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Abstract

Microbial communities, which drive the major ecosystem functions, are 

composed by a wide range of interacting species. Understanding how microbial 

communities are structured and the underlying processes is a crucial task for 

interpreting ecosystem response to global change but it is challenging as microbial 

interactions cannot usually be directly observed. Multiple efforts are currently focused 

to combine next-generation sequencing (NGS) techniques with refined statistical 

analysis (e.g., network analysis, multivariate analysis) to characterize the structures of 

microbial communities. However, most of these approaches consider a single table of 

sequencing data measured for several samples. Technological advances now make it 

possible to collect NGS data on different taxonomic groups simultaneously for the same 

samples and lead to analyze a pair of tables. Here, an analytic framework based on co-

correspondence analysis (CoCA) is proposed to study the distributions, assemblages and

interactions between two microbial communities. We showed the ability of this 

approach to highlight the relationships between two microbial communities, using two 

data sets exhibiting various types of interactions. CoCA identified strong association 

patterns between autotrophic and heterotrophic microbial eukaryotes assemblages, on 

one hand, and between microalgae and viruses, on the other hand. We demonstrate also 

how CoCA can be used, in complement to network analysis, to reorder co-occurrence 

networks and thus investigate the presence of patterns in ecological networks.
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Introduction

Microbial communities are highly diverse (Rappé & Giovannoni, 2003) and drive 

the major ecosystem functions (e.g., carbon sequestration, climate regulation, gas 

regulation, nutrient cycling; Ducklow, 2008; Falkowski, Fenchel, & Delong, 2008; 

Hutchins & Fu, 2017). Understanding how these systems are structured and identifying 

the underlying processes is a crucial task to predict communities and ecosystem 

responses to global change (Fuhrman, 2009; Graham et al., 2016). Biotic interactions 

across taxonomic groups (e.g., predation, parasitism, mutualism or competition) are of 

broad interest because they are expected to influence the structure and composition of 

communities (Wisz et al., 2013). Unfortunately, our understanding of the underlying 

assemblage rules of microbial communities is still limited (Little et al., 2008; Cordero & 

Datta, 2016).

The emergence of high-throughput sequencing techniques (next-generation 

sequencing; NGS) gave access to the diversity of whole microbial communities, including

the non-cultivable fraction (Handelsman, 2004; Zimmerman, Izard, Klatt, Zhou, & 

Aronson, 2014; Zinger, Gobet, & Pommier, 2011). With the large amount of data 

generated in a single NGS experiment, powerful statistical methods are needed to assess 

and explain structural patterns in such complex data sets (Bálint et al., 2016; Paliy & 

Shankar, 2016). A common approach is to combine NGS techniques with network 

analysis to represent and characterize interactions between partners in microbial 

communities (Cardona, Weisenhorn, Henry, & Gilbert, 2016; Vacher et al., 2016). 

Various computational methods have been developed to infer networks from NGS data 

sets (e.g., CoNet: Faust et al., 2012; SparCC: Friedman & Alm, 2012; REBACCA: Ban, An, &

Jiang, 2015; CCLasso: Fang, Huang, Zhao, & Deng, 2015; SPIEC-EASI: Kurtz et al., 2015). 

Another popular approach is to use ordination methods to extract information from NGS
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data and describe the variations in community composition among samples (Paliy & 

Shankar, 2016). Ordination methods arrange objects in a multidimensional space using 

directly the original raw data table (e.g., principal component analysis, correspondence 

analysis), or after computing a distance matrix (e.g., non-metric multidimensional 

scaling, principal coordinate analysis) (Legendre & Legendre, 2012).

These different approaches are based on a single table composed of read counts 

for each Operational Taxonomic Unit (OTU) measured for several samples. 

Technological advances now make it possible to acquire NGS data on different 

taxonomic groups simultaneously for the same samples (Fierer et al., 2007) and lead to 

analyze a pair of tables (i.e., OTUs composition for the same sampling sites for two 

different taxonomic groups). To analyze such pair of tables, a common practice consists 

in merging the two tables into a single one and then applying network analysis (e.g., 

Kueneman et al., 2016; Banerjee et al., 2016; Ma et al., 2016) and/or multivariate 

analysis (Cannon et al., 2017; Bergelson, Mittelstrass, & Horton, 2019). However, this 

data aggregation is unsuitable especially when NGS data sets, which are a function of 

sequencing depth (Ni, Yan, & Yu, 2013), are standardized by dividing read counts by the 

total number of reads in each sample. In this case, the normaliszation step and further 

analysis are very sensitive to the difference in number of OTUs and associated counts in 

each taxonomic group. Hence, it is important to use techniques allowing for the analysis 

of a pair of NGS data tables while preserving the original structure of the data. In 

addition, these approaches must be able to mitigate the statistical bias stemming from 

high-dimensionality (i.e., a number of samples substantially lower than the number of 

variables), sparsity (i.e., a high proportion of zero counts), and the compositional nature 

