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 [START_REF] Poly | Improvement in the RFLP procedure for studying the diversity 602 of nifH genes in communities of nitrogen fixers in soil[END_REF], as described by [START_REF] Bouffaud | Is plant evolutionary history impacting recruitment 509 of diazotrophs and nifH expression in the rhizosphere?[END_REF]. The reaction 153 was carried out in 20 µl containing 4 μl of PCR-grade water, 1 μl of each primer (final 154 concentration 0.50 μM), 10 μl of LightCycler-DNA Master SYBR Green I master mix (Roche 155 Applied Science, Meylan, France) and 2 µl of sample DNA (10 μg). The cycling program 156 included 10 min incubation at 95°C, followed by 50 cycles of 95°C for 15 s, 64°C for 15 s and 157 72°C for 10 s. Melting curve calculation and Tm determination were performed using the Tm 158 Calling Analysis module of Light-Cycler Software v. 1.5 (Roche Applied Science).

159

The amount of acdS genes was estimated by quantitative PCR based on the primers 160 acdSF5/acdSR8 [START_REF] Bouffaud | 1-Aminocyclopropane-1-carboxylate deaminase producers 506 associated to maize and other Poaceae species[END_REF]. The reaction was carried out in 20 µl containing 4 μl of 161 PCR grade water, 1 μl of each primer (final concentration 1 μM), 10 μl of LightCycler-DNA 162 Master SYBR Green I master mix (Roche Applied Science) and 2 µl of sample DNA (10 μg).

163 The cycling program included 10 min incubation at 95°C, followed by 50 cycles of 94°C for 164 15 s, 67°C for 15 s and 72°C for 10 s. The fusion program for melting curve analysis is described 165 above.

166 Real-time PCR quantification data were converted to gene copy number per gram of 167 lyophilized root-adhering soil, as described [START_REF] Bouffaud | 1-Aminocyclopropane-1-carboxylate deaminase producers 506 associated to maize and other Poaceae species[END_REF][START_REF] Bouffaud | Is plant evolutionary history impacting recruitment 509 of diazotrophs and nifH expression in the rhizosphere?[END_REF]. 386 all microorganisms harboring acdS and/or nifH expressed the corresponding functions in 387 rhizosphere based on assessment of qRT-PCR data, as previously described for nifH (Bouffaud 388 et al. 2016) or acdS [START_REF] Bouffaud | 1-Aminocyclopropane-1-carboxylate deaminase producers 506 associated to maize and other Poaceae species[END_REF].

389 Specific taxa can be selected by environmental conditions prevailing on plant roots 390 [START_REF] Bakker | Diffuse symbioses: roles of plant-plant, plant-484 microbe and microbe-microbe interactions in structuring the soil microbiome[END_REF][START_REF] Berg | Plant species and soil type cooperatively shape the structure and function of 496 microbial communities in the rhizosphere[END_REF][START_REF] Raaijmakers | The rhizosphere: a playground and battlefield for 612 soilborne pathogens and beneficial microorganisms[END_REF]Vandenkoornhuyse et al. 391 2015). Thus, a first possibility to account for the co-occurrence of both functional groups could 392 be that both nifH bacteria and acdS bacteria do well in the maize rhizosphere. Indeed, both types 393 of bacteria are readily found on roots (Almario et al. 2014;[START_REF] Arruda | Screening of rhizobacteria isolated from maize (Zea mays L.) 481 in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant 482 growth[END_REF][START_REF] Blaha | Phylogeny of the 1-aminocyclopropane-1-carboxylic 502 acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and 503 relation with strain biogeography[END_REF]394 Bruto et al. 2014;Bruto et al. 2014;Mårtensson et al. 2009). Such co-occurrence would make 395 sense in ecological terms, because associative nitrogen fixation and ACC deamination are 396 functions limiting plant nutrient deficiency by supplying nitrogen [START_REF] Pii | Microbial interactions in the rhizosphere: beneficial influences of 599 plant growth-promoting rhizobacteria on nutrient acquisition process. A review[END_REF] and 397 enhancing root system development (thereby improving uptake of mineral nutriments including 398 nitrogen) (Glick, 2014), respectively.

