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The study of pathogenic agents in their natural niches allows for a better understanding 
of disease persistence and dissemination. Bacteria belonging to the Agrobacterium genus 
are soil-borne and can colonize the rhizosphere. These bacteria are also well known as 
phytopathogens as they can cause tumors (crown gall disease) by transferring a DNA 
region (T-DNA) into a wide range of plants. Most reviews on Agrobacterium are focused 
on virulence determinants, T-DNA integration, bacterial and plant factors influencing the 
efficiency of genetic transformation. Recent research papers have focused on the plant 
tumor environment on the one hand, and genetic traits potentially involved in bacterium-
plant interactions on the other hand. The present review gathers current knowledge about 
the special conditions encountered in the tumor environment along with the Agrobacterium 
genetic determinants putatively involved in bacterial persistence inside a tumor. By 
integrating recent metabolomic and transcriptomic studies, we describe how tumors 
develop and how Agrobacterium can maintain itself in this nutrient-rich but stressful and 
competitive environment.

Keywords: Agrobacterium tumefaciens, tumor lifestyle, crown gall, molecular traits, competition, plant defense

INTRODUCTION

The persistence of bacterial phytopathogens results from many factors including survival in 
natural habitats such as the soil, the rhizosphere, or the phyllosphere (van der Wolf and Boer, 
2015), acclimation capacities to different lifestyles, and the ability to efficiently shift from one 
lifestyle to another (Sokurenko et  al., 2006; Engering et  al., 2013; Duprey et  al., 2014; Wei 
et  al., 2015). Survival in the rhizosphere implies abilities to resist both abiotic and biotic 
stress, and a high capacity to rapidly access nutritional sources (Ji and Wilson, 2002; Romanuk 
et  al., 2009; Wei et  al., 2015; Leonard et  al., 2017). The pathogenic lifestyle generally involves 
bacterial growth inside the host and tight interactions with it. The success of the pathogen 
thus depends on its ability to face the conditions encountered inside the host, including plant 
defense mechanisms, availability of nutrient resources, and interactions with the host microbiota 
(Brader et  al., 2017; Spanu and Panstruga, 2017; van der Does and Rep, 2017).
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Members of the Agrobacterium genus are soil-borne bacteria 
able to live in the plant rhizosphere; they can be  pathogenic 
when they harbor the Ti (Tumor-inducing) plasmid. This 
plasmid contains a DNA region (T-DNA) that can be transferred 
to plant cells and integrated into the plant genome. Briefly, 
the T-DNA genes are expressed by the infected plant, leading 
to hormone production which induces uncontrolled proliferation 
of plant cells (Drummond, 1979; Nester, 2014). Then the plant 
develops a tumor and is considered as suffering from crown 
gall disease. The T-DNA region also contains genes encoding 
opine biosynthesis. Opines are conjugates of amino acids and 
sugars or organic acids, and are specifically used as nutrients 
by agrobacteria harboring the Ti plasmid. Around 40 different 
types of opines have been characterized; some of them trigger 
the transfer of the Ti plasmid from one bacterium to another, 
enhancing pathogenicity and contributing to the persistence 
of pathogenic bacteria in the environment (Dessaux et  al., 
1998; Flores-Mireles et  al., 2012). These properties confer 
opines a central role in the Agrobacterium-infected plant 
interaction (Guyon et  al., 1980; Dessaux and Faure, 2018). 
According to the “opine concept,” the presence of opines 
improves the competitiveness of the bacteria able to catabolize 
them at the expense of the bacteria unable to do so. However, 
the ability to catabolize opines may not be  sufficient to 
be  competitive under detrimental environmental conditions. 
Tumor exploitation also implies dealing with plant defense 
mechanisms. Plant defense relies on signaling by chemical 
compounds such as salicylic acid (SA), jasmonic acid (JA), 
or ethylene that allow for the induction of pathogenesis-related 
proteins, some of which exhibit antimicrobial activities (Costet 
et  al., 1999; Durrant and Dong, 2004). Even though plants 
initiate defense mechanisms against Agrobacterium (Deeken 
et  al., 2006; Pitzschke, 2013; Shih et  al., 2018), the bacterium 
is known to bypass those defenses to durably settle in tumors 
(Lee et  al., 2009; Someya et  al., 2013; Nonaka and Ezura, 
2014; Nonaka et  al., 2017). It should be  emphasized that 
Agrobacterium is one of the only bacterial phytopathogens 
that exploits its host for niche construction instead of killing 
it (Leonard et  al., 2017).

Non-pathogenic Agrobacterium strains have also been isolated 
from tumors (Bélanger et  al., 1995; Llop et  al., 2009; Shams 
et  al., 2012). Some strains could be  mutants of the initial 
tumor-inducing strain (e.g., following spontaneous deletions 
inside pTi), but most of these non-pathogenic isolates may 
have an environmental origin. Tumors have also been reported 
to host other microorganisms (Faist et  al., 2016). Hence, even 
in an opine-rich tumor environment and beyond its ability to 
use opine as a nutrient, Agrobacterium needs additional 
determinants to compete with other microorganisms and 
durably settle.

The induction of the pathogenicity program, as well as the 
process of genetic transformation leading to tumor formation, 
has been extensively studied (Lacroix and Citovsky, 2013; Nester, 
2014; Gelvin, 2017). The natural ability of Agrobacterium to 
genetically transform plants and its use as a tool for genetic 
engineering are also well documented (Hwang et  al., 2015; 
Krenek et  al., 2015). Moreover, the transition between the 

rhizospheric and tumor lifestyles, which represents a critical 
step in the establishment of crown gall disease, has recently 
been reviewed (Barton et  al., 2018). As Agrobacterium 
pathogenicity and perennial soil contamination are directly 
linked to its success in maintaining a long-term association 
with its host plant, we  chose to focus this review on the 
bacterial ability to durably exploit the specific tumor environment. 
We  therefore summarized knowledge about Agrobacterium 
settlement and the subsequent changes triggered in the host 
plant, and focused on the molecular determinants that allow 
Agrobacterium to survive in tumors, exploit this environment, 
and compete with other microorganisms encountered in tumors.

