2014), and (iii) the induction of systemic resistance responses in
plant (Pieterse and Van Wees 2015). In addition to phytostimulation, certain PGPR may also
achieve inhibition of phytoparasites using antimicrobial secondary metabolites (Agaras et al.
2015) or lytic enzymes (Pieterse and Van Wees 2015). Often, PGPR strains display more than
one phytostimulatory mode of action, which is considered important for effective plant-
beneficial effects (Bashan and de-Bashan 2010; Bruto et al. 2014; Rana et al. 2011; Vacheron
et al. 2017). Therefore, the co-occurrence of multiple phytostimulation traits is likely to have
been subjected to positive evolutionary selection in PGPR populations to maximize success of
the plant-PGPR cooperation. This hypothesis is substantiated by genome sequence analysis of
many prominent PGPR strains from contrasted taxa (Bertalan et al. 2009; Chen et al. 2007,
Redondo-Nieto et al. 2013; Wisniewski-Dy¢ et al. 2012).

Even though PGPR strains tend to accumulate several plant-beneficial traits (Bruto et

al. 2014), the co-occurrence patterns of these traits are not random. This takes place in part
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because many past horizontal gene transfers of the corresponding genes were ancient (Frapolli
et al. 2012), often leading to clade-specific profiles of plant-beneficial traits (Bruto et al. 2014).
However, the analysis of 304 proteobacterial genomes from contrasted taxa evidenced, overall,
the co-occurrence of nifHDK (nitrogen fixation) and acdS (ACC deamination) based on Exact-
Fisher pairwise tests (Bruto et al. 2014), raising the possibility that nitrogen fixation and ACC
deamination might be useful traits when combined in a bacterium. Indeed, nitrogen fixation and
ACC deamination occur together in various rhizobacteria (Blaha et al. 2006; Duan et al. 2009;
Jha et al. 2012; Ma, Guinel, and Glick, 2003; Nukui et al. 2006), but the relation between both
traits can be complex. In Azospirillum lipoferum 4B for instance, the plasmid-borne gene acdS
is eliminated during phase variation while nif genes are maintained (Prigent-Combaret et al.
2008), and in Mesorhizobium loti transcription of acdS is controlled by the nitrogen fixation
regulator gene nifA2 (Nukui et al. 2006). Moreover, ACC deamination was described as
facilitator of the legume-rhizobia symbiosis (Ma et al. 2003; Nascimento et al. 2012).

At the scale of an individual plant, the rhizosphere is colonized by a diversified range
of bacteria, including nifH acdS bacteria as well as bacteria harboring only nifH or acdS (Blaha
et al. 2006; Bouffaud et al. 2018). There is additional level of complexity in that many of these
bacteria are PGPR, but some of them are not (Bruto et al. 2014). However, the overall impact
of nitrogen fixation and ACC deamination on the plant is likely to be the sum of the contribution
of individual root-colonizing bacteria displaying these traits. This raises the question whether
there is, for the plant, an optimal balance between the functional microbial groups of nifH
rhizobacteria and acdS rhizobacteria in the rhizosphere. On this basis, we tested here the
hypothesis that rhizobacteria with either nitrogen fixation ability or ACC deamination ability
(or with both) co-occur on roots. For that purpose, we used three maize fields under reduced
nitrogen fertilization practices, with samplings carried out at 6-leaf and flowering stages during

two consecutive years, and numbers of nifH and acdS rhizobacteria were monitored by

4
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quantitative PCR. In addition, nifH and acdS rhizobacteria were assessed by metabarcoding
(MiSeq Illumina sequencing) of nifH and acdS genes at one sampling, in parallel to sequencing

of 16S rRNA genes for the whole rhizobacterial community.

2. MATERIALS AND METHODS

2.1. Field experiment

The experiment was conducted in 2014 and 2015 at field sites located in Chatonnay (L),
Sérézin-de-la-Tour (FC) and Saint Savin (C), near the town of Bourgoin-Jallieu (Isére, France).
According to the FAO soil reference base, L field corresponds to a luvisol, FC a fluvic cambisol
and C a calcisol (Table 1). The trial set-up has been described in Rozier et al. (2017).

For each of the fields, the crop rotation consists in one year wheat, six years maize and
one year rapeseed, and wheat was grown the year before the 2014 experiment. The maize
sowing season ranges from middle April to middle May in the area. Maize seeds (Zea mays
‘Seiddi’; Dauphinoise Company, France) were sown on April 18 (FC) and 23 (Cand L) in 2014
and April 30 (C) and May 11 (FC and L) in 2015. Five replicate plots, which were 12 (FC and
C) or 8 (L) maize rows wide and 12 m long, were defined in each field. The fields were
undergoing a reduction in chemical fertilization usage and did not receive any nitrogen
fertilizers in 2014 and 2015. Only non-inoculated plots from the overall trial (Rozier et al. 2017)

were used.

2.2. Plant sampling
In 2014 and 2015, plants were sampled at six leaves and at flowering. In 2014, the first sampling
was done on May 25 (FC) and 26 (C and L). On each replicate plot, six plants were chosen

randomly, the entire root system was dug up and shaken vigorously to dislodge soil loosely
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adhering to the roots. At sites FC and C, one pooled sample of six roots system was obtained
per plot, i.e. a total of five pooled samples per field site. At site L, each of the six roots system
was treated individually to obtain 30 samples. The second sampling was done on July 8 (FC
and C) and 9 (L), on all five plots. Six plants were sampled per plot and treated individually to
obtain 30 samples per field site.

In 2015, the first sampling was done on May 27 (C), June 5 (FC) and June 8 (L). In each
replicate plot, four root systems were sampled and treated individually to obtain 20 samples per
field site. The second sampling was done on July 15 (C), 16 (FC) and 17 (L), and four root
systems were sampled and treated individually to obtain 20 samples per field site.

Each sample was immediately flash-frozen on site, in liquid nitrogen, and lyophilized
back at the laboratory (at -50°C for 24 h). Roots and their adhering soil were separated and the

latter stored at -80°C.

2.3. DNA extraction from root-adhering soil

DNA from root-adhering soil was extracted with the FastDNA SPIN kit (BIO 101 Inc.,
Carlsbad, CA). To this end, 500 mg (for the pooled samples from FC and C in 2014) or 300 mg
samples (for all other samples) were transferred in Lysing Matrix E tubes from the kit, and 5 pl
of the internal standard APA9 (10° copies ml-') was added to each Lysing Matrix E tube to
normalize DNA extraction efficiencies between rhizosphere samples, as described (Park and
Crowley, 2005; Couillerot et al. 2010). This internal standard APA9 (i.e. vector pUC19 with
cassava virus insert; GenBank accession number AJ427910) requires primers AVIf
(CACCATGTCGAAGCGACCAGGAGATATCATC) and AVlr
(TTTCGATTTGTGACGTGGACAGTGGGGGC). After 1 h incubation at 4°C, DNA was
extracted and eluted in 50 pl of sterile ultra-pure water, according to the manufacturer’s

instructions. DNA concentrations were assessed by Picogreen (ThermoFisher).

6
ScholarOne Support 1-434/964-4100



oNOYTULT D WN =

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

FEMS Microbiology Ecology

2.4. Size of microbial functional groups

The amounts of nifH genes were estimated by quantitative PCR based on the primers polF/polR
(Poly, Jocteur Monrozier, and Bally, 2001), as described by Bouffaud et al. (2016). The reaction
was carried out in 20 pl containing 4 pl of PCR-grade water, 1 pl of each primer (final
concentration 0.50 uM), 10 pl of LightCycler-DNA Master SYBR Green I master mix (Roche
Applied Science, Meylan, France) and 2 pl of sample DNA (10 pg). The cycling program
included 10 min incubation at 95°C, followed by 50 cycles of 95°C for 15 s, 64°C for 15 s and
72°C for 10 s. Melting curve calculation and Tm determination were performed using the Tm
Calling Analysis module of Light-Cycler Software v.1.5 (Roche Applied Science).

The amount of acdS genes was estimated by quantitative PCR based on the primers
acdSF5/acdSR8 (Bouffaud et al. 2018). The reaction was carried out in 20 pl containing 4 pl of
PCR grade water, 1 pl of each primer (final concentration 1 uM), 10 ul of LightCycler-DNA
Master SYBR Green I master mix (Roche Applied Science) and 2 pl of sample DNA (10 pg).
The cycling program included 10 min incubation at 95°C, followed by 50 cycles of 94°C for
15s,67°C for 15 s and 72°C for 10 s. The fusion program for melting curve analysis is described
above.

Real-time PCR quantification data were converted to gene copy number per gram of

lyophilized root-adhering soil, as described (Bouffaud et al. 2018; Bouffaud et al. 2016).

2.5. nifH, acdS and rrs sequencing from rhizosphere DNA

Sequencing was performed on 2015’ samples taken when maize reached 6 leaves. Each sample
was an equimolar composite sample of four DNA extracts obtained from root-adherent soil,
resulting in 5 samples per field site, i.e. a total of 15 samples. DNA extracts were sent to MR

DNA laboratory (www.mrdnalab.com; Shallowater, TX) for sequencing.
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For nifH and acdS sequencing, PCR primers were the same ones used for quantitative
PCR (i.e., polF/polR for nifH and acdSF5/acdSR8 for acdS). For rrs sequencing, PCR primers
515/806 were chosen for the V4 variable region of the 16S rRNA gene. For all three genes, the
forward primer carried a barcode. Primers were used in a 30-cycle PCR (5 cycles implemented
on PCR products), using the HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA) under
the following conditions: 94°C for 3 min, followed by 28 cycles of 94°C for 30 s, 53°C for 40
s and 72°C for 1 min, with a final elongation step at 72°C for 5 min. PCR products were checked
in 2% agarose gel to determine amplification success and relative band intensity. Multiple
samples were pooled together in equal proportions based on their molecular weight and DNA
concentrations. Pooled samples were purified using calibrated Ampure XP beads and used to
prepare a DNA library following Illumina TruSeq DNA library preparation protocol.
Sequencing was performed on a MiSeq following the manufacturer’s guidelines.

