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come   L'archive ouverte pluridisciplinaire

Along with other areas of biological sciences, the study of phenotypic traits is experiencing the omics revolution: the "phenome", which describes the various phenotypic characteristics of organisms, is defined by a large number of multivariate anatomical and behavioral traits [START_REF] Deans | Finding Our Way through Phenotypes[END_REF]. For instance, high resolution morphological datasets are becoming increasingly available across the tree of life thanks to computerized tomography techniques (e.g., [START_REF] Cooney | Mega-evolutionary dynamics of the adaptive radiation of birds[END_REF][START_REF] Cross | The inside story of 20,000 vertebrates[END_REF][START_REF] Felice | Developmental origins of mosaic evolution in the avian cranium[END_REF]. These datasets have the potential to dramatically improve our understanding of the factors that influence species phenotypes over macroevolutionary time scales.

While high-dimensional phenotypic datasets are being collected at an ever-increasing scale, the statistical machinery necessary to analyze such datasets is lagging behind. In particular, in order to study the relationship between complex phenotypes and putative explanatory factors from comparative data, or to test for differences in phenotypes across species groups, multivariate regressions accounting for statistical non-independence due to shared ancestry, as well as associated tests, are required (pGLS, pMANOVA and pMANCOVA Felsenstein 1985;[START_REF] Grafen | The phylogenetic regression[END_REF][START_REF] Martins | Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data[END_REF][START_REF] Rohlf | Comparative methods for the analysis of continuous variables: geometric interpretations[END_REF][START_REF] Rohlf | A comment on phylogenetic correction[END_REF][START_REF] Revell | Phylogenetic signal and linear regression on species data[END_REF][START_REF] Blomberg | Independent contrasts and PGLS regression estimators are equivalent[END_REF][START_REF] Hansen | Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies[END_REF]. In low-dimensional settings (i.e. when the number of traits p is small compared to the number of species n), it is possible to test for differences in phenotypes across species groups (i.e. to perform pMANOVAs) using Garland et al.'s (1993) simulation-based approach, for example using the aov.phylo function implemented in "geiger" [START_REF] Harmon | GEIGER: investigating evolutionary radiations[END_REF]. This approach uses the conventional (non-phylogenetic) MANOVA to fit the regression model and compute associated multivariate test statistics (e.g., the Pillai's trace, Wilks' ߣ, Lawley-Hotelling, and Roy's largest root tests; see a detailed review in [START_REF] Rencher | Methods of Multivariate Analysis[END_REF]; the significance of the test is then assessed using simulations under the multivariate Brownian process (BM). To the best of our knowledge, maximum likelihood estimation of the multivariate PGLS regression model for testing the effect of continuous explanatory variables, pMANOVA for testing the effect of categorical independent variables (grouping of species), and pMANCOVA for testing the effect of categorical independent variables while accounting for the effects of other continuous variables (covariates), are not implemented in the popular R language. In highdimensional settings (as the number of traits p approaches or exceeds the number of species n) the situation becomes even worst, as the evolutionary (or trait) variance-covariance matrix is singular, which prevents the use of likelihood-based techniques [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF].

Evolutionary biologists circumvent these current limitations for treating highdimensional phenotypic datasets in two ways. A first approach consists in "reducing" the data to its principal component axes (PCs), after which the simulation-based approach on a reduced set of axes (p<n) and/or univariate phylogenetic regressions on individual axes are performed. The PC axes are obtained using either conventional (i.e. non-phylogenetic) or phylogenetic principal component analyses (PCA or pPCA, Revell 2009;[START_REF] Uyeda | Comparative Analysis of Principal Components Can be Misleading[END_REF]. One major limitation of these dimension reduction techniques is that using a restricted set of PC axes, or pPC axes from a misspecified evolutionary model, can lead to erroneous inferences [START_REF] Uyeda | Comparative Analysis of Principal Components Can be Misleading[END_REF]. Until recently (but see [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF] for recent developments that overcome these limitations), pPCAs in high dimension could only be computed assuming a Brownian model of trait evolution. Using such pPCs (or simply PCs) will likely be problematic in regression analyses when there are deviations from the underlying assumptions, although this has to our knowledge not been clearly assessed.

A second approach [START_REF] Adams | A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data[END_REF][START_REF] Goolsby | Likelihood-Based Parameter Estimation for High-Dimensional Phylogenetic Comparative Models: Overcoming the Limitations of "Distance-Based[END_REF]Adams and Collyer 2018a;[START_REF] Collyer | RRPP: An r package for fitting linear models to highdimensional data using residual randomization[END_REF]) is inspired from distance-based pseudo-statistics initially developed in ecology to deal with cases when traditional parametric regressions cannot be performed (such as the PERMANOVA procedure used for count and abundance data, [START_REF] Anderson | A new method for non-parametric multivariate analysis of variance[END_REF][START_REF] Mcardle | Fitting multivariate models to community data: a comment on distance-based redundancy analysis[END_REF]. In the phylogenetic distance-based approach [START_REF] Adams | A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data[END_REF][START_REF] Goolsby | Likelihood-Based Parameter Estimation for High-Dimensional Phylogenetic Comparative Models: Overcoming the Limitations of "Distance-Based[END_REF], Adams and Collyer 2018a;[START_REF] Collyer | RRPP: An r package for fitting linear models to highdimensional data using residual randomization[END_REF], the trait data (both the response and the predictors) are first transformed using the inverse square-root of the phylogenetic variance-covariance matrix -assuming Brownian motion evolution on the tree ; next, the sum of squared Euclidean distances between transformed data and predicted values under the regression model (and a simpler model representing the null hypothesis) are computed. Finally, a pseudo F-statistic is computed from the ratio of these sum of squared distances and compared to F-statistics computed on permuted data to assess statistical significance. While this approach can be performed on high dimensional phenotypic data, it in fact ignores trait correlations, as using Euclidian distances implicitly assumes that traits evolve independently [START_REF] Mcardle | Fitting multivariate models to community data: a comment on distance-based redundancy analysis[END_REF][START_REF] Goolsby | Likelihood-Based Parameter Estimation for High-Dimensional Phylogenetic Comparative Models: Overcoming the Limitations of "Distance-Based[END_REF]. Indeed, the Euclidean distance approach sums the Sum of Squares (SS) across traits without accounting for Cross Products (CP) between traits. As a result, distance-based approaches using Euclidean distances are expected to be sensitive to unequal variances across the response variables and to the relationship between dispersion and effect change (e.g. the direction of variation across groups in relation to the main axis of variance) in the multidimensional space [START_REF] Anderson | A new method for non-parametric multivariate analysis of variance[END_REF][START_REF] Mcardle | Fitting multivariate models to community data: a comment on distance-based redundancy analysis[END_REF][START_REF] Warton | Distance-based multivariate analyses confound location and dispersion effects[END_REF]. Using other distances -such as generalized or Mahalanobis distances [START_REF] Mahalanobis | On the generalized distance in statistics[END_REF]) -would avoid these issues, but would require inverting the evolutionary (traits) variance-covariance matrix, which would be possible only in low dimensional settings. In addition to these limitations, current implementations of the approach assume Brownian evolution and might be sensitive to departures from this assumption and/or to measurement errors that are likely to arise in large datasets.

