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ABSTRACT 26 

Aim While much has been said on the spatial distribution of taxonomic and phylogenetic 27 

diversity of large animals, how this diversity interacts in food webs, and especially how these 28 

interactions change across space is largely unknown. Here, we analyzed the spatial 29 

distribution of terrestrial vertebrate food webs and asked whether the variation in local food 30 

web structure is driven by random processes or by natural and anthropogenic factors.  31 

Location Europe.  32 

Methods We combined an expert-based food web (1140 species and 76,500 links) of all 33 

European terrestrial vertebrates (mammals, breeding birds, reptiles and amphibians) with their 34 

respective spatial distributions. We mapped sixteen different food web metrics representing 35 

complexity, chain length, proportion of taxa and diet strategy across Europe and tested 36 

whether their distribution reflect the spatial structure of species richness using a null model of 37 

food web structure. Then, to avoid multi-collinearity issues, we defined composite descriptors 38 

of food web structure that we then related to a set of environmental layers summarizing both 39 

natural and anthropogenic influences, and tested their relative importance in explaining the 40 

spatial distribution of European terrestrial vertebrate food webs.  41 

Results From the sixteen metrics, six showed a highly structured distribution across Europe 42 

and could be summarized along two major axes of variation of food web structure. The first 43 

was related to species diversity and proportion of intermediate species and the second was 44 

related to connectance and proximity of species within the web. Both descriptors varied with 45 

the latitudinal gradient. Mean annual temperature and seasonality was positively correlated 46 

with the first axis, while human footprint was positively correlated with the second one.  47 

Main conclusions We provide the first comprehensive spatial description of the vertebrate 48 

food web in Europe, and we demonstrate the importance of climate and anthropogenic 49 

pressure in shaping the spatial structure of European terrestrial vertebrate food webs.  50 
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INTRODUCTION 55 

Documenting large-scale biodiversity distribution and understanding what drives variation 56 

between or within different regions of the world has long fascinated naturalists (Wallace, 57 

1876). The recent and ever-increasing rise of large-scale distribution databases (e.g. IUCN, 58 

BirdLife, Map Of Life) has led to new comprehensive analyses of biodiversity distribution. 59 

Thanks to available data on species traits and phylogenetic relatedness, global and regional 60 

patterns of species, traits and phylogenetic diversity are now well documented for terrestrial 61 

vertebrates (Jetz & Fine, 2012; Jetz et al., 2012; Mazel et al., 2014, 2017).  62 

Such measurements of biodiversity (taxonomic, functional and phylogenetic diversity) focus 63 

on a group of species co-occurring in a certain area or region, which can be subsequently 64 

compared with measurements of other areas to identify localities with higher or lower 65 

biodiversity (e.g. hotspots vs. coldspots, Mazel et al. 2014). However, species assemblages 66 

are not just only the mere sum of species co-occurring in an area, they share a myriad of biotic 67 

interactions (e.g. predation, competition, facilitation, etc.) that form a variety of ecological 68 

networks through space. While past biogeographic studies have investigated how species or 69 

trait diversity vary in space and the underlying role of environment (e.g. Davies et al., 2011; 70 

Safi et al., 2011; Mazel et al., 2017), we know little about the spatial distribution of 71 

ecological networks (Pellissier et al. 2017).  72 

Food webs are representations of communities’ trophic interactions, where each node in the 73 

network represents a species and each edge is a directional feeding interaction from a prey to 74 

a predator species. Previous studies on food web ecology have been focusing on the trophic 75 

relationships between species within discrete communities with the goal of inferring the 76 

underlying processes acting upon them, such as relation between species diversity and food 77 

web structure, community assembly processes and even robustness of those communities to 78 

species’ extinctions (Montoya et al., 2006). However, since the pioneering work of Kitching 79 
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(2000) on the latitudinal gradients of aquatic food-web structure, food web ecology has 80 

shifted from finding food web structural generalities between communities to search for large-81 

scale spatial distribution of ecological networks, such as latitudinal gradients, relation with 82 

climate and resource availability (Post, 2002; Kortsch et al., 2015; Montoya & Galiana, 2017; 83 