Sequence data were processed using the analysis pipeline of MR DNA. Briefly,
sequences were depleted of barcodes, sequences < 150 bp or with ambiguous base calls
removed, the remaining sequences denoised, operational taxonomic units (OTUs; defined at
3% divergence threshold for the three genes) generated, and chimeras removed. Final OTUs
were taxonomically classified using BLASTn against a curated database derived from
Greengenes (DeSantis et al. 2006), RDPII (http://rdp.cme.msu.edu) and NCBI
(www.ncbi.nlm.nih.gov). Final OTUs of the acdS sequencing were classified using an in-house
curated acdS database, obtained after curation of acdS homolog genes from the FunGene acdS
8.3 database, as described by Bouffaud et al. (2018). Diversity indices of Shannon (H) and
Simpson (1-D) were calculated using sequencing subsample data for which each sample had
the same number of sequences.

An acdS phylogenetic tree (based on maximum-likelihood method) was computed using

acdS sequences from ten arbitrarily-chosen OTUs per genus recovered in our sequencing data

8
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and from one reference taxa for each genus, and related D-cystein desulfthydrase genes D-
cystein desulthydrase genes from strains Escherichia coli strains K-12, ER3413, 042 and
RM9387, Escherichia albertii KF1, Escherichia fergusonii ATCC 35469, Enterobacter
sacchari SP1, Enterobacter cloacae ECNIH2, Enterobacter asburiae L1, Enterobacter sp. 638

and Enterobacter lignolyticus SCF1 (used as out-group).

2.6. Statistical analysis

Statistical analysis of quantitative PCR data was carried out by ANOVA and Fishers’ LSD tests.
For each gene sequenced, comparison of bacterial diversity between field sites was carried out
by Between-Class Analysis (BCA) using ADE4 (Chessel et al. 2004; Culhane et al. 2005; Dray,
Dufour, and Chessel, 2007) and ggplot2 packages for R, and the 12 genera contributing most
to field site differentiation were identified. To assess co-trends between nifH and acdS
variables, as well as between rrs and nifH or acdS variables, sequence data were also assessed
using co-inertia analysis (CIA) (Dray et al. 2003; Dray et al. 2007), which was computed with
the ADE4 package in the R statistical software environment (Culhane et al. 2005). CIA is a
dimensional reduction procedure designed to measure the similarity of two sets of variables,
here the proportions of nifH and acdS bacterial genera obtained during between-class analyses.
Its significance was assessed using Monte-Carlo tests with 10,000 permutations. Unless
otherwise stated, statistical analyses were performed using R v3.1.3 (Team, 2014), at P < 0.05

level.

2.7. Nucleotide sequence accession numbers
[Nlumina MiSeq paired-end reads have been deposited in the European Bioinformatics Institute
(EBI) database under accession numbers PRJEB14347 (ERP015984) for rrs; PRJEB14346

(ERP015983) for nifH, PRIEB14343 (ERP015981) for acds.
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3. RESULTS

3.1. Relation between numbers of nifH and acdS alleles in the three field sites
The number of acdS bacteria in the rhizosphere of maize harvested at 6-leaf stage in 2014 (7.87
to 17.4 x 107 acdS gene copies g of dry soil) and 2015 (1.76 to 2.81 x 107 acdS gene copies
g'! of dry soil) did not differ significantly between field sites (Figure 1AB). At flowering stage,
however, the number of acdS bacteria differed from one site to the next, both in 2014 and in
2015 (Figure 1EF). At that growth stage, the lowest rhizosphere abundance was observed in
site L (5.08 x 107 acdS gene copies g! of dry soil) and the highest in site C (1.76 x 103 acdS
gene copies g-! of dry soil) in 2014, whereas site ranking was the opposite in 2015 (8.35 versus
44.0 x 10° acdS gene copies g™ of dry soil for sites C and L, respectively).

The numbers of nifH rhizobacteria differed according to field site (Figure 1ICDGH). In
2014, the lowest nifH abundance was observed in rhizospheres of site L (1.06 and 20.8 x 107
nifH gene copies g'!' of dry soil at respectively six leaves and flowering) and the highest in those
of site C (6.43 and 147.0 x 107 nifH gene copies g'! of dry soil at respectively six leaves and
flowering) (Figure 1CG). In 2015, the numbers of nifH rhizobacteria was higher in site C (9.31
x 10% nifH gene copies g'! of dry soil) than in FC (1.30 x 108 nifH gene copies g*!' of dry soil)
and L (2.52 x 10% nifH gene copies g! of dry soil) at six leaves, whereas the situation was
opposite at flowering, with higher abundance in site L (40.7 x 107 nifH gene copies g'! of dry
soil) than C (9.81 x 107 nifH gene copies g! of dry soil) and FC (5.66 x 107 nifH gene copies
g'! of dry soil) (Figure 1DH).

When comparing the log numbers of nifH rhizobacteria and acdS rhizobacteria across
the 12 site x sampling combinations, significant (3.8 x 10 < P < 0.01) positive correlations

(0.67 <r<0.98, n =20) were found in 9 of 12 cases, with only three correlations that were not
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significant, i.e. in site C at 6-leaf stage in 2014 (P = 0.10, n = 5) and FC at flowering in 2014
(P=0.67,n=5)and 2015 (P =0.19, n = 20) (Figure 2). In summary, moderate but significant
differences in the numbers of nifH and/or acdS rhizobacteria could take place according to field
site, sampling year and/or maize phenology, and in most cases a positive correlation was found

between the log values of both numbers.

3.2. Relation between diversities of nifH and acdS alleles in the three field sites

[Nlumina MiSeq sequencing of nifH and acdS (as well as rrs) was carried out on 15 rhizosphere
samples from 6-leaf maize grown in 2015. For nifH, 1,342,966 reads were obtained (10,775 to
62,752 sequences per sample), for a total of 36,241 OTUs. Rarefaction analysis showed that
curves reached a plateau (Figure S1A). Subsampling was done with 10,775 sequences per
sample, for a total 0of 34,459 OTUs. For acds, 5,490,230 reads were obtained (68,376 to 139,245
sequences per sample), with a total of 32,468 OTUs. Rarefaction curves reached a plateau
(Figure SI1B). Subsampling was done with 68,376 sequences per sample, for a total of 26,246
OTUs. After quality filtering, 6,082,255 reads were obtained for rrs (51,696 to 223,926
sequences per sample), giving a total of 39,600 OTUs (3% cut-off). Rarefaction analysis
showed that the sequencing effort captured most of the diversity with curves reaching a plateau
(Figure S1C). Subsampling was done with 51,696 sequences per sample, for a total of 25,437
OTUs.

The effect of field site on nifH diversity of diazotrophic bacteria was not significant
based on analysis of Shannon and Simpson indices. Conversely, the effect of field site on acdS
diversity of ACC deaminase bacteria was significant based on the Shannon (P = 1.9. x 104)
and Simpson indices (P = 8.6 x 10*#). The Shannon index was lower in FC (6.32) than in L
(6.82) and C (6.92), whereas the Simpson index was higher in FC (6.42 x 10-3) than in L (2.88

x 10-3) and C (2.38 x 1073). The effect of field site on rrs diversity of the total bacterial
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community was significant based on the Shannon (P = 1.8 x 10-%) and Simpson indices (P =1.6
x 10-4). As in the case of acdS data, the Shannon index was lower in FC (7.20) than in L (7.41)
and C (7.71), whereas the Simpson index was higher in FC (3.42 x 10%) than in L (2.28 x 10"
3) and C (1.40 x 1073).

The correlation (n = 5) between nifH diversity and acdS diversity was positive and
significant at site L, when considering both the Shannon index (r = 0.98 ; P = 0.01; Figure 3)
and the Simpson index (r = 0.86 ; P = 0.06; Figure 3). However, the correlation was not
significant at the other two sites, regardless of the diversity index. When considering also rrs
diversity, a significant correlation was found only with nifH diversity at site C (r =091 ; P =
0.03; Figure 3). In summary, there was no relation between the diversities of nifH rhizobacteria
and acdS rhizobacteria, based on comparison of diversity indices in the three field sites and

correlation analyses at two of the three field sites.
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3.3. Relation between prevalence of nifH and/or acdS rhizobacterial taxa in the three field
sites

Between-class analysis of nifH data showed that the composition of diazotrophic bacteria
differed according to field site (Figure 4A). The first axis (54% of between-class variability)
distinguished site C from FC and L, and the 12 genera contributing most to this differentiation
were Xanthobacter, Dechloromonas, Methyloferula, Ideonella, Nitrospirillum and Tolumonas
(more prevalent in C than in L and FC), as well as Desulfovibrio, Selenomonas,
Ruminiclostridium, Paludibacter, Gloeocapsopsis and Ruminococcus (less prevalent in C than
in FC and L). The second axis (46% of between-class variability) distinguished site L from the
two other sites, and the 12 genera contributing most to this differentiation included Rhizobium,
Gluconacetobacter, Skermanella, Leptothrix, Streptomyces and Methylocapsa (more prevalent
in L than in FC and C), as well as Marichromatium, Pelobacter, Gordonibacter, Desulfobulbus,
Desulfovibrio and Sideroxydan (less prevalent in L than in C and FC).