Recently, we developed a framework, inspired from regularization techniques often used in conventional multivariate statistics (e.g., [START_REF] Friedman | Regularized Discriminant Analysis[END_REF][START_REF] Hoffbeck | Covariance matrix estimation and classification with limited training data[END_REF][START_REF] Warton | Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices[END_REF][START_REF] Witten | Covariance-Regularized Regression and Classification for High Dimensional Problems[END_REF], for fitting a variety of trait evolutionary models (BM, Pagel's lambda, Orstein-Uhlenbeck, Early Burst) to high dimensional phenotypic data [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]. Our approach uses penalized likelihood (e.g., [START_REF] Li | Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties[END_REF][START_REF] Warton | Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices[END_REF][START_REF] Van Wieringen | Ridge estimation of inverse covariance matrices from high-dimensional data[END_REF] to estimate evolutionary variancecovariance matrices under these models. Here, we build on this promising framework to develop phylogenetic regression techniques and associated tests (multivariate pGLS, pMANOVA, pMANCOVA) that can be applied to high-dimensional phenotypic datasets, while accounting for the amount of phylogenetic covariations actually present in the model residuals (e.g. by jointly estimating Pagel's ߣ [START_REF] Pagel | Inferring the historical patterns of biological evolution[END_REF]). We implement this approach in the mvMORPH package [START_REF] Clavel | mvmorph: an r package for fitting multivariate evolutionary models to morphometric data[END_REF]. We also implement similar functions to perform multivariate pGLS, pMANOVA and pMANCOVA models using maximum likelihood inference when p<n. We use extensive simulations to compare the performance of our approach to current alternatives, using the MANOVA as a case study. We illustrate the utility of the proposed method by analyzing the relationship between diet preferences and a geometric morphometric dataset describing mandible morphology in phyllostomid bats [START_REF] Monteiro | Evolutionary patterns and processes in the radiation of phyllostomid bats[END_REF]. Previous analyses on a subset of PC axes suggested that phyllostomid bats have evolved into well differentiated ecomorphs [START_REF] Monteiro | Evolutionary patterns and processes in the radiation of phyllostomid bats[END_REF]. Here we revisit these results using both our phylogenetic regularized MANOVA and the distance-based approach on the full multivariate superimposed Procrustes coordinates. Finally, we discuss some of the recent concerns in multivariate phylogenetic comparative methods and prospects for future work. 

MATERIAL AND METHODS

Multivariate Phylogenetic Regressions and Associated Tests

We aim to test the potential effect of predictors (continuous and/or categorical) on p continuous traits from a comparative dataset comprised of a (ultrametric or non-ultrametric) phylogeny of n species (extinct or extant) with associated measured traits (mean trait value for each species). These tests can be performed by fitting generalized least squares (GLS) linear models of the form:

ൌ બ (1)
Where Y is the ݊ ൈ  matrix of observed traits (response variables), X is a ݊ ൈ ݍ design matrix constructed from the observed predictors (e.g. each continuous predictor is encoded in one column in X, each categorical predictor is encoded in one or several columns using dummy variables, and there can be an additional column of 1 for the intercept), B is a ݍ ൈ  matrix of unknown coefficients describing the dependencies of traits to the predictor variables (slopes and intercepts for continuous predictors and mean traits for categorical predictors), and બ is a ݊ ൈ  matrix of errors distributed according to a matrix-normal distribution ࣧࣨ , ሺ0, , ሻ [START_REF] Gupta | Two guidelines for bootstrap hypothesis testing[END_REF]. C is the ݊ ൈ ݊ phylogenetic variance-covariance matrix which represents expected variances and covariances and depend on the phylogeny and an evolution model [START_REF] Rohlf | Comparative methods for the analysis of continuous variables: geometric interpretations[END_REF][START_REF] Felsenstein | Inferring Phylogenies[END_REF]), and R is the  ൈ  variancecovariance matrix of residuals under the regression model. Once estimates , and of such linear models are obtained (see below), common multivariate tests (e.g., the Wilks's Λ, Pillai's trace, Lawley-Hotelling, and Roy's largest root tests, Rencher 2002) are constructed from statistics based on the eigenvalues ݀ ଵ , … , ݀ ௦ of the  ൈ  matrix ିଵ where E is the error (or residual) matrix, H is the hypothesis matrix (which measures the deviation of predicted response values under the complete and null hypothesis models), and s is the rank of ିଵ [START_REF] Rencher | Methods of Multivariate Analysis[END_REF][START_REF] Huberty | Applied MANOVA and Discriminant Analysis, Second Edition[END_REF][START_REF] Fox | Applied Regression Analysis and Generalized Linear Models[END_REF]. For instance, Wilk's Lambda test statistic is defined as [START_REF] Rencher | Methods of Multivariate Analysis[END_REF][START_REF] Fox | Applied Regression Analysis and Generalized Linear Models[END_REF]:

Λ ൌ ∏ ଵ ଵାௗ ௦ ୀଵ
(2) E (also called the residual Sums of Squares and Cross Products (SSCP) matrix) is given by

ൌ ൫ െ ൯
் ିଵ ൫ െ ൯ ൌ ሺ݊ െ ݍሻ and H (also called the hypothesis SSCP matrix) is

given by ൌ ൫ ൯ ் ିଵ െ ൫ ൯ ் ିଵ ൌ ൫ െ ൯ ் ିଵ ሺ െ ሻ .
Where is the design matrix corresponding to the null hypothesis and is the corresponding matrix of parameter estimates. Other H matrices corresponding to different null hypotheses (as in the case of general linear hypothesis testing) can be formulated and treated in the same way (Supplementary Material).

Maximum Likelihood and Penalized Likelihood Regressions Estimates of B, C, and R can be obtained by maximizing the following (restricted) loglikelihood (see [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF] and Appendix 1):
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Where for a given matrix A, trሺۯሻ stands for the trace (the sum of the diagonal elements), || for the determinant, ିଵ for the inverse, and ் for the transpose. The maximum likelihood estimate of is given by [START_REF] Rao | Linear models: least squares and alternatives[END_REF][START_REF] Timm | Applied Multivariate Analysis[END_REF]:

ൌ ൫ ் ିଵ ൯ ିଵ ் ିଵ (4)
And the (restricted) maximum likelihood estimate of R is given by [START_REF] Searle | Variance Components[END_REF][START_REF] Rao | Linear models: least squares and alternatives[END_REF]:
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(5)

Maximum likelihood

When  ݊ െ ,ݍ the inverse and the log determinant of can be computed and we find , , and by maximizing the likelihood (Equation 3) (e.g. [START_REF] Hansen | Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data[END_REF][START_REF] Pagel | Inferring the historical patterns of biological evolution[END_REF][START_REF] Blomberg | Testing for phylogenetic signal in comparative data: behavioral traits are more labile[END_REF][START_REF] Felsenstein | Inferring Phylogenies[END_REF][START_REF] Clavel | mvmorph: an r package for fitting multivariate evolutionary models to morphometric data[END_REF][START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF][START_REF] Manceau | A Unifying Comparative Phylogenetic Framework Including Traits Coevolving Across Interacting Lineages[END_REF]. In this case, it is straightforward to invert , and thus to compute ିଵ and various test statistics. We assess the significance of the test following the procedure used in conventional multivariate linear regressions (OLS): we transform the various test statistics to an approximate F statistic, which significance is assessed by comparison to the F-distribution with appropriate number of degrees of freedom (Rencher 2002, chapter 6).