TUMOR DEVELOPMENT CAUSES 
STRESS IN BACTERIAL AND  
PLANT CELLS

Once the T-DNA is integrated, tumor development is initiated 
and the physico-chemical parameters of the tumor evolve with 
time and with the host plant biotic and abiotic environment 
(Hwang et  al., 2015). We  focused on the specific conditions 
encountered in tumors and on the bacterial genes that are 
likely relevant for thriving in that special environment and 
modifying it.

Role of Hormones
The role of jasmonic acid (JA) in tumor development is not 
formally established and seems to differ according to the plant 
species. No increase in JA production was observed during 
tumor development in Arabidopsis thaliana (Lee et  al., 2009), 
whereas transient JA accumulation occurred in 1-week-old 
Ricinus communis tumors (Veselov et  al., 2003). By contrast, 
the role of auxin, cytokinin, and ethylene in tumor proliferation 
and development has been established (for a review see Gohlke 
and Deeken, 2014). Native plant cells contain genes responsible 
for the synthesis of these types of hormones, but transformed 
cells contain additional T-DNA-encoded genes for auxin and 
cytokinin biosynthesis, i.e., iaaH and iaaM for auxin, and ipt 
for cytokinin (Skoog and Miller, 1957; Zhu et al., 2000). Tumors 
contain higher levels of auxin and cytokinin than non-infected 
plant stems; concentrations vary according to the plant and 
the age of the tumor (Veselov et  al., 2003; Lee et  al., 2009; 
Gohlke and Deeken, 2014). Agrobacterium cells can also produce 
hormones. Indeed, two genes have been proposed to be involved 
in cytokinin production of Agrobacterium: miaA (atu2039) 
located on the C58 circular chromosome (Gray et  al., 1996) 
and tzs (atu6164) located on several pTi including the nopaline 
C58-pTi (Hwang et  al., 2010). Both genes are expressed in 
C58-induced tumors (González-Mula et  al., 2018), suggesting 
that bacteria produce cytokinin in that environment. 
Agrobacterium can synthesize another hormone, the indole- 
3-acetic acid (IAA of the auxin family). Although the genetic 
determinants of IAA synthesis remain unknown, this property 
is not T-DNA encoded, as the non-oncogenic strain GV3101 
can also produce IAA (Lee et  al., 2009).
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High cytokinin and auxin levels enhance the activity of 
1-aminocyclopropane-1-carboxylate (ACC) synthase, the key 
enzyme of ethylene synthesis in plants (Adams and Yang, 
1979). Ethylene has been proposed to be  involved in the high 
amount of vascularized tissues in tumors at the detriment of 
aerial part, leading to the water-flow priority to tumor cells 
over the host shoot (i.e., “Gall-constriction hypothesis”; Aloni, 
1995; Aloni et  al., 1998). Indeed, the comparison of tumors 
induced by A. tumefaciens strain C58  in wild-type tomato 
and in never-ripe mutants (sensitive and insensitive to ethylene, 
respectively) revealed that the mutant plants had smaller tumors 
and more vascularized tissues than the wild-type plants (Aloni 
et  al., 1998). Thus, ethylene plays a central role in tumor 
water supply (Figure 1A). Agrobacterium growth is not affected 
by ethylene (strain C58; Nonaka and Ezura, 2014) and 
Agrobacterium cannot directly affect the ethylene content. While 
some plant-associated bacteria (either phytobeneficial or 
phytopathogenic) can degrade the immediate precursor of 
ethylene, ACC, Agrobacterium fails to do so, because it lacks the 
gene encoding the ACC-deaminase enzyme (Someya et al., 2013; 
Bruto et  al., 2014; Nonaka and Ezura, 2014).

SA take part in plant defense mechanisms called systemic 
acquired resistance (SAR) and local acquired resistance (LAR) 
by triggering the synthesis of pathogenesis-related proteins (Costet 
et  al., 1999; Durrant and Dong, 2004). However, transcriptomic 
analyses have demonstrated that genes involved in plant defense 
were under-expressed in the early stages of infection by 

Agrobacterium (Veena et  al., 2003; Lee et  al., 2009). In 5-week-
old A. thaliana tumors, the activation of the SA-dependent 
defense signaling pathway was not triggered despite an increase 
in SA levels. This observation was attributed to the high level 
of auxin in these tumors (Lee et  al., 2009). SA can inhibit 
bacterial growth when added to the culture medium (Yuan 
et al., 2007; Anand et al., 2008). The SA inhibitory concentration 
could vary according to bacterial growth conditions: 5  μM in 
a minimal culture medium (Yuan et  al., 2007) as compared to 
200  μM in an enriched one (Anand et  al., 2008). As for IAA, 
its effect is dose-dependent: it promotes bacterial growth at 
low concentrations (0.8  μM) but shows deleterious effects at 
high concentrations (200  μM) (Liu and Nester, 2006; Gohlke 
and Deeken, 2014). Hence, Agrobacterium could first benefit 
from the presence of IAA, but could be  locally sensitive to 
high levels of this compound likely to impede its development 
as the tumor grows (Gohlke and Deeken, 2014). Thus, in the 
tumor tissue, ethylene circumvents its classical role in defense 
response and highly participates in tumor development together 
with cytokinin and auxin.