Between-class analysis of acdS data showed that the composition of ACC deaminase
bacteria differed according to field site (Figure 4B). The first axis (66% of between-class
variability) distinguished site C from FC and L, and the 12 genera contributing most to this
differentiation were Achromobacter, Azospirillum, Pseudolabrys, Roseovarius, one unassigned
OTU and Polaromonas (more prevalent in C than in L and FC), as well as Cupriavidus,
Burkholderia, Bosea, Bradyrhizobium and Methylobacterium (less prevalent in C than in FC
and L). The second axis (34% of between-class variability) distinguished each of the three sites
from one another, and the 12 genera contributing most to this differentiation included
Azorhizobium, Pseudomonas, Gluconobacter, Collimonas, Herbaspirillum and Burkholderia
(more prevalent in FC than in C and L), as well as Ralstonia, Loktanella, Devosia, Variovorax,

Novosphingobium and Chelatococcus (more prevalent in L than in C and FC).
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Between-class analysis of rrs data showed that the composition of the total bacterial
community differed according to field site (Figure 4C). The first axis (71% of between-class
variability) distinguished C from the two other sites, and the 12 genera contributing most to this
differentiation were Algisphaera, Fibrobacter, Amaricoccus, Hirschia, Desulfacinum and
Saccharophagus (more prevalent in C than in L and FC), as well as Actinomadura, Lutispora,
Bacillus, Rhodopseudomonas, Kouleothrix and Roseiflexus (less prevalent in C than in FC and
L). The second axis (29% of between-class variability) distinguished site L from FC and C, and
the 12 genera contributing most to this differentiation included Flavobacterium,
Gluconobacter, Maricaulis, Prolixibacter, ‘Candidatus Xiphinematobacter’, Chthoniobacter
(more prevalent in FC than L), as well as Conexibacter, Hyphomicrobium, Pseudonocardia,
Tumebacillus, Chelatococcus and Mycobacterium (less prevalent in FC than in L).

In summary, between-class analysis of nifH and acdS data indicated that the
composition of diazotrophic bacteria and of ACC deaminase bacteria differed according to field
site, but the main discriminant genera differed completely for both types of bacteria. In both
cases, the discriminant taxa were also different from the main range of bacterial taxa
distinguishing the three sites most when comparing the latter based on rrs data, at the scale of

the entire rhizobacterial community.

3.4. Relation between the genetic structures of nifH and acdS rhizobacteria in the three
field sites

Since there was a positive correlation between log numbers of nifH and/or acdS rhizobacteria
but the corresponding bacterial genera discriminating most between the three fields studied
were not the same, the co-structuration between nifH and acdS diversity was explored by co-
inertia analysis to compare more globally the genetic structures of these rhizobacterial groups

across the three field sites. Monte-Carlo permutation tests showed a significant co-structuration
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(P =9 % 107) of nifH and acdS rhizobacteria, with a RV coefficient of 0.83. This accounted for
57% of data variability. The plot of the co-inertia matrix illustrates the strength of the
relationship between acdS and nifH diversities, as superposition of acdS and nifH groups
showed a strong co-trend in all three field sites (Figure 5).

Co-inertia analyses of nifH and acdS diversities were also performed with 7rs diversity,
and permutations tests also showed co-structuration in both cases, with respectively RV
coefficients of 0.89 and 0.91, the two axes explaining 52% and 69% of variability.
Superposition of rrs community with acdS and with nifH groups indicated a strong co-trend
across the three fields.

In summary, the genetic structures of nifH and acdS rhizobacterial groups across the
three field sites were very close. Co-inertia was strong also when comparing each with the

whole rhizobacterial community based on rrs data.

4. DISCUSSION

The current work made use of molecular tools available to characterize functional groups of
nifH and acdS bacteria. Quantification of nifH rhizobacteria was performed with primers
PolF/PolR (Poly et al. 2001) rather than other well-established primers such as Zf/Zr (Zehr and
McReynolds, 1989) since the latter are not effective for quantitative PCR (Boyd and Peters
2013; Gaby and Buckley 2017; Poly et al. 2001). The same primers have also been used for
sequencing, both for consistency and efficacy for diazotroph characterization (Martensson et
al. 2009; Wartiainen et al. 2008). Recently, acdS primers suitable for monitoring of ACC
deamination bacteria have been made available (Bouffaud et al. 2018). These primers are
effective to amplify true acdS genes while not amplifying related D-cystein desulfhydrase genes

coding for other PLP-dependent enzymes, which was verified again in the current work (Figure
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S2). Indeed, phylogenetic analysis of the acdS sequences showed that none clustered within the
out-group (built with strains harboring D-cystein desulfthydrase genes), confirming that the
sequences obtained were true acdS sequences, as highlighted in previous studies (Blaha et al.
2006; Bouffaud et al. 2018; Li et al. 2015; Nascimento et al. 2012).

The level of taxonomic information carried by nifH sequences has been described in the
literature, showing that nifH was sufficiently conserved to enable reliable taxonomic affiliations
including for the assessment of rhizobacteria (Vinuesa et al. 2005), and its phylogeny was
congruent with the one derived from rrs (Achouak et al. 1999; Zehr et al. 2003). As for acdS,
phylogenetic analysis of the new sequences obtained (along with reference acdS sequences)
confirmed that the taxonomic affiliations made at the genus level were correct. However, the
130-bp acdS amplicons obtained with the current quantitative PCR primers do not enable any
taxonomic affiliation below the genus level, i.e. at the species level (Bouffaud et al. 2018).

In this work, the hypothesis that nifH and acdS rhizobacterial populations co-occur on
roots was assessed with maize taken from three fields, using quantitative PCR and MiSeq
sequencing. The results that were obtained did substantiate this hypothesis, based on (i) positive
correlations between the sizes of nifH and acdS rhizobacterial groups, and (ii) comparable
genetic structures indicated by inertia analysis for both functional groups across the three field
sites studied. Several studies have assessed the co-occurrence of particular microorganisms and
measured between-taxa correlations in soil systems (Barberan et al. 2011; Freilich et al. 2010),
but few have done so at the level of functional groups. For instance, co-occurrence analysis of
nitrite-dependent anaerobic ammonium oxidizers and methane oxidizers in paddy soil showed
that the structure of these communities changed with soil depth (Wang et al. 2012). The co-
occurrence of plant-beneficial functions in the rhizosphere has been investigated, but often the
assessment was restrained to narrow taxonomic levels, such as within the Pseudomonas genus

(Almario et al. 2014; Frapolli et al. 2012; Vacheron et al. 2016). It is interesting to note that not
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all microorganisms harboring acdS and/or nifH expressed the corresponding functions in
rhizosphere based on assessment of QRT-PCR data, as previously described for nifH (Bouffaud
et al. 2016) or acdS (Bouffaud et al. 2018).

Specific taxa can be selected by environmental conditions prevailing on plant roots
(Bakker et al. 2014; Berg and Smalla, 2009; Raaijmakers et al. 2009; Vandenkoornhuyse et al.
2015). Thus, a first possibility to account for the co-occurrence of both functional groups could
be that both nifH bacteria and acdS bacteria do well in the maize rhizosphere. Indeed, both types
of bacteria are readily found on roots (Almario et al. 2014; Arruda et al. 2013; Blaha et al. 2006;
Bruto et al. 2014; Bruto et al. 2014; Martensson et al. 2009). Such co-occurrence would make
sense in ecological terms, because associative nitrogen fixation and ACC deamination are
functions limiting plant nutrient deficiency by supplying nitrogen (Pii et al. 2015) and
enhancing root system development (thereby improving uptake of mineral nutriments including
nitrogen) (Glick, 2014), respectively.

A second possibility could be that bacteria that harbor both genes/functions are well
adapted to maize roots. Indeed, Bruto et al. (2014) showed that the nif operon co-occurred with
acdS in several bacterial clades, and for instance the genera Bradyrhizobium or Burkholderia
contain several species harboring both functions (Bruto et al. 2014). Furthermore, the co-inertia
between these two functional groups and the total community raises the possibility that
additional functions could also be present in addition to associative nitrogen fixation and ACC
deamination. Indeed, comparative genomics studies showed that bacterial taxa display multiple
specific functions, including plant interaction functions (Bruto et al. 2014; Lassalle et al. 2015;
Vacheron et al. 2017), and thus these functions would also be co-selected when selecting the
corresponding rrs-based taxa. In the current study, Bradyrhizobium represented 17 to 25% of
acdS* bacteria and 20 to 42% of nifH" bacteria in the maize rhizosphere, and the high proportion

of this bacterial clade may contribute to the co-occurence of diazotrophs and ACC deaminase
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producers that was found. However, when the 10,369 completely-sequenced bacterial genomes
available in the NCBI database were screened, it showed that 833 of them harbored acdS and
461 others nifH, but only 122 genomes had both genes. Therefore, it could be that this second
possibility is insufficient for a complete explanation of the current findings.

A third possibility to consider is the joint occurrence of both functions in the
rhizosphere, regardless of the taxa harboring them, thereby providing functional redundancy
(Shade and Handelsman, 2012). Several studies in soil or aquatic settings have suggested that
the metabolic/functional potential of microbial communities rather than their taxonomic
variations are closely related to environmental conditions (Bouffaud et al. 2018; Burke et al.
2011; Louca et al. 2016; Louca et al. 2017 ). These observations were conceptualized as the
"It's the song, not the singer" theory (ITSNTS; Doolittle and Booth 2017), i.e. functional groups
within microbial communities (the songs) would be better conserved and more relevant
ecologically than the taxa themselves (the singers). Consistent with the ITSNTS theory, our
study suggests that the assembly of the rhizosphere microbial community would entail a balance
between phytostimulation-relevant genes, which may be needed to achieve an effective
holobiont (i.e., the plant host and its functional microbiota), and points to the preponderance of
functional interactions within the plant holobiont. This hypothesis, which has been put forward
recently for root-associated microorganisms (Lemanceau et al. 2017), remains speculative at
this stage and deserves further research attention. In particular, methodology development is
needed to enable direct assessment of key plant-beneficial groups when parallel monitoring of
several genes is required (e.g. for auxin production or P solubilization, which entail many
genetic pathways), in contrast to ACC deamination and N fixation for which analysis of a single
gene (acdS and nifH, respectively) may suffice.