(i.e., a non-independence of relative abundances induced by the row-sum normalisation)

that characterize NGS data (Li, 2015). For network analysis, the SPIEC-EASI method has 
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been adapted to infer associations among microorganisms in a cross-domain analysis 

(Tipton et al., 2018). For multivariate analyses, several two-table methods exist and 

have been presented to microbial ecologists in methodological reviews (Ramette, 2007; 

Buttigieg & Ramette, 2014; Paliy & Shankar, 2016). However, these works focused on 

asymmetric methods (e.g., canonical correspondence analysis and redundancy analysis) 

that aim to explain the composition of microbial communities by a limited number of 

environmental predictors. Unfortunately, these methods are not adapted to link two 

NGS data tables as they require that there are fewer predictor variables than samples 

(Dray, Chessel, & Thioulouse, 2003) and thus are not able to deal with the high-

dimensionality of NGS data. Moreover, these methods compute linear combinations of 

the predictor variables, which is not suitable if the table of predictors contains 

community data that display unimodal structure and/or are sum normalised (as the NGS

data).

This study aims to propose an analytical framework based on co-correspondence 

analysis (CoCA; ter Braak & Schaffers, 2004), a two-table coupling method developed in 

community ecology, to study the distributions and assemblages between two microbial 

communities. This framework is based on correspondence analysis, a method that 

effectively handles proportional data that contain many zeroes (Gauch et al., 1977; 

Jackson, 1997; Greenacre, 2009), like NGS data (Paulson, Stine, Bravo, & Pop et al., 

2013). We show how this method allows to extract information about the co-structure 

among two microbial communities to estimate the congruence between them. Finally, 

we show that the outputs of the method can be used to reorder co-occurrence networks 

inferred by network analysis to enhance the visualization of microbial association and 

the understanding of assemblage patterns within networks. Hence, our approach echoes

to the current lively debate about the practices to create network visualizations which 
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are both aesthetically appealing and have high information content (see Pocock et al., 

2016 for review). We illustrate our approach using two real data sets, one on 

autotrophic and heterotrophic microbial eukaryotes in shallow freshwater systems and 

another on microalgae and viruses in marine systems.

Materials and methods

Studying cross-taxon congruence by co-correspondence analysis

Co-correspondence analysis (ter Braak & Schaffers, 2004) is part of the class of 

canonical analyses with the feature to be designed to analyze a pair of tables containing 

abundance data and to study the co-variations between two types of communities (e.g., 

plants and pollinators). CoCA is based on correspondence analysis (Benzécri, 1969; Hill, 

1973) and preserves its fundamental properties of weighted averaging and the use of 

the chi-square (χ2) distance for both tables (Supporting Information). The χ2 distance is 

particularly adapted to NGS data as it handles properly zero values (and in particular 

double absences) and thus is not hampered by zero inflation (Legendre & Legendre, 

2012).

Here, co-correspondence analysis in its predictive form (pCoCA) is used for the 

microalgae-virus data set while the symmetric form (sCoCA) is used for the microbial 

eukaryote data set. Let X=[ x ij] and Y=[ y ik] be n× p and n×q tables containing the 

relative abundances of each p and q species of two communities measured at the same n

samples. In the first case, pCoCA is chosen because we wish to investigate the 

composition of virus communities under the hypothesis that the occurrence of viruses 

depends mainly on whether microalgal hosts are present or absent at a particular 

sample location. In the second case, sCoCA is chosen as we simply wished to study the 

relationships between autotrophic and heterotrophic microbial eukaryotes. In its 
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predictive form, CoCA is based on partial least-squares regression analysis (PLS) in a 

SIMPLS version (ter Braak & Schaffers, 2004) to deal with high-dimensionality and 

subsequent collinearity in the table of explanatory variables. PLS searches for a linear 

regression model from a set of orthogonal components (called latent factors) built from 

collinear explanatory variables with the constraint that these components maximize the 

covariance with the response variables (Martens, 2001). In its symmetric form, CoCA fits

in the framework of co-inertia analysis (COIA, Dolédec & Chessel, 1994) that is not 

affected by the problem of collinearity (Dray, Chessel, & Thioulouse, 2003). Co-inertia 

analysis relates two data tables in a symmetric way, by providing a decomposition of the

co-inertia criterion on a set of orthogonal axes on which sample scores are projected 

(Dray, Chessel, & Thioulouse, 2003).

In practice, CoCA identifies associations (or common ecological gradients) 

between two types of biological assemblages from the same samples, by seeking the 

factorial axes that maximize the covariance between the weighted average sample 

scores (projection of rows of one table onto the factorial axes) of one community with 

those of the other community (Supporting Information, Eq. 12). This requires to 

determine species scores (projection of columns of one table onto the factorial axes) of 

one table as weighted averages of sample scores of the other table and sample scores as 

weighted averages of the species scores of their own table (Supporting Information, Eq. 

13–16). So, pCoCA and sCoCA are a weighted version of PLS and COIA, respectively. 

