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26 ABSTRACT

27

28 The plant microbiota may differ depending on soil type, but these microbiota probably share 

29 the same functions necessary for holobiont fitness. Thus, we tested the hypothesis that 

30 phytostimulatory microbial functional groups are likely to co-occur in the rhizosphere, using 

31 groups corresponding to nitrogen fixation (nifH) and 1-aminocyclopropane-1-carboxylate 

32 deamination (acdS), i.e. two key modes of action in plant-beneficial rhizobacteria. The analysis 

33 of three maize fields in two consecutive years showed that quantitative PCR numbers of nifH 

34 and of acdS alleles differed according to field site, but a positive correlation was found overall 

35 when comparing nifH and acdS numbers. Metabarcoding analyses in the second year indicated 

36 that the diversity level of acdS but not nifH rhizobacteria in the rhizosphere differed across 

37 fields. Furthermore, between-class analysis showed that the three sites differed from one 

38 another based on nifH or acdS sequence data (or rrs data), and the bacterial genera contributing 

39 most to field differentiation were not the same for the three bacterial groups. However, co-

40 inertia analysis indicated that the genetic structures of both functional groups and of the whole 

41 bacterial community were similar across the three fields. Therefore, results point to co-selection 

42 of rhizobacteria harboring nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate 

43 deamination abilities.

44

45 Keywords: microbiota; phytostimulation; functional group; functional microbiota; holobiont; 

46 ITSNTS theory

47

48
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49 INTRODUCTION

50

51 Plant Growth-Promoting Rhizobacteria (PGPR) colonize plant roots and implement a range of 

52 plant-beneficial traits, which may result in enhanced plant development, nutrition, health and/or 

53 stress tolerance (Almario et al. 2014; Cormier et al. 2016; Gamalero and Glick 2015; Hartman 

54 et al. 2018; Vacheron et al. 2013). As a consequence, PGPR strains have received extensive 

55 attention for use as microbial inoculants of crops (Bashan et al. 2014; Couillerot et al. 2013).

56 Plant-beneficial effects exhibited by PGPR are underpinned by a wide range of modes 

57 of actions, which include (i) enhanced nutrient availability via associative nitrogen fixation 

58 (Puri et al. 2016, Deynze et al. 2018) or phosphate solubilization (Arruda et al. 2013), (ii) 

59 stimulation of root system establishment through phytohormone synthesis (Cassán et al. 2014) 

60 or consumption of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) via an 

61 enzymatic deamination (Glick 2014), and (iii) the induction of systemic resistance responses in 

62 plant (Pieterse and Van Wees 2015). In addition to phytostimulation, certain PGPR may also 

63 achieve inhibition of phytoparasites using antimicrobial secondary metabolites (Agaras et al. 

64 2015) or lytic enzymes (Pieterse and Van Wees 2015). Often, PGPR strains display more than 

65 one phytostimulatory mode of action, which is considered important for effective plant-

66 beneficial effects (Bashan and de-Bashan 2010; Bruto et al. 2014; Rana et al. 2011; Vacheron 

67 et al. 2017). Therefore, the co-occurrence of multiple phytostimulation traits is likely to have 

68 been subjected to positive evolutionary selection in PGPR populations to maximize success of 

69 the plant-PGPR cooperation. This hypothesis is substantiated by genome sequence analysis of 

70 many prominent PGPR strains from contrasted taxa (Bertalan et al. 2009; Chen et al. 2007; 

71 Redondo-Nieto et al. 2013; Wisniewski-Dyé et al. 2012).

72 Even though PGPR strains tend to accumulate several plant-beneficial traits (Bruto et 

73 al. 2014), the co-occurrence patterns of these traits are not random. This takes place in part 
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74 because many past horizontal gene transfers of the corresponding genes were ancient (Frapolli 

75 et al. 2012), often leading to clade-specific profiles of plant-beneficial traits (Bruto et al. 2014). 

76 However, the analysis of 304 proteobacterial genomes from contrasted taxa evidenced, overall, 

77 the co-occurrence of nifHDK (nitrogen fixation) and acdS (ACC deamination) based on Exact-

78 Fisher pairwise tests (Bruto et al. 2014), raising the possibility that nitrogen fixation and ACC 

79 deamination might be useful traits when combined in a bacterium. Indeed, nitrogen fixation and 

80 ACC deamination occur together in various rhizobacteria (Blaha et al. 2006; Duan et al. 2009; 

81 Jha et al. 2012; Ma, Guinel, and Glick, 2003; Nukui et al. 2006), but the relation between both 

82 traits can be complex. In Azospirillum lipoferum 4B for instance, the plasmid-borne gene acdS 

83 is eliminated during phase variation while nif genes are maintained (Prigent-Combaret et al. 

84 2008), and in Mesorhizobium loti transcription of acdS is controlled by the nitrogen fixation 

85 regulator gene nifA2 (Nukui et al. 2006). Moreover, ACC deamination was described as 

86 facilitator of the legume-rhizobia symbiosis (Ma et al. 2003; Nascimento et al. 2012).

87 At the scale of an individual plant, the rhizosphere is colonized by a diversified range 

88 of bacteria, including nifH acdS bacteria as well as bacteria harboring only nifH or acdS (Blaha 

89 et al. 2006; Bouffaud et al. 2018). There is additional level of complexity in that many of these 

90 bacteria are PGPR, but some of them are not (Bruto et al. 2014). However, the overall impact 

91 of nitrogen fixation and ACC deamination on the plant is likely to be the sum of the contribution 

92 of individual root-colonizing bacteria displaying these traits. This raises the question whether 

93 there is, for the plant, an optimal balance between the functional microbial groups of nifH 

94 rhizobacteria and acdS rhizobacteria in the rhizosphere. On this basis, we tested here the 

95 hypothesis that rhizobacteria with either nitrogen fixation ability or ACC deamination ability 

96 (or with both) co-occur on roots. For that purpose, we used three maize fields under reduced 

97 nitrogen fertilization practices, with samplings carried out at 6-leaf and flowering stages during 

98 two consecutive years, and numbers of nifH and acdS rhizobacteria were monitored by 
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99 quantitative PCR. In addition, nifH and acdS rhizobacteria were assessed by metabarcoding 

100 (MiSeq Illumina sequencing) of nifH and acdS genes at one sampling, in parallel to sequencing 

101 of 16S rRNA genes for the whole rhizobacterial community.

102

103 2. MATERIALS AND METHODS

104

105 2.1. Field experiment

106 The experiment was conducted in 2014 and 2015 at field sites located in Chatonnay (L), 

107 Sérézin-de-la-Tour (FC) and Saint Savin (C), near the town of Bourgoin-Jallieu (Isère, France). 

108 According to the FAO soil reference base, L field corresponds to a luvisol, FC a fluvic cambisol 

109 and C a calcisol (Table 1). The trial set-up has been described in Rozier et al. (2017).

110 For each of the fields, the crop rotation consists in one year wheat, six years maize and 

111 one year rapeseed, and wheat was grown the year before the 2014 experiment. The maize 

112 sowing season ranges from middle April to middle May in the area. Maize seeds (Zea mays 

113 ‘Seiddi’; Dauphinoise Company, France) were sown on April 18 (FC) and 23 (C and L) in 2014 

114 and April 30 (C) and May 11 (FC and L) in 2015. Five replicate plots, which were 12 (FC and 

115 C) or 8 (L) maize rows wide and 12 m long, were defined in each field. The fields were 

116 undergoing a reduction in chemical fertilization usage and did not receive any nitrogen 

117 fertilizers in 2014 and 2015. Only non-inoculated plots from the overall trial (Rozier et al. 2017) 

118 were used.

119

120 2.2. Plant sampling

121 In 2014 and 2015, plants were sampled at six leaves and at flowering. In 2014, the first sampling 

122 was done on May 25 (FC) and 26 (C and L). On each replicate plot, six plants were chosen 

123 randomly, the entire root system was dug up and shaken vigorously to dislodge soil loosely 
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124 adhering to the roots. At sites FC and C, one pooled sample of six roots system was obtained 

125 per plot, i.e. a total of five pooled samples per field site. At site L, each of the six roots system 

126 was treated individually to obtain 30 samples. The second sampling was done on July 8 (FC 

127 and C) and 9 (L), on all five plots. Six plants were sampled per plot and treated individually to 

128 obtain 30 samples per field site.

129 In 2015, the first sampling was done on May 27 (C), June 5 (FC) and June 8 (L). In each 

130 replicate plot, four root systems were sampled and treated individually to obtain 20 samples per 

131 field site. The second sampling was done on July 15 (C), 16 (FC) and 17 (L), and four root 

132 systems were sampled and treated individually to obtain 20 samples per field site.

133 Each sample was immediately flash-frozen on site, in liquid nitrogen, and lyophilized 

134 back at the laboratory (at -50°C for 24 h). Roots and their adhering soil were separated and the 

135 latter stored at -80°C.

136

137 2.3. DNA extraction from root-adhering soil

138 DNA from root-adhering soil was extracted with the FastDNA SPIN kit (BIO 101 Inc., 

139 Carlsbad, CA). To this end, 500 mg (for the pooled samples from FC and C in 2014) or 300 mg 

140 samples (for all other samples) were transferred in Lysing Matrix E tubes from the kit, and 5 µl 

141 of the internal standard APA9 (109 copies ml-1) was added to each Lysing Matrix E tube to 

142 normalize DNA extraction efficiencies between rhizosphere samples, as described (Park and 

143 Crowley, 2005; Couillerot et al. 2010). This internal standard APA9 (i.e. vector pUC19 with 

144 cassava virus insert; GenBank accession number AJ427910) requires primers AV1f 

145 (CACCATGTCGAAGCGACCAGGAGATATCATC) and AV1r 

146 (TTTCGATTTGTGACGTGGACAGTGGGGGC). After 1 h incubation at 4°C, DNA was 

147 extracted and eluted in 50 µl of sterile ultra-pure water, according to the manufacturer’s 

148 instructions. DNA concentrations were assessed by Picogreen (ThermoFisher).
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149

150 2.4. Size of microbial functional groups

151 The amounts of nifH genes were estimated by quantitative PCR based on the primers polF/polR 

152 (Poly, Jocteur Monrozier, and Bally, 2001), as described by Bouffaud et al. (2016). The reaction 

153 was carried out in 20 µl containing 4 μl of PCR-grade water, 1 μl of each primer (final 

154 concentration 0.50 μM), 10 μl of LightCycler-DNA Master SYBR Green I master mix (Roche 

155 Applied Science, Meylan, France) and 2 µl of sample DNA (10 μg). The cycling program 

156 included 10 min incubation at 95°C, followed by 50 cycles of 95°C for 15 s, 64°C for 15 s and 

157 72°C for 10 s. Melting curve calculation and Tm determination were performed using the Tm 

158 Calling Analysis module of Light-Cycler Software v.1.5 (Roche Applied Science).

159 The amount of acdS genes was estimated by quantitative PCR based on the primers 

160 acdSF5/acdSR8 (Bouffaud et al. 2018). The reaction was carried out in 20 µl containing 4 μl of 

161 PCR grade water, 1 μl of each primer (final concentration 1 μM), 10 μl of LightCycler-DNA 

162 Master SYBR Green I master mix (Roche Applied Science) and 2 µl of sample DNA (10 μg). 

163 The cycling program included 10 min incubation at 95°C, followed by 50 cycles of 94°C for 

164 15 s, 67°C for 15 s and 72°C for 10 s. The fusion program for melting curve analysis is described 

165 above.