To test whether the current findings could be also relevant under other environmental

conditions, we reassessed the data obtained for nifH (Bouffaud et al. 2016) and acdS (Bouffaud
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et al. 2018) from two maize lines grown in another soil (luvisol) with different management
histories (cropped soil vs meadow soil). A positive correlation (r = 0.45 ; P = 0.050 ; n = 20)
was found between the numbers of nifH and acdS bacteria in the monocropping soil but not in
meadow soil (P = 0.75 ; n = 10), suggesting that maize monocropping history could have been
an important factor. However, these findings were obtained with young plants only (21 days),
grown in sieved soil under greenhouse conditions.

In conclusion, the current findings indicate that rhizobacteria with nitrogen fixation
capacity and counterparts harboring ACC deamination ability co-occur in the maize
rhizosphere, pointing to the possibility that plants may rely on multiple, complementary
phytostimulatory functions provided by their microbial partners. Additional method
development is needed to extend this type of assessment to additional phytostimulatory groups

and other microbial functional groups important for plant performance.
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Legend

FIGURE 1. Size of the acdS and nifH functional groups compared in the three field sites L, FC
and C over four sampling times. Means and standard deviations are shown for the acdS group
at 6 leaves in 2014 (A) and 2015 (B) and at flowering in 2014 (E) and 2015 (F) and for the nifH
group at 6 leaves in 2014 (C) and 2015 (D) and at flowering in 2014 (G) and 2015 (H). The
analysis was done using pooled samples of six roots systems (n=5) at FC and C and individual
root systems (n = 30) at L in 2014, and individual root systems (n = 20) at all three sites in 2015.
Statistical differences between sites are indicated by letters a-c (ANOVA and Fischer’s LSD

tests, P <0.05).

FIGURE 2. Correlation between log numbers of nifH (X axis) and acdS genes (Y axis).
Correlation was established using the Pearson coefficient. The analysis was done using pooled
samples of six roots systems (n= 5) at FC and C and individual root systems (n = 30) at L in

2014, and individual root systems (n = 20) at all three sites in 2015.

FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson
diversity indices of nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C),
and Simpson diversity indices of rrs and acdS or nifH (D). Correlation was established

separately at each of the three field sites L, FC and C, using the Pearson coefficient (n = 5).

FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C
by between-class analysis. Red circles, green triangles and blue squares are used for samples
from sites FC, C and L, respectively. The curves at the top and the left of the panels show the

distribution of samples on respectively the X and Y axes.

29
ScholarOne Support 1-434/964-4100

Page 30 of 84



Page 31 of 84

oNOYTULT D WN =

683

684

685

686

687

688

689

690

691

692

693

694
695
696
697
698
699
700
701

FEMS Microbiology Ecology

FIGURE 5. Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities
(B) and rrs and acdS diversities (C). Projection of the samples (n = 5) is based on both acdS
(Blue) and nifH (Green), rrs (Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity
variables (level = genus) into a same factorial plan. The vector in black shows the strength of
co-trends between the two barycenters of variables as related to each site (L, FC, C). Shorter

vectors indicate stronger convergent trends between the two variable groups.

FIGURE S1: Rarefaction curves for nifH (A), acdS (B) and rrs (C) genes.

FIGURE S2. RAXML bipartition tree of 3322 sequenced acdS alleles from Poaceae
rhizosphere. The tree was visualized using iTOL software (Letunic I, Bork P. Interactive Tree
Of Life (iTOL) v4: recent updates and new developments (2019) Nucleic Acids Res doi:
10.1093/nar/gkz239). Branches colored in violet represent the out-group of D-cystein

desulthydrase genes, whereas acdS alleles affiliated to Betaproteobacteria are shown in khaki,
to Gammaproteobacteria in blue, to Actinobacteria in green, to Alphaproteobacteria in red,
and to microeukaryotes in orange. The tree can be viewed online at the following link

http://itol.embl.de/shared/acdStree.
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Table 1. Field characteristics of the top (5-30 cm) soil layer.
Field Soil type Texture (%) pH Organic C  Total N C/Nratio Cation exchange (cmol/kg)
Sand Silt Clay H,O KC(CI (g/kg) (g/kg) CEC* Ca’* Mg** K
FC Fluvic cambisol 269 383 34.7 7.1 6.3 31.6 3.4 93 228 21.2 0.67 0.38
L Luvisol 429 429 14.2 7.3 6.7 21.5 1.6 13.4 93.0 105 033 043
C Calcisol 15.6  74.1 10.3 8.2 7.7 25.9 3.1 8.4 97.0 36.1 024 0.29
aCEC, cation exchange capacity.
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FIGURE 1. Size of the acdS and nifH functional groups compared in the three field sites L, FC
and C over four sampling times. Means and standard deviations are shown for the acdS group
at 6 leaves in 2014 (A) and 2015 (B) and at flowering in 2014 (E) and 2015 (F) and for the nifH
group at 6 leaves in 2014 (C) and 2015 (D) and at flowering in 2014 (G) and 2015 (H). The
analysis was done using pooled samples of six roots systems (n=5) at FC and C and individual
root systems (n = 30) at L in 2014, and individual root systems (n = 20) at all three sites in
2015. Statistical differences between sites are indicated by letters a-c (ANOVA and Fischer’s

LSD tests, P <0.05).

FIGURE 2. Correlation between log numbers of nifH (X axis) and acdS genes (Y axis).
Correlation was established using the Pearson coefficient. The analysis was done using pooled
samples of six roots systems (n=5) at FC and C and individual root systems (n = 30) at L in

2014, and individual root systems (n = 20) at all three sites in 2015.

FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson
diversity indices of nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C),
and Simpson diversity indices of rrs and acdS or nifH (D). Correlation was established

separately at each of the three field sites L, FC and C, using the Pearson coefficient (n = 5).

FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C
by between-class analysis. Red circles, green triangles and blue squares are used for samples
from sites FC, C and L, respectively. The curves at the top and the left of the panels show the

distribution of samples on respectively the X and Y axes.
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FIGURE 5. Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities
(B) and rrs and acdS diversities (C). Projection of the samples (n = 5) is based on both acdS
(Blue) and nifH (Green), rrs (Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity
variables (level = genus) into a same factorial plan. The vector in black shows the strength of
co-trends between the two barycenters of variables as related to each site (L, FC, C). Shorter

vectors indicate stronger convergent trends between the two variable groups.

FIGURE S1: Rarefaction curves for nifH (A), acdS (B) and rrs (C) genes.

FIGURE S2. RAXML bipartition tree of 3322 sequenced acdS alleles from Poaceae
rhizosphere. The tree was visualized using 1 TOL software. Branches colored in violet
represent the out-group of D-cystein desulfhydrase genes, whereas acdS alleles affiliated to
Betaproteobacteria are shown in khaki, to Gammaproteobacteria in blue, to Actinobacteria in
green, to Alphaproteobacteria in red, and to microeukaryotes in orange.

ScholarOne Support 1-434/964-4100



oNOYTULT D WN =

log of acdS copies/g
of dry soil

log of acdS copies/g
of dry soil

6 leaves 2014

L FC C

Flowering 2014

a
C b
-

FEMS Microbiology Ecology
6 leaves 2015

[y
(=}

log of nifH copies/g
of dry soil

a &0 N o ©

L FC C
Flowering 2015

10

d

log of nifH copies/g
of dry soil

a & N o ©

ScholarOne Support 1-434/964-4100

C

6 leaves 2014
10

a &0 N o ©»

L FC (o]

Flowering 2014
a 10
C b T

a & N o ©

Page 40 of 84
6 leaves 2015

d
by

-

L FC (o]

Flowering 2015

a
b

T




Page 41 of 84 Site L FEMS Microbiologybit@df Site C

70-

oNOYULT A WN —
6 leaves 2014

Correlation 0.67 K Correlation 0.98 Correlation 0.80
2 P=17.4x10° P=238x10° 6- P=0.10

11 78 80 82 84 a6 80 81 82 83 84 72 76 80 84
12 88- 98-

L] 96-
89- .

. 3 9.4-

o / 92-
.

90-

8.4~

82-

80-

Flowering 2014

7.8+ Correlation 0.90 *  Correlation 0.10 - 88~ & Correlation 0.86
22 P=1.0x10* « P=0.67 P=3.7x10*

755 750 775 8.0 78 80 82 80 82 84

90-

27 9.0- 1 10.0-

87-

6.4~

80- -

8
6 leaves 2015

1 Correlation 0.87

75- Correlation 0.67 I « Correlation 0.73
35 P=3.8x10° )

P=0.010 P=4.0x103

72 74 76 70 7's 70 75 8
37

8.00-
88~

84-

775~

84-

8.0~
7.50-

&
Flowering 2015

47 80- Correlation 0.86 I Correlation 0.38 . Correlation 0.69
48 s P=1.0x10* - P=0.19 P=0.010

725-

49 72 74 7’6 7’8 63 64 65 66 67 66 68 7'0 72 7'

ScholarOne Support 1-434/964-4100
Fig. 2



oNOYTULT D WN =

Shannon acdS

Shannon acdS Shannon nifH Simpson acdS

nifH

FEMS Microbiology Ecology

Site L

Correlation 0.95
F=0.010

Shannon nifH

.
Correlation 0.86
P=0.060

Jl.l LI._ .I..' .i_': JI.E

Simpson nifH

s
0-%

Caorrelation -0.07
P=09]

BE- Correlation -0.15
N P=0.80

735 740 745 750

Shannon rrs

0.03- /
.