Given that CoCA is related to the correspondence analysis, it is necessary to circumvent 

the fact that the sample weights of Y and X (R1 and R2, which are the row sums of Y and 

X, respectively) are imposed and are not similar (Supporting Information, Eq. 6 and Eq. 

7). This does not meet a crucial constraint in estimating the co-structure between two 

tables, namely that the samples must be weighted in the same way for the two tables 
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(Dray, Chessel & Thioulouse, 2003). Hence, an additional common sample weights 

matrix (R0) is defined to replace R1 and R2 so that the weighted averaging properties of 

CA can be retained in CoCA (ter Braak & Schaffers, 2004). In pCoCA, R0 is equal to the 

sample weights of the community response table (i.e., R0=R1), whereas in sCoCA,

R0=(R1+R2)/2 (Supporting Information, Eq. 10 and Eq. 11). Note that in the specific case

of compositional data, the row sums are equal to 1 and R0=R1=R2.

Ordination of the structure and assemblage of interacting communities

From sCoCA, ordination diagrams can be made in the usual way by jointly 

plotting the species scores and sample scores (of each community) for the first axes of 

the analysis (ter Braak & Schaffers, 2004). For an optimal representation of this 

association in a biplot, the species scores of each axis must be multiplied by the quarter 

root of the eigenvalue of the axis (ter Braak, 1990). From pCoCA, the fit of the response 

community (viruses) to the predictive community (microalgal hosts) as well as the 

variations in the composition of communities can be displayed in ordination diagrams 

(biplots; ter Braak & Schaffers, 2004). For instance, the joint plot of sample scores of 

hosts (table X) with species scores of viruses (table Y) displays the fit of the virus OTUs 

from the host communities. The simultaneous plot of sample scores of microalgae with 

the loadings (i.e., the coefficient or importance of variables on the first components of 

the PLS) of predictor species (i.e., hosts) allows representing microalgae communities 

and their OTUs. Both types of OTUs can also be jointly displayed using scores of the 

response species (i.e., viruses) with the loadings of predictor species (i.e., microalgae). 

For all these diagrams, axes are optimized to maximize covariance between assemblages

rather than to depict associations within individual species matrices, but interpretation 
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can also be carried out as in correspondence analysis according to the barycentre 

principle, where OTUs are placed at the barycentre (weighted average) of the sample 

points and, by symmetry, samples at the barycentre (weighted average) of the OTUs 

(Supporting Information, Eq. 13–16).

Real data application

We illustrate the use of CoCA to study the congruence between microbial 

communities from NGS data, employing data of Simon et al. (2015) on the study of 

autecology of microbial eukaryotes in shallow freshwater systems, and a data set 

acquired during our research program (ANR program DECOVIR-12-BSV7-0009) on the 

monitoring of microalgae and viruses in marine systems.

Case study 1: Microbial eukaryotes

Surface water was sampled monthly from April 2011 to April 2013 in five small 

shallow freshwater systems [four ponds: Etang des Vallées (EV), La Claye (LC), Mare 

Gabard (GB), Saint Robert (SR), and one brook: Ru Sainte Anne (RSA)], located at the 

Natural Regional Park of the Chevreuse Valley (South of Paris, France). These systems 

were characterized by different local environmental conditions. Briefly, raw genomic 

sequences were obtained from 18S rDNA fragments, encompassing the V4 

hypervariable region, applying 454 pyrosequencing and filtered to remove potential 

spurious sequences using a local pipeline (Simon et al., 2014). Sequences from all 

samples were then processed together and clustered into OTUs at 0.98 similarity cutoff 

using CD hit (Fu, Niu, Zhu, Wu, & Li, 2012), and singletons were eliminated, before to 

assign OTUs to taxonomic groups based on sequence similarity to the PR2 database 

(Guillou et al., 2013). From this overall OTU table, we used the method applied by Simon 
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et al. (2015) to select the most abundant OTUs. Finally, we subdivided the data set by 

grouping OTUs in two functional groups (autotrophic and heterotrophic) trained on 

literature information (Simon et al., 2015; Genitsaris, Monchy, Breton, Lecuyer, & 

Christaki, 2016 and references within), and we obtained one table for autotrophic 

microbial eukaryotes (n=108, p=122) and another table for microbial heterotrophic 

eukaryotes (n=108, q=104).

Case study 2: Microalgae-virus system

The data set coming from our research program contains a NGS-based eukaryotic

microalgae community table (photosynthetic picoeukaryotes in the class 

Mamiellophyceae) and a NGS-based virus community table (viruses infecting this class 

of eukaryotic phytoplankton and belonging to the genera Prasinovirus of the family 

Phycodnaviridae). The data have been acquired across four sites located in northwest 

Mediterranean Sea (Gulf of Lion) and sampled monthly from March 2013 to April 2014. 