Drought
The water advantage conferred by ethylene through its influence 
on xylem vessel diameter is further counterbalanced by an 
increased water loss: the massive proliferation of tumor cells 
causes epidermal rupture and uncontrolled evaporation of the 

A

B

FIGURE 1 | Schematic representation of the plant reactions to the stresses caused by tumor development. T-DNA integration into the plant genome induces auxin 
and cytokinin production. High concentrations of these two phytohormones accelerate cell proliferation and tumor growth. ACC synthase expression is also induced 
and triggers ethylene production. Ethylene has two main roles in the tumor: it reduces plant vessel diameter around the tumor to ensure its hydration, and it triggers 
abscisic acid synthesis. The latter induces the polymerization of suberin that forms a protective layer around the tumor. (A) Drought stress in the tumor: under 
drought stress, FAD3 produces α-linolenic acid, an unsaturated fatty acid, to maintain lipid membrane integrity. (B) Hypoxic stress in the tumor: when the drought 
stress is more severe (i.e., in old tumors), abscisic acid triggers stomatal closure. This implies H2O2 production and leads to a decreased oxygen rate. Under low 
oxygen, SAD6 also contributes to the production of unsaturated fatty acids to maintain lipid membrane integrity in the transformed cells.
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water contained in the tumor (Figure 1; Schurr et  al., 1996). 
In this case, ethylene also plays a crucial role in tumor drought 
tolerance, as proposed earlier (Efetova et  al., 2007) and as 
summarized in Figure 1A. Cytokinins and auxins trigger 
ethylene synthesis that in turn induces abscisic acid (ABA) 
synthesis in the tumor. ABA induces suberin polymerization 
to create a protective layer around the tumor and avoid its 
desiccation (Veselov et  al., 2003; Efetova et  al., 2007; Gohlke 
and Deeken, 2014). In response to the drought stress mediated 
by ABA signaling, enhancement of fatty acid desaturase activity 
is also observed in tumor cells, to synthesize α-linolenic acid 
and ensure lipid membrane integrity (Klinkenberg et al., 2014). 
Fatty acid desaturase 3 (FAD3) plays an important role in 
tumors: infection of A. thaliana FAD3 mutants by Agrobacterium 
strain C58 at low humidity rates revealed that fad3-2 mutant 
tumors were smaller than wild-type ones. This demonstrates 
that FAD3-synthesized α-linolenic acid can maintain the lipid 
membrane integrity of plant cells under drought conditions 
(Figure 1; Klinkenberg et  al., 2014).

In order to maintain homeostasis, bacteria use two main 
strategies, i.e., accumulation of osmoprotectants and production 
of exopolysaccharides (EPSs) (Weiner et  al., 1995; Dandapath 
et  al., 2017). Osmoprotectants are compounds that accumulate 
into the cell to protect it from different stresses such as drought, 
dehydration, or the presence of oxygen radicals. Agrobacterium 
can take up or synthesize a large range of compounds previously 
described as being involved in osmoprotection (Kempf and Bremer, 
1998; Panikulangara et  al., 2004; Bougouffa et  al., 2014). These 
compounds include glycine betaine and choline (Boncompagni 
et al., 1999), gamma-butyrobetaine (Nobile and Deshusses, 1986), 
proline (Haudecoeur et al., 2009b), sucrose and trehalose (Ampomah 
et al., 2013), palatinose (De Costa et al., 2003), melibiose, raffinose, 
and stachyose (Meyer et  al., 2018b). Bacterial genes allowing for 
melibiose, raffinose, and stachyose uptake are expressed in mature 
C58-induced tumors (González-Mula et  al., 2018) where they 
could allow for bacterial osmoprotection. However, the role 
of these compounds in bacterial osmoprotection has not been 
assessed yet. A direct role of gamma-butyrobetaine, glycine 
betaine, and choline in Agrobacterium osmoprotection has been 
described only in vitro (notably for C58), but so far no study 
has investigated their role in planta (Nobile and Deshusses, 1986; 
Boncompagni et  al., 1999).

Biosynthesis of EPS is the second way of resisting high or 
low environmental osmolarities. Agrobacterium can synthesize 
diverse kinds of EPS: β-1-2-glucan (atu2728–atu2730) (Cangelosi 
et  al., 1990), curdlan (atu3355–atu3357) (Stasinopoulos et  al., 
1999; McIntosh et al., 2005; Lassalle et al., 2011; Ruffing and Chen, 2012), 
succinoglycan (atu4049–atu4060; atu4166; atu3325–atu3327) 
(Tomlinson et  al., 2010), unipolar polysaccharide (atu1235–
atu1240; atu0102), cellulose (atu3303–atu3309) (Matthysse, 
2018). Among the EPS, only curdlan is specific to the “A. 
fabrum” species (Lassalle et  al., 2011, 2017). A role in 
osmoprotection has only been described for β-1-2-glucan, 
which is produced in response to low-osmolarity conditions 
in different microorganisms including Agrobacterium (Cangelosi 
et  al., 1990; Ingram-Smith and Miller, 1998; Domínguez-
Ferreras et  al., 2006). Some Agrobacterium genes involved in 

EPS (curdlan) production are expressed in C58-induced tumors 
(González-Mula et  al., 2018) where they may serve as 
osmoprotectants. Alternatively, they could be  useful for cell 
adhesion, as some of these EPSs are involved in that process 
(for a review see Matthysse, 2018). The precise role of EPS 
inside tumors thus remains to be  deciphered.