166 Real-time PCR quantification data were converted to gene copy number per gram of 

167 lyophilized root-adhering soil, as described (Bouffaud et al. 2018; Bouffaud et al. 2016).

168

169 2.5. nifH, acdS and rrs sequencing from rhizosphere DNA

170 Sequencing was performed on 2015’ samples taken when maize reached 6 leaves. Each sample 

171 was an equimolar composite sample of four DNA extracts obtained from root-adherent soil, 

172 resulting in 5 samples per field site, i.e. a total of 15 samples. DNA extracts were sent to MR 

173 DNA laboratory (www.mrdnalab.com; Shallowater, TX) for sequencing.
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174 For nifH and acdS sequencing, PCR primers were the same ones used for quantitative 

175 PCR (i.e., polF/polR for nifH and acdSF5/acdSR8 for acdS). For rrs sequencing, PCR primers 

176 515/806 were chosen for the V4 variable region of the 16S rRNA gene. For all three genes, the 

177 forward primer carried a barcode. Primers were used in a 30-cycle PCR (5 cycles implemented 

178 on PCR products), using the HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA) under 

179 the following conditions: 94°C for 3 min, followed by 28 cycles of 94°C for 30 s, 53°C for 40 

180 s and 72°C for 1 min, with a final elongation step at 72°C for 5 min. PCR products were checked 

181 in 2% agarose gel to determine amplification success and relative band intensity. Multiple 

182 samples were pooled together in equal proportions based on their molecular weight and DNA 

183 concentrations. Pooled samples were purified using calibrated Ampure XP beads and used to 

184 prepare a DNA library following Illumina TruSeq DNA library preparation protocol. 

185 Sequencing was performed on a MiSeq following the manufacturer’s guidelines.

186 Sequence data were processed using the analysis pipeline of MR DNA. Briefly, 

187 sequences were depleted of barcodes, sequences < 150 bp or with ambiguous base calls 

188 removed, the remaining sequences denoised, operational taxonomic units (OTUs; defined at 

189 3% divergence threshold for the three genes) generated, and chimeras removed. Final OTUs 

190 were taxonomically classified using BLASTn against a curated database derived from 

191 Greengenes (DeSantis et al. 2006), RDPII (http://rdp.cme.msu.edu) and NCBI 

192 (www.ncbi.nlm.nih.gov). Final OTUs of the acdS sequencing were classified using an in-house 

193 curated acdS database, obtained after curation of acdS homolog genes from the FunGene acdS 

194 8.3 database, as described by Bouffaud et al. (2018). Diversity indices of Shannon (H) and 

195 Simpson (1-D) were calculated using sequencing subsample data for which each sample had 

196 the same number of sequences.

197 An acdS phylogenetic tree (based on maximum-likelihood method) was computed using 

198 acdS sequences from ten arbitrarily-chosen OTUs per genus recovered in our sequencing data 
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199 and from one reference taxa for each genus, and related D-cystein desulfhydrase genes D-

200 cystein desulfhydrase genes from strains Escherichia coli strains K-12, ER3413, 042 and 

201 RM9387, Escherichia albertii KF1, Escherichia fergusonii ATCC 35469, Enterobacter 

202 sacchari SP1, Enterobacter cloacae ECNIH2, Enterobacter asburiae L1, Enterobacter sp. 638 

203 and Enterobacter lignolyticus SCF1 (used as out-group).

204

205 2.6. Statistical analysis

206 Statistical analysis of quantitative PCR data was carried out by ANOVA and Fishers’ LSD tests. 

207 For each gene sequenced, comparison of bacterial diversity between field sites was carried out 

208 by Between-Class Analysis (BCA) using ADE4 (Chessel et al. 2004; Culhane et al. 2005; Dray, 

209 Dufour, and Chessel, 2007) and ggplot2 packages for R, and the 12 genera contributing most 

210 to field site differentiation were identified. To assess co-trends between nifH and acdS 

211 variables, as well as between rrs and nifH or acdS variables, sequence data were also assessed 

212 using co-inertia analysis (CIA) (Dray et al. 2003; Dray et al. 2007), which was computed with 

213 the ADE4 package in the R statistical software environment (Culhane et al. 2005). CIA is a 

214 dimensional reduction procedure designed to measure the similarity of two sets of variables, 

215 here the proportions of nifH and acdS bacterial genera obtained during between-class analyses. 

216 Its significance was assessed using Monte-Carlo tests with 10,000 permutations. Unless 

217 otherwise stated, statistical analyses were performed using R v3.1.3 (Team, 2014), at P < 0.05 

218 level.

219

220 2.7. Nucleotide sequence accession numbers

221 Illumina MiSeq paired-end reads have been deposited in the European Bioinformatics Institute 

222 (EBI) database under accession numbers PRJEB14347 (ERP015984) for rrs; PRJEB14346 

223 (ERP015983) for nifH, PRJEB14343 (ERP015981) for acdS.
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224

225 3. RESULTS

226

227 3.1. Relation between numbers of nifH and acdS alleles in the three field sites

228 The number of acdS bacteria in the rhizosphere of maize harvested at 6-leaf stage in 2014 (7.87 

229 to 17.4 × 107 acdS gene copies g-1 of dry soil) and 2015 (1.76 to 2.81 × 107 acdS gene copies 

230 g-1 of dry soil) did not differ significantly between field sites (Figure 1AB). At flowering stage, 

231 however, the number of acdS bacteria differed from one site to the next, both in 2014 and in 

232 2015 (Figure 1EF). At that growth stage, the lowest rhizosphere abundance was observed in 

233 site L (5.08 × 107 acdS gene copies g-1 of dry soil) and the highest in site C (1.76 × 108 acdS 

234 gene copies g-1 of dry soil) in 2014, whereas site ranking was the opposite in 2015 (8.35 versus 

235 44.0 × 106 acdS gene copies g-1 of dry soil for sites C and L, respectively).

236 The numbers of nifH rhizobacteria differed according to field site (Figure 1CDGH). In 

237 2014, the lowest nifH abundance was observed in rhizospheres of site L (1.06 and 20.8 × 107 

238 nifH gene copies g-1 of dry soil at respectively six leaves and flowering) and the highest in those 

239 of site C (6.43 and 147.0 × 107 nifH gene copies g-1 of dry soil at respectively six leaves and 

240 flowering) (Figure 1CG). In 2015, the numbers of nifH rhizobacteria was higher in site C (9.31 

241 × 108 nifH gene copies g-1 of dry soil) than in FC (1.30 × 108 nifH gene copies g-1 of dry soil) 

242 and L (2.52 × 108 nifH gene copies g-1 of dry soil) at six leaves, whereas the situation was 

243 opposite at flowering, with higher abundance in site L (40.7 × 107 nifH gene copies g-1 of dry 

244 soil) than C (9.81 × 107 nifH gene copies g-1 of dry soil) and FC (5.66 × 107 nifH gene copies 

245 g-1 of dry soil) (Figure 1DH). 

246 When comparing the log numbers of nifH rhizobacteria and acdS rhizobacteria across 

247 the 12 site × sampling combinations, significant (3.8 × 10-5 < P < 0.01) positive correlations 

248 (0.67 < r < 0.98, n = 20) were found in 9 of 12 cases, with only three correlations that were not 
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249 significant, i.e. in site C at 6-leaf stage in 2014 (P = 0.10, n = 5) and FC at flowering in 2014 

250 (P = 0.67, n = 5) and 2015 (P = 0.19, n = 20) (Figure 2). In summary, moderate but significant 

251 differences in the numbers of nifH and/or acdS rhizobacteria could take place according to field 

252 site, sampling year and/or maize phenology, and in most cases a positive correlation was found 

253 between the log values of both numbers.

254

255 3.2. Relation between diversities of nifH and acdS alleles in the three field sites

256 Illumina MiSeq sequencing of nifH and acdS (as well as rrs) was carried out on 15 rhizosphere 

257 samples from 6-leaf maize grown in 2015. For nifH, 1,342,966 reads were obtained (10,775 to 

258 62,752 sequences per sample), for a total of 36,241 OTUs. Rarefaction analysis showed that 

259 curves reached a plateau (Figure S1A). Subsampling was done with 10,775 sequences per 

260 sample, for a total of 34,459 OTUs. For acdS, 5,490,230 reads were obtained (68,376 to 139,245 

261 sequences per sample), with a total of 32,468 OTUs. Rarefaction curves reached a plateau 

262 (Figure S1B). Subsampling was done with 68,376 sequences per sample, for a total of 26,246 

263 OTUs. After quality filtering, 6,082,255 reads were obtained for rrs (51,696 to 223,926 

264 sequences per sample), giving a total of 39,600 OTUs (3% cut-off). Rarefaction analysis 

265 showed that the sequencing effort captured most of the diversity with curves reaching a plateau 

266 (Figure S1C). Subsampling was done with 51,696 sequences per sample, for a total of 25,437 

267 OTUs.

268 The effect of field site on nifH diversity of diazotrophic bacteria was not significant 

269 based on analysis of Shannon and Simpson indices. Conversely, the effect of field site on acdS 

270 diversity of ACC deaminase bacteria was significant based on the Shannon (P = 1.9. × 10-4) 

271 and Simpson indices (P = 8.6 × 10-4). The Shannon index was lower in FC (6.32) than in L 

272 (6.82) and C (6.92), whereas the Simpson index was higher in FC (6.42 × 10-3) than in L (2.88 

273 × 10-3) and C (2.38 × 10-3). The effect of field site on rrs diversity of the total bacterial 
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274 community was significant based on the Shannon (P = 1.8 × 10-5) and Simpson indices (P =1.6 

275 × 10-4). As in the case of acdS data, the Shannon index was lower in FC (7.20) than in L (7.41) 

276 and C (7.71), whereas the Simpson index was higher in FC (3.42 × 10-3) than in L (2.28 × 10-

277 3) and C (1.40 × 10-3). 