Penalized Likelihood

When the number of traits p approaches (or equals) n-q, does not necessarily provide a good estimation of R; when p exceeds n-q, is singular and we can no longer compute its inverse nor the logarithm of its determinant (James and [START_REF] Stein | Estimation with Quadratic Loss[END_REF][START_REF] Witten | Covariance-Regularized Regression and Classification for High Dimensional Problems[END_REF]. In this case, we cannot directly compute ିଵ and the test statistics. We circumvent these issues by building upon our recently developed penalized-likelihood approach [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]. In [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF], we provide several regularized estimators of R. Here we use the popular linear shrinkage estimator, which is given by (Equation 3 in [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]:

ሺߛሻ ൌ ሺ1 െ ߛሻ ߛ (6)
where ߛ א ሾ0,1ሿ is a regularization (or tuning) parameter that controls the amount of shrinkage from to a p by p target matrix . We chose this estimator as it is the fastest to compute and has the convenient property that ߛ is bounded between 0 and 1. Moreover, recent studies showed that it provides good performances with conventional multivariate statistics (e.g., [START_REF] Tsai | Multivariate analysis of variance test for gene set analysis[END_REF][START_REF] Engel | Regularized MANOVA (rMANOVA) in untargeted metabolomics[END_REF][START_REF] Ullah | Regularised Manova for High-Dimensional Data[END_REF]. Here we take the matrix to be diagonal with all diagonal elements equal to ଵ ∑ ୀଵ

. Hence, the limit ߛ=1 corresponds to the case when the traits are assumed to be independent and to share the average trait variance. We chose this target matrix as it is rotation invariant (proportional to the identity matrix, [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]; preliminary simulation analyzes showed that this shrinkage provided a good compromise between precision in the estimation of R and computation time (results not shown). Following [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF], we find the optimal value for ߛ and the estimator ሺߛሻ by maximizing the leave-one-out cross-validated (LOOCV) log-likelihood corresponding to a "ridge" penalized log-likelihood (Appendix 1).

Inverting ሺߛሻ provides us with a regularized estimate of from which the test statistics are computed. Finally, we approximate the distribution of a given test statistic using a permutation procedure, following the general approach of permuting the residuals under the reduced model [START_REF] Freedman | A nonstochastic interpretation of reported significance levels[END_REF][START_REF] Anderson | Permutation tests for multi-factorial analysis of variance[END_REF] and borrowing ideas from bootstrapping procedures (e.g., [START_REF] Pennell | Model adequacy and the macroevolution of angiosperm functional traits[END_REF][START_REF] Khabbazian | Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models[END_REF]. We simulate several (999 in what follows) new datasets ൌ ۱ ଵ ଶ ⁄ ઢ ෩ where each ઢ ෩ is a matrix of permuted residuals obtained by permuting the rows of ઢ ൌ ۱ ିଵ ଶ ⁄ ൫ െ ൯, and compute the test statistic corresponding to each of these datasets using our penalized likelihood procedure. This procedure provides an approximate distribution of the test statistic which is used to assess statistical significance (see also Hall and Wilson 1991 for general guidelines on non-parametric estimation of null distribution). In addition to this procedure, where ߛ, , , and are optimized by maximizing the LOOCV on each of the permuted datasets, we consider a more efficient (approximated) procedure that consists in first transforming the "tests" and "training" samples used in the LOOCV, similar to the one used by [START_REF] Warton | Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices[END_REF]. This approach (detailed in Appendix 2) is approximate as it assumes that is fixed across the permuted datasets; here we take to be the penalized likelihood estimate obtained from the empirical data.

Implementation

We implemented the fit of the multivariate phylogenetic least squares in the mvgls function in the R-package mvMORPH publicly available on CRAN [START_REF] Clavel | mvmorph: an r package for fitting multivariate evolutionary models to morphometric data[END_REF] and on gitHub (https://github.com/JClavel/mvMORPH). The option "method" allows a user to fit the linear model either by likelihood (when  ݊ െ ,ݍ "LL") or by penalized likelihood ("LOOCV"). The linear hypothesis tests are implemented in a separate function called manova.gls. This function takes as input an object of class "mvgls", output of the mvgls function, and allows performing the parametric (when  ݊ െ ݍ ,) as well as the (exact and approximate) permutation-based hypothesis testing. The user can also perform general linear hypothesis testing by specifying specific matrices in the "L" (contrasts coding matrix) and "rhs" (righthand side matrix) options (Supplementary Material). We also offer the possibility to perform parallel calculus (forking) using the base package "parallel" in R to compute the permutationbased distribution of the test statistic. The functions mvgls and manova.gls are structured as the lm and manova functions from the stats base R-package (R Development Core Team 2016). In our simulations, we used Pagel's ߣ phylogenetic model for computing C [START_REF] Pagel | Inferring the historical patterns of biological evolution[END_REF], with a unique lambda common to all traits. This phylogenetic model is useful from a statistical point of view as it can be seen as a mixed model where both a Brownian motion diffusing along the branches of the tree and random independent noise contribute to interspecies trait variation [START_REF] Housworth | The phylogenetic mixed model[END_REF], see also the Supplementary Material in [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]. This flexibility should allow accommodating a range of phylogenetic signal compared to methods that rely exclusively on Brownian motion and has been shown to reduce the risk of model misspecification in univariate phylogenetic regressions [START_REF] Revell | Phylogenetic signal and linear regression on species data[END_REF]. As test statistics, we implemented Wilks's ߣ , Pillai's trace, Hotelling-Lawley and Roy largest root test [START_REF] Hotelling | The generalization of Student's ratio[END_REF][START_REF] Wilks | Certain generalizations in the analysis of variance[END_REF][START_REF] Lawley | A generalization of Fisher's IX test[END_REF][START_REF] Roy | On a Heuristic Method of Test Construction and its use in Multivariate Analysis[END_REF][START_REF] Pillai | Some new test criteria in multivariate analysis[END_REF]. Pros and cons of these statistics depend on the multidimensional structure of the data and are discussed at length in the literature (e.g., [START_REF] Olson | Comparative robustness of six tests in multivariate analysis of variance[END_REF][START_REF] Rencher | Methods of Multivariate Analysis[END_REF]. In what follows, we considered the Wilks Λ statistic with a significance level ߙ ൌ 0.05. We chose this statistic as it is equivalent to computing a likelihood ratio [START_REF] Wilks | Certain generalizations in the analysis of variance[END_REF]. Finally, for multiple regressions and factorial designs, we implemented three different ways to test for the effect of a specific variable while accounting for the effect of others. If the "type" option in the manova.gls function is set to I, a sequential decomposition of the SSCP is performed; if it is set to II or III, a marginal or partial decomposition is performed. Which type of decomposition to use depends on the question at stake and has been discussed elsewhere [START_REF] Langsrud | Anova for unbalanced data: use type II instead of type III sums of squares[END_REF][START_REF] Heiberger | Multiple Regression-Dummy Variables, Contrasts, and Analysis of Covariance[END_REF][START_REF] Mcfarquhar | Testable hypotheses for unbalanced neuroimaging data[END_REF].