Pellissier et al., 2017; Poisot et al., 2017; Roslin et al., 2017). 84 

Two hypotheses are commonly proposed to explain the large-scale spatial distribution of 85 

food webs. The first hypothesis postulates that species niche breadth increases towards the 86 

poles, i.e. species are more diet specialists in the tropics and more generalists as we move 87 

away from it due to the environmental stability and the amount of energy influencing niche 88 

packing (MacArthur, 1955; Schleuning et al., 2012). This hypothesis has been criticized to be 89 

inconsistent across different systems (Cirtwill et al., 2015). The second hypothesis states that 90 

low resources at the primary consumers level act as a bottom-up control for species richness 91 

and food chain length, while at intermediate level of resource availability, disturbances and 92 

ecosystem size drive food chain length (Kaunzinger & Morin, 1998; Post, 2002). Yet, again 93 

such observations are not ubiquitous (Zanden & Fetzer, 2007). These two hypotheses have, 94 

however, never been comprehensively tested over large environmental gradients and for 95 

complex (i.e., speciose) food webs.  96 

Here, we take this challenge by building the first comprehensive food web of European 97 

vertebrates using a combination of expert knowledge and literature. Then, we mapped the 98 

food web structures for all vertebrates’ assemblages naturally occurring in Europe, west 99 

Russia and Turkey using a uniform spatial grid at 10 km resolution. On the one hand, instead 100 

of focusing on simple food web metrics to test the above-mentioned hypotheses, we extended 101 

the analysis to a large set off descriptors such as complexity metrics (species richness, 102 

connectance, number of trophic interactions), taxa composition (proportion of basal, 103 

intermediate and top predator species), feeding strategy (generality, vulnerability and 104 
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omnivory), and trophic level. We contrast observations to a null model in order to reveal the 105 

significant associations between metrics and environmental variables.  Most network metrics 106 

highly co-vary, either through scaling with the number of species or through connectance 107 

(Vermaat et al., 2009; Riede et al., 2010; Baiser et al., 2012; Poisot & Gravel, 2014), and 108 

therefore we decomposed the food web structure into a set of composite descriptors (Pellissier 109 

et al., 2017) . We investigate how the environment, landscape, and anthropogenic pressures 110 

influence the spatial distributions of the different topological network properties.  111 

We expected annual temperature and precipitation to be good predictors of food web spatial 112 

structure because they are major drivers of species sorting and community assembly over 113 

large spatial scales (Riede et al., 2010) (Vázquez & Stevens, 2004; Ledger et al., 2012). 114 

Likewise, highly productive sites also provide more resources for consumers and thereby 115 

support higher trophic levels (Wright, 1983; Post, 2002), therefore we also predicted that 116 

habitat fragmentation and disturbance to shape European food webs. High levels of 117 

fragmentation may reduce the strength of interactions between species or even prevent species 118 

from interacting, which may lead to networks with lower link density (Hagen et al., 2012).  119 

 120 

MATERIALS AND METHODS 121 

Study area and species distributions 122 

The study area included Europe (excluding Macaronesia region and Iceland), and the 123 

western regions of Turkey and Russia (hereafter referred to as ‘Europe’). We extracted 124 

species ranges for terrestrial vertebrates naturally occurring within the study area from 125 

Maiorano et al., (2013). In total, our analyses focused on 521 bird, 288 mammal, 251 reptile 126 

and 104 amphibian species that naturally occur in Europe (see S1 for full species list). Species 127 

range data followed a regular grid of 300 m resolution (WGS84) where Maiorano et al., 128 

(2013) classified each cell as zero for unsuitable habitat or one for suitable habitat. All species 129 
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range maps were up-scaled to a 10x10 km equal-size area grid (ETRS89; total of 78875 cells). 130 

We considered a species potentially present in a cell (hereafter referred as local assemblage) 131 

when at least one 300 m suitable habitat cell (either as one or two) fell within that same 10x10 132 

km cell.  133 

 134 

European vertebrates metaweb and local food web structure 135 

A trophic metaweb compiles all predator-prey interactions between species for a given 136 

regional species pool. Here, we designed the most complete metaweb of European terrestrial 137 

vertebrates from expert knowledge, published information and field guides (see references in 138 

Supplementary Information). Basically, all obligatory herbivores or insectivores species were 139 

assigned to basal species, together with species with fish or any other obligatory diet that does 140 

not include other vertebrates. Then, we focused on species feeding upon other vertebrates 141 