278 The correlation (n = 5) between nifH diversity and acdS diversity was positive and 

279 significant at site L, when considering both the Shannon index (r = 0.98 ; P = 0.01; Figure 3) 

280 and the Simpson index (r = 0.86 ; P = 0.06; Figure 3). However, the correlation was not 

281 significant at the other two sites, regardless of the diversity index. When considering also rrs 

282 diversity, a significant correlation was found only with nifH diversity at site C (r = 0.91 ; P = 

283 0.03; Figure 3). In summary, there was no relation between the diversities of nifH rhizobacteria 

284 and acdS rhizobacteria, based on comparison of diversity indices in the three field sites and 

285 correlation analyses at two of the three field sites. 

286

Page 13 of 84

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

13

287 3.3. Relation between prevalence of nifH and/or acdS rhizobacterial taxa in the three field 

288 sites

289 Between-class analysis of nifH data showed that the composition of diazotrophic bacteria 

290 differed according to field site (Figure 4A). The first axis (54% of between-class variability) 

291 distinguished site C from FC and L, and the 12 genera contributing most to this differentiation 

292 were Xanthobacter, Dechloromonas, Methyloferula, Ideonella, Nitrospirillum and Tolumonas 

293 (more prevalent in C than in L and FC), as well as Desulfovibrio, Selenomonas, 

294 Ruminiclostridium, Paludibacter, Gloeocapsopsis and Ruminococcus (less prevalent in C than 

295 in FC and L). The second axis (46% of between-class variability) distinguished site L from the 

296 two other sites, and the 12 genera contributing most to this differentiation included Rhizobium, 

297 Gluconacetobacter, Skermanella, Leptothrix, Streptomyces and Methylocapsa (more prevalent 

298 in L than in FC and C), as well as Marichromatium, Pelobacter, Gordonibacter, Desulfobulbus, 

299 Desulfovibrio and Sideroxydan (less prevalent in L than in C and FC).

300 Between-class analysis of acdS data showed that the composition of ACC deaminase 

301 bacteria differed according to field site (Figure 4B). The first axis (66% of between-class 

302 variability) distinguished site C from FC and L, and the 12 genera contributing most to this 

303 differentiation were Achromobacter, Azospirillum, Pseudolabrys, Roseovarius, one unassigned 

304 OTU and Polaromonas (more prevalent in C than in L and FC), as well as Cupriavidus, 

305 Burkholderia, Bosea, Bradyrhizobium and Methylobacterium (less prevalent in C than in FC 

306 and L). The second axis (34% of between-class variability) distinguished each of the three sites 

307 from one another, and the 12 genera contributing most to this differentiation included 

308 Azorhizobium, Pseudomonas, Gluconobacter, Collimonas, Herbaspirillum and Burkholderia 

309 (more prevalent in FC than in C and L), as well as Ralstonia, Loktanella, Devosia, Variovorax, 

310 Novosphingobium and Chelatococcus (more prevalent in L than in C and FC).
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311 Between-class analysis of rrs data showed that the composition of the total bacterial 

312 community differed according to field site (Figure 4C). The first axis (71% of between-class 

313 variability) distinguished C from the two other sites, and the 12 genera contributing most to this 

314 differentiation were Algisphaera, Fibrobacter, Amaricoccus, Hirschia, Desulfacinum and 

315 Saccharophagus (more prevalent in C than in L and FC), as well as Actinomadura, Lutispora, 

316 Bacillus, Rhodopseudomonas, Kouleothrix and Roseiflexus (less prevalent in C than in FC and 

317 L). The second axis (29% of between-class variability) distinguished site L from FC and C, and 

318 the 12 genera contributing most to this differentiation included Flavobacterium, 

319 Gluconobacter, Maricaulis, Prolixibacter, ‘Candidatus Xiphinematobacter’, Chthoniobacter 

320 (more prevalent in FC than L), as well as Conexibacter, Hyphomicrobium, Pseudonocardia, 

321 Tumebacillus, Chelatococcus and Mycobacterium (less prevalent in FC than in L).

322 In summary, between-class analysis of nifH and acdS data indicated that the 

323 composition of diazotrophic bacteria and of ACC deaminase bacteria differed according to field 

324 site, but the main discriminant genera differed completely for both types of bacteria. In both 

325 cases, the discriminant taxa were also different from the main range of bacterial taxa 

326 distinguishing the three sites most when comparing the latter based on rrs data, at the scale of 

327 the entire rhizobacterial community.

328

329 3.4. Relation between the genetic structures of nifH and acdS rhizobacteria in the three 

330 field sites

331 Since there was a positive correlation between log numbers of nifH and/or acdS rhizobacteria 

332 but the corresponding bacterial genera discriminating most between the three fields studied 

333 were not the same, the co-structuration between nifH and acdS diversity was explored by co-

334 inertia analysis to compare more globally the genetic structures of these rhizobacterial groups 

335 across the three field sites. Monte-Carlo permutation tests showed a significant co-structuration 

Page 15 of 84

ScholarOne Support 1-434/964-4100

FEMS Microbiology Ecology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15

336 (P = 9 × 10-5) of nifH and acdS rhizobacteria, with a RV coefficient of 0.83. This accounted for 

337 57% of data variability. The plot of the co-inertia matrix illustrates the strength of the 

338 relationship between acdS and nifH diversities, as superposition of acdS and nifH groups 

339 showed a strong co-trend in all three field sites (Figure 5).

340 Co-inertia analyses of nifH and acdS diversities were also performed with rrs diversity, 

341 and permutations tests also showed co-structuration in both cases, with respectively RV 

342 coefficients of 0.89 and 0.91, the two axes explaining 52% and 69% of variability. 

343 Superposition of rrs community with acdS and with nifH groups indicated a strong co-trend 

344 across the three fields.

345 In summary, the genetic structures of nifH and acdS rhizobacterial groups across the 

346 three field sites were very close. Co-inertia was strong also when comparing each with the 

347 whole rhizobacterial community based on rrs data.

348

349 4. DISCUSSION

350

351 The current work made use of molecular tools available to characterize functional groups of 

352 nifH and acdS bacteria. Quantification of nifH rhizobacteria was performed with primers 

353 PolF/PolR (Poly et al. 2001) rather than other well-established primers such as Zf/Zr (Zehr and 

354 McReynolds, 1989) since the latter are not effective for quantitative PCR (Boyd and Peters 

355 2013; Gaby and Buckley 2017; Poly et al. 2001). The same primers have also been used for 

356 sequencing, both for consistency and efficacy for diazotroph characterization (Mårtensson et 

357 al. 2009; Wartiainen et al. 2008). Recently, acdS primers suitable for monitoring of ACC 

358 deamination bacteria have been made available (Bouffaud et al. 2018). These primers are 

359 effective to amplify true acdS genes while not amplifying related D-cystein desulfhydrase genes 

360 coding for other PLP-dependent enzymes, which was verified again in the current work (Figure 
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361 S2). Indeed, phylogenetic analysis of the acdS sequences showed that none clustered within the 

362 out-group (built with strains harboring D-cystein desulfhydrase genes), confirming that the 

363 sequences obtained were true acdS sequences, as highlighted in previous studies (Blaha et al. 

364 2006; Bouffaud et al. 2018; Li et al. 2015; Nascimento et al. 2012).

365 The level of taxonomic information carried by nifH sequences has been described in the 

366 literature, showing that nifH was sufficiently conserved to enable reliable taxonomic affiliations 

367 including for the assessment of rhizobacteria (Vinuesa et al. 2005), and its phylogeny was 

368 congruent with the one derived from rrs (Achouak et al. 1999; Zehr et al. 2003). As for acdS, 

369 phylogenetic analysis of the new sequences obtained (along with reference acdS sequences) 

370 confirmed that the taxonomic affiliations made at the genus level were correct. However, the 

371 130-bp acdS amplicons obtained with the current quantitative PCR primers do not enable any 

372 taxonomic affiliation below the genus level, i.e. at the species level (Bouffaud et al. 2018).

373 In this work, the hypothesis that nifH and acdS rhizobacterial populations co-occur on 

374 roots was assessed with maize taken from three fields, using quantitative PCR and MiSeq 

375 sequencing. The results that were obtained did substantiate this hypothesis, based on (i) positive 

376 correlations between the sizes of nifH and acdS rhizobacterial groups, and (ii) comparable 

377 genetic structures indicated by inertia analysis for both functional groups across the three field 

378 sites studied. Several studies have assessed the co-occurrence of particular microorganisms and 

379 measured between-taxa correlations in soil systems (Barberán et al. 2011; Freilich et al. 2010), 

380 but few have done so at the level of functional groups. For instance, co-occurrence analysis of 

381 nitrite-dependent anaerobic ammonium oxidizers and methane oxidizers in paddy soil showed 

382 that the structure of these communities changed with soil depth (Wang et al. 2012). The co-

383 occurrence of plant-beneficial functions in the rhizosphere has been investigated, but often the 

384 assessment was restrained to narrow taxonomic levels, such as within the Pseudomonas genus 

385 (Almario et al. 2014; Frapolli et al. 2012; Vacheron et al. 2016). It is interesting to note that not 
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386 all microorganisms harboring acdS and/or nifH expressed the corresponding functions in 

387 rhizosphere based on assessment of qRT-PCR data, as previously described for nifH (Bouffaud 

388 et al. 2016) or acdS (Bouffaud et al. 2018).

389 Specific taxa can be selected by environmental conditions prevailing on plant roots 

390 (Bakker et al. 2014; Berg and Smalla, 2009; Raaijmakers et al. 2009; Vandenkoornhuyse et al. 