Testing the performance of the PL GLS: the MANOVA as a case study

We used simulations based on the one-way MANOVA procedure for a binary predictor variable [START_REF] Rencher | Methods of Multivariate Analysis[END_REF][START_REF] Huberty | Applied MANOVA and Discriminant Analysis, Second Edition[END_REF] to compare the performances of the proposed multivariate approach with current alternatives. We considered the following approaches (Table 1): i) the simulation-based MANOVA [START_REF] Garland | Phylogenetic analysis of covariance by computer simulation[END_REF]) implemented in the aov.phylo function in geiger [START_REF] Harmon | GEIGER: investigating evolutionary radiations[END_REF], ii) the likelihood-based GLS-MANOVA we implemented here in mvMORPH (function manova.gls, option "LL"), iii) the distance-based MANOVA [START_REF] Adams | A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data[END_REF]) implemented in the procD.pgls function in geomorph version 3.0.7 [START_REF] Adams | geomorph: an R package for the collection and analysis of geometric morphometric shape data[END_REF] this function is equivalent to the lm.rrpp function from the RRPP package, Collyer and Adams 2018); note that earlier versions of procD.pgls had an error in the permutation procedure that lead to very high type I errors (results not shown) and iv) the regularized PL-MANOVA we developed here (with both the exact and the approximated permutation strategies). We also used the simulationbased MANOVA on datasets that were reduced to their three first PC (prcomp in R) and phylogenetic pPC axes (phylo.pca in phytools, Revell 2009; [START_REF] Uyeda | Comparative Analysis of Principal Components Can be Misleading[END_REF]. Finally, we performed as a benchmark the conventional (non-phylogenetic) MANOVA based on ordinary least-squares [START_REF] Rencher | Methods of Multivariate Analysis[END_REF] using the lm and manova R base functions.

In our simulations we fixed the number of species to ݊ ൌ 32 and varied the number of traits p from 5 to 100 (p=5, 15, 25, 31, 50, 100). We simulated phylogenetic trees under a pure-birth process, scaled to unit height, using the pbtree function in "phytools" [START_REF] Revell | phytools: An R package for phylogenetic comparative biology (and other things)[END_REF]. We considered three different values of ߣ, held identical across traits ሺߣ ൌ 0, 0.5, 1ሻ. These values represent scenarios ranging from traits showing no phylogenetic signal (ߣ ൌ 0) to traits having evolved by Brownian motion (ߣ ൌ 1). We simulated random covariance matrices R with varying degree of average correlation between traits (ߩ ൌ 0.2, 0.5, 0.8): we sampled matrices from a Wishart distribution with degree of freedom fixed to ݂݀ ൌ 100 ݊ and parameter matrix Σ ൌ ఘ /݂݀, where ఘ is a p by p matrix with off-diagonal entries ߩ and diagonal entries 1 using the rwishart function in the "dlm" package [START_REF] Petris | An R package for Dynamic Linear Models[END_REF]). In comparison with previous approaches (e.g. in [START_REF] Uyeda | Comparative Analysis of Principal Components Can be Misleading[END_REF] and [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]), this approach allows controlling for the average amount of correlation between traits. We simulated trait data of size n by p on the transformed trees (according to Pagel's ߣ values) under a multivariate Brownian motion with covariance matrix R using the mvSIM function in "mvMORPH" [START_REF] Clavel | mvmorph: an r package for fitting multivariate evolutionary models to morphometric data[END_REF].

In order to assess the type I and type II errors of the MANOVA test, we considered two balanced species groups of size ݊ ൌ 16 each, with either differences in mean trait values ( ଵ ൌ 0 , ଶ ് ଵ , Fig. 1a,b, cሻ or no difference in mean trait values ( ଵ ൌ 0 and ଶ ൌ ଵ , Fig. 1d). Following previous studies [START_REF] Warton | Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices[END_REF]; Ullah and Jones 2015) we considered three alternative scenarios to the null hypothesis ܪ( : ଵ ൌ ଶ ሻ: we shifted the mean for the second group such that the differences between groups are expressed i) along the main axis of ⁄ units), where ݀ ଵ , ݀ ଶ , . . , ݀ are the eigenvalues of R and ܽ is fixed at 0.3 (0.6 for convenience in the first scenario; see details of the procedure in the Supplementary Material).

We also considered two alternative scenarios for the distribution of the binary predictor with respect to the phylogenetic relationships (Fig 1e,f). In the first scenario, the first 16 species (in the tip.label "ape" phylo object in R) were assigned mean vector ଵ , and the 16 last species the mean vector ଶ . Given that pure-birth trees tend to produce balanced topologies, this first strategy imposes a strong phylogenetic structure in the distribution of the binary predictor (Fig 1e). In the second scenario, the group labels were alternated across consecutive tips leading to a more dispersed distribution of the binary state predictor on the tree (Fig 1f). We simulated 1000 datasets for each parameter set [p=(5, 15, 25, 31, 50, 100), ߣ ൌ ሺ0, 0.5, 1ሻ and ߩ ൌ ሺ0.2, 0.5, 0.8ሻ ] and scenario [no difference, shift along the first, second, or all eigenvectors, and phylogenetic structure of the binary predictor]. Finally, we performed the various tests on each dataset and recorded the number of datasets for which a significant difference between groups was found. When  ݊ െ ,ݍ this resulted in 8 tests per dataset.

When  ݊ െ ,ݍ only the distance-based MANOVA, the simulation-based MANOVA on PC (and pPC) axes, and the regularized PL-MANOVA were performed (4 tests). Importantly, our GLS-MANOVA (when  ݊ െ )ݍ and PL-MANOVA (when  ݊ െ ,ݍ or  ݊ െ )ݍ estimate phylogenetic signal in the model residuals using Pagel's ߣ when performing the tests. The other tests assume either no phylogenetic signal (conventional MANOVA based on OLS), or Brownian motion (the distance-based and simulation-based approaches, as well as approaches using pPC axes computed using phylo.pca). All the analyses were performed on a Linux platform with R version 3.4.4 (R Development Core Team 2016). Species are colored according to Grouping 1 (high mastication in orange, low-mastication in blue). The two groups are well separated on the third axis of variation of the size-shape dataset. c) Illustration of the landmarks (in red) and semilandmarks (in green) used for describing the mandible shape in [START_REF] Monteiro | Evolutionary patterns and processes in the radiation of phyllostomid bats[END_REF].

Empirical Illustration: the evolution of the mandible in phyllostomid bats

We applied our PL-MANOVA on a high-dimensional comparative dataset (  ݊ െ ݍ ) describing mandible form (size and shape) for 49 species of phyllostomid bats (leaf-nosed bats) with respect to their diet. We used the phylogenetic tree and mandible data from [START_REF] Monteiro | Evolutionary patterns and processes in the radiation of phyllostomid bats[END_REF] which consists of 11 anatomical landmarks and 25 semilandmarks for 2D coordinates (aligned by Procrustes Generalized Analysis; see Figure 2), as well as the logarithm of the condylobasal length used as a proxy for size (totaling 73 variables forming a size-shape space; [START_REF] Mitteroecker | Comparison of cranial ontogenetic trajectories among great apes and humans[END_REF]). In their original study, [START_REF] Monteiro | Evolutionary patterns and processes in the radiation of phyllostomid bats[END_REF] used five different diet categories (frugivores, insectivores, carnivores, nectarivores, and sanguivores). We applied our PL-MANOVA (function mvgls and manova.gls in "mvMORPH" using Pagel's ߣ) to test whether mandible form depends on diet, using four different species groupings (Figure 2): i) two species groups corresponding to feeding modes that involve a considerable amount of mastication (insectivores, carnivores and frugivores) or little or no mastication (sanguivores, nectarivores); ii) three groups obtained from the previous ones but treating sanguivores and nectarivores separately; iii) four groups further separating frugivores from animalivores (i.e. insectivores and carnivores) iv) the five original groups. We compared the results to those obtained with the distance-based MANOVA approach (function procD.pgls in "geomorph"). We further illustrate the application of general linear hypothesis testing by assessing, in the five groups scenario, whether there was a significant difference between carnivores and insectivores, between sanguivores and nectarivores, and between frugivores and animalivores.