399

A second possibility could be that bacteria that harbor both genes/functions are well 400 adapted to maize roots. Indeed, Bruto et al. (2014) showed that the nif operon co-occurred with 401 acdS in several bacterial clades, and for instance the genera Bradyrhizobium or Burkholderia 402 contain several species harboring both functions (Bruto et al. 2014). Furthermore, the co-inertia 403 between these two functional groups and the total community raises the possibility that 404 additional functions could also be present in addition to associative nitrogen fixation and ACC 405 deamination. Indeed, comparative genomics studies showed that bacterial taxa display multiple 406 specific functions, including plant interaction functions (Bruto et al. 2014;Lassalle et al. 2015;407 Vacheron et al. 2017), and thus these functions would also be co-selected when selecting the 408 corresponding rrs-based taxa. In the current study, Bradyrhizobium represented 17 to 25% of 409 acdS + bacteria and 20 to 42% of nifH + bacteria in the maize rhizosphere, and the high proportion 410 of this bacterial clade may contribute to the co-occurence of diazotrophs and ACC deaminase 411 producers that was found. However, when the 10,369 completely-sequenced bacterial genomes 412 available in the NCBI database were screened, it showed that 833 of them harbored acdS and 413 461 others nifH, but only 122 genomes had both genes. Therefore, it could be that this second 414 possibility is insufficient for a complete explanation of the current findings.

415

A third possibility to consider is the joint occurrence of both functions in the 416 rhizosphere, regardless of the taxa harboring them, thereby providing functional redundancy 417 [START_REF] Shade | Beyond the Venn diagram: the hunt for a core microbiome[END_REF]. Several studies in soil or aquatic settings have suggested that 418 the metabolic/functional potential of microbial communities rather than their taxonomic 419 variations are closely related to environmental conditions [START_REF] Bouffaud | 1-Aminocyclopropane-1-carboxylate deaminase producers 506 associated to maize and other Poaceae species[END_REF]Burke et al. 420 2011;Louca et al. 2016;Louca et al. 2017 ). These observations were conceptualized as the 421 "It's the song, not the singer" theory (ITSNTS; Doolittle and Booth 2017), i.e. functional groups 422 within microbial communities (the songs) would be better conserved and more relevant 423 ecologically than the taxa themselves (the singers). Consistent with the ITSNTS theory, our 424 study suggests that the assembly of the rhizosphere microbial community would entail a balance 425 between phytostimulation-relevant genes, which may be needed to achieve an effective 426 holobiont (i.e., the plant host and its functional microbiota), and points to the preponderance of 427 functional interactions within the plant holobiont. This hypothesis, which has been put forward 428 recently for root-associated microorganisms (Lemanceau et al. 2017), remains speculative at 429 this stage and deserves further research attention. In particular, methodology development is 430 needed to enable direct assessment of key plant-beneficial groups when parallel monitoring of 431 several genes is required (e.g. for auxin production or P solubilization, which entail many 432 genetic pathways), in contrast to ACC deamination and N fixation for which analysis of a single 433 gene (acdS and nifH, respectively) may suffice.

434

To test whether the current findings could be also relevant under other environmental 435 conditions, we reassessed the data obtained for nifH [START_REF] Bouffaud | Is plant evolutionary history impacting recruitment 509 of diazotrophs and nifH expression in the rhizosphere?[END_REF] and acdS (Bouffaud The plant microbiota may differ depending on soil type, but these microbiota probably share 29 the same functions necessary for holobiont fitness. Thus, we tested the hypothesis that 30 phytostimulatory microbial functional groups are likely to co-occur in the rhizosphere, using 31 groups corresponding to nitrogen fixation (nifH) and 1-aminocyclopropane-1-carboxylate 32 deamination (acdS), i.e. two key modes of action in plant-beneficial rhizobacteria. The analysis 33 of three maize fields in two consecutive years showed that quantitative PCR numbers of nifH 34 and of acdS alleles differed according to field site, but a positive correlation was found overall 35 when comparing nifH and acdS numbers. Metabarcoding analyses in the second year indicated 36 that the diversity level of acdS but not nifH rhizobacteria in the rhizosphere differed across 37 fields. Furthermore, between-class analysis showed that the three sites differed from one 38 another based on nifH or acdS sequence data (or rrs data), and the bacterial genera contributing 39 most to field differentiation were not the same for the three bacterial groups. However, co-40 inertia analysis indicated that the genetic structures of both functional groups and of the whole 41 bacterial community were similar across the three fields. Therefore, results point to co-selection 42 of rhizobacteria harboring nitrogen fixation and/or 74 because many past horizontal gene transfers of the corresponding genes were ancient (Frapolli 75 et al. 2012), often leading to clade-specific profiles of plant-beneficial traits (Bruto et al. 2014).