391 2015). Thus, a first possibility to account for the co-occurrence of both functional groups could 

392 be that both nifH bacteria and acdS bacteria do well in the maize rhizosphere. Indeed, both types 

393 of bacteria are readily found on roots (Almario et al. 2014; Arruda et al. 2013; Blaha et al. 2006; 

394 Bruto et al. 2014; Bruto et al. 2014; Mårtensson et al. 2009). Such co-occurrence would make 

395 sense in ecological terms, because associative nitrogen fixation and ACC deamination are 

396 functions limiting plant nutrient deficiency by supplying nitrogen (Pii et al. 2015) and 

397 enhancing root system development (thereby improving uptake of mineral nutriments including 

398 nitrogen) (Glick, 2014), respectively. 

399 A second possibility could be that bacteria that harbor both genes/functions are well 

400 adapted to maize roots. Indeed, Bruto et al. (2014) showed that the nif operon co-occurred with 

401 acdS in several bacterial clades, and for instance the genera Bradyrhizobium or Burkholderia 

402 contain several species harboring both functions (Bruto et al. 2014). Furthermore, the co-inertia 

403 between these two functional groups and the total community raises the possibility that 

404 additional functions could also be present in addition to associative nitrogen fixation and ACC 

405 deamination. Indeed, comparative genomics studies showed that bacterial taxa display multiple 

406 specific functions, including plant interaction functions (Bruto et al. 2014; Lassalle et al. 2015; 

407 Vacheron et al. 2017), and thus these functions would also be co-selected when selecting the 

408 corresponding rrs-based taxa. In the current study, Bradyrhizobium represented 17 to 25% of 

409 acdS+ bacteria and 20 to 42% of nifH+ bacteria in the maize rhizosphere, and the high proportion 

410 of this bacterial clade may contribute to the co-occurence of diazotrophs and ACC deaminase 
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411 producers that was found. However, when the 10,369 completely-sequenced bacterial genomes 

412 available in the NCBI database were screened, it showed that 833 of them harbored acdS and 

413 461 others nifH, but only 122 genomes had both genes. Therefore, it could be that this second 

414 possibility is insufficient for a complete explanation of the current findings. 

415 A third possibility to consider is the joint occurrence of both functions in the 

416 rhizosphere, regardless of the taxa harboring them, thereby providing functional redundancy 

417 (Shade and Handelsman, 2012). Several studies in soil or aquatic settings have suggested that 

418 the metabolic/functional potential of microbial communities rather than their taxonomic 

419 variations are closely related to environmental conditions (Bouffaud et al. 2018; Burke et al. 

420 2011; Louca et al. 2016; Louca et al. 2017 ). These observations were conceptualized as the 

421 "It's the song, not the singer" theory (ITSNTS; Doolittle and Booth 2017), i.e. functional groups 

422 within microbial communities (the songs) would be better conserved and more relevant 

423 ecologically than the taxa themselves (the singers). Consistent with the ITSNTS theory, our 

424 study suggests that the assembly of the rhizosphere microbial community would entail a balance 

425 between phytostimulation-relevant genes, which may be needed to achieve an effective 

426 holobiont (i.e., the plant host and its functional microbiota), and points to the preponderance of 

427 functional interactions within the plant holobiont. This hypothesis, which has been put forward 

428 recently for root-associated microorganisms (Lemanceau et al. 2017), remains speculative at 

429 this stage and deserves further research attention. In particular, methodology development is 

430 needed to enable direct assessment of key plant-beneficial groups when parallel monitoring of 

431 several genes is required (e.g. for auxin production or P solubilization, which entail many 

432 genetic pathways), in contrast to ACC deamination and N fixation for which analysis of a single 

433 gene (acdS and nifH, respectively) may suffice.

434 To test whether the current findings could be also relevant under other environmental 

435 conditions, we reassessed the data obtained for nifH (Bouffaud et al. 2016) and acdS (Bouffaud 
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436 et al. 2018) from two maize lines grown in another soil (luvisol) with different management 

437 histories (cropped soil vs meadow soil). A positive correlation (r = 0.45 ; P = 0.050 ; n = 20) 

438 was found between the numbers of nifH and acdS bacteria in the monocropping soil but not in 

439 meadow soil (P = 0.75 ; n = 10), suggesting that maize monocropping history could have been 

440 an important factor. However, these findings were obtained with young plants only (21 days), 

441 grown in sieved soil under greenhouse conditions.

442 In conclusion, the current findings indicate that rhizobacteria with nitrogen fixation 

443 capacity and counterparts harboring ACC deamination ability co-occur in the maize 

444 rhizosphere, pointing to the possibility that plants may rely on multiple, complementary 

445 phytostimulatory functions provided by their microbial partners. Additional method 

446 development is needed to extend this type of assessment to additional phytostimulatory groups 

447 and other microbial functional groups important for plant performance.
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658 Legend

659

660 FIGURE 1. Size of the acdS and nifH functional groups compared in the three field sites L, FC 

661 and C over four sampling times. Means and standard deviations are shown for the acdS group 

662 at 6 leaves in 2014 (A) and 2015 (B) and at flowering in 2014 (E) and 2015 (F) and for the nifH 

663 group at 6 leaves in 2014 (C) and 2015 (D) and at flowering in 2014 (G) and 2015 (H). The 

664 analysis was done using pooled samples of six roots systems (n= 5) at FC and C and individual 

665 root systems (n = 30) at L in 2014, and individual root systems (n = 20) at all three sites in 2015. 

666 Statistical differences between sites are indicated by letters a-c (ANOVA and Fischer’s LSD 

667 tests, P < 0.05).

668

669 FIGURE 2. Correlation between log numbers of nifH (X axis) and acdS genes (Y axis). 

670 Correlation was established using the Pearson coefficient. The analysis was done using pooled 

671 samples of six roots systems (n= 5) at FC and C and individual root systems (n = 30) at L in 

672 2014, and individual root systems (n = 20) at all three sites in 2015.

673

674 FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson 

675 diversity indices of nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C), 

676 and Simpson diversity indices of rrs and acdS or nifH (D). Correlation was established 

677 separately at each of the three field sites L, FC and C, using the Pearson coefficient (n = 5). 

678

679 FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C 

680 by between-class analysis. Red circles, green triangles and blue squares are used for samples 

681 from sites FC, C and L, respectively. The curves at the top and the left of the panels show the 

682 distribution of samples on respectively the X and Y axes.
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683

684 FIGURE 5. Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities 

685 (B) and rrs and acdS diversities (C). Projection of the samples (n = 5) is based on both acdS 

686 (Blue) and nifH (Green), rrs (Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity 

687 variables (level = genus) into a same factorial plan. The vector in black shows the strength of 

688 co-trends between the two barycenters of variables as related to each site (L, FC, C). Shorter 

689 vectors indicate stronger convergent trends between the two variable groups. 

690

691

692 FIGURE S1: Rarefaction curves for nifH (A), acdS (B) and rrs (C) genes.

693

694 FIGURE S2. RAxML bipartition tree of 3322 sequenced acdS alleles from Poaceae 

695 rhizosphere. The tree was visualized using iTOL software (Letunic I, Bork P. Interactive Tree 

696 Of Life (iTOL) v4: recent updates and new developments (2019) Nucleic Acids Res doi: 

697 10.1093/nar/gkz239). Branches colored in violet represent the out-group of D-cystein 

698 desulfhydrase genes, whereas acdS alleles affiliated to Betaproteobacteria are shown in khaki, 

699 to Gammaproteobacteria in blue, to Actinobacteria in green, to Alphaproteobacteria in red, 

700 and to microeukaryotes in orange. The tree can be viewed online at the following link 

701 http://itol.embl.de/shared/acdStree.
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Table 1. Field characteristics of the top (5-30 cm) soil layer. 

Texture (%) pH Cation exchange (cmol/kg)Field Soil type

Sand Silt Clay H2O KCl

Organic C 

(g/kg)

Total N 

(g/kg)

C/N ratio

CECa Ca2+ Mg2+ K+

FC Fluvic cambisol 26.9 38.3 34.7 7.1 6.3 31.6 3.4 9.3 22.8 21.2 0.67 0.38

L Luvisol 42.9 42.9 14.2 7.3 6.7 21.5 1.6 13.4 93.0 10.5 0.33 0.43

C Calcisol 15.6 74.1 10.3 8.2 7.7 25.9 3.1 8.4 97.0 36.1 0.24 0.29

aCEC, cation exchange capacity.
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FIGURE 1. Size of the acdS and nifH functional groups compared in the three field sites L, FC 

and C over four sampling times. Means and standard deviations are shown for the acdS group 

at 6 leaves in 2014 (A) and 2015 (B) and at flowering in 2014 (E) and 2015 (F) and for the nifH 

group at 6 leaves in 2014 (C) and 2015 (D) and at flowering in 2014 (G) and 2015 (H). The 

analysis was done using pooled samples of six roots systems (n= 5) at FC and C and individual 

root systems (n = 30) at L in 2014, and individual root systems (n = 20) at all three sites in 

2015. Statistical differences between sites are indicated by letters a-c (ANOVA and Fischer’s 

LSD tests, P < 0.05).

FIGURE 2. Correlation between log numbers of nifH (X axis) and acdS genes (Y axis). 

Correlation was established using the Pearson coefficient. The analysis was done using pooled 

samples of six roots systems (n= 5) at FC and C and individual root systems (n = 30) at L in 

2014, and individual root systems (n = 20) at all three sites in 2015.

FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson 

diversity indices of nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C), 

and Simpson diversity indices of rrs and acdS or nifH (D). Correlation was established 

separately at each of the three field sites L, FC and C, using the Pearson coefficient (n = 5). 

FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C 

by between-class analysis. Red circles, green triangles and blue squares are used for samples 

from sites FC, C and L, respectively. The curves at the top and the left of the panels show the 

distribution of samples on respectively the X and Y axes.
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FIGURE 5. Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities 

(B) and rrs and acdS diversities (C). Projection of the samples (n = 5) is based on both acdS 

(Blue) and nifH (Green), rrs (Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity 

variables (level = genus) into a same factorial plan. The vector in black shows the strength of 

co-trends between the two barycenters of variables as related to each site (L, FC, C). Shorter 

vectors indicate stronger convergent trends between the two variable groups. 

FIGURE S1: Rarefaction curves for nifH (A), acdS (B) and rrs (C) genes.