0 06 e

0.0 - Correlation 0.66

P=022

Correlation 0.63
P=0325
& & & =
5B B 8
I - A

Simpson rrs

Site FC

]

Correlation -0.54
P=034

Shannon nifH

==

0000~ Correlation -0.30

6.5

6.0~

0.025-

.
0.000-

).025+

0.010-

0.005=

0.000 =

Site C

-

\
69~ v
.
.. Correlation -0.58
P=0.31

65

Shannon nifH

= Correlation 0.54

P=0.62 P=0.34
L9 o2 b do 012
Simpson nifH Simpson nifH
7.0
e 65- *
0- .
0-§ . 8.0 T
- —~ - 3
Correlation 0.63 9.9- Correlation 0.71
P=0.24 P=0.17
71
e .
-
D —
/ G9- .
L]
» Correlation 0.66 6.8 Correlation -0.08
P=0.22 P=0.90
T 72 73 74 784 768 772 7.7
Shannon rrs Shannon rrs
0.020 -
.
0,015+ 4
_______,...--.'I"-. 0.010 -
0.010 -
0.005 = . +
Correlation 0.38 Correlation 0.91
P=0.52 0.000 - P=0.030
0.0032 -

. 0.0028 -

/_'-

Correlation 0.38

P=0.52
& &
= =)

B @ © =
o & & =

0200°0-

Simpson rrs

020 - e Correlation 0.60

P=0.28

Simpson rrs

FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson diversity indices of
nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C), and Simpson diversity indices of rrs
and acdS or nifH (D). Correlation was established separately at each of the three field sites L, FC and C,

using the Pearson coefficient (n = 5).
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FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C by between-
class analysis. Red circles, green triangles and blue squares are used for samples from sites FC, C and L,
respectively. The curves at the top and the left of the panels show the distribution of samples on
respectively the X and Y axes.
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FIGURE 5. Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities (B) and rrs and
acdS diversities (C). Projection of the samples (n = 5) is based on both acdS (Blue) and nifH (Green), rrs
(Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity variables (level = genus) into a same
factorial plan. The vector in black shows the strength of co-trends between the two barycenters of variables
as related to each site (L, FC, C). Shorter vectors indicate stronger convergent trends between the two
variable groups.
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Table 1. Field characteristics of the top (5-30 cm) soil layer.

oNOYTULT D WN =

Field Soil type Texture (%) pH Organic C Total N C/N ratio Cation exchange (cmol/kg)

10 Sand  Silt Clay H,0  KCI (g/kg) (g/kg) CEC* Ca* Mg* K°

12 FC Fluvic cambisol 26.9 383 34.7 7.1 6.3 31.6 34 9.3 22.8 21.2 0.67 0.38
14 L Luvisol 429 429 14.2 7.3 6.7 21.5 1.6 13.4 93.0 10.5 0.33 0.43

16 C Calcisol 15.6 74.1 10.3 8.2 7.7 259 3.1 8.4 97.0  36.1 024 029

aCEC, cation exchange capacity
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ABSTRACT

The plant microbiota may differ depending on soil type, but these microbiota probably share
the same functions necessary for holobiont fitness. Thus, we tested the hypothesis that
phytostimulatory microbial functional groups are likely to co-occur in the rhizosphere, using
groups corresponding to nitrogen fixation (nifH) and l-aminocyclopropane-1-carboxylate
deamination (acdS), i.e. two key modes of action in plant-beneficial rhizobacteria. The analysis
of three maize fields in two consecutive years showed that quantitative PCR numbers of nifH
and of acdsS alleles differed according to field site, but a positive correlation was found overall
when comparing nifH and acdS numbers. Metabarcoding analyses in the second year indicated
that the diversity level of acdS but not nifH rhizobacteria in the rhizosphere differed across
fields. Furthermore, between-class analysis showed that the three sites differed from one
another based on nifH or acdS sequence data (or rrs data), and the bacterial genera contributing
most to field differentiation were not the same for the three bacterial groups. However, co-
inertia analysis indicated that the genetic structures of both functional groups and of the whole
bacterial community were similar across the three fields. Therefore, results point to co-selection
of rhizobacteria harboring nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate

deamination abilities.

Keywords: microbiota; phytostimulation; functional group; functional microbiota; holobiont;

ITSNTS theory
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INTRODUCTION

Plant Growth-Promoting Rhizobacteria (PGPR) colonize plant roots and implement a range of
plant-beneficial traits, which may result in enhanced plant development, nutrition, health and/or
stress tolerance (Almario et al. 2014; Cormier et al. 2016; Gamalero and Glick 2015; Hartman
et al. 2018; Vacheron et al. 2013). As a consequence, PGPR strains have received extensive
attention for use as microbial inoculants of crops (Bashan et al. 2014; Couillerot et al. 2013).

Plant-beneficial effects exhibited by PGPR are underpinned by a wide range of modes
of actions, which include (i) enhanced nutrient availability via associative nitrogen fixation
(Puri et al. 2016, Deynze et al. 2018) or phosphate solubilization (Arruda et al. 2013), (ii)
stimulation of root system establishment through phytohormone synthesis (Cassan et al. 2014)
or consumption of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) via an
enzymatic deamination (Glick 2014), and (iii) the induction of systemic resistance responses in
plant (Pieterse and Van Wees 2015). In addition to phytostimulation, certain PGPR may also
achieve inhibition of phytoparasites using antimicrobial secondary metabolites (Agaras et al.
2015) or lytic enzymes (Pieterse and Van Wees 2015). Often, PGPR strains display more than
one phytostimulatory mode of action, which is considered important for effective plant-
beneficial effects (Bashan and de-Bashan 2010; Bruto et al. 2014; Rana et al. 2011; Vacheron
et al. 2017). Therefore, the co-occurrence of multiple phytostimulation traits is likely to have
been subjected to positive evolutionary selection in PGPR populations to maximize success of
the plant-PGPR cooperation. This hypothesis is substantiated by genome sequence analysis of
many prominent PGPR strains from contrasted taxa (Bertalan et al. 2009; Chen et al. 2007,
Redondo-Nieto et al. 2013; Wisniewski-Dy¢ et al. 2012).

Even though PGPR strains tend to accumulate several plant-beneficial traits (Bruto et

al. 2014), the co-occurrence patterns of these traits are not random. This takes place in part

3
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because many past horizontal gene transfers of the corresponding genes were ancient (Frapolli
et al. 2012), often leading to clade-specific profiles of plant-beneficial traits (Bruto et al. 2014).
However, the analysis of 304 proteobacterial genomes from contrasted taxa evidenced, overall,
the co-occurrence of nifHDK (nitrogen fixation) and acdS (ACC deamination) based on Exact-
Fisher pairwise tests (Bruto et al. 2014), raising the possibility that nitrogen fixation and ACC
deamination might be useful traits when combined in a bacterium. Indeed, nitrogen fixation and
ACC deamination occur together in various rhizobacteria (Blaha et al. 2006; Duan et al. 2009;
Jha et al. 2012; Ma, Guinel, and Glick, 2003; Nukui et al. 2006), but the relation between both
traits can be complex. In Azospirillum lipoferum 4B for instance, the plasmid-borne gene acdS
is eliminated during phase variation while nif genes are maintained (Prigent-Combaret et al.
2008), and in Mesorhizobium loti transcription of acdS is controlled by the nitrogen fixation
regulator gene nifA2 (Nukui et al. 2006). Moreover, ACC deamination was described as
facilitator of the legume-rhizobia symbiosis (Ma et al. 2003; Nascimento et al. 2012).

At the scale of an individual plant, the rhizosphere is colonized by a diversified range
of bacteria, including nifH acdS bacteria as well as bacteria harboring only nifH or acdS (Blaha
et al. 2006; Bouffaud et al. 2018). There is additional level of complexity in that many of these
bacteria are PGPR, but some of them are not (Bruto et al. 2014). However, the overall impact
of nitrogen fixation and ACC deamination on the plant is likely to be the sum of the contribution
of individual root-colonizing bacteria displaying these traits. This raises the question whether
there is, for the plant, an optimal balance between the functional microbial groups of nifH
rhizobacteria and acdS rhizobacteria in the rhizosphere. On this basis, we tested here the
hypothesis that rhizobacteria with either nitrogen fixation ability or ACC deamination ability
(or with both) co-occur on roots. For that purpose, we used three maize fields under reduced
nitrogen fertilization practices, with samplings carried out at 6-leaf and flowering stages during

two consecutive years, and numbers of nifH and acdS rhizobacteria were monitored by

4
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quantitative PCR. In addition, nifH and acdS rhizobacteria were assessed by metabarcoding
(MiSeq Illumina sequencing) of nifH and acdS genes at one sampling, in parallel to sequencing

of 16S rRNA genes for the whole rhizobacterial community.

2. MATERIALS AND METHODS

2.1. Field experiment

The experiment was conducted in 2014 and 2015 at field sites located in Chatonnay (L),
Sérézin-de-la-Tour (FC) and Saint Savin (C), near the town of Bourgoin-Jallieu (Isére, France).
According to the FAO soil reference base, L field corresponds to a luvisol, FC a fluvic cambisol
and C a calcisol (Table 1). The trial set-up has been described in Rozier et al. (2017).

For each of the fields, the crop rotation consists in one year wheat, six years maize and
one year rapeseed, and wheat was grown the year before the 2014 experiment. The maize
sowing season ranges from middle April to middle May in the area. Maize seeds (Zea mays
‘Seiddi’; Dauphinoise Company, France) were sown on April 18 (FC) and 23 (Cand L) in 2014
and April 30 (C) and May 11 (FC and L) in 2015. Five replicate plots, which were 12 (FC and
C) or 8 (L) maize rows wide and 12 m long, were defined in each field. The fields were
undergoing a reduction in chemical fertilization usage and did not receive any nitrogen
fertilizers in 2014 and 2015. Only non-inoculated plots from the overall trial (Rozier et al. 2017)

were used.