(including omnivores) and searched for known prey from an exhaustive literature review. We 142 

defined a trophic interaction as predation on any life stage of a species (e.g. egg and larval 143 

when applicable, juvenile or adult). We considered a trophic interaction potentially feasible 144 

between a predator and a prey based on literature review, morphological similarities between 145 

potential prey and literature-referenced prey and, in the absence of this information, the diet 146 

of predator’s sister species. Twelve general diet categories were added to the metaweb, which 147 

included detritus, coprophagus, mushrooms, mosses and lichens, algae, fruits, grains, other 148 

plant parts, invertebrates, fish, domestic animals and carrion. These categories were used to 149 

determine local assemblages and calculate species trophic level (see bellow). 150 

The metaweb comprised 70,600 trophic interactions distributed across 1140 species (60% of 151 

basal species, 33% of intermediate species and less than one percent by top predator species) 152 

and a connectance of 0.05. Species had on average 61.93 interactions (including prey and 153 

predator interactions) and were on average 1.9 interactions away from each other.  154 
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We extracted local food webs by intersecting the metaweb with local community 155 

composition. In the few cases where a given species was present but having neither available 156 

prey given the species distribution data, nor any habitat with its resources for predation to be 157 

consummated, we considered the species absent for that particular location (i.e. assuming a 158 

false positive in the distribution data). Note that diet categories are ubiquitous across the 159 

landscape; therefore species that did prey on them always had resources. As a consequence, 160 

basal species have always resources within their extent of occurrence. 161 

For each local food web, we calculated sixteen food web properties that belong to four 162 

groups: complexity, strategy, taxa composition and trophic level. Complexity metrics include 163 

number of species, connectance, clustering coefficient, characteristic path length and link 164 

density (average distance between species and average number of interactions per species 165 

respectively). Strategy metrics refer to dietary niche properties of species, which include 166 

generality (mean number of preys) and vulnerability (mean number of predators), their 167 

respective standard deviations, proportion of omnivore species and average trophic similarity 168 

between species. Taxa composition metrics quantify the proportion of species along three 169 

major trophic levels: basal, intermediate and top level. Trophic level metrics refer to vertical 170 

trophic position of species within a food web, which included the mean trophic level and the 171 

maximum trophic level present. See Table 1 for individual properties definitions.  172 

 173 

Climatic, energetic and habitat variables 174 

We extracted four climatic variables from the WorldClim database (Hijmans et al., 2005) at 175 

30° resolution: annual mean temperature, temperature seasonality (standard deviation of 176 

monthly mean temperature), total annual precipitation and coefficient of variation of 177 

precipitation. We chose these variables since they correlate with vertebrates species ranges 178 

across large spatial scales (Boucher-Lalonde et al., 2014). We approximated the amount of 179 
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resources available to the primary consumers in each pixel with estimates of net primary 180 

productivity (grams of carbon per year at 0.25 decimal degrees spatial resolution; Imhoff et 181 

al., 2004). We also represented the anthropogenic influence on natural landscape using the 182 

human footprint index from the Last of the Wild database (version 2 at 1 km spatial 183 

resolution; WCS & CIESIN, 2005). We resampled all climatic variables, primary productivity 184 

and human footprint data by averaging at the 10x10 km resolution data used for the species 185 

ranges. We also measured habitat diversity using the richness of distinct habitats within a 10 186 

km cell using the GlobCover habitat classification at 300 m resolution. 187 

 188 

Statistical analyses 189 

Our analyses consisted of three sequential steps. 1) We checked whether the spatial 190 

distribution of the local web metrics could result from a purely random process using a null 191 

model and only selected the ones that differed from null expectations for subsequent analyses. 192 

2) We reduced the complexity of the retained metrics applying a principal components 193 

analysis and selecting the first two axes of variation.  3) We related these two axes of 194 

variation to climate, resource availability and human disturbance using generalized additive 195 

models (GAMs). 196 

 197 

Are random processes responsible of the spatial distribution of food web properties?  198 

Food web structure may vary with the number of species, independently of any others 199 

constrains acting upon it (e.g. environment). We thus built a null model to test whether 200 