The Gulf of Lion is characterized by contrasted environments, including eutrophic 

lagoons connected to the sea, nutrient-rich coastal sites, and oligotrophic open-sea 

locations. The sample locations included two sites in Leucate lagoon (one coastal site 

(LB) and another site (LA) at the level of the Grau, i.e. the connection with the sea), a 

coastal site (SA, marine station included in the French marine monitoring network 

SOMLIT) and an open-sea site (MA, marine station included in the monitoring network 

MOOSE). The characterization of Prasinovirus was based on analyzing the partial 

sequence of the DNA polymerase gene (PolB) amplified using two primer sets (Chen & 

Suttle, 1995; Clerissi et al., 2014). For Mamiellophyceae, the sequence of the V9 region of

the 18S rDNA was amplified using primers defined by Amaral-Zettler, McCliment, 

Ducklow, & Huse (2009). The genomic sequences of PolB and V9 region were amplified 
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and sequenced using an Illumina MiSeq platform (GeT-PlaGe, INRA, Castanet-Tolosan, 

France). Sequences were processed and clustered into OTUs at 0.99 similarity cutoff and

singletons were removed using MOTHUR v 1.35.1 (Schloss et al., 2009) for 

Mamiellophyceae and USEARCH v7 (Edgar, 2010) combined with MUSCLE software 

(Edgar, 2004) for Prasinovirus. Sequences were then compared against the PR2 database

(Guillou et al., 2013) and the NCBI database for Mamiellophyceae and Prasinovirus, 

respectively, in order to assign OTUs to taxonomic groups based on similarity. Finally, 

we focused specifically on OTUs assigned to the family Mamiellales of the class 

Mamiellophyceae, and notably the genus Bathycoccus, Micromonas and Ostreococcus 

which usually dominate this class in the Gulf of Lion and more generally the 

picoeukaryotic fraction in other ecosystems (Wu, Huang, & Zhong, 2013; Zhu, Massana, 

Not, Marie, & Vaulot, 2005). Subsequently, the Prasinovirus data set was limited to OTUs 

assigned as Bathycoccus viruses (BpVs), Micromonas viruses (MpVs) and Ostreococcus 

viruses (OtVs). The dominant microalgae and virus OTUs (i.e., ≥ 0.1% of mean relative 

abundance for at least two samples) were selected to obtained one microalgae table (

n=31, p=67) and one virus table (n=31, q=98).

Statistical analysis

Tables X and Y of autotrophic and heterotrophic microbial eukaryotes, 

respectively, were subjected to sCoCA. To test the significance of the global co-variation 

between the two tables, a Monte-Carlo permutation procedure with 9999 permutations 

was used. In each permutation, sCoCA (by considering all axes) is reapplied to obtain a 

value of the co-variance between table Y and row-permuted X (so that samples are 

randomized while preserving the relative abundance of individuals). Note that the 

choice of the table to be reordered is not important here since we used the symmetric 
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form of the CoCA. A null distribution was estimated from co-variance calculated for the 

permuted data. The observed co-variance is then compared to the distribution obtained 

under the null hypothesis. The positions of the samples on ordination axis of each table 

are then correlated to show the overall level of co-variation between them. For the 

microalgae-virus data set, both tables were subjected to pCoCA with the SIMPLS 

algorithm. ter Braak & Schaffers (2004) suggest that the number of axes used to 

summarize the data can be selected by “leave-one-out” cross-validation procedure to 

maximize the cross-validatory fit (%) that measures how well the table X (microalgae in 

our case) predicts the response table Y (viruses in our case). Working just with these 

significant axes provides a measure of association between the tables by removing 

random noise and keeping only the major dimensions of ecological variability. Finally, 

we combine CoCA and network analysis so that nodes in co-occurrence networks are 

reordered according to the species scores from the CoCA, and thus from the co-structure

between communities. A novel extension of SPIEC-EASI (Tipton et al. 2018) was used to 

infer the cross-group co-occurrence networks between two data sets. We used the 

neighborhood (MB) setting and selected the optimal sparsity parameter based on the 

Stability Approach to Regularization Selection (StARS) (Liu, Roeder, & Wasserman, 

2010). The StARS variability threshold was set to 0.05 for networks built from the two 

data sets. All statistical analyses were performed with the R software (R Core Team, 

2019) and using the cocorresp package (Simpson, 2009) for CoCAs and the SpiecEasi 

package (Kurtz et al., 2015) for co-occurrence networks. Appendix 1 contains a R script 

and example data (from the case study 1 and the case study 2) allowing users to 

reproduce the analysis and apply them on their own data sets.

Results
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Case study 1: Microbial eukaryotes

The common variance between the two microbial groups computed from the 

sCoCA explained, significantly (), 13.21% of the total variation of autotrophic microbial 

eukaryotes and 15.22% in heterotrophic microbial eukaryotes. Of the common variance,

39.51% was accounted by the first three axes of the sCoCA (sCoCA axis 1: 18.95%, 

sCoCA axis 2: 10.55%, sCoCA axis 3: 10.01%). The first three ordination axes of the 

autotrophic eukaryotes were highly correlated with the first three ordination axes of the

heterotrophic eukaryotes (correlations being 0.95, 0.92, and 0.92), demonstrating a high

degree of similarity in change between autotrophic and heterotrophic microbial 

eukaryote assemblages. Communities of autotrophic and heterotrophic microbial 

eukaryotes covaried along a brook/pond gradient on the first axis (from left to right), 

and an inter-pond variability on the second axis (Figure 1). Marked differences in the 

composition of the two communities are visible in joint plots. In the brook system (i.e., 