RESULTS

All the results shown in the main text correspond to datasets simulated with an average correlation among traits ሺߩ ൌ 0.5). Results with low (ߩ ൌ 0.2ሻ and high (ߩ ൌ 0.8) average correlations are shown in the Supplementary Material.

Statistical Power and Type I Error

Our PL-MANOVA tests ("loocv-1" and "loocv-2" approaches in Figs. 3-4 and S1-4) perform well under all types of differences between groups (differences along the first, second, or all axes of variation), and for the various amount of phylogenetic signal (Pagel's λ), regardless of whether the binary predictor is phylogenetically clustered (Fig. 3 and S1, S3) or not (Fig. 4 and S2, S4). Their power to detect differences between groups increases with the number of traits, and their type I error rate is always at their nominal level (0.05). The efficient approximated test ("loocv-2") performs as well as the more computationally demanding exact test ("loocv-1").

The performances of the other tests depend on the data. The GLS-MANOVA test performs as well as the PL-MANOVA when the number of traits is low, but rapidly loses power as the number of traits increases. As expected, the OLS performs as the GLS-MANOVA in the absence of phylogenetic signal (ߣ ൌ 0); however it has a high type I error in the presence of phylogenetic signal (ߣ 0) when the binary predictor is phylogenetically clustered (Fig 3 k,l). The simulation-based approach generally has a lower power than the GLS-MANOVA and PL-MANOVA approaches, and particularly so when there are deviations from the Brownian process ( ߣ ൏ 1 ) and when the binary predictor is phylogenetically clustered (Fig. 3 a,b,d,g,h); in addition, when ߣ ൏ 1 and the binary predictor is not phylogenetically clustered, it is subject to a high type I error (Fig. 4 j,k). Similarly, the distance-based approach has a low power when ߣ ൏ 1 and the binary predictor is phylogenetically clustered (Fig. 3 a,b,d,e,g,h), and it is subject to a high type I error when ߣ ൏ 1 and the binary predictor is not phylogenetically clustered (Fig. 4 j,k); in addition, it has a low power even under the Brownian process (ߣ ൌ 1ሻ when the differences between species groups are not located on the first axis of variation (Fig. 3f,i, and 4f; Fig. S3-4). Finally, dimension reduction techniques ("pca-raw" and "pca-phylo") have high type I errors if there is an unaccounted-for phylogenetic signal and the binary predictor is phylogenetically clustered ("pca-raw" when ߣ 0, Fig. 3k,l), or if there are deviations from the Brownian process and the binary predictor is not phylogenetically structured ("pca-raw" and "pcaphylo" when ߣ ൏ 1, Fig. 4j,k).

Overall, the performances of the different approaches do not strongly depend on the degree of among-traits correlations (Figs 3-4 and Figs. S1-S4). The main exception is the distance-based approach, which has a decreasing power to detect differences between groups with increased correlations among traits when differences are not located on the first PC axis (Fig. S3-4, second row). When differences between groups occur on the first axis of variation, most approaches show higher power when the correlation among traits is low (compare the top row in Fig. S1-2 vs Fig. S3-4). In contrast, when the simulated differences are spread across all the PC axes, the power is higher with high among traits correlations (compare the third row in Figs. S1-2 vs S3-4).

The evolution of the mandible in phyllostomid bats

Our PL-MANOVA tests revealed a significant difference (i.e. rejected H 0 ) on mandible morphology in phyllostomid bats, for the four diet grouping schemes considered (Table 2). The estimated phylogenetic signals in the residuals of the models were rather low (Pagel's ߣ ൌ 0.44 െ 0.08 ; Table 2a) and estimated average absolute correlations between variables ranged from 0.32 to 0.39. In comparison, the distance-based approach did not detect a significant difference in any grouping scheme (Table 2b). To assess whether this discrepancy was related to the Brownian motion assumption of the distance-based approach while there was a low phylogenetic signal estimated in the residuals of the models, we reconducted the analysis after rescaling the phylogenetic tree according to the PL estimates of Pagel's ߣ. In this case the scheme with five diet groups appeared significant, but not the others (Table 2b). To evaluate whether the discrepancy for the three first groupings was related to differences across groups occurring on the second and/or higher axes of variation rather than the first axis, we represented the differences among groups visually by computing pPC axes (Figs. S5-6, see also Fig. 2b) and performed univariate ANOVAs on the three firsts pPC axes (see Supplementary Material). Indeed, differences among groups were visible in the three first groupings, but they occurred along the second and/or third axes, not the first one (Fig. S5-6 and Table S1). In the analysis on the five diet groups, on the other end, some slight differences occurred on the main axis between carnivorous and insectivorous bats (although the number of carnivorous species is low). The main axis mostly displays changes in sizes, with carnivorous bats that tend to be slightly larger than insectivorous ones [START_REF] Monteiro | Evolutionary patterns and processes in the radiation of phyllostomid bats[END_REF]. Our general linear hypothesis tests confirmed a significant effect of carnivory and insectivory on mandible morphology. They also detected a significant effect of nectivory versus sanguivory on mandible morphology, even though these two diets have low masticatory demands, as well as between frugivory and animalivory, even though these two diets involve a substantial amount of mastication (Table S2). (j, k, l) there were no differences between groups (none). "loocv 1" refers to the PL-MANOVA with exact permutation procedure and "loocv-2" to the approximated approach; "GLS" refers to the maximum-likelihood MANOVA based on generalized least squares; "distances" refers to the distancebased approach implemented in geomorph; "simulations" refers to the simulation-based approach implemented in geiger; "OLS" refers to the conventional (non-phylogenetic) ordinary least squares MANOVA; "pca-raw" and "pca-phylo" refer to the simulation-based MANOVA on the three firsts PC axes and phylogenetic PC axes (obtained from phylo.pca in phytools). 

Figure 3. Comparison of the statistical performances (statistical power and Type I error) for the various MANOVA approaches with a phylogenetically clustered binary predictor variable. The three columns correspond to simulations with no phylogenetic signal (left column, lambda=0), intermediate phylogenetic signal (middle column, lambda=0.5), and BM (right column, lambda=1). On the top row (a, b, c) the differences between groups occurred along the first axis of variance (PC1); on the second row (d, e, f), they occurred along the second axis (PC2); on the third row (g, h, i) they occurred along all axes (All). On the last row

DISCUSSION

We developed new regularized multivariate statistics and associated tests (PGLS, phylogenetic MANOVA and MANCOVA) for assessing the effect of continuous and/or categorical predictors on high-dimensional phenotypic datasets in a phylogenetic context. We focused on the MANOVA to test the performance of these tests using simulations and expect the performance of the other tests to be similar, as they rely on the same penalized-likelihood framework. The penalized-likelihood tests outperform current alternatives in both low (  ݊ െ ݍ ) and high (  ݊ െ ݍ ) dimensions. They are more powerful for detecting differences among groups, in particular when these differences do not only occur on the first axis of variation. By estimating the amount of phylogenetic signal from the data, they also avoid false positives that can occur when ignoring phylogenetic signal (e.g. using nonphylogenetic multivariate statistics) or when overestimating this signal (e.g. assuming a Brownian structure in the residuals). Applying these new methods to phyllostomid bats, we found a significant effect of diet on mandible morphology that would not have been detected by other methods.