76 However, the analysis of 304 proteobacterial genomes from contrasted taxa evidenced, overall, 77 the co-occurrence of nifHDK (nitrogen fixation) and acdS (ACC deamination) based on Exact-78 Fisher pairwise tests (Bruto et al. 2014), raising the possibility that nitrogen fixation and ACC 79 deamination might be useful traits when combined in a bacterium. Indeed, nitrogen fixation and 80 ACC deamination occur together in various rhizobacteria [START_REF] Blaha | Phylogeny of the 1-aminocyclopropane-1-carboxylic 502 acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and 503 relation with strain biogeography[END_REF][START_REF] Duan | 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in 550 Rhizobia from southern Saskatchewan[END_REF]81 Jha et al. 2012;Ma, Guinel, and Glick, 2003;Nukui et al. 2006), but the relation between both 82 traits can be complex. In Azospirillum lipoferum 4B for instance, the plasmid-borne gene acdS 83 is eliminated during phase variation while nif genes are maintained (Prigent-Combaret et al. 84 2008), and in Mesorhizobium loti transcription of acdS is controlled by the nitrogen fixation 85 regulator gene nifA2 (Nukui et al. 2006). Moreover, ACC deamination was described as 86 facilitator of the legume-rhizobia symbiosis (Ma et al. 2003;Nascimento et al. 2012).

87

At the scale of an individual plant, the rhizosphere is colonized by a diversified range 88 of bacteria, including nifH acdS bacteria as well as bacteria harboring only nifH or acdS (Blaha 89 et al. 2006;[START_REF] Bouffaud | 1-Aminocyclopropane-1-carboxylate deaminase producers 506 associated to maize and other Poaceae species[END_REF]. There is additional level of complexity in that many of these 90 bacteria are PGPR, but some of them are not (Bruto et al. 2014). However, the overall impact 91 of nitrogen fixation and ACC deamination on the plant is likely to be the sum of the contribution 92 of individual root-colonizing bacteria displaying these traits. This raises the question whether 93 there is, for the plant, an optimal balance between the functional microbial groups of nifH 94 rhizobacteria and acdS rhizobacteria in the rhizosphere. On this basis, we tested here the 95 hypothesis that rhizobacteria with either nitrogen fixation ability or ACC deamination ability 96 (or with both) co-occur on roots. For that purpose, we used three maize fields under reduced 97 nitrogen fertilization practices, with samplings carried out at 6-leaf and flowering stages during 98 two consecutive years, and numbers of nifH and acdS rhizobacteria were monitored by (Bouffaud 388 et al. 2016) or acdS [START_REF] Bouffaud | 1-Aminocyclopropane-1-carboxylate deaminase producers 506 associated to maize and other Poaceae species[END_REF].