European local food webs and their associated properties could result from a pure random 201 

draw from the European species pool, given the observed local species richness. The null 202 

hypothesis is that species are randomly distributed in space, independently of the local 203 

environment and of their position in the metaweb. We thus sampled local food webs for each 204 
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cell by randomly drawing a number of species from the metaweb corresponding to the 205 

observed local richness (from 10 to 300 species). We further applied the constraint that every 206 

species needed at least one resource to be included in the food web. For each value of species 207 

richness, we repeated the random draw 1000 times and calculated the 16 food web metrics for 208 

each repetition in order to obtain a distribution of metrics under the null hypothesis. For each 209 

cell, we compared the observed food web metrics to the corresponding null distribution and 210 

computed the associated p-value. We adjusted p-values for multiple comparisons using a false 211 

discovery rate method based on Benjamin & Hochberg (1995) present in the function p.adjust 212 

in STATS R package. We retained food web metrics that had 90% of rejection rate, i.e. 90% of 213 

all local food web metrics were significantly different from ones of random assemblages. 214 

Considering that we computed one test per cell (total of 78,875 cells), a food web metric 215 

should be significantly different from random expectation in approximately 71,000 cells in 216 

order to be kept in our analysis.  217 

 218 

How to reduce the redundancy in local food web properties?  219 

Many food web metrics are correlated (Vermaat et al., 2009) either because of their 220 

mathematical formulation of because of combinatory constraints (Poisot & Gravel, 2014). We 221 

applied a principal components analysis (PCA) on the six retained variables over the 78,875 222 

cells of Europe (Table 1) to analyze the most insightful axes of variations between these  223 

metrics. This allowed us not only to understand how food web metrics co-vary with each 224 

other, but also to summarize the food web structure of European assemblages (as a whole) 225 

into a set of meaningful axes. We emphasize that the correlation structure among metrics we 226 

analyzed is not only driven by the fundamental constraints linking metrics referred above, but 227 

also driven by the effect of spatial variation in food web composition. From the PCA, we kept 228 

only the axes that explain each at least 20 % of the total variance, hereafter referred as food 229 
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web structural composite descriptors. This analysis was performed in R using the ADE4 230 

package (Dray & Dufour, 2007). 231 

 232 

How to statistically relate food web structural descriptors to environmental predictors?  233 

We related our food web structural composite descriptors to spatial drivers (climate, 234 

energetic and habitat variables) with GAMs.  GAMs are more flexible than generalized linear 235 

models since we did not have any a priori expectation regarding the shape of the relationships 236 

between the response variable and the predictor variables. To avoid fitting over-complex 237 

relationships, we constrained the GAMs with a maximum degree of smoothing of 3, which 238 

represents a polynomial of degree 2 maximum. All models were fitted using the function gam 239 

present in MGCV R package (Wood, 2017).  240 

Note that both the environmental variables and the food web topological metrics inevitably 241 

show some level of spatial autocorrelation. To account for spatial dependency not explained 242 

by the spatial drivers, we first built an autocovariate variable for each of the composite 243 

descriptors to estimate how much the response variable for any site reflects the values of the 244 

neighboring sites (Dorman et al. 2007; function autocov_dist in SPDEP R package). However, 245 

since this autocovariate was unconditional to the environmental variation (i.e. the response 246 

variable could show a spatial autocorrelation because the environment is itself 247 

autocorrelated), we modelled each autocovariate variable (for each structural composite 248 

descriptor) to the set of environmental variables using a bootstrap aggregating model (random 249 

forest function in RANDOMFOREST R package; Liaw et al., 2002). We then extracted the 250 

residuals of the model and used them as spatial variables independent of the spatial predictors 251 

(or at least of the predictor variables used here in the study) in the GAMs. Hereafter, such 252 

variables will be referred as spatial residuals variables. 253 

 We used a “permutation accuracy importance” method (Strobl et al. 2007, 2009) to estimate 254 
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the importance of each predictor variable on the spatial distribution of local food webs 255 

metrics. The predictor in test is randomized so that its original association to the response 256 

variable is broken. Then, the randomized (through means of permutations) variable and the 257 

remaining unchanged predictors are used to predict the response. A “variable importance” 258 

score is then measured as the Pearson correlation between the original prediction and the one 259 

after permutation of the selected predictor (Strobl et al. 2009). The more the Pearson 260 

correlation decreases when the variable is permutated, the more important the variable is. The 261 

whole procedure was repeated 1000 times. To ease the interpretation of the results, we 262 

reported the average (1 – Pearson correlation). Values close to 1 reflected high importance, 263 

values close to 0, no importance.  264 

 265 

RESULTS 266 

Local Food web structure 267 

Most of the sixteen food web structural metrics showed a strong spatial structure (Figure 1 268 

for a selection of six metrics, Fig S1 for all other metrics, and Table 1 for descriptive 269 

statistics). Assemblages in northern latitudes (United Kingdom, Denmark and Scandinavian 270 