We highlighted two main aspects of multivariate comparative datasets that impact the ability of current statistical tests to detect the effect of predictors on trait data and the Type I error rate associated with these tests. First, the direction of the variation matters (Fig. 1); previous studies that have investigated the statistical performances of phylogenetic multivariate linear regressions or MANOVA [START_REF] Goolsby | Likelihood-Based Parameter Estimation for High-Dimensional Phylogenetic Comparative Models: Overcoming the Limitations of "Distance-Based[END_REF]Adams and Collyer 2018a, b) have focused on scenarios where differences between groups or relationships between explained and explanatory variables are expressed along the main axis of variation (e.g. Fig. 1a). However, as we have illustrated here with the phyllostomid bats, differences of biological interest may not occur along this first axis only. And as we have shown with simulations, comparative methods may perform differently depending on the axis along which variations occur. Hence, it is important to test multivariate comparative methods under various designs (e.g. Fig. 1b,c). When evaluating the performance of the distance-based approach [START_REF] Adams | geomorph: an R package for the collection and analysis of geometric morphometric shape data[END_REF][START_REF] Collyer | RRPP: An r package for fitting linear models to highdimensional data using residual randomization[END_REF], we found that it had a very low power (up to the baseline nominal level of 5%) to detect differences between groups when these differences were not located on the main axis of variation, in particular when traits were moderately or highly correlated. These methods are based on Euclidean distances, which implicitly assume that the variables are uncorrelated with equal variances and are known to be sensitive to the mean-variance (or location-dispersion) effect (e.g., [START_REF] Anderson | A new method for non-parametric multivariate analysis of variance[END_REF][START_REF] Warton | Distance-based multivariate analyses confound location and dispersion effects[END_REF]. When traits are highly correlated, the first axis of variance explains a large part of the total variation, and differences between groups along the other axes are not detected by distance-based approaches. Penalized-likelihood approaches (as well as conventional multivariate approaches), on the other hand, are able to detect such differences. In the phyllostomid bats, for example, the PL approach detected differences that occurred on axes other than the first axis, while the distance-based approach did not.

Second, the phylogenetic structure of the data matters. Most available multivariate phylogenetic linear models are restricted to the Brownian motion process. However most empirical datasets will likely deviate from this BM assumption. In the phyllostomid bats dataset for example, we found a relatively low phylogenetic signal in the residuals of the different models, even though we could have expected a rather strong signal given that the group is thought to have experienced an adaptive radiation. More generally, high-dimensional datasets likely accumulate measurement errors and uncertainties [START_REF] Goolsby | Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation[END_REF]) that may also lead to departures from the BM assumption. We have shown with simulations that methods relying exclusively on the BM process can have low power and/or high type I error rates when departures from the BM assumption occur. In the phyllostomid bats, differences associated with carnivory on the condylobasal length (a proxy for body-size) were not detected by the distance-based approach, even though these differences were observed along the main axis of variance, unless the tree was rescaled according to the corresponding PL estimate of phylogenetic signal. The PL approaches did detect these differences. Similarly, conventional (non-phylogenetic) methods have low power and/or high type I error rates when there is in fact a phylogenetic signal in the data. As we have no way to assess the phylogenetic signal -by which we mean the phylogenetic correlation structure -in the residuals a priori (i.e. without fitting a model), it is not possible in practice to know if and how much the data deviates from the BM or no-signal assumptions. By allowing an estimation of the signal in the residuals jointly with the model parameters, our approach accommodates the various data types with low type I error and good power, as was previously shown for univariate linear regressions [START_REF] Revell | Phylogenetic signal and linear regression on species data[END_REF].

The phylogenetic structure of the predictors also influences the performance of the multivariate tests, although in a complex way. Adams and Collyer (2018b) argued that phylogenetic clustering of the predictors reduces the statistical power of multivariate tests, and suggested to perform prior tests of phylogenetic signal on the predictor variables in a systematic way -e.g. using two-block partial least squares 2B-PLS. However, we found that the effect of phylogenetic structure in the predictors on statistical performance depended on the phylogenetic structure in the residuals (see also [START_REF] Revell | Phylogenetic signal and linear regression on species data[END_REF]. For example, we found high type I error rates with a non-clustered binary predictor when there were departures from the BM assumption in the residual structure. Hence, conditional tests based on measured phylogenetic signal in the predictors (or the responses) will be ineffective in practice and potentially misleading, as has been discussed before [START_REF] Rohlf | A comment on phylogenetic correction[END_REF][START_REF] Revell | Phylogenetic signal and linear regression on species data[END_REF]. In addition, we found that the power of GLS-MANOVA and PL-MANOVA when there was a strong phylogenetic signal in the predictor was not reduced compared to conventional methods used in their optimal conditions (i.e. when there is no signal in the residuals and p<n). Hence, multivariate tests can be performed with satisfactory power and type I error rates even when the predictors are phylogenetic clustered, provided phylogenetic structure in the residuals is properly accounted for; our regularized approaches allow doing so.

Evolutionary biologists often reduce high-dimensional datasets using Principal Component Analyses before performing multivariate tests (e.g. simulation-based MANOVA) using either conventional PC axes or phylogenetic PC axes assuming Brownian evolution. We have shown that this approach has a reduced power and is prone to high type I error rates, regardless of whether conventional or pPC axes are used. Conventional PC axes are sometimes favored as they are more straightforward to interpret biologically [START_REF] Polly | Phylogenetic principal components analysis and geometric morphometrics[END_REF]. This approach is known to affect model selection [START_REF] Uyeda | Comparative Analysis of Principal Components Can be Misleading[END_REF], and we have shown here that it also generates a lot of false positives in multivariate tests when there is a phylogenetic signal in the residuals. Phylogenetic PCA can account for such phylogenetic signal [START_REF] Revell | Size-correction and principal components for interspecific comparative studies[END_REF], but it requires the phylogenetic model to be known prior to data reduction [START_REF] Uyeda | Comparative Analysis of Principal Components Can be Misleading[END_REF]. We have shown that when the evolutionary model is misspecified (e.g., phylogenetic PCA based on Brownian motion is used when there is no or little phylogenetic signal), multivariate tests performed on pPCs axes are prone to high type I error rates. We therefore advise avoiding data reduction techniques that make strong a priori hypotheses on the phylogenetic structure (i.e. no structure or BM structure), and instead estimating the phylogenetic structure while performing the tests; the penalized likelihood tests proposed here allow doing this and are not prone to high type I error rates.