FIGURE S2. RAxML bipartition tree of 3322 sequenced acdS alleles from Poaceae 
rhizosphere. The tree was visualized using iTOL software. Branches colored in violet 
represent the out-group of D-cystein desulfhydrase genes, whereas acdS alleles affiliated to 
Betaproteobacteria are shown in khaki, to Gammaproteobacteria in blue, to Actinobacteria in 
green, to Alphaproteobacteria in red, and to microeukaryotes in orange.
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FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson diversity indices of 
nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C), and Simpson diversity indices of rrs 

and acdS or nifH (D). Correlation was established separately at each of the three field sites L, FC and C, 
using the Pearson coefficient (n = 5). 

238x359mm (72 x 72 DPI) 
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FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C by between-
class analysis. Red circles, green triangles and blue squares are used for samples from sites FC, C and L, 

respectively. The curves at the top and the left of the panels show the distribution of samples on 
respectively the X and Y axes. 
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FIGURE 5. Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities (B) and rrs and 
acdS diversities (C). Projection of the samples (n = 5) is based on both acdS (Blue) and nifH (Green), rrs 

(Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity variables (level = genus) into a same 
factorial plan. The vector in black shows the strength of co-trends between the two barycenters of variables 

as related to each site (L, FC, C). Shorter vectors indicate stronger convergent trends between the two 
variable groups. 
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Table 1. Field characteristics of the top (5-30 cm) soil layer. 

Texture (%) pH Cation exchange (cmol/kg)Field Soil type

Sand Silt Clay H2O KCl

Organic C 

(g/kg)

Total N 

(g/kg)

C/N ratio

CECa Ca2+ Mg2+ K+

FC Fluvic cambisol 26.9 38.3 34.7 7.1 6.3 31.6 3.4 9.3 22.8 21.2 0.67 0.38

L Luvisol 42.9 42.9 14.2 7.3 6.7 21.5 1.6 13.4 93.0 10.5 0.33 0.43

C Calcisol 15.6 74.1 10.3 8.2 7.7 25.9 3.1 8.4 97.0 36.1 0.24 0.29

aCEC, cation exchange capacity
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Fig S1 
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2

26 ABSTRACT

27

28 The plant microbiota may differ depending on soil type, but these microbiota probably share 

29 the same functions necessary for holobiont fitness. Thus, we tested the hypothesis that 

30 phytostimulatory microbial functional groups are likely to co-occur in the rhizosphere, using 

31 groups corresponding to nitrogen fixation (nifH) and 1-aminocyclopropane-1-carboxylate 

32 deamination (acdS), i.e. two key modes of action in plant-beneficial rhizobacteria. The analysis 

33 of three maize fields in two consecutive years showed that quantitative PCR numbers of nifH 

34 and of acdS alleles differed according to field site, but a positive correlation was found overall 

35 when comparing nifH and acdS numbers. Metabarcoding analyses in the second year indicated 

36 that the diversity level of acdS but not nifH rhizobacteria in the rhizosphere differed across 

37 fields. Furthermore, between-class analysis showed that the three sites differed from one 

38 another based on nifH or acdS sequence data (or rrs data), and the bacterial genera contributing 

39 most to field differentiation were not the same for the three bacterial groups. However, co-

40 inertia analysis indicated that the genetic structures of both functional groups and of the whole 

41 bacterial community were similar across the three fields. Therefore, results point to co-selection 

42 of rhizobacteria harboring nitrogen fixation and/or 1-aminocyclopropane-1-carboxylate 

43 deamination abilities.

44

45 Keywords: microbiota; phytostimulation; functional group; functional microbiota; holobiont; 

46 ITSNTS theory

47

48
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49 INTRODUCTION

50

51 Plant Growth-Promoting Rhizobacteria (PGPR) colonize plant roots and implement a range of 

52 plant-beneficial traits, which may result in enhanced plant development, nutrition, health and/or 

53 stress tolerance (Almario et al. 2014; Cormier et al. 2016; Gamalero and Glick 2015; Hartman 

54 et al. 2018; Vacheron et al. 2013). As a consequence, PGPR strains have received extensive 

55 attention for use as microbial inoculants of crops (Bashan et al. 2014; Couillerot et al. 2013).

56 Plant-beneficial effects exhibited by PGPR are underpinned by a wide range of modes 

57 of actions, which include (i) enhanced nutrient availability via associative nitrogen fixation 

58 (Puri et al. 2016, Deynze et al. 2018) or phosphate solubilization (Arruda et al. 2013), (ii) 

59 stimulation of root system establishment through phytohormone synthesis (Cassán et al. 2014) 

60 or consumption of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) via an 

61 enzymatic deamination (Glick 2014), and (iii) the induction of systemic resistance responses in 

62 plant (Pieterse and Van Wees 2015). In addition to phytostimulation, certain PGPR may also 

63 achieve inhibition of phytoparasites using antimicrobial secondary metabolites (Agaras et al. 

64 2015) or lytic enzymes (Pieterse and Van Wees 2015). Often, PGPR strains display more than 

65 one phytostimulatory mode of action, which is considered important for effective plant-

66 beneficial effects (Bashan and de-Bashan 2010; Bruto et al. 2014; Rana et al. 2011; Vacheron 

67 et al. 2017). Therefore, the co-occurrence of multiple phytostimulation traits is likely to have 

68 been subjected to positive evolutionary selection in PGPR populations to maximize success of 

69 the plant-PGPR cooperation. This hypothesis is substantiated by genome sequence analysis of 

70 many prominent PGPR strains from contrasted taxa (Bertalan et al. 2009; Chen et al. 2007; 

71 Redondo-Nieto et al. 2013; Wisniewski-Dyé et al. 2012).

72 Even though PGPR strains tend to accumulate several plant-beneficial traits (Bruto et 

73 al. 2014), the co-occurrence patterns of these traits are not random. This takes place in part 
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74 because many past horizontal gene transfers of the corresponding genes were ancient (Frapolli 

75 et al. 2012), often leading to clade-specific profiles of plant-beneficial traits (Bruto et al. 2014). 

76 However, the analysis of 304 proteobacterial genomes from contrasted taxa evidenced, overall, 

77 the co-occurrence of nifHDK (nitrogen fixation) and acdS (ACC deamination) based on Exact-

78 Fisher pairwise tests (Bruto et al. 2014), raising the possibility that nitrogen fixation and ACC 

79 deamination might be useful traits when combined in a bacterium. Indeed, nitrogen fixation and 

80 ACC deamination occur together in various rhizobacteria (Blaha et al. 2006; Duan et al. 2009; 

81 Jha et al. 2012; Ma, Guinel, and Glick, 2003; Nukui et al. 2006), but the relation between both 

82 traits can be complex. In Azospirillum lipoferum 4B for instance, the plasmid-borne gene acdS 

83 is eliminated during phase variation while nif genes are maintained (Prigent-Combaret et al. 

84 2008), and in Mesorhizobium loti transcription of acdS is controlled by the nitrogen fixation 

85 regulator gene nifA2 (Nukui et al. 2006). Moreover, ACC deamination was described as 

86 facilitator of the legume-rhizobia symbiosis (Ma et al. 2003; Nascimento et al. 2012).

87 At the scale of an individual plant, the rhizosphere is colonized by a diversified range 

88 of bacteria, including nifH acdS bacteria as well as bacteria harboring only nifH or acdS (Blaha 

89 et al. 2006; Bouffaud et al. 2018). There is additional level of complexity in that many of these 

90 bacteria are PGPR, but some of them are not (Bruto et al. 2014). However, the overall impact 

91 of nitrogen fixation and ACC deamination on the plant is likely to be the sum of the contribution 

92 of individual root-colonizing bacteria displaying these traits. This raises the question whether 

93 there is, for the plant, an optimal balance between the functional microbial groups of nifH 

94 rhizobacteria and acdS rhizobacteria in the rhizosphere. On this basis, we tested here the 

95 hypothesis that rhizobacteria with either nitrogen fixation ability or ACC deamination ability 

96 (or with both) co-occur on roots. For that purpose, we used three maize fields under reduced 

97 nitrogen fertilization practices, with samplings carried out at 6-leaf and flowering stages during 

98 two consecutive years, and numbers of nifH and acdS rhizobacteria were monitored by 
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99 quantitative PCR. In addition, nifH and acdS rhizobacteria were assessed by metabarcoding 

100 (MiSeq Illumina sequencing) of nifH and acdS genes at one sampling, in parallel to sequencing 

101 of 16S rRNA genes for the whole rhizobacterial community.

102

103 2. MATERIALS AND METHODS

104

105 2.1. Field experiment

106 The experiment was conducted in 2014 and 2015 at field sites located in Chatonnay (L), 

107 Sérézin-de-la-Tour (FC) and Saint Savin (C), near the town of Bourgoin-Jallieu (Isère, France). 

108 According to the FAO soil reference base, L field corresponds to a luvisol, FC a fluvic cambisol 

109 and C a calcisol (Table 1). The trial set-up has been described in Rozier et al. (2017).

110 For each of the fields, the crop rotation consists in one year wheat, six years maize and 

111 one year rapeseed, and wheat was grown the year before the 2014 experiment. The maize 

112 sowing season ranges from middle April to middle May in the area. Maize seeds (Zea mays 

113 ‘Seiddi’; Dauphinoise Company, France) were sown on April 18 (FC) and 23 (C and L) in 2014 

114 and April 30 (C) and May 11 (FC and L) in 2015. Five replicate plots, which were 12 (FC and 

115 C) or 8 (L) maize rows wide and 12 m long, were defined in each field. The fields were 

116 undergoing a reduction in chemical fertilization usage and did not receive any nitrogen 

117 fertilizers in 2014 and 2015. Only non-inoculated plots from the overall trial (Rozier et al. 2017) 

118 were used.

119

120 2.2. Plant sampling

121 In 2014 and 2015, plants were sampled at six leaves and at flowering. In 2014, the first sampling 

122 was done on May 25 (FC) and 26 (C and L). On each replicate plot, six plants were chosen 

123 randomly, the entire root system was dug up and shaken vigorously to dislodge soil loosely 
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124 adhering to the roots. At sites FC and C, one pooled sample of six roots system was obtained 

125 per plot, i.e. a total of five pooled samples per field site. At site L, each of the six roots system 

126 was treated individually to obtain 30 samples. The second sampling was done on July 8 (FC 

127 and C) and 9 (L), on all five plots. Six plants were sampled per plot and treated individually to 

128 obtain 30 samples per field site.