RSA), the heterotrophic microbial eukaryote community is mainly composed of fungi, 

MAST, Labyrinthulida, and Telonema, whereas in pond systems (i.e., EV, LC, MG, SR) 

Ciliophora, Biocosoecida, Katablepharida, and Choanoflagellida dominated the 

communities (Figure 1a). Differences between pond systems are explained with higher 

relative abundance of Biocosoecida, and Katablepharida in EVs and LCs and higher 

relative abundance of Ciliophera in SRs. Species scores of autotrophic microbial 

eukaryotes indicated that the patterns in heterotrophic communities are associated to a 

structure of the autotrophic community (Figure 1b). In the brook system, the 

autotrophic microbial eukaryote community exhibits high relative abundances of 

specific OTUs of Bacillariophyceae, Chrysophyte and Cryptophyta. In pond systems, 

autotrophic communities made up mainly of other specific OTUs of Chlorophyta, 
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Chrysophyte, and Cryptophyta. It is also worth noting that Dinophyta and Streptophyta 

were found exclusively in pond systems (in particular in MG and SR, respectively).

The community organization of microbial eukaryotes was highlighted from a 

cross-group co-occurrence network between autotrophic and heterotrophic individuals. 

Among 226 dominant autotrophic and heterotrophic OTUs, 204 displayed 274 

associations (Figure 2). From these associations between OTUs in the network, more 

positive (98.5%) than negative associations were inferred. All negative associations 

occurred between OTUs assigned to Ciliphora for heterotrophic microorganisms and 

Cryptophyta for autotrophic microorganisms. No clear association patterns can be 

identified in network from raw tables of autotrophic and heterotrophic microbial 

eukaryotes (Figure 2a). When the co-occurrence network is reordered according to 

species scores on the first axis of sCoCA, two modules can be distinguished (Figure 2b). 

The first module (i.e., top right corner) is constituted by OTUs exhibiting the higher 

relative abundances in brook system (i.e., RSA), while OTUs that compose the second 

module (i.e., bottom left corner) dominate pond systems (i.e., EV, LC, MG, and SR). 

Heterotrophic OTUs exhibited major associations with autotrophic OTUs belonging to 

the same module, with only 1.5% of associations between OTUs from distinct module. A 

striking pattern is that Chrysophyte is the autotrophic group that contributes most to 

associations in the two modules (module 1: 71%, module 2: 41%), whereas for the 

heterotrophic group it is fungi in the module 1 (47%) and Ciliophora in the module 2 

(59%). In pond systems (i.e., module 2), surprisingly, fungi are involved in very few 

associations (7%).

Case study 2: Microalgae-virus system
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The cross-validation procedure identified the best pCoCA model based on the 

first two significant axes (pCoCA axis 1: p=0.001, pCoCA axis 2: p=0.001), in which 

Mamiellophyceae community predicted 32.02% of the variation in Prasinovirus 

community. The first two axes accounted for 37.47% (24.26% and 13.21% for axis 1 and

2 respectively) and 44.82% (28.01% and 16.81%) of the variation in the structure of 

Mamiellophyceae and Prasinovirus community respectively. The biplots indicated that 

the two communities covaried along a lagoon (samples LAs)/open-sea gradient 

(samples MAs) on the first axis (from left to right), while a temporal gradient for site LA 

(intra-site variability) could be identified along the second axis (Figure 3). OtVs have a 

higher prevalence in the lagoon samples (especially LAs) and coastal samples (SAs) in 

which Ostreococcus exhibited a high density (Figure 3a, b). Conversely, open-sea 

samples (MAs) were dominated by Bathycoccus which supported virus assemblages 

dominated by BpVs. Micromonas showed a wider distribution, with a relative 

contribution of its OTUs both in lagoon samples, coastal samples and open-sea samples, 

associated with a similar repartition of MpVs (Figure 3a, b).

Based on the cross-group co-occurrence networks analysis, 67 associations were 

identified between the major 67 OTUs assigned to one of the three groups of 

Mamiellophyceae (i.e. Bathycoccus, Micromonas, and Ostreococcus) and the major 98 

OTUs assigned to Prasinovirus (i.e. BpVs, MpVs, and OtVs) (Figure 4a). Reordering the 

co-occurrence network according to the species scores on the first axis of pCoCA 

highlighted a structure in the network (Figure 4b). The network topology suggests that 

the identity of OTUs contained in co-occurring groups of viruses and microalgae are 

related to their respective prevalence along the lagoon/open-sea gradient. Virus OTUs 

mostly present in lagoon samples have significant associations primarily with 

microalgae OTUs displaying the higher prevalence in lagoon samples (top right corner, 
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Figure 4b). Similarly, virus OTUs dominating the open-sea samples were mainly 

associated with microalgae OTUs from open-sea samples (bottom left corner, Figure 4b).