Several directions can be envisioned to further improve multivariate phylogenetic regression tests. For example, we estimated phylogenetic signal using Pagel's ߣ model, which can be viewed as a phylogenetic mixed model (PMM) combining a Brownian motion process with independently and normally distributed errors [START_REF] Housworth | The phylogenetic mixed model[END_REF][START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]. Even more flexible PMMs could be envisaged, for example based on the Ornstein-Uhlenbeck process [START_REF] Mitov | A Practical Guide to Estimating the Heritability of Pathogen Traits[END_REF]; they are already available in the penalizedlikelihood framework [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]. Future improvements should also consider models where each trait may have its own level of phylogenetic signal -as was done in lower dimensional settings (e.g., Freckleton 2012; Ho and Ané 2014) -rather than assuming a common (or average) signal across trait as we did here. In addition, we considered a common covariance for each group, as is assumed by standard (M)ANOVA procedures which use a pooled estimate of the covariance matrix [START_REF] Rencher | Methods of Multivariate Analysis[END_REF]. Methods that account for groupspecific covariances should probably be preferred when there are departures from this assumption. Such methods have already been developed for conventional and regularized approaches (e.g., [START_REF] Friedman | Regularized Discriminant Analysis[END_REF][START_REF] Hoffbeck | Covariance matrix estimation and classification with limited training data[END_REF] and are probably extendable to the phylogenetic comparative methods developed here. Also, we introduced penalties for the estimation of the variance-covariance matrix of residuals; adding penalties for the estimation of the coefficients would further improve the statistical performances of the tests and help in the process of predictors selection in (P)GLS analyses. Finally, it would be useful to develop diagnostic tools for detecting outliers in multivariate phylogenetic regression analyses, similarly to what has been proposed for phylogenetic univariate [START_REF] Revell | Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited[END_REF] and conventional multivariate models [START_REF] Caroni | Residuals and influence in the multivariate linear model[END_REF][START_REF] Barrett | General classes of influence measures for multivariate regression[END_REF][START_REF] Srivastava | Outliers in multivariate regression models[END_REF][START_REF] Barrett | Understanding Influence in Multivariate regression[END_REF].

With datasets of increasing sizes, further efforts will also be needed to improve computational efficiency; they will be even more needed if regularization techniques with improved performances but more computationally demanding, such as those using quadratic penalties, are required [START_REF] Engel | An overview of large-dimensional covariance and precision matrix estimators with applications in chemometrics[END_REF][START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]. We already proposed efficient algorithms that can easily be parallelized on modern computing platforms and approximations to the cross-validated log-likelihood for computing the distribution of the statistics. These computations (see Appendix 2) could be further improved by using rank-one update of the eigen-decomposition used in the pre-transformation for the LOOCV (e.g., [START_REF] Mertens | The efficient cross-validation of principal components applied to principal component regression[END_REF]. For very high-dimensional datasets (p>1000), the computational burden for computing the distribution statistics can be avoided (or reduced) by using PL-based reduction techniques. We previously developed the PL-PCA and were able to apply it on a dataset of p=1197 [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]. In principle, one could use the ML or PL-MANOVA (with the model estimated when performing the PL-PCA) on a reduced set of these PL-PCA axes. This is a much less computationally demanding test. In this case, the appropriate phylogenetic structure is used in the construction of the pPC axes, and so this procedure is expected to perform well, although we did not directly assess its statistical performances. Another promising direction concerns the probabilistic latent variable models (e.g., [START_REF] Tipping | Probabilistic Principal Component Analysis[END_REF][START_REF] Tolkoff | Phylogenetic Factor Analysis[END_REF], which could further improve the efficiency of the reduction techniques for super high dimensional comparative data.

CONCLUSIONS

The development of multivariate phylogenetic comparative tools is urgently needed to study phenomic and more generally quantitative datasets of ever-increasing size across the tree of life. In this paper we identified several limitations of currently available approaches and proposed new tools -GLS based on regularization techniques -that show improved statistical performances in a wide range of situations. We focused here on phylogenetic structure in the residuals, but the proposed approach can be used to handle other forms of correlations in the residuals, such as in time series or spatial data analyses.

APPENDIX 1: PENALIZED-LIKELIHOOD OPTIMIZATION

The regularized estimator in Equation ( 6) can be seen as the solution of the following "ridge" penalized log-likelihood (see [START_REF] Van Wieringen | Ridge estimation of inverse covariance matrices from high-dimensional data[END_REF][START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]:

ࣦ ൌ െ ଵ ଶ ሼሺ݊ െ ‪ሻݍ logሺ2ߨሻ log|| log| ் ିଵ | ሺ݊ െ ݍሻlog|| ሺ1 െ ߛሻtrሾ ିଵ ሺ െ ߚሻ ் ିଵ ሺ െ ߚሻሿ ሺ݊ െ ݍሻߛtrሾ ିଵ ሿሽ (A1)
This equation ( A1) is similar to the restricted (or residual) log-likelihood described in [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF]Eq. 1b) but considering the more general case ݊ െ ݍ rather than ݊ െ 1 (where ݍ is the rank of ) which corresponds to the loss in degrees of freedom resulting from estimating ߚ (see details in [START_REF] Harville | Bayesian inference for variance components using only error contrasts[END_REF][START_REF] Harville | Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems[END_REF][START_REF] Searle | Variance Components[END_REF]. We find the optimal value for ߛ and the estimator ሺߛሻ by maximizing the leave-one-out cross-validated (LOOCV) log-likelihood:

ࣦ ൌ െ ଵ ଶ ቂሺ݊ െ ‪ሻݍ logሺ2ߨሻ log|| log| ் ିଵ | ∑ ቀ ሺିሻ ݈݃ห ෩ ሺߛሻ ሺିሻ ห ୀଵ ݎݐ ቂ ෩ ሺߛሻ ሺିሻ ିଵ ൫ ෩ െ ෩ ߚ൯൫ ෩ െ ෩ ߚ൯ ் ቃቁቃ (A2)
Where ෩ and ෩ are the p by 1 column vectors made of the i th row of the matrices ෩ ൌ ۱ ିଵ ଶ ⁄ and ෩ ൌ ۱ ିଵ ଶ ⁄ respectively. The p by p penalized likelihood estimator ෩ ሺߛሻ ሺିሻ is computed as described in Eq. 6 but with replaced by:

ሺିሻ ൌ ൫ ෩ ሺషሻ ି ෩ ሺషሻ ఉ ሺషሻ ൯ ൫ ෩ ሺషሻ ି ෩ ሺషሻ ఉ ሺషሻ ൯ ିିଵ , (A3)
Finding a suitable regularization parameter ߛ is a long-standing problem as it can be achieved in different ways that may optimize different criterion [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF][START_REF] Warton | Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices[END_REF][START_REF] Hastie | The elements of statistical learning[END_REF]). Maximizing the cross-validated likelihood (A2) is known to reduce the statistical risk based on the predictive Kullback-Leibler (K-L) information [START_REF] Stone | Cross-Validatory Choice and Assessment of Statistical Predictions[END_REF][START_REF] Stone | An Asymptotic Equivalence of Choice of Model by Cross-Validation and Akaike's Criterion[END_REF][START_REF] Yanagihara | Bias correction of cross-validation criterion based on Kullback-Leibler information under a general condition[END_REF]) and has been shown to perform well with high-dimensional phylogenetic comparative studies by providing accurate estimates of the models parameters (including a well-conditioned estimate of the traits evolutionary covariance matrix ; see details in [START_REF] Clavel | A Penalized Likelihood Framework for High-Dimensional Phylogenetic Comparative Methods and an Application to New-World Monkeys Brain Evolution[END_REF].