129 In 2015, the first sampling was done on May 27 (C), June 5 (FC) and June 8 (L). In each 

130 replicate plot, four root systems were sampled and treated individually to obtain 20 samples per 

131 field site. The second sampling was done on July 15 (C), 16 (FC) and 17 (L), and four root 

132 systems were sampled and treated individually to obtain 20 samples per field site.

133 Each sample was immediately flash-frozen on site, in liquid nitrogen, and lyophilized 

134 back at the laboratory (at -50°C for 24 h). Roots and their adhering soil were separated and the 

135 latter stored at -80°C.

136

137 2.3. DNA extraction from root-adhering soil

138 DNA from root-adhering soil was extracted with the FastDNA SPIN kit (BIO 101 Inc., 

139 Carlsbad, CA). To this end, 500 mg (for the pooled samples from FC and C in 2014) or 300 mg 

140 samples (for all other samples) were transferred in Lysing Matrix E tubes from the kit, and 5 µl 

141 of the internal standard APA9 (109 copies ml-1) was added to each Lysing Matrix E tube to 

142 normalize DNA extraction efficiencies between rhizosphere samples, as described (Park and 

143 Crowley, 2005; Couillerot et al. 2010). This internal standard APA9 (i.e. vector pUC19 with 

144 cassava virus insert; GenBank accession number AJ427910) requires primers AV1f 

145 (CACCATGTCGAAGCGACCAGGAGATATCATC) and AV1r 

146 (TTTCGATTTGTGACGTGGACAGTGGGGGC). After 1 h incubation at 4°C, DNA was 

147 extracted and eluted in 50 µl of sterile ultra-pure water, according to the manufacturer’s 

148 instructions. DNA concentrations were assessed by Picogreen (ThermoFisher).
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149

150 2.4. Size of microbial functional groups

151 The amounts of nifH genes were estimated by quantitative PCR based on the primers polF/polR 

152 (Poly, Jocteur Monrozier, and Bally, 2001), as described by Bouffaud et al. (2016). The reaction 

153 was carried out in 20 µl containing 4 μl of PCR-grade water, 1 μl of each primer (final 

154 concentration 0.50 μM), 10 μl of LightCycler-DNA Master SYBR Green I master mix (Roche 

155 Applied Science, Meylan, France) and 2 µl of sample DNA (10 μg). The cycling program 

156 included 10 min incubation at 95°C, followed by 50 cycles of 95°C for 15 s, 64°C for 15 s and 

157 72°C for 10 s. Melting curve calculation and Tm determination were performed using the Tm 

158 Calling Analysis module of Light-Cycler Software v.1.5 (Roche Applied Science).

159 The amount of acdS genes was estimated by quantitative PCR based on the primers 

160 acdSF5/acdSR8 (Bouffaud et al. 2018). The reaction was carried out in 20 µl containing 4 μl of 

161 PCR grade water, 1 μl of each primer (final concentration 1 μM), 10 μl of LightCycler-DNA 

162 Master SYBR Green I master mix (Roche Applied Science) and 2 µl of sample DNA (10 μg). 

163 The cycling program included 10 min incubation at 95°C, followed by 50 cycles of 94°C for 

164 15 s, 67°C for 15 s and 72°C for 10 s. The fusion program for melting curve analysis is described 

165 above.

166 Real-time PCR quantification data were converted to gene copy number per gram of 

167 lyophilized root-adhering soil, as described (Bouffaud et al. 2018; Bouffaud et al. 2016).

168

169 2.5. nifH, acdS and rrs sequencing from rhizosphere DNA

170 Sequencing was performed on 2015’ samples taken when maize reached 6 leaves. Each sample 

171 was an equimolar composite sample of four DNA extracts obtained from root-adherent soil, 

172 resulting in 5 samples per field site, i.e. a total of 15 samples. DNA extracts were sent to MR 

173 DNA laboratory (www.mrdnalab.com; Shallowater, TX) for sequencing.
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174 For nifH and acdS sequencing, PCR primers were the same ones used for quantitative 

175 PCR (i.e., polF/polR for nifH and acdSF5/acdSR8 for acdS). For rrs sequencing, PCR primers 

176 515/806 were chosen for the V4 variable region of the 16S rRNA gene. For all three genes, the 

177 forward primer carried a barcode. Primers were used in a 30-cycle PCR (5 cycles implemented 

178 on PCR products), using the HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA) under 

179 the following conditions: 94°C for 3 min, followed by 28 cycles of 94°C for 30 s, 53°C for 40 

180 s and 72°C for 1 min, with a final elongation step at 72°C for 5 min. PCR products were checked 

181 in 2% agarose gel to determine amplification success and relative band intensity. Multiple 

182 samples were pooled together in equal proportions based on their molecular weight and DNA 

183 concentrations. Pooled samples were purified using calibrated Ampure XP beads and used to 

184 prepare a DNA library following Illumina TruSeq DNA library preparation protocol. 

185 Sequencing was performed on a MiSeq following the manufacturer’s guidelines.

186 Sequence data were processed using the analysis pipeline of MR DNA. Briefly, 

187 sequences were depleted of barcodes, sequences < 150 bp or with ambiguous base calls 

188 removed, the remaining sequences denoised, operational taxonomic units (OTUs; defined at 

189 3% divergence threshold for the three genes) generated, and chimeras removed. Final OTUs 

190 were taxonomically classified using BLASTn against a curated database derived from 

191 Greengenes (DeSantis et al. 2006), RDPII (http://rdp.cme.msu.edu) and NCBI 

192 (www.ncbi.nlm.nih.gov). Final OTUs of the acdS sequencing were classified using an in-house 

193 curated acdS database, obtained after curation of acdS homolog genes from the FunGene acdS 

194 8.3 database, as described by Bouffaud et al. (2018). Diversity indices of Shannon (H) and 

195 Simpson (1-D) were calculated using sequencing subsample data for which each sample had 

196 the same number of sequences.

197 An acdS phylogenetic tree (based on maximum-likelihood method) was computed using 

198 acdS sequences from ten arbitrarily-chosen OTUs per genus recovered in our sequencing data 
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199 and from one reference taxa for each genus, and related D-cystein desulfhydrase genes D-

200 cystein desulfhydrase genes from strains Escherichia coli strains K-12, ER3413, 042 and 

201 RM9387, Escherichia albertii KF1, Escherichia fergusonii ATCC 35469, Enterobacter 

202 sacchari SP1, Enterobacter cloacae ECNIH2, Enterobacter asburiae L1, Enterobacter sp. 638 

203 and Enterobacter lignolyticus SCF1 (used as out-group).

204

205 2.6. Statistical analysis

206 Statistical analysis of quantitative PCR data was carried out by ANOVA and Fishers’ LSD tests. 

207 For each gene sequenced, comparison of bacterial diversity between field sites was carried out 

208 by Between-Class Analysis (BCA) using ADE4 (Chessel et al. 2004; Culhane et al. 2005; Dray, 

209 Dufour, and Chessel, 2007) and ggplot2 packages for R, and the 12 genera contributing most 

210 to field site differentiation were identified. To assess co-trends between nifH and acdS 

211 variables, as well as between rrs and nifH or acdS variables, sequence data were also assessed 

212 using co-inertia analysis (CIA) (Dray et al. 2003; Dray et al. 2007), which was computed with 

213 the ADE4 package in the R statistical software environment (Culhane et al. 2005). CIA is a 

214 dimensional reduction procedure designed to measure the similarity of two sets of variables, 

215 here the proportions of nifH and acdS bacterial genera obtained during between-class analyses. 

216 Its significance was assessed using Monte-Carlo tests with 10,000 permutations. Unless 

217 otherwise stated, statistical analyses were performed using R v3.1.3 (Team, 2014), at P < 0.05 

218 level.

219

220 2.7. Nucleotide sequence accession numbers

221 Illumina MiSeq paired-end reads have been deposited in the European Bioinformatics Institute 

222 (EBI) database under accession numbers PRJEB14347 (ERP015984) for rrs; PRJEB14346 

223 (ERP015983) for nifH, PRJEB14343 (ERP015981) for acdS.
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224

225 3. RESULTS

226

227 3.1. Relation between numbers of nifH and acdS alleles in the three field sites

228 The number of acdS bacteria in the rhizosphere of maize harvested at 6-leaf stage in 2014 (7.87 

229 to 17.4 × 107 acdS gene copies g-1 of dry soil) and 2015 (1.76 to 2.81 × 107 acdS gene copies 

230 g-1 of dry soil) did not differ significantly between field sites (Figure 1AB). At flowering stage, 

231 however, the number of acdS bacteria differed from one site to the next, both in 2014 and in 

232 2015 (Figure 1EF). At that growth stage, the lowest rhizosphere abundance was observed in 

233 site L (5.08 × 107 acdS gene copies g-1 of dry soil) and the highest in site C (1.76 × 108 acdS 

234 gene copies g-1 of dry soil) in 2014, whereas site ranking was the opposite in 2015 (8.35 versus 

235 44.0 × 106 acdS gene copies g-1 of dry soil for sites C and L, respectively).

236 The numbers of nifH rhizobacteria differed according to field site (Figure 1CDGH). In 

237 2014, the lowest nifH abundance was observed in rhizospheres of site L (1.06 and 20.8 × 107 

238 nifH gene copies g-1 of dry soil at respectively six leaves and flowering) and the highest in those 

239 of site C (6.43 and 147.0 × 107 nifH gene copies g-1 of dry soil at respectively six leaves and 

240 flowering) (Figure 1CG). In 2015, the numbers of nifH rhizobacteria was higher in site C (9.31 

241 × 108 nifH gene copies g-1 of dry soil) than in FC (1.30 × 108 nifH gene copies g-1 of dry soil) 

242 and L (2.52 × 108 nifH gene copies g-1 of dry soil) at six leaves, whereas the situation was 

243 opposite at flowering, with higher abundance in site L (40.7 × 107 nifH gene copies g-1 of dry 

244 soil) than C (9.81 × 107 nifH gene copies g-1 of dry soil) and FC (5.66 × 107 nifH gene copies 

245 g-1 of dry soil) (Figure 1DH). 