Oxidative and Hypoxic Stress
One of the first plant responses to pathogen perception is the 
production of reactive oxygen species (ROS), like superoxide 
(O2

−), or hydrogen peroxide (H2O2) (Torres et  al., 2006; Lee 
et al., 2009). Agrobacterium strain C58 can detoxify these toxic 
compounds thanks to proteins encoded by chromosomal genes. 
Firstly, it harbors three genes encoding superoxide dismutase: 
sodBI (atu0876), sodBII (atu4583), and sodBIII (atu4726) 
(Saenkham et  al., 2007). The functional analysis of these three 
enzymes revealed that SodBI is mainly responsible for 
transforming O2

− into O2 and H2O2. The sodBI mutant and 
the triple superoxide dismutase mutant were less proficient 
than the wild-type in inducing vir genes and consequently 
displayed a reduced ability to induce tumor formation (Saenkham 
et  al., 2007). Secondly, Agrobacterium can degrade H2O2 to 
H2O and O2 thanks to the KatA catalase (atu4642 carried by 
strain C58 linear chromid – i.e., linear chromosome) (Xu and 
Pan, 2000). A C58-derivative katA mutant was highly affected 
in its capacity to form tumors. It has been suggested that 
Agrobacterium catalase expression prevents the infected plant 
from activating the hypersensitive response (HR), allowing for 
the bacterium to settle and to form tumors without risking 
plant tissue necrosis (Xu and Pan, 2000; Gohlke and Deeken, 
2014). katA expression is induced by OxyR upon H2O2 perception 
(Nakjarung et  al., 2003). Conversely, in Agrobacterium strain 
C58, the global regulator LsrB was recently shown to negatively 
regulate katA transcription (Tang et  al., 2018). The ability to 
cope with oxidative stress likely participates in the long-term 
efficient interaction. Five-week-old R. communis tumors were 
reported to contain hypertrophied non-functional stomata at 
the tumor surface that increased tumor water loss (Figure 1B; 
Schurr et al., 1996). The ABA drought stress pathway is involved 
in stomatal closure through its influence on H2O2 production 
(Zhang et  al., 2001). Accordingly, although H2O2 accumulation 
was impeded by the bacteria at the beginning of the infection 
process (3  h and 6  days after inoculation), it accumulated 
later during tumor development (5  weeks after inoculation) 
(Lee et  al., 2009). To determine if the differences in H2O2 
levels are due to lower bacterial degradation and/or greater 
production by plants or by bacterial cells, it would be  relevant 
to study the expression of the bacterial genes sodB, katA, and 
their regulator, and also H2O2 accumulation during 
tumor development.

The oxygen rate inside tumors decreases, and hypoxic  
stress has consequences on the plant metabolism, notably on 
the fatty acid metabolism. In these conditions, stearoyl ACP 
desaturase 6 (SAD6), which is synthesized only in a hypoxic 
environment, maintains plant cell membrane integrity by 
catalyzing the first step of fatty acid biosynthesis (Figure 1B; 
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Klinkenberg et  al., 2014; Kerpen et  al., 2019). In accordance, 
in 5-week-old A. thaliana tumors, genes involved in photosynthesis 
were under-expressed, whereas genes involved in glycolysis and 
fermentation were over-expressed (Deeken et  al., 2006). The 
authors suggested that transformed plant cells switch from an 
autotrophic metabolism to a heterotrophic one and that oxygen 
availability is limited, at least in some parts of the tumor. The 
low oxygen content of tumors has been recently confirmed in 
14- and 28 day-old A. thaliana tumors induced by Agrobacterium 
strain B6 (Kerpen et  al., 2019). Under low oxygen conditions, 
some Agrobacterium species are facultative denitrifiers (Baek and 
Shapleigh, 2005). A nitrate reductase (NapAB: Atu4408–Atu4409) 
allows them to reduce nitrate into nitrite (NO2

−), which is further 
converted into nitric oxide (NO) by a nitrite reductase (NirK: 
Atu4382). Finally, an NO reductase (NorB: Atu4388) catalyzes 
the transformation of NO into nitrous oxide (N2O), which 
accumulates in the absence of an N2O reductase (encoded by 
the nosZ gene) (Kampschreur et  al., 2012). The norB gene was 
expressed in a context of agroinfiltration in A. thaliana leaves, 
and a transcriptomic study comparing tumors and culture media 
suggests that partial denitrification occurs in tumors (Baek and 
Shapleigh, 2005; González-Mula et al., 2018). These results indicate 
that on the one hand, denitrification can participate in 
Agrobacterium survival in tumors by providing energy in the 
absence of oxygen, and on the other hand, NO degradation by 
Agrobacterium NO reductase can also participate in the bypassing 
of plant defenses mediated by NO (Delledonne et  al., 1998; 
Leitner et  al., 2009; Bellin et  al., 2013).

BACTERIA FIND TROPHIC RESOURCES 
AND TOXIC COMPOUNDS INSIDE 
TUMORS

Tumor Metabolite Content
Nutrient availability is crucial for bacterial development inside 
tumors. A tumor is a highly vascularized metabolite sink 
supplied by water and minerals (mainly conducted via the 
xylem) and by sugars and other biosynthesized carbonated 
compounds (transported via the phloem) (Gohlke and Deeken, 
2014). Apart from hormones, ABA and opines, whose presence 
in the tumor has been specifically analyzed at different times 
after inoculation, only a few studies have dealt with metabolite 
analyses (Deeken et  al., 2006; Simoh et  al., 2009; González-
Mula et al., 2019). Moreover, these studies used different bacterial 
strains, plant models (A. thaliana, Brassica napa, Solanum 
lycopersicum), and analytical methods (targeted or global analyses 
based on NMR or GC-TOF-MS). Overall, as in non-infected 
tissues, the main primary metabolites in tumors were sugars, 
organic acids, and amino acids (Deeken et al., 2006; González-
Mula et  al., 2019). In addition to sucrose and glucose, and 
as compared to non-infected stems, 5-week-old A. thaliana 
tumors contained a high concentration of amino acids (glutamine, 
serine, asparagine, glutamic acid, threonine, proline, aspartic 
acid, alanine, valine, isoleucine, leucine, histidine, and arginine) 
(Deeken et  al., 2006). Among sugars, organic acids and amino 