Among the associations contained in the network, 50 were identified between OTUs 

belonging to an expected host-virus system (i.e. associations Bathycoccus/BpV, 

Micromonas/MpV, and Ostreococcus/OtV) while the other 17 significant associations 

were found between OTUs belonging to different host-virus systems. In average 50%, 

70.6% and 91.3% of associations found for OTUs of BpVs, MpVs, and OtVs respectively 

were with OTUs assigned to their respective host group. Within the associations, some 

single Mamiellophyceae OTUs were associated with many Prasinovirus OTUs and 

reciprocally. On the other hand, dyads were identified, that is specific associations, in 

Bathycoccus/BpV, Micromonas/MpV and Ostreococcus/OtV systems. Few negative 

associations inferred from the observation that those OTUs do not co-occur were found 

in network (Figure 4b). Interestingly, eight negative associations from a total of nine 

involved virus OTUs and microalgae OTUs belonging to different host-virus systems.

Discussion

Critical review and guidance papers on the analysis of NGS-based community 

data (Ramette, 2007; Buttigieg & Ramette, 2014; Paliy & Shankar, 2016) do not mention 

any direct quantitative method for predicting the composition of one community from 

another. Co-correspondence analysis (ter Braak & Schaffers, 2004) fills this gap. At the 

level of the case study 1, symmetric form of CoCA indicated that heterotrophic microbial 

eukaryote assemblages in shallow freshwater ecosystems were strongly associated with 

patterns of autotrophic microbial eukaryotes presence and abundance with links that 

can be taxon-specific (Figure 1). Our results shown also that the composition of 

heterotrophic microbial eukaryote community was dominated by fungi in brook system 
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compared to ponds. This is in line with recent observations, based on the estimation of 

ergosterol level, of a generally higher fungal biomass in river than in ponds (Baldy et al., 

2002). Higher fungal abundance might potentially be linked to incoming resources from 

runoff, since in brooks the most important source of imported material is usually 

deciduous leaves, whose the decomposition processing involved to a large extent fungi 

(Bärlocher, 1985; Webster & Benfield, 1986). To this, the composition of heterotrophic 

microbial eukaryote community characterizing brook system is associated a specific 

composition of microbial autotrophs. Such a result suggests that heterotroph 

community composition exert a control on the composition of autotroph community, 

and that microbial autotrophs can be driver of microbial heterotrophs.

Regarding the case study 2, the predictive form of CoCA points out different 

distribution patterns among the three groups of Prasinovirus along the lagoon/open-sea 

gradient (Figure 3). Note the importance of the dimension reduction step in pCoCA that 

allows focusing on ecological structures depicted on a limited number of axes and 

removes random variation from the data. The patterns in Prasinovirus assemblages, with

a dominance of OtV in lagoon and coastal samples compared to offshore locations, the 

inverse distribution for BpV, and MpV exhibiting a wider spatial distribution, are in part 

a consequence of the presence of their respective hosts in lagoon, coastal and open-sea 

samples. Indeed, Ostreococcus is known to be abundant in lagoons (Subirana et al., 

2013), more eutrophic system, compared to Bathycoccus, which is found mainly in 

oligotrophic areas (Vaulot et al., 2012; Wu, Huang, & Zhong, 2013) such as offshore sites 

(i.e., MA). Micromonas is ubiquitous and particularly present in nutrient-rich 

environments (Not et al., 2004; Viprey, Guillou, Ferréol, & Vaulot, 2008). Our findings 

confirm also the data of Bellec et al. (2010) showing that OtV are more abundant in 

lagoon than in the open sea.
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Cross-taxon congruence description and evaluation (Virtanen, Ilmonen, 

Paasivirta, & Muotka, 2009; Gioria, Bacaro, & Feehan, 2011) provides a more 

comprehensive picture of the community similarity than the richness metrics 

conventionally used (Wolters, Bengtsson, & Zaitsev, 2006; Westgate, Barton, Lane, & 

Lindenmayer, 2014). Our results reinforce the need to use CoCA to study the cross-taxon

congruence in microbial communities from NGS data. This is all the more important 

because the high co-correspondence between the two functional groups in microbial 

eukaryote community may be especially informative given the key ecological role of 

microbial eukaryotes (Caron et al., 2012). In addition, the study of cross-taxon 

congruence between Mamiellophyceae and Prasinovirus is of definite interest in marine 

ecosystems, warmed by climate change, where the expected gradual shift towards small 

primary producers could render the role of small eukaryotes more important than they 

are today (Morán, López-Urrutia, Calvo-Díaz, & Li, 2010). Microbial eukaryotes are 

recognized as a significant contributor across various geographical locations of 

picophytoplankton (Worden, Nolan, &Palenik, 2004; Jardillier, Zubkov, Pearman, & 

Scanlan, 2010), which accounts for > 50% of phytoplankton biomass and productivity in 

marine ecosystems (Maranon et al., 2001; Teira et al., 2005).