246 When comparing the log numbers of nifH rhizobacteria and acdS rhizobacteria across 

247 the 12 site × sampling combinations, significant (3.8 × 10-5 < P < 0.01) positive correlations 

248 (0.67 < r < 0.98, n = 20) were found in 9 of 12 cases, with only three correlations that were not 
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249 significant, i.e. in site C at 6-leaf stage in 2014 (P = 0.10, n = 5) and FC at flowering in 2014 

250 (P = 0.67, n = 5) and 2015 (P = 0.19, n = 20) (Figure 2). In summary, moderate but significant 

251 differences in the numbers of nifH and/or acdS rhizobacteria could take place according to field 

252 site, sampling year and/or maize phenology, and in most cases a positive correlation was found 

253 between the log values of both numbers.

254

255 3.2. Relation between diversities of nifH and acdS alleles in the three field sites

256 Illumina MiSeq sequencing of nifH and acdS (as well as rrs) was carried out on 15 rhizosphere 

257 samples from 6-leaf maize grown in 2015. For nifH, 1,342,966 reads were obtained (10,775 to 

258 62,752 sequences per sample), for a total of 36,241 OTUs. Rarefaction analysis showed that 

259 curves reached a plateau (Figure S1A). Subsampling was done with 10,775 sequences per 

260 sample, for a total of 34,459 OTUs. For acdS, 5,490,230 reads were obtained (68,376 to 139,245 

261 sequences per sample), with a total of 32,468 OTUs. Rarefaction curves reached a plateau 

262 (Figure S1B). Subsampling was done with 68,376 sequences per sample, for a total of 26,246 

263 OTUs. After quality filtering, 6,082,255 reads were obtained for rrs (51,696 to 223,926 

264 sequences per sample), giving a total of 39,600 OTUs (3% cut-off). Rarefaction analysis 

265 showed that the sequencing effort captured most of the diversity with curves reaching a plateau 

266 (Figure S1C). Subsampling was done with 51,696 sequences per sample, for a total of 25,437 

267 OTUs.

268 The effect of field site on nifH diversity of diazotrophic bacteria was not significant 

269 based on analysis of Shannon and Simpson indices. Conversely, the effect of field site on acdS 

270 diversity of ACC deaminase bacteria was significant based on the Shannon (P = 1.9. × 10-4) 

271 and Simpson indices (P = 8.6 × 10-4). The Shannon index was lower in FC (6.32) than in L 

272 (6.82) and C (6.92), whereas the Simpson index was higher in FC (6.42 × 10-3) than in L (2.88 

273 × 10-3) and C (2.38 × 10-3). The effect of field site on rrs diversity of the total bacterial 
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274 community was significant based on the Shannon (P = 1.8 × 10-5) and Simpson indices (P =1.6 

275 × 10-4). As in the case of acdS data, the Shannon index was lower in FC (7.20) than in L (7.41) 

276 and C (7.71), whereas the Simpson index was higher in FC (3.42 × 10-3) than in L (2.28 × 10-

277 3) and C (1.40 × 10-3). 

278 The correlation (n = 5) between nifH diversity and acdS diversity was positive and 

279 significant at site L, when considering both the Shannon index (r = 0.98 ; P = 0.01; Figure 3) 

280 and the Simpson index (r = 0.86 ; P = 0.06; Figure 3). However, the correlation was not 

281 significant at the other two sites, regardless of the diversity index. When considering also rrs 

282 diversity, a significant correlation was found only with nifH diversity at site C (r = 0.91 ; P = 

283 0.03; Figure 3). In summary, there was no relation between the diversities of nifH rhizobacteria 

284 and acdS rhizobacteria, based on comparison of diversity indices in the three field sites and 

285 correlation analyses at two of the three field sites. 

286
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287 3.3. Relation between prevalence of nifH and/or acdS rhizobacterial taxa in the three field 

288 sites

289 Between-class analysis of nifH data showed that the composition of diazotrophic bacteria 

290 differed according to field site (Figure 4A). The first axis (54% of between-class variability) 

291 distinguished site C from FC and L, and the 12 genera contributing most to this differentiation 

292 were Xanthobacter, Dechloromonas, Methyloferula, Ideonella, Nitrospirillum and Tolumonas 

293 (more prevalent in C than in L and FC), as well as Desulfovibrio, Selenomonas, 

294 Ruminiclostridium, Paludibacter, Gloeocapsopsis and Ruminococcus (less prevalent in C than 

295 in FC and L). The second axis (46% of between-class variability) distinguished site L from the 

296 two other sites, and the 12 genera contributing most to this differentiation included Rhizobium, 

297 Gluconacetobacter, Skermanella, Leptothrix, Streptomyces and Methylocapsa (more prevalent 

298 in L than in FC and C), as well as Marichromatium, Pelobacter, Gordonibacter, Desulfobulbus, 

299 Desulfovibrio and Sideroxydan (less prevalent in L than in C and FC).

300 Between-class analysis of acdS data showed that the composition of ACC deaminase 

301 bacteria differed according to field site (Figure 4B). The first axis (66% of between-class 

302 variability) distinguished site C from FC and L, and the 12 genera contributing most to this 

303 differentiation were Achromobacter, Azospirillum, Pseudolabrys, Roseovarius, one unassigned 

304 OTU and Polaromonas (more prevalent in C than in L and FC), as well as Cupriavidus, 

305 Burkholderia, Bosea, Bradyrhizobium and Methylobacterium (less prevalent in C than in FC 

306 and L). The second axis (34% of between-class variability) distinguished each of the three sites 

307 from one another, and the 12 genera contributing most to this differentiation included 

308 Azorhizobium, Pseudomonas, Gluconobacter, Collimonas, Herbaspirillum and Burkholderia 

309 (more prevalent in FC than in C and L), as well as Ralstonia, Loktanella, Devosia, Variovorax, 

310 Novosphingobium and Chelatococcus (more prevalent in L than in C and FC).
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311 Between-class analysis of rrs data showed that the composition of the total bacterial 

312 community differed according to field site (Figure 4C). The first axis (71% of between-class 

313 variability) distinguished C from the two other sites, and the 12 genera contributing most to this 

314 differentiation were Algisphaera, Fibrobacter, Amaricoccus, Hirschia, Desulfacinum and 

315 Saccharophagus (more prevalent in C than in L and FC), as well as Actinomadura, Lutispora, 

316 Bacillus, Rhodopseudomonas, Kouleothrix and Roseiflexus (less prevalent in C than in FC and 

317 L). The second axis (29% of between-class variability) distinguished site L from FC and C, and 

318 the 12 genera contributing most to this differentiation included Flavobacterium, 

319 Gluconobacter, Maricaulis, Prolixibacter, ‘Candidatus Xiphinematobacter’, Chthoniobacter 

320 (more prevalent in FC than L), as well as Conexibacter, Hyphomicrobium, Pseudonocardia, 

321 Tumebacillus, Chelatococcus and Mycobacterium (less prevalent in FC than in L).

322 In summary, between-class analysis of nifH and acdS data indicated that the 

323 composition of diazotrophic bacteria and of ACC deaminase bacteria differed according to field 

324 site, but the main discriminant genera differed completely for both types of bacteria. In both 

325 cases, the discriminant taxa were also different from the main range of bacterial taxa 

326 distinguishing the three sites most when comparing the latter based on rrs data, at the scale of 

327 the entire rhizobacterial community.

328

329 3.4. Relation between the genetic structures of nifH and acdS rhizobacteria in the three 

330 field sites

331 Since there was a positive correlation between log numbers of nifH and/or acdS rhizobacteria 

332 but the corresponding bacterial genera discriminating most between the three fields studied 

333 were not the same, the co-structuration between nifH and acdS diversity was explored by co-

334 inertia analysis to compare more globally the genetic structures of these rhizobacterial groups 

335 across the three field sites. Monte-Carlo permutation tests showed a significant co-structuration 
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336 (P = 9 × 10-5) of nifH and acdS rhizobacteria, with a RV coefficient of 0.83. This accounted for 

337 57% of data variability. The plot of the co-inertia matrix illustrates the strength of the 

338 relationship between acdS and nifH diversities, as superposition of acdS and nifH groups 

339 showed a strong co-trend in all three field sites (Figure 5).

340 Co-inertia analyses of nifH and acdS diversities were also performed with rrs diversity, 

341 and permutations tests also showed co-structuration in both cases, with respectively RV 

342 coefficients of 0.89 and 0.91, the two axes explaining 52% and 69% of variability. 

343 Superposition of rrs community with acdS and with nifH groups indicated a strong co-trend 

344 across the three fields.

345 In summary, the genetic structures of nifH and acdS rhizobacterial groups across the 

346 three field sites were very close. Co-inertia was strong also when comparing each with the 

347 whole rhizobacterial community based on rrs data.

348

349 4. DISCUSSION

350

351 The current work made use of molecular tools available to characterize functional groups of 

352 nifH and acdS bacteria. Quantification of nifH rhizobacteria was performed with primers 

353 PolF/PolR (Poly et al. 2001) rather than other well-established primers such as Zf/Zr (Zehr and 

354 McReynolds, 1989) since the latter are not effective for quantitative PCR (Boyd and Peters 

355 2013; Gaby and Buckley 2017; Poly et al. 2001). The same primers have also been used for 

356 sequencing, both for consistency and efficacy for diazotroph characterization (Mårtensson et 

357 al. 2009; Wartiainen et al. 2008). Recently, acdS primers suitable for monitoring of ACC 

358 deamination bacteria have been made available (Bouffaud et al. 2018). These primers are 

359 effective to amplify true acdS genes while not amplifying related D-cystein desulfhydrase genes 

360 coding for other PLP-dependent enzymes, which was verified again in the current work (Figure 
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361 S2). Indeed, phylogenetic analysis of the acdS sequences showed that none clustered within the 

362 out-group (built with strains harboring D-cystein desulfhydrase genes), confirming that the 

363 sequences obtained were true acdS sequences, as highlighted in previous studies (Blaha et al. 

364 2006; Bouffaud et al. 2018; Li et al. 2015; Nascimento et al. 2012).

365 The level of taxonomic information carried by nifH sequences has been described in the 

366 literature, showing that nifH was sufficiently conserved to enable reliable taxonomic affiliations 

367 including for the assessment of rhizobacteria (Vinuesa et al. 2005), and its phylogeny was 

368 congruent with the one derived from rrs (Achouak et al. 1999; Zehr et al. 2003). As for acdS, 

369 phylogenetic analysis of the new sequences obtained (along with reference acdS sequences) 

370 confirmed that the taxonomic affiliations made at the genus level were correct. However, the 

371 130-bp acdS amplicons obtained with the current quantitative PCR primers do not enable any 

372 taxonomic affiliation below the genus level, i.e. at the species level (Bouffaud et al. 2018).