acids, and in contrast to A. thaliana tumors, only pyruvate 
and proline significantly accumulated in S. lycopersicum tumors 
(González-Mula et  al., 2019). γ-hydroxybutyric acid (GHB) 
also slightly accumulated in S. lycopersicum tumors (González-
Mula et  al., 2019). Among nitrogen compounds, GABA and 
α-aminoadipinic acid were more abundant in infected tissues 
(Deeken et  al., 2006; González-Mula et  al., 2019). Secondary 
metabolites, some of which can limit bacterial growth (Del 
Valle et  al., 2016; Wang et  al., 2018) can also be  detected in 
tumors: flavonoids such as quercetin and kaempferol, 
phenylpropanoids and its derivatives (ferulate, sinapoyl- and 
coumaroyl-malate, 3-caffeoylquinate), and glucosinolate or its 
derivatives are also accumulated in B. napa or S. lycopersicum 
tumors (Simoh et  al., 2009; González-Mula et  al., 2019).

Metabolites are not uniformly distributed across tumors, 
and both their amount and their localization vary during tumor 
development. For example, the hexose level was found higher 
in the center of 3-week-old R. communis tumors than in their 
periphery. Conversely, sucrose and proline were more abundant 
in the periphery of the tumor than in its center in 6-week-old 
tumors (Wächter et  al., 2003). This makes sense since sucrose 
is more easily transportable and assimilable under drought 
conditions (Singh and Maclachlan, 1983; Wobus and Weber, 
1999; Deeken et  al., 2006). Those gradients are proposed to 
be linked mainly to tumor expansion and also to turgor pressure 
and osmoprotection. The relative abundance of metabolites also 
depends on the opine-type of the Agrobacterium strain (Simoh 
et  al., 2009): B. napa tumors induced by strains harboring a 
“nopaline-type” or a “octopine-type” Ti plasmid differed in 
flavonoids, phenylpropanoid derivatives, sugar, organic and 
amino acid contents. However, no difference was reported for 
the precursors of nopaline and octopine (i.e, arginine and 
respectively α-ketoglutarate and pyruvate; Simoh et  al., 2009). 
Additional metabolomic studies of tumors would provide further 
insights into the Agrobacterium-plant interaction. Nevertheless, 
it appears that bacteria can use plenty of metabolites as nutrient 
resources in tumors and have to cope with toxic compounds.

Opine Catabolism and Tumor Colonization
Pathogenic agrobacteria can catabolize opines using genes 
carried by their Ti plasmid. Opines are mainly used as carbon 
and nitrogen sources, but can also be  used as phosphate or 
sulfur sources (Dessaux et al., 1998; Flores-Mireles et al., 2012; 
Dessaux and Faure, 2018). One of the features of the Ti 
plasmid is that it confers the bacterium that harbors it the 
possibility to catabolize a specific type of opine determined 
by the Ti plasmid-type (Gordon and Christie, 2014). The genes 
involved in the uptake of the well-described opines are actively 
studied (Marty et  al., 2016, 2019; Dessaux and Faure, 2018). 
Among them, in Agrobacterium strain C58, nocT (atu6027) 
encodes a periplasmic binding protein (PBP) involved in the 
binding of nopaline and pyronopaline (Lang et  al., 2014). The 
ocd (atu6016) gene encodes an ornithine cyclodeaminase 
involved in nopaline and pyronopaline degradation (Sans et al., 
1987). nocT and ocd mutant strains are unable to use and 
assimilate these two opines. In competition assays for tumor 
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niche occupancy, the wild-type strain outcompeted the two 
mutant strains, indicating that opines favor the survival of 
bacteria able to catabolize them under competitive conditions 
(Lang et  al., 2014).

Interestingly, after individual inoculation, the wild-type and 
the two nocT and ocd mutants reached the same population 
level (Lang et  al., 2014). This finding implies that the tumor 
provided other carbon sources that supported the growth of the 
two mutants. Accordingly, metabolomics studies and the 
Agrobacterium tumor transcriptome revealed a large diversity of 
available carbon sources together with the up-regulation of numerous 
and diverse genes involved in metabolism (Deeken et  al., 2006; 
Simoh et  al., 2009; González-Mula et  al., 2019).

Additional Nutrient Resources
Annotation of the Agrobacterium strain C58 genome predicted 
a large set of transporters putatively involved in the import 
of plant compounds, composed of 190 ABC (ATP-binding 
cassette transporters) and 3 TRAP (Tripartite ATP-independent 
periplasmic) transporters (Goodner et  al., 2001; Wood et  al., 
2001). However, only a few of them has been characterized. 
The presence of multiple transporters for one substrate could 
be  beneficial for the fitness of Agrobacterium in competition 
with other microorganisms and a redundancy of transporters 
importing plant substrates is found in Agrobacterium. For 
example, the gguABC-chvE (atu2345–atu2348) and the gxySBA 
(atu3574–atu3576) clusters are two distinct ABC transporters 
allowing for D-glucose, D-xylose, D-fucose, D-galactose, 
D-glucosamine, and L-arabinose uptake in Agrobacterium (Zhao 
and Binns, 2011, 2014). D-glucosamine, D-fucose, and D-glucose 
transport were shown experimentally dependent on both 
transporters (Zhao and Binns, 2014). The presence of additional 
transporters was suggested for L-arabinose, D-xylose, and 
D-galactose, as the strains deleted for genes encoding both 
transporters (gguABC-chvE and gxySBA) could still grow on 
these compounds (Zhao and Binns, 2014). In the case of 
D-galactose, the mel operon (encoding an ABC transporter) 
was suggested as the additional transport system in Agrobacterium 
(Meyer et  al., 2018b). Expression of the Agrobacterium mel 
operon was induced inside the tumor (González-Mula et  al., 
2018) and a deletion mutant of the PBP uptake gene of this 
operon (responsible for melibiose, galactinol, raffinose, and 
stachyose uptake) was less competitive than the wild-type strain 
(Meyer et  al., 2018b). However, it is not yet known whether 
the mel-imported compounds are used for osmoprotection and/
or nutrition.