2.2. Plant sampling
In 2014 and 2015, plants were sampled at six leaves and at flowering. In 2014, the first sampling
was done on May 25 (FC) and 26 (C and L). On each replicate plot, six plants were chosen

randomly, the entire root system was dug up and shaken vigorously to dislodge soil loosely

5
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adhering to the roots. At sites FC and C, one pooled sample of six roots system was obtained
per plot, i.e. a total of five pooled samples per field site. At site L, each of the six roots system
was treated individually to obtain 30 samples. The second sampling was done on July 8 (FC
and C) and 9 (L), on all five plots. Six plants were sampled per plot and treated individually to
obtain 30 samples per field site.

In 2015, the first sampling was done on May 27 (C), June 5 (FC) and June 8 (L). In each
replicate plot, four root systems were sampled and treated individually to obtain 20 samples per
field site. The second sampling was done on July 15 (C), 16 (FC) and 17 (L), and four root
systems were sampled and treated individually to obtain 20 samples per field site.

Each sample was immediately flash-frozen on site, in liquid nitrogen, and lyophilized
back at the laboratory (at -50°C for 24 h). Roots and their adhering soil were separated and the

latter stored at -80°C.

2.3. DNA extraction from root-adhering soil

DNA from root-adhering soil was extracted with the FastDNA SPIN kit (BIO 101 Inc.,
Carlsbad, CA). To this end, 500 mg (for the pooled samples from FC and C in 2014) or 300 mg
samples (for all other samples) were transferred in Lysing Matrix E tubes from the kit, and 5 pl
of the internal standard APA9 (10° copies ml-') was added to each Lysing Matrix E tube to
normalize DNA extraction efficiencies between rhizosphere samples, as described (Park and
Crowley, 2005; Couillerot et al. 2010). This internal standard APA9 (i.e. vector pUC19 with
cassava virus insert; GenBank accession number AJ427910) requires primers AVIf
(CACCATGTCGAAGCGACCAGGAGATATCATC) and AVlr
(TTTCGATTTGTGACGTGGACAGTGGGGGC). After 1 h incubation at 4°C, DNA was
extracted and eluted in 50 pl of sterile ultra-pure water, according to the manufacturer’s

instructions. DNA concentrations were assessed by Picogreen (ThermoFisher).
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2.4. Size of microbial functional groups

The amounts of nifH genes were estimated by quantitative PCR based on the primers polF/polR
(Poly, Jocteur Monrozier, and Bally, 2001), as described by Bouffaud et al. (2016). The reaction
was carried out in 20 pl containing 4 pl of PCR-grade water, 1 pl of each primer (final
concentration 0.50 uM), 10 pl of LightCycler-DNA Master SYBR Green I master mix (Roche
Applied Science, Meylan, France) and 2 pl of sample DNA (10 pg). The cycling program
included 10 min incubation at 95°C, followed by 50 cycles of 95°C for 15 s, 64°C for 15 s and
72°C for 10 s. Melting curve calculation and Tm determination were performed using the Tm
Calling Analysis module of Light-Cycler Software v.1.5 (Roche Applied Science).

The amount of acdS genes was estimated by quantitative PCR based on the primers
acdSF5/acdSR8 (Bouffaud et al. 2018). The reaction was carried out in 20 pl containing 4 pl of
PCR grade water, 1 pl of each primer (final concentration 1 uM), 10 ul of LightCycler-DNA
Master SYBR Green I master mix (Roche Applied Science) and 2 pl of sample DNA (10 pg).
The cycling program included 10 min incubation at 95°C, followed by 50 cycles of 94°C for
15s,67°C for 15 s and 72°C for 10 s. The fusion program for melting curve analysis is described
above.

Real-time PCR quantification data were converted to gene copy number per gram of

lyophilized root-adhering soil, as described (Bouffaud et al. 2018; Bouffaud et al. 2016).

2.5. nifH, acdS and rrs sequencing from rhizosphere DNA

Sequencing was performed on 2015’ samples taken when maize reached 6 leaves. Each sample
was an equimolar composite sample of four DNA extracts obtained from root-adherent soil,
resulting in 5 samples per field site, i.e. a total of 15 samples. DNA extracts were sent to MR

DNA laboratory (www.mrdnalab.com; Shallowater, TX) for sequencing.
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For nifH and acdS sequencing, PCR primers were the same ones used for quantitative
PCR (i.e., polF/polR for nifH and acdSF5/acdSR8 for acdS). For rrs sequencing, PCR primers
515/806 were chosen for the V4 variable region of the 16S rRNA gene. For all three genes, the
forward primer carried a barcode. Primers were used in a 30-cycle PCR (5 cycles implemented
on PCR products), using the HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA) under
the following conditions: 94°C for 3 min, followed by 28 cycles of 94°C for 30 s, 53°C for 40
s and 72°C for 1 min, with a final elongation step at 72°C for 5 min. PCR products were checked
in 2% agarose gel to determine amplification success and relative band intensity. Multiple
samples were pooled together in equal proportions based on their molecular weight and DNA
concentrations. Pooled samples were purified using calibrated Ampure XP beads and used to
prepare a DNA library following Illumina TruSeq DNA library preparation protocol.
Sequencing was performed on a MiSeq following the manufacturer’s guidelines.

Sequence data were processed using the analysis pipeline of MR DNA. Briefly,
sequences were depleted of barcodes, sequences < 150 bp or with ambiguous base calls
removed, the remaining sequences denoised, operational taxonomic units (OTUs; defined at
3% divergence threshold for the three genes) generated, and chimeras removed. Final OTUs
were taxonomically classified using BLASTn against a curated database derived from
Greengenes (DeSantis et al. 2006), RDPII (http://rdp.cme.msu.edu) and NCBI
(www.ncbi.nlm.nih.gov). Final OTUs of the acdS sequencing were classified using an in-house
curated acdS database, obtained after curation of acdS homolog genes from the FunGene acdS
8.3 database, as described by Bouffaud et al. (2018). Diversity indices of Shannon (H) and
Simpson (1-D) were calculated using sequencing subsample data for which each sample had
the same number of sequences.

An acdS phylogenetic tree (based on maximum-likelihood method) was computed using

acdS sequences from ten arbitrarily-chosen OTUs per genus recovered in our sequencing data
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and from one reference taxa for each genus, and related D-cystein desulfthydrase genes D-
cystein desulthydrase genes from strains Escherichia coli strains K-12, ER3413, 042 and
RM9387, Escherichia albertii KF1, Escherichia fergusonii ATCC 35469, Enterobacter
sacchari SP1, Enterobacter cloacae ECNIH2, Enterobacter asburiae L1, Enterobacter sp. 638

and Enterobacter lignolyticus SCF1 (used as out-group).

2.6. Statistical analysis

Statistical analysis of quantitative PCR data was carried out by ANOVA and Fishers’ LSD tests.
For each gene sequenced, comparison of bacterial diversity between field sites was carried out
by Between-Class Analysis (BCA) using ADE4 (Chessel et al. 2004; Culhane et al. 2005; Dray,
Dufour, and Chessel, 2007) and ggplot2 packages for R, and the 12 genera contributing most
to field site differentiation were identified. To assess co-trends between nifH and acdS
variables, as well as between rrs and nifH or acdS variables, sequence data were also assessed
using co-inertia analysis (CIA) (Dray et al. 2003; Dray et al. 2007), which was computed with
the ADE4 package in the R statistical software environment (Culhane et al. 2005). CIA is a
dimensional reduction procedure designed to measure the similarity of two sets of variables,
here the proportions of nifH and acdS bacterial genera obtained during between-class analyses.
Its significance was assessed using Monte-Carlo tests with 10,000 permutations. Unless
otherwise stated, statistical analyses were performed using R v3.1.3 (Team, 2014), at P < 0.05

level.

2.7. Nucleotide sequence accession numbers
[Nlumina MiSeq paired-end reads have been deposited in the European Bioinformatics Institute
(EBI) database under accession numbers PRJEB14347 (ERP015984) for rrs; PRJEB14346

(ERP015983) for nifH, PRIEB14343 (ERP015981) for acds.
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3. RESULTS

3.1. Relation between numbers of nifH and acdS alleles in the three field sites
The number of acdS bacteria in the rhizosphere of maize harvested at 6-leaf stage in 2014 (7.87
to 17.4 x 107 acdS gene copies g of dry soil) and 2015 (1.76 to 2.81 x 107 acdS gene copies
g'! of dry soil) did not differ significantly between field sites (Figure 1AB). At flowering stage,
however, the number of acdS bacteria differed from one site to the next, both in 2014 and in
2015 (Figure 1EF). At that growth stage, the lowest rhizosphere abundance was observed in
site L (5.08 x 107 acdS gene copies g! of dry soil) and the highest in site C (1.76 x 103 acdS
gene copies g-! of dry soil) in 2014, whereas site ranking was the opposite in 2015 (8.35 versus
44.0 x 10° acdS gene copies g™ of dry soil for sites C and L, respectively).

The numbers of nifH rhizobacteria differed according to field site (Figure 1ICDGH). In
2014, the lowest nifH abundance was observed in rhizospheres of site L (1.06 and 20.8 x 107
nifH gene copies g'!' of dry soil at respectively six leaves and flowering) and the highest in those
of site C (6.43 and 147.0 x 107 nifH gene copies g'! of dry soil at respectively six leaves and
flowering) (Figure 1CG). In 2015, the numbers of nifH rhizobacteria was higher in site C (9.31
x 10% nifH gene copies g'! of dry soil) than in FC (1.30 x 108 nifH gene copies g*!' of dry soil)
and L (2.52 x 10% nifH gene copies g! of dry soil) at six leaves, whereas the situation was
opposite at flowering, with higher abundance in site L (40.7 x 107 nifH gene copies g'! of dry
soil) than C (9.81 x 107 nifH gene copies g! of dry soil) and FC (5.66 x 107 nifH gene copies
g'! of dry soil) (Figure 1DH).