389 Specific taxa can be selected by environmental conditions prevailing on plant roots 390 [START_REF] Bakker | Diffuse symbioses: roles of plant-plant, plant-484 microbe and microbe-microbe interactions in structuring the soil microbiome[END_REF][START_REF] Berg | Plant species and soil type cooperatively shape the structure and function of 496 microbial communities in the rhizosphere[END_REF][START_REF] Raaijmakers | The rhizosphere: a playground and battlefield for 612 soilborne pathogens and beneficial microorganisms[END_REF]Vandenkoornhuyse et al. 391 2015). Thus, a first possibility to account for the co-occurrence of both functional groups could 392 be that both nifH bacteria and acdS bacteria do well in the maize rhizosphere. Indeed, both types 393 of bacteria are readily found on roots (Almario et al. 2014;[START_REF] Arruda | Screening of rhizobacteria isolated from maize (Zea mays L.) 481 in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant 482 growth[END_REF][START_REF] Blaha | Phylogeny of the 1-aminocyclopropane-1-carboxylic 502 acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and 503 relation with strain biogeography[END_REF]394 Bruto et al. 2014;Bruto et al. 2014;Mårtensson et al. 2009). Such co-occurrence would make 395 sense in ecological terms, because associative nitrogen fixation and ACC deamination are 396 functions limiting plant nutrient deficiency by supplying nitrogen [START_REF] Pii | Microbial interactions in the rhizosphere: beneficial influences of 599 plant growth-promoting rhizobacteria on nutrient acquisition process. A review[END_REF] and 397 enhancing root system development (thereby improving uptake of mineral nutriments including 398 nitrogen) (Glick, 2014), respectively.
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A second possibility could be that bacteria that harbor both genes/functions are well 400 adapted to maize roots. Indeed, Bruto et al. (2014) showed that the nif operon co-occurred with 401 acdS in several bacterial clades, and for instance the genera Bradyrhizobium or Burkholderia 402 contain several species harboring both functions (Bruto et al. 2014). Furthermore, the co-inertia 403 between these two functional groups and the total community raises the possibility that 404 additional functions could also be present in addition to associative nitrogen fixation and ACC 405 deamination. Indeed, comparative genomics studies showed that bacterial taxa display multiple 406 specific functions, including plant interaction functions (Bruto et al. 2014;Lassalle et al. 2015;407 Vacheron et al. 2017), and thus these functions would also be co-selected when selecting the 408 corresponding rrs-based taxa. In the current study, Bradyrhizobium represented 17 to 25% of 409 acdS + bacteria and 20 to 42% of nifH + bacteria in the maize rhizosphere, and the high proportion 410 of this bacterial clade may contribute to the co-occurence of diazotrophs and ACC deaminase 
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 4 Size of microbial functional groups151 The amounts of nifH genes were estimated by quantitative PCR based on the primers polF/polR 152
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 25 nifH, acdS and rrs sequencing from rhizosphere DNA 170 Sequencing was performed on 2015' samples taken when maize reached 6 leaves. Each sample 171 was an equimolar composite sample of four DNA extracts obtained from root-adherent soil, 172 resulting in 5 samples per field site, i.e. a total of 15 samples. DNA extracts were sent to MR 173 DNA laboratory (www.mrdnalab.com; Shallowater, TX) for sequencing.
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 1234 Size of the acdS and nifH functional groups compared in the three field sites L, FC 661 and C over four sampling times. Means and standard deviations are shown for the acdS group 662 at 6 leaves in 2014 (A) and 2015 (B) and at flowering in 2014 (E) and 2015 (F) and for the nifH 663 group at 6 leaves in 2014 (C) and 2015 (D) and at flowering in 2014 (G) and 2015 (H). The 664 analysis was done using pooled samples of six roots systems (n= 5) at FC and C and individual 665 root systems (n = 30) at L in 2014, and individual root systems (n = 20) at all three sites in 2015. 666 Statistical differences between sites are indicated by letters a-c (ANOVA and Fischer's LSD 667 tests, P < 0.05). 668 669 Correlation between log numbers of nifH (X axis) and acdS genes (Y axis). 670 Correlation was established using the Pearson coefficient. The analysis was done using pooled 671 samples of six roots systems (n= 5) at FC and C and individual root systems (n = 30) at L in 672 2014, and individual root systems (n = 20) at all three sites in 2015. 673 674 Correlation between Shannon diversity indices of nifH and acdS (A), Simpson 675 diversity indices of nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C), 676 and Simpson diversity indices of rrs and acdS or nifH (D). Correlation was established 677 separately at each of the three field sites L, FC and C, using the Pearson coefficient (n = 5). 678 679 Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C 680 by between-class analysis. Red circles, green triangles and blue squares are used for samples 681 from sites FC, C and L, respectively. The curves at the top and the left of the panels show the 682 distribution of samples on respectively the X and Y axes.
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FIGURE 3 .

 3 FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson

FIGURE 4 .FIGURE 5 .