Sugars such as glucose, fructose, sucrose, xylose, fucose, 
and arabinose are commonly degraded by plant-associated 
bacteria (Lugtenberg et  al., 1999; Gunina and Kuzyakov, 
2015). Only a few catabolic pathways involved in plant 
compound assimilation have been described in Agrobacterium, 
mainly in strain C58. The pycA gene (atu2726) encodes a 
glucose-6P isomerase essential for Agrobacterium growth on 
sucrose, fructose, and glucose, which are abundant compounds 
in the tumor (González-Mula et  al., 2019). Accordingly, a 
pycA deletion mutant was affected in its capacity to compete 

with a wild-type strain in the tumor. A similar result is 
obtained with a mutant strain unable to degrade GHB.  
This compound is degraded in Agrobacterium by BlcRABC 
(formerly known as the AttJKLM system, Atu5136–Atu5139; 
Carlier et  al., 2004). The BlcRABC mutant was outcompeted 
by the wild-type strain in tumors (Haudecoeur et  al., 2009a; 
González-Mula et  al., 2019).

Some bacterial pathogens feed on plant cell wall degradation 
products (Reverchon and Nasser, 2013). Agrobacterium strain 
C58 was suggested to be  able to degrade plant cell wall. For 
example, thanks to XynA (Atu2371), C58 strain is able to 
grow on xylan, a common component of plant cell wall (Mathews 
et  al., 2019). The polygalacturonase PglA (Atu3129) and PglB 
(Atu4560) are involved in polygalacturonic acid degradation 
(Mathews et  al., 2019). The pglA gene was suggested to form 
an operon with picA, a gene that is induced by plant extracts 
(Rong et al., 1991; Mathews et al., 2019). Interestingly, although 
galacturonic acid is detected in tumors (González-Mula et  al., 
2019), only picA is overexpressed (González-Mula et al., 2018). 
Agrobacterium can import galacturonic acid owing to the 
gaaPQM operon (atu3135–atu3137) which also allows for 
glucuronic acid uptake, yet to a lesser extent. Both organic 
acids can be  used in vitro for growth (Zhao and Binns, 2016). 
Galacturonic acid is transformed into α-ketoglutarate by enzymes 
encoded by atu3138–atu3143 (for details about galacturonic 
acid degradation, see Boer et  al., 2010; Andberg et  al., 2012; 
Taberman et  al., 2014a,b; Zhao and Binns, 2016).

Agrobacterium strain C58 possesses other genetic determinants 
that allow it to grow on plant compounds but whose role and 
importance in tumor colonization have not yet been specifically 
studied. For example, Agrobacterium possesses a functional 
palatinose and trehalose uptake and degradation system 
(Ampomah et  al., 2013). The thuEFGKAB operon (also known 
as the palEFGKAB operon; atu3338–atu3343) is composed of 
genes encoding an ABC transporter (thuFGK) linked to a gene 
encoding a PBP (thuE), and the thuB and thuA genes are 
those involved in the degradation process (Ampomah et  al., 
2013). Deletion of the genes coding for the ABC transporter 
abolished Agrobacterium growth on palatinose (De Costa et al., 
2003), while maltitol, trehalose, and isomeric forms of sucrose 
were still imported and used for growth, again suggesting 
transporter redundancy. The thuEFGK deletion mutant is not 
required for tumor formation but as often, its role in the 
competitive colonization of the tumor has not been assessed 
yet. In addition to the above-described genes, other genes 
appear to be up-regulated in the tumor as compared to minimal 
media, and could be  involved in the metabolism of carbon 
sources according to their annotation (González-Mula et  al., 
2018, 2019). Thus, Agrobacterium seems to be capable of using 
a large set of plant compounds to sustain its growth inside 
the tumor. Besides the functional characterization of genes 
involved in the uptake and catabolism of these plant compounds, 
additional efforts to decipher their roles not only in vitro, but 
also in planta and in competitive plant colonization are needed. 
Finally, whether Agrobacterium displays a preference for opines 
rather than for other carbon sources available in the tumor 
remains an open question.
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Toxic Compounds
The host plant also produces potential antibacterial compounds 
in the tumor, including phenolic compounds (Schwalm et  al., 
2003; Cushnie and Lamb, 2005; Deeken et  al., 2006; Simoh 
et  al., 2009; Shi et  al., 2016; González-Mula et  al., 2019). The 
VirH2 protein, an O-demethylase whose pTi-located gene is 
highly expressed in tumors, plays a role in the transformation 
of ferulic acid (highly present in tumors) into caffeic acid, a 
less toxic phenolic compound (Brencic et  al., 2004; González-
Mula et  al., 2019). Some chromosomal genes are also involved 
in phenolic compound degradation. In “A. fabrum” species, 
the SpG8-1b genomic region is involved in ferulic acid, caffeic 
acid, and p-coumaric acid degradation (Lassalle et  al., 2011; 
Campillo et  al., 2014; Baude et  al., 2016). In addition to 
detoxifying these phenolic compounds, some of these genetic 
determinants extend the metabolic versatility of “A. fabrum” 
by weakly sustaining growth (Campillo et  al., 2014). Their 
expression is tightly regulated by the HcaR repressor, and this 
regulation is important for bacterial fitness in the tumor (Meyer 
et  al., 2018a). Other non-characterized pathways putatively 
annotated as phenolic compound degradation pathways are 
present in other Agrobacterium species, highlighting the 
importance of this function (Lassalle et  al., 2017).