When comparing the log numbers of nifH rhizobacteria and acdS rhizobacteria across
the 12 site x sampling combinations, significant (3.8 x 10 < P < 0.01) positive correlations

(0.67 <r<0.98, n =20) were found in 9 of 12 cases, with only three correlations that were not
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significant, i.e. in site C at 6-leaf stage in 2014 (P = 0.10, n = 5) and FC at flowering in 2014
(P=0.67,n=5)and 2015 (P =0.19, n = 20) (Figure 2). In summary, moderate but significant
differences in the numbers of nifH and/or acdS rhizobacteria could take place according to field
site, sampling year and/or maize phenology, and in most cases a positive correlation was found

between the log values of both numbers.

3.2. Relation between diversities of nifH and acdS alleles in the three field sites

[Nlumina MiSeq sequencing of nifH and acdS (as well as rrs) was carried out on 15 rhizosphere
samples from 6-leaf maize grown in 2015. For nifH, 1,342,966 reads were obtained (10,775 to
62,752 sequences per sample), for a total of 36,241 OTUs. Rarefaction analysis showed that
curves reached a plateau (Figure S1A). Subsampling was done with 10,775 sequences per
sample, for a total 0of 34,459 OTUs. For acds, 5,490,230 reads were obtained (68,376 to 139,245
sequences per sample), with a total of 32,468 OTUs. Rarefaction curves reached a plateau
(Figure SI1B). Subsampling was done with 68,376 sequences per sample, for a total of 26,246
OTUs. After quality filtering, 6,082,255 reads were obtained for rrs (51,696 to 223,926
sequences per sample), giving a total of 39,600 OTUs (3% cut-off). Rarefaction analysis
showed that the sequencing effort captured most of the diversity with curves reaching a plateau
(Figure S1C). Subsampling was done with 51,696 sequences per sample, for a total of 25,437
OTUs.

The effect of field site on nifH diversity of diazotrophic bacteria was not significant
based on analysis of Shannon and Simpson indices. Conversely, the effect of field site on acdS
diversity of ACC deaminase bacteria was significant based on the Shannon (P = 1.9. x 104)
and Simpson indices (P = 8.6 x 10*#). The Shannon index was lower in FC (6.32) than in L
(6.82) and C (6.92), whereas the Simpson index was higher in FC (6.42 x 10-3) than in L (2.88

x 10-3) and C (2.38 x 1073). The effect of field site on rrs diversity of the total bacterial
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community was significant based on the Shannon (P = 1.8 x 10-%) and Simpson indices (P =1.6
x 10-4). As in the case of acdS data, the Shannon index was lower in FC (7.20) than in L (7.41)
and C (7.71), whereas the Simpson index was higher in FC (3.42 x 10%) than in L (2.28 x 10"
3) and C (1.40 x 1073).

The correlation (n = 5) between nifH diversity and acdS diversity was positive and
significant at site L, when considering both the Shannon index (r = 0.98 ; P = 0.01; Figure 3)
and the Simpson index (r = 0.86 ; P = 0.06; Figure 3). However, the correlation was not
significant at the other two sites, regardless of the diversity index. When considering also rrs
diversity, a significant correlation was found only with nifH diversity at site C (r =091 ; P =
0.03; Figure 3). In summary, there was no relation between the diversities of nifH rhizobacteria
and acdS rhizobacteria, based on comparison of diversity indices in the three field sites and

correlation analyses at two of the three field sites.
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3.3. Relation between prevalence of nifH and/or acdS rhizobacterial taxa in the three field
sites

Between-class analysis of nifH data showed that the composition of diazotrophic bacteria
differed according to field site (Figure 4A). The first axis (54% of between-class variability)
distinguished site C from FC and L, and the 12 genera contributing most to this differentiation
were Xanthobacter, Dechloromonas, Methyloferula, Ideonella, Nitrospirillum and Tolumonas
(more prevalent in C than in L and FC), as well as Desulfovibrio, Selenomonas,
Ruminiclostridium, Paludibacter, Gloeocapsopsis and Ruminococcus (less prevalent in C than
in FC and L). The second axis (46% of between-class variability) distinguished site L from the
two other sites, and the 12 genera contributing most to this differentiation included Rhizobium,
Gluconacetobacter, Skermanella, Leptothrix, Streptomyces and Methylocapsa (more prevalent
in L than in FC and C), as well as Marichromatium, Pelobacter, Gordonibacter, Desulfobulbus,
Desulfovibrio and Sideroxydan (less prevalent in L than in C and FC).

Between-class analysis of acdS data showed that the composition of ACC deaminase
bacteria differed according to field site (Figure 4B). The first axis (66% of between-class
variability) distinguished site C from FC and L, and the 12 genera contributing most to this
differentiation were Achromobacter, Azospirillum, Pseudolabrys, Roseovarius, one unassigned
OTU and Polaromonas (more prevalent in C than in L and FC), as well as Cupriavidus,
Burkholderia, Bosea, Bradyrhizobium and Methylobacterium (less prevalent in C than in FC
and L). The second axis (34% of between-class variability) distinguished each of the three sites
from one another, and the 12 genera contributing most to this differentiation included
Azorhizobium, Pseudomonas, Gluconobacter, Collimonas, Herbaspirillum and Burkholderia
(more prevalent in FC than in C and L), as well as Ralstonia, Loktanella, Devosia, Variovorax,

Novosphingobium and Chelatococcus (more prevalent in L than in C and FC).
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Between-class analysis of rrs data showed that the composition of the total bacterial
community differed according to field site (Figure 4C). The first axis (71% of between-class
variability) distinguished C from the two other sites, and the 12 genera contributing most to this
differentiation were Algisphaera, Fibrobacter, Amaricoccus, Hirschia, Desulfacinum and
Saccharophagus (more prevalent in C than in L and FC), as well as Actinomadura, Lutispora,
Bacillus, Rhodopseudomonas, Kouleothrix and Roseiflexus (less prevalent in C than in FC and
L). The second axis (29% of between-class variability) distinguished site L from FC and C, and
the 12 genera contributing most to this differentiation included Flavobacterium,
Gluconobacter, Maricaulis, Prolixibacter, ‘Candidatus Xiphinematobacter’, Chthoniobacter
(more prevalent in FC than L), as well as Conexibacter, Hyphomicrobium, Pseudonocardia,
Tumebacillus, Chelatococcus and Mycobacterium (less prevalent in FC than in L).

In summary, between-class analysis of nifH and acdS data indicated that the
composition of diazotrophic bacteria and of ACC deaminase bacteria differed according to field
site, but the main discriminant genera differed completely for both types of bacteria. In both
cases, the discriminant taxa were also different from the main range of bacterial taxa
distinguishing the three sites most when comparing the latter based on rrs data, at the scale of

the entire rhizobacterial community.

3.4. Relation between the genetic structures of nifH and acdS rhizobacteria in the three
field sites

Since there was a positive correlation between log numbers of nifH and/or acdS rhizobacteria
but the corresponding bacterial genera discriminating most between the three fields studied
were not the same, the co-structuration between nifH and acdS diversity was explored by co-
inertia analysis to compare more globally the genetic structures of these rhizobacterial groups

across the three field sites. Monte-Carlo permutation tests showed a significant co-structuration
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(P =9 % 107) of nifH and acdS rhizobacteria, with a RV coefficient of 0.83. This accounted for
57% of data variability. The plot of the co-inertia matrix illustrates the strength of the
relationship between acdS and nifH diversities, as superposition of acdS and nifH groups
showed a strong co-trend in all three field sites (Figure 5).

Co-inertia analyses of nifH and acdS diversities were also performed with 7rs diversity,
and permutations tests also showed co-structuration in both cases, with respectively RV
coefficients of 0.89 and 0.91, the two axes explaining 52% and 69% of variability.
Superposition of rrs community with acdS and with nifH groups indicated a strong co-trend
across the three fields.

In summary, the genetic structures of nifH and acdS rhizobacterial groups across the
three field sites were very close. Co-inertia was strong also when comparing each with the

whole rhizobacterial community based on rrs data.

4. DISCUSSION

The current work made use of molecular tools available to characterize functional groups of
nifH and acdS bacteria. Quantification of nifH rhizobacteria was performed with primers
PolF/PolR (Poly et al. 2001) rather than other well-established primers such as Zf/Zr (Zehr and
McReynolds, 1989) since the latter are not effective for quantitative PCR (Boyd and Peters
2013; Gaby and Buckley 2017; Poly et al. 2001). The same primers have also been used for
sequencing, both for consistency and efficacy for diazotroph characterization (Martensson et
al. 2009; Wartiainen et al. 2008). Recently, acdS primers suitable for monitoring of ACC
deamination bacteria have been made available (Bouffaud et al. 2018). These primers are
effective to amplify true acdS genes while not amplifying related D-cystein desulfhydrase genes

coding for other PLP-dependent enzymes, which was verified again in the current work (Figure
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S2). Indeed, phylogenetic analysis of the acdS sequences showed that none clustered within the
out-group (built with strains harboring D-cystein desulfthydrase genes), confirming that the
sequences obtained were true acdS sequences, as highlighted in previous studies (Blaha et al.
2006; Bouffaud et al. 2018; Li et al. 2015; Nascimento et al. 2012).

The level of taxonomic information carried by nifH sequences has been described in the
literature, showing that nifH was sufficiently conserved to enable reliable taxonomic affiliations
including for the assessment of rhizobacteria (Vinuesa et al. 2005), and its phylogeny was
congruent with the one derived from rrs (Achouak et al. 1999; Zehr et al. 2003). As for acdS,
phylogenetic analysis of the new sequences obtained (along with reference acdS sequences)
confirmed that the taxonomic affiliations made at the genus level were correct. However, the
130-bp acdS amplicons obtained with the current quantitative PCR primers do not enable any
taxonomic affiliation below the genus level, i.e. at the species level (Bouffaud et al. 2018).