Peninsula) and in mountain ranges (such as Alps and Carpathians) had fewer species, lower 271 

trophic levels and higher proportion of basal species than in the rest of Europe. Species in 272 

these locations had larger diet breadths (i.e. higher generality) on average. In continental 273 

regions, i.e. in central and eastern Europe, food webs tended to be more speciose and with 274 

higher trophic levels. Within these food webs, species were more evenly distributed between 275 

basal and intermediate species, with top predator species always representing less than 5 % of 276 

the community. In southern Europe, along the Mediterranean basin, food webs were the most 277 

species rich and had the highest linkage densities and clustering coefficients. In this region, 278 

trophic levels were as high as for continental food webs, while, connectance in some areas, 279 
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such as Anatolian region (Turkey) and southeast of Spain, was as high as in near arctic 280 

assemblages. 281 

 282 

Deviation of local food web structure to random assembly.  283 

Deviations of local food webs to the null expectation varied between the different metrics 284 

and across the species richness gradient (Table 1 and Fig. S.2). We observed that only six 285 

food web metrics differed at least 90 % of the times from what could be expected from 286 

random draws from the metaweb (link density, connectance, proportion of intermediate and 287 

omnivore species and characteristic path length). However, for low species richness, most of 288 

these metrics do not differ from a random assembly (Figure S.2). The remainder food web 289 

properties consistently fell within the random intervals irrespective of species richness (e.g. 290 

vulnerability, generality, mean and maximum trophic level; Table 1). In other words, the 291 

spatial distribution of these latter metrics could be explained purely by the distribution of 292 

species richness.  293 

 294 

Composite descriptors of the local realized food webs 295 

Two main axes of variation, explaining approximately 82% of the total variance, 296 

summarized the co-variation of six food web properties (link density, connectance, proportion 297 

of intermediate and omnivore species and characteristic path length; Table 2; Fig. 2). The first 298 

axis, that we hereafter called richness composite descriptor, explained 52.02% of structural 299 

variation and was related to link density (average number of interactions), proportion of 300 

intermediate and omnivore species (Table 2; Fig. 2). This result indicates that food webs with 301 

more species have more links per species and higher proportion of intermediate species (i.e. 302 

proportion of species having both prey and predators in local food webs).  303 

The second descriptor, hereafter named connectance composite descriptor, explained 304 
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30.08% of the total variance and was mainly related to food web complexity (through 305 

connectance and characteristic path length; Table 2; Fig. 2). Along this descriptor, food web 306 

structure showed a negative correlation between characteristic path length and connectance, 307 

suggesting that food webs with lower connectance have proportionally longer paths between 308 

species. 309 

 310 

Environment drivers of local food web descriptors 311 

Environmental drivers explained a significant proportion of the variance of the two 312 

composite descriptors (68.9% of richness, and 38% for connectance; Table 3). The richness 313 

composite descriptor of local, realized food webs was strongly related to temperature 314 

variables (mean annual temperature and temperature seasonality). In this model, the 315 

temperature variables were positively and linearly related with the richness composite 316 

descriptor (Fig. 3a), i.e. sites with high temperatures and high seasonality supported 317 

assemblages with more intermediate species and higher link density than ones in with colder 318 

climates and low seasonality. While its importance was weaker than temperature variables, 319 

net primary productivity correlated positively with the richness composite descriptor, mainly 320 

at lower levels of productivity. From lower to intermediate productive areas, we observed a 321 

positive relationship with this composite descriptor, i.e. a crescendo in number of species and 322 

link density up to intermediate areas; however from intermediate to high productive areas, the 323 

contribution of net primary productivity to food web structure was close to zero (Fig. 3a).  324 