The action of efflux pumps is another mechanism allowing 
Agrobacterium survival in the presence of toxic compounds. 
In Agrobacterium strain C58, three operons have been described, 
all located on the linear chromid. The AcrABR efflux system 
(atu3003–atu3001) was shown to export numerous toxic 
compounds and to confer resistance to high concentrations 
of these compounds (Nuonming et  al., 2018). The EmrBAR 
efflux pump (atu4479–atu4476) has recently been shown to 
confer resistance to toxic compounds and to be  induced by 
indole and flavonoids among which quercetin, a compound 
detected in tumor tissues (see section “Tumor Metabolite Content”; 
Simoh et  al., 2009; Lee et  al., 2015; Khemthong et  al., 2019). 
Both of these systems could be  useful for bacterial survival in 
tumors. However, the corresponding genes (acrABR and emrBAR) 
were not up-regulated in 3-week-old A. thaliana tumors as 
compared to the culture medium (González-Mula et  al., 2018). 
This study rather revealed overexpression of tetR/tetA (atu4205–
atu4206), which encodes an efflux pump conferring resistance 
to tetracycline (González-Mula et  al., 2018). To date, the plant 
compounds genuinely exported by TetR/TetA remain unknown 
(Luo and Farrand, 1999; Lassalle et  al., 2011).

AGROBACTERIUM FACES MICROBIAL 
COMPETITION IN THE TUMOR

Agrobacterium long-term colonization of the tumor is partly 
dependent on competitions for opine nutritive resource, either 
between strains of Agrobacterium or with other microorganisms. 
Inside tumors, opines are public goods that are produced by 
the infected plant cells elicited by virulent Agrobacterium. 
However, opines can be shared within all the opines-catabolizing 
populations, not necessarily the virulent strains that originally 

induced tumors (For a review, see Platt et  al., 2014). Tumors 
were shown to contain avirulent but opines-catabolizing 
Agrobacterium strains (either from environmental origin or 
derived from the strain inducing the tumor) (Bélanger et  al., 
1995; Llop et  al., 2009). Those strains can be  considered as 
cheaters (not expressing virulence genes but using opines), 
that may outcompete the Agrobacterium virulent population, 
burdened by the cost of infecting the plant due to the expression 
of virulence genes (Platt et  al., 2012a,b). Virulence genes are 
still highly expressed in A. thaliana tumors, even 3  weeks 
post inoculation (González-Mula et  al., 2018). The cost of the 
pTi plasmid could thus lead to plasmidless-genotypes dominance 
inside tumors. However, in the opine-rich tumor environment, 
the cost of the Ti plasmid is counterbalanced by opine benefits 
(as reviewed by Platt et  al., 2014). In any case, competition 
for opine and tumor colonization occurs between Agrobacterium 
strains. Such a competition would have consequences on the 
persistence of the pTi rather than on Agrobacterium itself.

Besides, the presence of different Agrobacterium strains, it 
was recently reported that the microbial community of natural 
Vitis vinifera tumors caused by Allorhizobium vitis (another 
tumorigenic Rhizobiaceae species previously known as 
Agrobacterium vitis) contains more than 150 species, among 
which members of the Pseudomonas, Sphingomonas, Erwinia, 
and Bradyrhizobium genera (Faist et  al., 2016). Unfortunately, 
no such global analyses have been conducted for Agrobacterium-
induced tumors. Nonetheless, some studies report that tumors 
can harbor bacteria belonging to the Corynebacterium or the 
Arthrobacter genera or even to the E. meliloti species, a well-
known plant symbiont (Tremblay et  al., 1987; Nautiyal and 
Dion, 1990; Moore et  al., 1997). The tumor environment can 
also shelter fungal species that are also opine degraders, such 
as Cylindrocarpon destructans, C. heteronema, and Fusarium 
solani (Beauchamp et  al., 1990). Moreover, in the tumor, some 
Pseudomonas putida strains can catabolize mannopine, and 
some fungi catabolize mannopine and succinamopine (Nautiyal 
and Dion, 1990). Pseudomonas spp. can take the advantage 
over Agrobacterium when co-cultured in a medium supplemented 
with octopine, indicating that Pseudomonas spp. could use 
octopine more efficiently than Agrobacterium in  vitro (Bell 
et  al., 1990). In addition to metabolic abilities, other genetic 
determinants may allow Agrobacterium to compete with the 
tumor microbiota to durably settle in this environment.

The Type VI Secretion System (T6SS) described in several 
Agrobacterium strains could represent one such feature (Wu 
et  al., 2012, 2019; Lin et  al., 2013; Ma et  al., 2014; Bondage 
et  al., 2016). T6SS is a molecular syringe that injects effectors 
such as DNAse and amidase into target cells to kill them (Ma 
et  al., 2014; Bondage et  al., 2016). In the Agrobacterium C58 
strain, this system is induced in acidic conditions by the ChvG/I 
two-component system and repressed by ExoR (Wu et  al., 
2012; Heckel et al., 2014). The T6SS expression is also induced 
upon high level of intracellular cyclic di-GMP (McCarthy et al., 
2019). Interestingly, a P. aeruginosa T6SS was shown to inhibit 
“A. fabrum” growth in vitro (Ma et  al., 2014). However, after 
co-infiltration in leaves, wild-type “A. fabrum” cells of strain 
C58 outcompeted P. aeruginosa whereas T6SS mutants were 
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unable to do so (Ma et  al., 2014). Thus, “A. fabrum” T6SS is 
efficient in planta but not in vitro. This suggests that plant 
compounds induce the expression of “A. fabrum” T6SS genes 
and/or affect P. aeruginosa competitive properties.