In this work, the hypothesis that nifH and acdS rhizobacterial populations co-occur on
roots was assessed with maize taken from three fields, using quantitative PCR and MiSeq
sequencing. The results that were obtained did substantiate this hypothesis, based on (i) positive
correlations between the sizes of nifH and acdS rhizobacterial groups, and (ii) comparable
genetic structures indicated by inertia analysis for both functional groups across the three field
sites studied. Several studies have assessed the co-occurrence of particular microorganisms and
measured between-taxa correlations in soil systems (Barberan et al. 2011; Freilich et al. 2010),
but few have done so at the level of functional groups. For instance, co-occurrence analysis of
nitrite-dependent anaerobic ammonium oxidizers and methane oxidizers in paddy soil showed
that the structure of these communities changed with soil depth (Wang et al. 2012). The co-
occurrence of plant-beneficial functions in the rhizosphere has been investigated, but often the
assessment was restrained to narrow taxonomic levels, such as within the Pseudomonas genus

(Almario et al. 2014; Frapolli et al. 2012; Vacheron et al. 2016). It is interesting to note that not
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all microorganisms harboring acdS and/or nifH expressed the corresponding functions in
rhizosphere based on assessment of QRT-PCR data, as previously described for nifH (Bouffaud
et al. 2016) or acdS (Bouffaud et al. 2018).

Specific taxa can be selected by environmental conditions prevailing on plant roots
(Bakker et al. 2014; Berg and Smalla, 2009; Raaijmakers et al. 2009; Vandenkoornhuyse et al.
2015). Thus, a first possibility to account for the co-occurrence of both functional groups could
be that both nifH bacteria and acdS bacteria do well in the maize rhizosphere. Indeed, both types
of bacteria are readily found on roots (Almario et al. 2014; Arruda et al. 2013; Blaha et al. 2006;
Bruto et al. 2014; Bruto et al. 2014; Martensson et al. 2009). Such co-occurrence would make
sense in ecological terms, because associative nitrogen fixation and ACC deamination are
functions limiting plant nutrient deficiency by supplying nitrogen (Pii et al. 2015) and
enhancing root system development (thereby improving uptake of mineral nutriments including
nitrogen) (Glick, 2014), respectively.

A second possibility could be that bacteria that harbor both genes/functions are well
adapted to maize roots. Indeed, Bruto et al. (2014) showed that the nif operon co-occurred with
acdS in several bacterial clades, and for instance the genera Bradyrhizobium or Burkholderia
contain several species harboring both functions (Bruto et al. 2014). Furthermore, the co-inertia
between these two functional groups and the total community raises the possibility that
additional functions could also be present in addition to associative nitrogen fixation and ACC
deamination. Indeed, comparative genomics studies showed that bacterial taxa display multiple
specific functions, including plant interaction functions (Bruto et al. 2014; Lassalle et al. 2015;
Vacheron et al. 2017), and thus these functions would also be co-selected when selecting the
corresponding rrs-based taxa. In the current study, Bradyrhizobium represented 17 to 25% of
acdS* bacteria and 20 to 42% of nifH" bacteria in the maize rhizosphere, and the high proportion

of this bacterial clade may contribute to the co-occurence of diazotrophs and ACC deaminase
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producers that was found. However, when the 10,369 completely-sequenced bacterial genomes
available in the NCBI database were screened, it showed that 833 of them harbored acdS and
461 others nifH, but only 122 genomes had both genes. Therefore, it could be that this second
possibility is insufficient for a complete explanation of the current findings.

A third possibility to consider is the joint occurrence of both functions in the
rhizosphere, regardless of the taxa harboring them, thereby providing functional redundancy
(Shade and Handelsman, 2012). Several studies in soil or aquatic settings have suggested that
the metabolic/functional potential of microbial communities rather than their taxonomic
variations are closely related to environmental conditions (Bouffaud et al. 2018; Burke et al.
2011; Louca et al. 2016; Louca et al. 2017 ). These observations were conceptualized as the
"It's the song, not the singer" theory (ITSNTS; Doolittle and Booth 2017), i.e. functional groups
within microbial communities (the songs) would be better conserved and more relevant
ecologically than the taxa themselves (the singers). Consistent with the ITSNTS theory, our
study suggests that the assembly of the rhizosphere microbial community would entail a balance
between phytostimulation-relevant genes, which may be needed to achieve an effective
holobiont (i.e., the plant host and its functional microbiota), and points to the preponderance of
functional interactions within the plant holobiont. This hypothesis, which has been put forward
recently for root-associated microorganisms (Lemanceau et al. 2017), remains speculative at
this stage and deserves further research attention. In particular, methodology development is
needed to enable direct assessment of key plant-beneficial groups when parallel monitoring of
several genes is required (e.g. for auxin production or P solubilization, which entail many
genetic pathways), in contrast to ACC deamination and N fixation for which analysis of a single
gene (acdS and nifH, respectively) may suffice.

To test whether the current findings could be also relevant under other environmental

conditions, we reassessed the data obtained for nifH (Bouffaud et al. 2016) and acdS (Bouffaud

18
ScholarOne Support 1-434/964-4100

Page 66 of 84



Page 67 of 84 FEMS Microbiology Ecology

1
2
2 436 et al. 2018) from two maize lines grown in another soil (luvisol) with different management
Z 437  histories (cropped soil vs meadow soil). A positive correlation (r = 0.45 ; P = 0.050 ; n = 20)
7
g 438  was found between the numbers of nifH and acdS bacteria in the monocropping soil but not in
9

10439  meadow soil (P = 0.75 ; n = 10), suggesting that maize monocropping history could have been

12440  an important factor. However, these findings were obtained with young plants only (21 days),

14 .

15 441  grown in sieved soil under greenhouse conditions.

16

17 442 In conclusion, the current findings indicate that rhizobacteria with nitrogen fixation
18

19 443 capacity and counterparts harboring ACC deamination ability co-occur in the maize
5o 444 rhizosphere, pointing to the possibility that plants may rely on multiple, complementary
24 445  phytostimulatory functions provided by their microbial partners. Additional method
26 446  development is needed to extend this type of assessment to additional phytostimulatory groups
447  and other microbial functional groups important for plant performance.
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Legend

FIGURE 1. Size of the acdS and nifH functional groups compared in the three field sites L, FC
and C over four sampling times. Means and standard deviations are shown for the acdS group
at 6 leaves in 2014 (A) and 2015 (B) and at flowering in 2014 (E) and 2015 (F) and for the nifH
group at 6 leaves in 2014 (C) and 2015 (D) and at flowering in 2014 (G) and 2015 (H). The
analysis was done using pooled samples of six roots systems (n=5) at FC and C and individual
root systems (n = 30) at L in 2014, and individual root systems (n = 20) at all three sites in 2015.
Statistical differences between sites are indicated by letters a-c (ANOVA and Fischer’s LSD

tests, P <0.05).

FIGURE 2. Correlation between log numbers of nifH (X axis) and acdS genes (Y axis).
Correlation was established using the Pearson coefficient. The analysis was done using pooled
samples of six roots systems (n= 5) at FC and C and individual root systems (n = 30) at L in

2014, and individual root systems (n = 20) at all three sites in 2015.

FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson
diversity indices of nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C),
and Simpson diversity indices of rrs and acdS or nifH (D). Correlation was established

separately at each of the three field sites L, FC and C, using the Pearson coefficient (n = 5).

FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C
by between-class analysis. Red circles, green triangles and blue squares are used for samples
from sites FC, C and L, respectively. The curves at the top and the left of the panels show the

distribution of samples on respectively the X and Y axes.
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FIGURE 5. Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities
(B) and rrs and acdS diversities (C). Projection of the samples (n = 5) is based on both acdS
(Blue) and nifH (Green), rrs (Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity
variables (level = genus) into a same factorial plan. The vector in black shows the strength of
co-trends between the two barycenters of variables as related to each site (L, FC, C). Shorter

vectors indicate stronger convergent trends between the two variable groups.

FIGURE S1: Rarefaction curves for nifH (A), acdS (B) and rrs (C) genes.

FIGURE S2. RAXML bipartition tree of 3322 sequenced acdS alleles from Poaceae
rhizosphere. The tree was visualized using iTOL software (Letunic I, Bork P. Interactive Tree
Of Life (iTOL) v4: recent updates and new developments (2019) Nucleic Acids Res doi:
10.1093/nar/gkz239). Branches colored in violet represent the out-group of D-cystein

desulthydrase genes, whereas acdS alleles affiliated to Betaproteobacteria are shown in khaki,
to Gammaproteobacteria in blue, to Actinobacteria in green, to Alphaproteobacteria in red,
and to microeukaryotes in orange. The tree can be viewed online at the following link

http://itol.embl.de/shared/acdStree.
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Table 1. Field characteristics of the top (5-30 cm) soil layer.

oNOYTULT D WN =

Field Soil type Texture (%) pH Organic C  Total N C/Nratio Cation exchange (cmol/kg)

10 Sand  Silt Clay H,0 KCI (g/kg) (g/kg) CEC: Ca** Mg»* K

FC Fluvic cambisol 269 383 34.7 7.1 6.3 31.6 3.4 93 228 21.2  0.67 0.38
15 L Luvisol 429 429 14.2 7.3 6.7 21.5 1.6 13.4 93.0 105 033 043

17 C Calcisol 15.6  74.1 10.3 8.2 7.7 25.9 3.1 8.4 97.0 36.1 024 0.29

aCEC, cation exchange capacity.
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Fig. 2
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