APPENDIX 2: EFFICIENT OPTIMIZATION OF THE REGULARIZATION PARAMETER IN PERMUTATED DATASETS

We use derivative-based Newton-Raphson and quasi-Newton algorithms [START_REF] Nocedal | Updating quasi-Newton matrices with limited storage[END_REF][START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF] to efficiently find the regularization (or tuning) parameter ߛ that maximizes the cross-validated log-likelihood in Equation (A2) for each of the permuted datasets. Following [START_REF] Warton | Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices[END_REF], we started by expressing the LOOCV log-likelihood (Eq. A2) through the spectral decomposition of the "training" samples covariance matrix ሺିሻ ൌ ሺିሻ ሺିሻ ሺିሻ ் for ݅ א ሾ1, ݊ሿ and by using the eigenvector's matrix ሺିሻ to rotate the residuals of the "test" sample: ݖ ൌ ൫ ෩ െ ෩ ߚ൯ ሺିሻ . We note that the spectral decomposition of ෩ ሺߛሻ ሺିሻ differs from ሺିሻ only by a linear transformation of the eigenvalues : ෩ ሺߛሻ ሺିሻ ൌ ሺିሻ ൣሺ1 െ ߛሻ ሺିሻ ߛ൧ ሺିሻ ் [START_REF] Warton | Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices[END_REF][START_REF] Witten | Covariance-Regularized Regression and Classification for High Dimensional Problems[END_REF][START_REF] Van Wieringen | Ridge estimation of inverse covariance matrices from high-dimensional data[END_REF]. The parts depending on ߛ in Equation (A2) can thus be expressed as a sum of independent terms that are easier to evaluate:

ࣦ ן െ ଵ ଶ ∑ ∑ ܿ ൈ logቂሺ1 െ ߛሻ݀ ሺିሻ ݐߛ ቃ ቀ௭ ೕ ሺሻ ቁ మ ሺଵିఊሻௗ ೕ ሺషሻ ା ఊ௧ ೕ ൩ ୀଵ ୀଵ (B1)
Where ݀ ሺିሻ is the j th eigenvalue estimated from the eigen-decomposition of the covariance matrix ሺିሻ , and ܿ is a constant equal to

ሺିሻ

. Given the linear form of the cross-validated log-likelihood function (Eq. B1), we can differentiate the summands separately using standard derivative rules to obtain the first and second order derivatives with respect to the regularization parameter ߛ (see Supplementary Material for details). The first derivative is given by:

డࣦ ೇ డఊ ൌ െ ଵ ଶ ∑ ∑ ቀ௧ ೕ ିௗ ೕ ሺషሻ ቁ൬௧ఊାௗ ೕ ሺషሻ ିௗ ೕ ሺషሻ ఊିቀ௭ ೕ ሺሻ ቁ మ ൰ ቀௗ ೕ ሺషሻ ିௗ ೕ ሺషሻ ఊାఊ௧ ೕ ቁ మ ୀଵ ୀଵ (B2)
And the second order derivative (used in Newton-Raphson like methods) is given by:

డ మ ࣦ ೇ డఊ మ ൌ െ ଵ ଶ ∑ ∑ ቀ௧ ೕ ିௗ ೕ ሺషሻ ቁ మ ൬௧ఊାௗ ೕ ሺషሻ ିௗ ೕ ሺషሻ ఊିଶቀ௭ ೕ ሺሻ ቁ మ ൰ ቀௗ ೕ ሺషሻ ିௗ ೕ ሺషሻ ఊାఊ௧ ೕ ቁ య ୀଵ ୀଵ (B3)
In practice we only used the first derivative (Eq. B2) along with Equation (B1) within a quasi-Newton method (the L-BFGS-B algorithm implemented in the optim function in R; [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF] as it was more efficient than our own implementation of the Newton-Raphson algorithm based on both Equations (B2) and (B3).

Although performing the n eigen-decompositions of the LOOCV procedure for the p by p covariance matrices may appear to be computationally prohibitive, this has to be done only once; repeated evaluations of the cross-validated log-likelihood (Eq. B1), and its derivatives (Eqs. B2-3) during the updating steps of the optimization is done very efficiently given that the dominant computations only involve vectors or scalar operations. It should be noted that this approach assumes that the phylogenetic covariance is known and fixed. For instance, with the Pagel's ߣ model considered here, we assume that for each of the permuted datasets the phylogenetic covariance is known and fixed to the penalized likelihood estimate obtained from the empirical data -that is ൌ ൫ߣ መ ൯. As a result, with the exception of the Brownian motion case, this strategy is generally approximate. We expect the test statistic to be slightly biased (e.g. upwards for the Wilks's Λ test -McLachlan 1987) since the estimation of the likelihood on each permuted dataset is not based on the maximum likelihood estimate of on this dataset.

  variance (Fig 1a, shift along the first eigenvector of R by ܽ ඥ ݀ ଵ ଵ ଶ ⁄ units), ii) along the second axis of variance (Fig 1b, shift along the second eigenvector by ܽ ඥ ݀ ଶ ଵ ଶ ⁄ units), and iii) along all axes (Fig 1c, shift along each eigenvectors by ܽ݀ ଵ ଶ

Figure 1 .

 1 Figure 1. Schematic illustration (with a bivariate trait) of the various scenarios considered in our simulations. The black and red colors represent the two species groups. (a, b & c) Main trait differences between the two species groups occur along (a) the main axis of variance, (b) the second axis of variance, or (c) both axes. Differences between groups such as those described in (b) and (c) require truly multivariate tests, as differences are difficult to detect on each variable taken separately (i.e., on the marginal analyses). In (d), there is no difference between the two species groups (i.e., the null hypothesis of the MANOVA test). (e & f) the distribution of the predictor binary state (which determines the species groups) is (e) phylogenetically clustered or (f) uniformly distributed.

Figure 2 .

 2 Figure 2. The phyllostomid bats dataset. a) the phylogenetic tree of phyllostomid bats with four different species grouping reflecting diet preferences and feeding modes. b) Scatter plot of the three first phylogenetic PC axes obtained using the mvgls.pca function in "mvMORPH" (PL estimate of ߣ = 0.45).Species are colored according to Grouping 1 (high mastication in orange, low-mastication in blue). The two groups are well separated on the third axis of variation of the size-shape dataset. c) Illustration of the landmarks (in red) and semilandmarks (in green) used for describing the mandible shape in[START_REF] Monteiro | Evolutionary patterns and processes in the radiation of phyllostomid bats[END_REF].

Figure 4 .

 4 Figure 4. Comparison of the statistical performances (statistical power and Type I error) for the various MANOVA approaches with a non-phylogenetically clustered binary predictor. Notations are as in Figure 3.

Table 1 .

 1 Summary of available phylogenetic approaches for performing regressions with multivariate trait data and associated properties

	Approach	Predictor	Limited to BM	Limited to p<n	Assumes uncorrelated traits
	distance-based 1	All	Yes	No	Yes
	simulation-based 2	Only categorical Yes	Yes	No
	regressions on (p)PCs	All	Yes	No	No
	ML-MANOVA 3	All	No	Yes	No
	PL-MANOVA 3	All	No	No	No

1 the distance-based approach is implemented in geomorph (function procD.pgls) and in the "RRPP" package (function lm.rrpp) 2 the simulation-based approach is implemented in geiger (function aov.phylo).

3 new approaches implemented in mvMORPH (function mvgls and manova.gls)

Table 2 . Effects of diet on the mandible in phyllostomid bats (a) phylogenetic

 2 signal estimated by the PL-MANOVA and (b) results of the MANOVA tests.

	a)	Estimated phylogenetic signal (by PL) in the residuals of the model
		Grouping 1	Grouping 2	Grouping 3	Grouping 4
	Pagel's ߣ	0.44	0.42	0.32	0.08
	b)	Tests significance (p-values)		
	PL-MANOVA	0.001	0.001	0.001	0.001
	distance-based MANOVA	0.509	0.585	0.689	0.056
	distance-based MANOVA* 0.236	0.206	0.066	0.001
	*phylogenetic tree transformed according to the PL estimates of ߣ in (a)	
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