The ability to catch and/or sequester iron is important for 
competition under low-iron conditions, and iron scavenging 
is known as a plant defense mechanism against phytopathogens 
(Aznar et  al., 2014; Niehus et  al., 2017). In this context, 
siderophores, the most widespread bacterial system for iron 
acquisition, are certainly determining for the competitive 
colonization of tumors (Aznar et  al., 2014; Verbon et  al., 
2017). The different Agrobacterium species seem able to produce 
distinct siderophores, but an operon involved in siderophore 
biosynthesis has so far only been characterized in Agrobacterium 
strain C58 (Rondon et  al., 2004). Deletion of this large gene 
cluster (nearly 50  kb) abolished the bacterial capacity to 
survive in an iron-limited medium (Rondon et  al., 2004; Liu 
et  al., 2016). However, a tight control of siderophore gene 
expression is needed because this expression can 
be metabolically costly (Miethke and Marahiel, 2007; Harrison 
et al., 2008; Verbon et al., 2017). Regulatory proteins controlling 
siderophore biosynthesis are RirA, Irr, and SigI, a sigma factor 
influenced by heme and Fe-S concentrations (Figure 2; Qi 
et  al., 1999; Ngok-Ngam et  al., 2009; Hibbing and Fuqua, 
2011). The exact mechanism of regulation by SigI and the 
structure of “A. fabrum” C58 siderophore remain unknown. 
The global regulator LsrB was also recently shown to be involved 
in iron homeostasis by positively regulating siderophore 
biosynthesis genes (Tang et  al., 2018). Among the 
microorganisms highly adapted to the plant environment, 
some possess multiple receptors and ABC transporters; some 
of these make the uptake of heterologous siderophores possible 

(Loper and Buyer, 1991; Lemanceau et  al., 2009; Berendsen 
et  al., 2015). The Agrobacterium strain C58 genome contains 
three ABC transporters annotated as useful for iron uptake 
(atu0408–atu0406; atu2473–atu2476; atu5311–atu5316; 
respectively on circular chromosome, linear chromid, and At 
plasmid); they appear to be up-regulated in tumors as compared 
to culture media (González-Mula et  al., 2018). Information 
about the compound actually transported in Agrobacterium 
or about the specificity of those transporters is unavailable, 
but it is tempting to speculate that these compounds are 
important for the uptake of heterologous siderophores and 
for bacterial fitness within tumors.

CONCLUDING REMARKS

In tumors, agrobacteria are exposed to plant defense reactions, 
hypoxic and drought conditions, as well as competition with 
other tumor dwellers. Even if the opine concept explains a 
major part of the Agrobacterium-plant interaction, it cannot 
solely justify Agrobacterium maintenance and competitiveness 
in tumors. The high tumor-colonizing capacity of Agrobacterium 
is likely to be  conferred by its ability to survive stresses 
encountered in tumors, to kill competitors, its metabolic 
capacities, and efficient resource uptake.

Unfortunately, the tumor metabolites content is sparsely 
described. To date, only a few untargeted metabolites studies 
provide valuable but limited information since they were 
performed at different stages (i.e., 4- to 5-week-old tumors) 
on different plant species (B. rapa, A. thaliana, S. lycopersicum) 
and with different analytical methods (Deeken et  al., 2006; 
Simoh et al., 2009; González-Mula et al., 2019). The integration of 

FIGURE 2 | Model of the regulation of siderophore gene cluster expression according to iron availability. In an iron-limited environment, due to the low heme and 
Fe-S concentrations, the Irr protein is abundant and represses rirA. Consequently, SigI, which is under the negative control of RirA, is expressed and can induce 
siderophore synthesis. In an iron-rich environment, Irr is negatively regulated by the high heme concentration. In these conditions, RirA is abundant and its binding to 
Fe-S allows for the repression of sigI, which leads to the very low expression of siderophore biosynthesis genes.
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metabolite and plant gene expression analyses contributes to 
a better understanding of the changes that occur during tumor 
development and of the way the plant faces such modifications 
(Deeken et  al., 2006). Moreover, integrated analyses of the 
two partners would be  essential to understand the different 
aspects of the long-term interaction inside the tumor.

Even if Agrobacterium has been the subject of many 
functional studies, genetic characterizations have mostly been 
focused on virulence genes, the factors influencing T-DNA 
integration, and the efficiency of plant genetic transformation. 
There is growing interest in the characterization of the genetic 
determinants that allow for rhizosphere colonization, and 
more recently for the transition between the rhizosphere and 
pathogenic lifestyles. Many bacterial functions highlighted in 
this review are indeed found in non-tumor environments. 
EPS and siderophores are usually described as essential for 
root colonization (as reviewed by Dessaux and Faure, 2018; 
Matthysse, 2018). Moreover, the import and catabolism of 
melibiose, raffinose, stachyose, and galactinol have recently 
been showed to confer a competitive advantage for rhizosphere 
colonization (Meyer et al., 2018b). The ability of Agrobacterium 
to synthesize hormones might modify the root architecture, 
as observed for plant-growth-promoting rhizobacteria 
(Vacheron et  al., 2013), thus providing a favorable habitat 
to the bacterium. Therefore, besides the characterization of 
new genetic clusters, an additional effort is needed not only 
to decipher the role of these clusters in bacterial virulence 
(their tumor-inducing ability) as often tested, but also to 
evaluate their role in colonization, persistence, and in the 

rhizosphere-to-tumor transition. This would provide further 
insights into key determinants of Agrobacterium ecology, as 
well as valuable information on disease persistence 
and dissemination.
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