Previous studies have suggested that biotic interactions are the most likely 

mechanisms underlying cross-taxon congruence at local scales (Jackson & Harvey, 1993;

Johnson & Hering, 2010), although concordance is also expected from similar responses 

to environmental gradient (Bini, Vieira, Machado, & Machado Velho et al., 2007; Rooney 

& Bayley, 2012). As an important implication, the level of congruence can inform about 

the structural pattern among interacting groups ( zkan et al., 2014). That being said, Ӧ

reordering co-occurrence networks, from the species scores on the first axis of CoCA, 

allows to identify structural patterns in co-occurrence networks of microbial eukaryote 
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community (Figure 2b) and in the Mamiellophyceae/Prasinovirus system (Figure 4b). 

For example, the structure of the microbial eukaryote network is characterized by two 

modules underlying a brook/pond gradient in the composition of heterotrophic and 

autotrophic microbial eukaryote assemblages. These differences in OTU composition 

within the two modules suggest that the food-web structure is different between lotic 

and lentic ecosystems, and reinforce the differences previously observed at the 

bacterioplankton level (Portillo, Anderson, & Noah, 2012). A substantial effort has been 

made in the development of metrics to estimate and test the level of nestedness (e.g., 

Rodriguez-Guirones & Santamaria, 2006; Ulrich & Gotelli, 2007) and modularity (e.g., 

Barber, 2007; Dorman & Strauss, 2014) within interaction networks. The order of 

individuals of two groups in bipartite matrices affects the magnitude of metrics that 

represent deviations from an idealized state (e.g., perfect nestedness or modularity) 

(Almeida et al., 2008). It has then been advocated that prior to analysis of structure of 

networks, original bipartite matrices should be reordered to maximize the coherence of 

individual distributions in rows and columns, so that individuals with most similar links 

are close together (Borgatti & Everett, 1997; Leibold & Mikkelson, 2002). These findings 

taken together with our results validate our proposition to combine CoCA with network 

analysis to study structural patterns of microbial networks. In addition, in reverse to the 

expected view of nestedness structure of phage-bacteria network (Flores, Meyer, 

Valverde, Farr, & Weitz, 2011), the modular structure of Mamiellophyceae/Prasinovirus 

network observed in the field underpinned the modularity patterns previously observed

in phage-bacteria network from cross-infection experiments (Flores, Valverde, & Weitz, 

2013). Given that the structure of interaction networks is constraint by the 

coevolutionary processes between species (Peralta, 2016), this would lead to account 

for phylogenetic signals within co-occurrence network (Derocles et al., 2018). In this 
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context, it would be possible to disentangle the confounding effect of phylogeny from 

true biotic interactions by developing a partial analysis (ter Braak, Šmillauer & Dray, 

2018) in the context of CoCA to partial out the phylogenetic effect and focus on patterns 

of co-occurrence that are not related to phylogenetic signal.

All computational methods used to infer networks from NGS data sets produce 

species co-occurrence networks, where a link between two species represents a 

significant statistical association (positive or negative) between their abundance. This 

raises a critical issue about the interpretation of inferred associations (Derocles et al., 

2018), because co-occurrence networks differ from interaction networks constructed on

observations of both the species and their interactions (Ings et al., 2009). For instance, 

all inferred associations between Mamiellophyceae and Prasinovirus belonging to 

expected host-virus system were positive. These results are consistent with a previous 

work showing that when parasitism is captured as a significant link in co-occurrence 

network, it is retrieved as a positive link despite the detrimental effect of parasite on its 

host (Weiss et al., 2016). This might be explained because the copresence of the host 

species and the parasite species is necessary for the interaction to occur. Another 

surprising result is that all negative associations (expected one) were between 

Mamiellophyceae and Prasinovirus belonging to different host-virus systems. Such 

negative associations may account for opposite abiotic requirements, since in our case, 

OTUs of concerned viruses and microalgae had inverse spatio-temporal dynamics. 

Positive associations were also found between individuals of different host-virus 

systems, which could be explained by the increase of a Prasinovirus population that 

removes, by infection, a major competitor of a co-occurring Mamiellophyceae host of 

another group. It is important to keep in mind that, although these associations between

microalgae and Prasinovirus suggest that they interact, they do not necessarily mean 
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that the co-occurring Mamiellophyceae are the virus hosts, even if they belong to the 

expected group of hosts (e.g., Bathycoccus, Micromonas or Ostreococcus). Our approach 

(CoCA combined with network analysis, or other method to infer associations) could be 

combined with other approaches, e.g. single cell genomics (Kalisky, Baliney, & Quake, 

2011; Martinez-Garcia et al., 2012), Epic-PCR (Spencer et al., 2016), to validate the 

predicted associations in interactions. The justification of the association sign between 

the two functional groups making up the microbial eukaryote community is also not 

straightforward, although they can be triggered by ecological interactions or by species 

abiotic requirements (Derocles et al., 2018).