373 In this work, the hypothesis that nifH and acdS rhizobacterial populations co-occur on 

374 roots was assessed with maize taken from three fields, using quantitative PCR and MiSeq 

375 sequencing. The results that were obtained did substantiate this hypothesis, based on (i) positive 

376 correlations between the sizes of nifH and acdS rhizobacterial groups, and (ii) comparable 

377 genetic structures indicated by inertia analysis for both functional groups across the three field 

378 sites studied. Several studies have assessed the co-occurrence of particular microorganisms and 

379 measured between-taxa correlations in soil systems (Barberán et al. 2011; Freilich et al. 2010), 

380 but few have done so at the level of functional groups. For instance, co-occurrence analysis of 

381 nitrite-dependent anaerobic ammonium oxidizers and methane oxidizers in paddy soil showed 

382 that the structure of these communities changed with soil depth (Wang et al. 2012). The co-

383 occurrence of plant-beneficial functions in the rhizosphere has been investigated, but often the 

384 assessment was restrained to narrow taxonomic levels, such as within the Pseudomonas genus 

385 (Almario et al. 2014; Frapolli et al. 2012; Vacheron et al. 2016). It is interesting to note that not 
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386 all microorganisms harboring acdS and/or nifH expressed the corresponding functions in 

387 rhizosphere based on assessment of qRT-PCR data, as previously described for nifH (Bouffaud 

388 et al. 2016) or acdS (Bouffaud et al. 2018).

389 Specific taxa can be selected by environmental conditions prevailing on plant roots 

390 (Bakker et al. 2014; Berg and Smalla, 2009; Raaijmakers et al. 2009; Vandenkoornhuyse et al. 

391 2015). Thus, a first possibility to account for the co-occurrence of both functional groups could 

392 be that both nifH bacteria and acdS bacteria do well in the maize rhizosphere. Indeed, both types 

393 of bacteria are readily found on roots (Almario et al. 2014; Arruda et al. 2013; Blaha et al. 2006; 

394 Bruto et al. 2014; Bruto et al. 2014; Mårtensson et al. 2009). Such co-occurrence would make 

395 sense in ecological terms, because associative nitrogen fixation and ACC deamination are 

396 functions limiting plant nutrient deficiency by supplying nitrogen (Pii et al. 2015) and 

397 enhancing root system development (thereby improving uptake of mineral nutriments including 

398 nitrogen) (Glick, 2014), respectively. 

399 A second possibility could be that bacteria that harbor both genes/functions are well 

400 adapted to maize roots. Indeed, Bruto et al. (2014) showed that the nif operon co-occurred with 

401 acdS in several bacterial clades, and for instance the genera Bradyrhizobium or Burkholderia 

402 contain several species harboring both functions (Bruto et al. 2014). Furthermore, the co-inertia 

403 between these two functional groups and the total community raises the possibility that 

404 additional functions could also be present in addition to associative nitrogen fixation and ACC 

405 deamination. Indeed, comparative genomics studies showed that bacterial taxa display multiple 

406 specific functions, including plant interaction functions (Bruto et al. 2014; Lassalle et al. 2015; 

407 Vacheron et al. 2017), and thus these functions would also be co-selected when selecting the 

408 corresponding rrs-based taxa. In the current study, Bradyrhizobium represented 17 to 25% of 

409 acdS+ bacteria and 20 to 42% of nifH+ bacteria in the maize rhizosphere, and the high proportion 

410 of this bacterial clade may contribute to the co-occurence of diazotrophs and ACC deaminase 
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411 producers that was found. However, when the 10,369 completely-sequenced bacterial genomes 

412 available in the NCBI database were screened, it showed that 833 of them harbored acdS and 

413 461 others nifH, but only 122 genomes had both genes. Therefore, it could be that this second 

414 possibility is insufficient for a complete explanation of the current findings. 

415 A third possibility to consider is the joint occurrence of both functions in the 

416 rhizosphere, regardless of the taxa harboring them, thereby providing functional redundancy 

417 (Shade and Handelsman, 2012). Several studies in soil or aquatic settings have suggested that 

418 the metabolic/functional potential of microbial communities rather than their taxonomic 

419 variations are closely related to environmental conditions (Bouffaud et al. 2018; Burke et al. 

420 2011; Louca et al. 2016; Louca et al. 2017 ). These observations were conceptualized as the 

421 "It's the song, not the singer" theory (ITSNTS; Doolittle and Booth 2017), i.e. functional groups 

422 within microbial communities (the songs) would be better conserved and more relevant 

423 ecologically than the taxa themselves (the singers). Consistent with the ITSNTS theory, our 

424 study suggests that the assembly of the rhizosphere microbial community would entail a balance 

425 between phytostimulation-relevant genes, which may be needed to achieve an effective 

426 holobiont (i.e., the plant host and its functional microbiota), and points to the preponderance of 

427 functional interactions within the plant holobiont. This hypothesis, which has been put forward 

428 recently for root-associated microorganisms (Lemanceau et al. 2017), remains speculative at 

429 this stage and deserves further research attention. In particular, methodology development is 

430 needed to enable direct assessment of key plant-beneficial groups when parallel monitoring of 

431 several genes is required (e.g. for auxin production or P solubilization, which entail many 

432 genetic pathways), in contrast to ACC deamination and N fixation for which analysis of a single 

433 gene (acdS and nifH, respectively) may suffice.

434 To test whether the current findings could be also relevant under other environmental 

435 conditions, we reassessed the data obtained for nifH (Bouffaud et al. 2016) and acdS (Bouffaud 
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436 et al. 2018) from two maize lines grown in another soil (luvisol) with different management 

437 histories (cropped soil vs meadow soil). A positive correlation (r = 0.45 ; P = 0.050 ; n = 20) 

438 was found between the numbers of nifH and acdS bacteria in the monocropping soil but not in 

439 meadow soil (P = 0.75 ; n = 10), suggesting that maize monocropping history could have been 

440 an important factor. However, these findings were obtained with young plants only (21 days), 

441 grown in sieved soil under greenhouse conditions.

442 In conclusion, the current findings indicate that rhizobacteria with nitrogen fixation 

443 capacity and counterparts harboring ACC deamination ability co-occur in the maize 

444 rhizosphere, pointing to the possibility that plants may rely on multiple, complementary 

445 phytostimulatory functions provided by their microbial partners. Additional method 

446 development is needed to extend this type of assessment to additional phytostimulatory groups 

447 and other microbial functional groups important for plant performance.
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658 Legend

659

660 FIGURE 1. Size of the acdS and nifH functional groups compared in the three field sites L, FC 

661 and C over four sampling times. Means and standard deviations are shown for the acdS group 

662 at 6 leaves in 2014 (A) and 2015 (B) and at flowering in 2014 (E) and 2015 (F) and for the nifH 

663 group at 6 leaves in 2014 (C) and 2015 (D) and at flowering in 2014 (G) and 2015 (H). The 

664 analysis was done using pooled samples of six roots systems (n= 5) at FC and C and individual 

665 root systems (n = 30) at L in 2014, and individual root systems (n = 20) at all three sites in 2015. 

666 Statistical differences between sites are indicated by letters a-c (ANOVA and Fischer’s LSD 

667 tests, P < 0.05).

668

669 FIGURE 2. Correlation between log numbers of nifH (X axis) and acdS genes (Y axis). 

670 Correlation was established using the Pearson coefficient. The analysis was done using pooled 

671 samples of six roots systems (n= 5) at FC and C and individual root systems (n = 30) at L in 

672 2014, and individual root systems (n = 20) at all three sites in 2015.

673

674 FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson 

675 diversity indices of nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C), 

676 and Simpson diversity indices of rrs and acdS or nifH (D). Correlation was established 

677 separately at each of the three field sites L, FC and C, using the Pearson coefficient (n = 5). 

678

679 FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C 

680 by between-class analysis. Red circles, green triangles and blue squares are used for samples 

681 from sites FC, C and L, respectively. The curves at the top and the left of the panels show the 

682 distribution of samples on respectively the X and Y axes.
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683

684 FIGURE 5. Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities 

685 (B) and rrs and acdS diversities (C). Projection of the samples (n = 5) is based on both acdS 

686 (Blue) and nifH (Green), rrs (Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity 

687 variables (level = genus) into a same factorial plan. The vector in black shows the strength of 

688 co-trends between the two barycenters of variables as related to each site (L, FC, C). Shorter 

689 vectors indicate stronger convergent trends between the two variable groups. 

690

691

692 FIGURE S1: Rarefaction curves for nifH (A), acdS (B) and rrs (C) genes.

693

694 FIGURE S2. RAxML bipartition tree of 3322 sequenced acdS alleles from Poaceae 

695 rhizosphere. The tree was visualized using iTOL software (Letunic I, Bork P. Interactive Tree 

696 Of Life (iTOL) v4: recent updates and new developments (2019) Nucleic Acids Res doi: 

697 10.1093/nar/gkz239). Branches colored in violet represent the out-group of D-cystein 

698 desulfhydrase genes, whereas acdS alleles affiliated to Betaproteobacteria are shown in khaki, 

699 to Gammaproteobacteria in blue, to Actinobacteria in green, to Alphaproteobacteria in red, 

700 and to microeukaryotes in orange. The tree can be viewed online at the following link 

701 http://itol.embl.de/shared/acdStree.
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Table 1. Field characteristics of the top (5-30 cm) soil layer. 

Texture (%) pH Cation exchange (cmol/kg)Field Soil type

Sand Silt Clay H2O KCl

Organic C 

(g/kg)

Total N 

(g/kg)

C/N ratio

CECa Ca2+ Mg2+ K+

FC Fluvic cambisol 26.9 38.3 34.7 7.1 6.3 31.6 3.4 9.3 22.8 21.2 0.67 0.38

L Luvisol 42.9 42.9 14.2 7.3 6.7 21.5 1.6 13.4 93.0 10.5 0.33 0.43

C Calcisol 15.6 74.1 10.3 8.2 7.7 25.9 3.1 8.4 97.0 36.1 0.24 0.29

aCEC, cation exchange capacity.
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