 45 FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C
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 S1 FIGURE S1:Rarefaction curves for nifH (A), acdS (B) and rrs (C) genes.
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 3 FIGURE 3. Correlation between Shannon diversity indices of nifH and acdS (A), Simpson diversity indices of nifH and acdS (B), Shannon diversity indices of rrs and acdS or nifH (C), and Simpson diversity indices of rrs and acdS or nifH (D). Correlation was established separately at each of the three field sites L, FC and C, using the Pearson coefficient (n = 5). 238x359mm (72 x 72 DPI)
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 45 FIGURE 4. Comparison of nifH (A), acdS (B) and rrs (C) diversity between sites L, FC and C by betweenclass analysis. Red circles, green triangles and blue squares are used for samples from sites FC, C and L, respectively. The curves at the top and the left of the panels show the distribution of samples on respectively the X and Y axes.
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  Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities 685 (B) and rrs and acdS diversities (C). Projection of the samples (n = 5) is based on both acdS 686 (Blue) and nifH (Green), rrs (Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity 687 variables (level = genus) into a same factorial plan. The vector in black shows the strength of 688 co-trends between the two barycenters of variables as related to each site (L, FC, C). Shorter 689 vectors indicate stronger convergent trends between the two variable groups. 690 691 692 FIGURE S1: Rarefaction curves for nifH (A), acdS (B) and rrs (C) genes. 693 694 FIGURE S2. RAxML bipartition tree of 3322 sequenced acdS alleles from Poaceae 695 rhizosphere. The tree was visualized using iTOL software (Letunic I, Bork P. Interactive Tree 696 Of Life (iTOL) v4: recent updates and new developments (2019) Nucleic Acids Res doi: 697 10.1093/nar/gkz239). Branches colored in violet represent the out-group of D-cystein 698 desulfhydrase genes, whereas acdS alleles affiliated to Betaproteobacteria are shown in khaki, 699 to Gammaproteobacteria in blue, to Actinobacteria in green, to Alphaproteobacteria in red, 700 and to microeukaryotes in orange. The tree can be viewed online at the following link 701 http://itol.embl.de/shared/acdStree.
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  YML and DM designed the project, SR, LL, CPC, YML and DM carried out field work 462 and samplings, SR conducted the molecular work, SR, MLB and AD implemented 463 bioinformatic analyses, SR, YML and DM analyzed data, SR, YML and DM prepared the first 464 draft of the manuscript, which was finalized by all authors. Normand P, Heulin T. Comparative phylogeny of rrs and nifH genes in the Bacillaceae.
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Table 1 .

 1 Co-inertia analysis between acdS and nifH diversities (A), rrs and nifH diversities 685 (B) and rrs and acdS diversities (C). Projection of the samples (n = 5) is based on both acdS 686 (Blue) and nifH (Green), rrs (Grey) and nifH (Green), or rrs (Grey) and acdS (Blue) diversity 687 variables (level = genus) into a same factorial plan. The vector in black shows the strength of 688 co-trends between the two barycenters of variables as related to each site (L, FC, C). Shorter 689 vectors indicate stronger convergent trends between the two variable groups. Field characteristics of the top (5-30 cm) soil layer.
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690 691 692 FIGURE S1: Rarefaction curves for nifH (A), acdS (B) and rrs (C) genes. 693 694 FIGURE S2. RAxML bipartition tree of 3322 sequenced acdS alleles from Poaceae 695 rhizosphere. The tree was visualized using iTOL software (Letunic I, Bork P. Interactive Tree 696 Of Life (iTOL) v4: recent updates and new developments (2019) Nucleic Acids Res doi: 697 10.1093/nar/gkz239). Branches colored in violet represent the out-group of D-cystein 698 desulfhydrase genes, whereas acdS alleles affiliated to Betaproteobacteria are shown in khaki, 699 to Gammaproteobacteria in blue, to Actinobacteria in green, to Alphaproteobacteria in red, 700 and to microeukaryotes in orange. The tree can be viewed online at the following link 701 http://itol.embl.de/shared/acdStree. a CEC, cation exchange capacity.

Table 1 .

 1 Field characteristics of the top (5-30 cm) soil layer.

	Texture (%)	pH

a CEC, cation exchange capacity
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  In addition, nifH and acdS rhizobacteria were assessed by metabarcoding 100 (MiSeq Illumina sequencing) of nifH and acdS genes at one sampling, in parallel to sequencing 101 of 16S rRNA genes for the whole rhizobacterial community. harboring acdS and/or nifH expressed the corresponding functions in 387 rhizosphere based on assessment of qRT-PCR data, as previously described for nifH
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Table 1 .

 1 Field characteristics of the top (5-30 cm) soil layer.
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a CEC, cation exchange capacity.