In conclusion, the successful application of co-correspondence analysis over two 

real data sets of microbial communities exhibiting various types of interactions 

reinforces that resorting to this method for study the distributions, assemblages and 

interactions between two microbial communities constitutes a highly valuable approach

to understand the cross-taxon congruence between microorganisms. A useful 

consequence of cross-taxon congruence is that the distribution of well-known taxa may 

provide insight into the processes structuring the distribution of other taxa (e.g., Bilton, 

McAbendorth, Bedford, & Ramsay, 2006; Santi et al., 2010). This approach could be used

to enhance our understanding of a major problem, the effect of phytoplankton bloom (in

particular toxic groups such as cyanobacteria) on the microbial communities and in turn

on the ecosystem functions (e.g., Yang et al., 2016; Xue et al., 2018). Our findings also 

demonstrate that the reordering of co-occurrence networks, according to the 

congruence information extracted from CoCA, allows to investigate the presence of 

ecological signals in networks. The advantage of this approach is that the complexity of 

the network is considerably reduced by the non-random placement of nodes in the 

space in such a way as to improve the aesthetic quality of the representation and 
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consequently its readability, as proposed in good practice of data visualization 

(Spiegelhalter, Pearson, & Short, 2011; Kjærgaard, 2015; Pocock et al., 2016). 

Interestingly, the applicability of our approach goes beyond the particular case of data 

sets with row-sum normalisation (i.e., compositional data). Indeed, CoCA was originally 

designed to analyze abundance data and is thus able to deal with counts without the 

need to rarefy data, in accordance with the recent advice against rarefaction (McMurdie 

& Holmes, 2014). It paves the way for further studies to examine the cross-taxon 

congruence and structural pattern of co-occurrence networks in microbial communities 

and in turn their effects on the ecosystem functioning.
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Figures

Figure 1. Ordination biplots of  the case study 1, representingof the communities of the 
positions of sites (open diamond) and species (solid triangle) on the axis 1 × axis 2 
factorial plan of the symmetric co-correspondence analysis. (a) Biplot for the 
heterotrophic microbial eukaryotes and (b) biplot for the autotrophic microbial 
eukaryotes OTUs obtained from symmetric co-correspondence analysis. EV: Etang 
des Vallées, LC: La Claye, GB: Mare Gabard, SR: Saint Robert, RSA: Ru Sainte Anne. 
Heterotrophic and autotrophic microbial eukaryotes OTUs are colored according to 
the phylogenetic group they belong to. "d" indicates the mesh of the grid.
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Figure 2. Heatmap of the case study 1, representing the association network between 
theof heterotrophic and autotrophic microbial eukaryotes (a) before (a) and (b) after 
(b) the reordering the position of each species in the network according to their 
network from the species scores on the first axis of symmetric co-correspondence 
analysis. Bar plots of the relative abundance of (c) autotrophic microbial eukaryotes 
and (d) heteretrophic microbial eukaryotes. Each OTU is represented by a vertical 
line partitioned into segments corresponding to its relative abundance in one of five 
sites. EV: Etang des Vallées, LC: La Claye, GB: Mare Gabard, SR: Saint Robert, RSA: Ru 
Sainte Anne.
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Figure 3. Ordination biplots of, concerning the case study 2, ofrepresenting the 
positions of sites (open diamond) and species (solid triangle) on the axis 1 × axis 2 
factorial plan of the predictive co-correspondence analysis. (a) Biplot for the 
Mamiellophyceae and (b) biplot for the Prasinovirus OTUs obtained from predictive 
co-correspondence analysis. LB: coastal site in Leucate lagoon, LA: site at the level of 
the Grau in Leucate lagoon, SA: coastal site, MA: open-sea site. Microalgae and virus 
OTUs are colored according to the phylogenetic group they belong to. BpV: 
Bathycoccus viruses, MpV: Micromonas viruses, OtV: Ostreococcus viruses. "d" 
indicates the mesh of the grid.

Figure 3. Heatmap of heterotrophic and autotrophic microbial eukaryotes before (a) 
and after (b) the reordering the network from the species scores on the first axis of 
symmetric co-correspondence analysis. Bar plots of the relative abundance of (c) 
autotrophic microbial eukaryotes and (d) heteretrophic microbial eukaryotes. Each 
OTU is represented by a vertical line partitioned into segments corresponding to its 
relative abundance in one of five sites. EV: Etang des Vallées, LC: La Claye, GB: Mare 
Gabard, SR: Saint Robert, RSA: Ru Sainte Anne.
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Figure 4. Heatmap of the case study 2, representing theof microalgae-viruses 
(Mamiellophycaea/Prasinovirus) association network (a) before (a) and (b) after (b) 
the reordering the position of each species in the network according to their network 
from the species scores on the first axis of predictive co-correspondence analysis. Bar
plots of the relative abundance of (c) microalgae and (d) viruses. Each OTU is 
represented by a vertical line partitioned into segments corresponding to its relative 
abundance in one of four sites. LA: site at the level of the Grau in Leucate lagoon, LB: 
coastal site in Leucate lagoon, SA: coastal site, MA: open-sea site.
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