The human footprint was amongst the most important drivers of variation in the connectance 325 

composite descriptor (Table 3). The correlation was positive from low to intermediate values 326 

of human footprint (Fig. 3b), and it saturated above intermediate human footprint values. 327 

Likewise, for the richness composite descriptor, but not as important, the temperature 328 

variables had also a relevant relationship with the connectance composite descriptor (Table 329 
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3). Food webs had higher connectance with increasing annual average temperature and 330 

seasonality, and species tended to be closer (Fig. 3b). Total annual precipitation correlated 331 

positively with the connectance composite descriptor at low to intermediate precipitation, 332 

whereas it correlated negatively at larger precipitation levels (Fig. 3b). 333 

Spatial residuals variables were important for both summary descriptors of food web 334 

structure (Table 3). The importance was particular higher for the connectance composite 335 

descriptor than the richness composite descriptor, revealing that there are other spatial 336 

processes affecting food web metrics along this axis that were not explained by the variables 337 

used here.  338 

 339 

DISCUSSION 340 

The variation of food web structure over broad spatial scales is largely unknown in 341 

terrestrial systems. Thanks to the compilation of a large dataset comprising pairwise trophic 342 

interactions between European tetrapods, their geographical distributions and habitat 343 

preferences, we standardized the design of local food webs, allowing for the analysis of food 344 

web structure across broad and continuous spatial scales. By doing so, we were able to 345 

explore how food web structure varies across Europe. 346 

The spatial distribution of European food webs showed that the variation of several food 347 

web metrics is driven mostly by the variation in species richness (Table 1). Furthermore, food 348 

web structure was not different from random samples from the metaweb at species poor 349 

locations (see supplementary figure. S2). In this case, the relationship between these metrics 350 

and the number of species implied a threshold number of species that above which food web 351 

structure deviates from the null expectation. Note that our assemblages derive from empirical 352 

species distributions; therefore food web structural deviations from null expectancies can be 353 

attributed to any selective process acting directly on species. 354 

355 
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Our decomposition of food web structure into composite descriptors revealed two major 356 

axes of structural variation, one mainly related to the number of species and another one 357 

related to connectance. We had an a priori expectation that species richness and connectance 358 

would be two orthogonal axes of variation of food web structure (Martinez, 1994; Riede et 359 

al., 2010; Dunne et al., 2013). The study 14 empirical food webs by of Vermaat et al. (2009) 360 

showed a similar correlation structure among food web metrics; a similar decomposition was 361 

also observed by Baiser et al. (2012) for aquatic food webs spread across North America. 362 

Further, the constant connectance hypothesis (Martinez 1992) states that the number of links 363 

increases at species square rate if connectance is each species interact with a constant fraction 364 

of the network, independently of species richness. Our principal components analysis on 365 

European local food web metrics was coherent with these studies, as we observed that 366 

connectance tended to be independent of the number of species, while link density increases 367 

with species richness. However, a more specific analysis is needed to test both hypotheses. 368 

Yet, we speculate as empirical evidence has previously shown, the relationship link-species 369 

would lay in between the two hypotheses (Ings et al., 2009).  370 

Climatic gradients, in particular temperature and precipitation, have long been observed as 371 

drivers of biodiversity at both local and global scales (Evans et al., 2005). Climate variables 372 

may affect food web structure via several means. First, climate acts as an abiotic filter on the 373 

assembly of species (Keddy, 1992), which may affect the functional composition of 374 

communities and impact food web structure (Lurgi et al., 2012; Blanchard, 2015). Second, it 375 

has been suggested that climate variability may directly affect the vertical structure of the 376 

food web, where climate stability allows for longer food web chains and narrower diet niches 377 

(Menge & Sutherland, 1987; Vázquez & Stevens, 2004; Cirtwill et al., 2015). Third, climate 378 

may affect food web structural properties, where interannual temperature variability can be 379 

negatively correlated with modularity (Welti & Joern, 2015). Our study documented that 380 
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European food web structure, summarized into two descriptors, is related to annual average 381 

temperature and its seasonality. The effect of temperature seasonality on food web structure is 382 

counter-intuitive, where more climate variability was associated with more species diverse 383 

food webs. This result might hide an important structuring effect of landscape structure in 384 

Europe. Indeed, most large carnivores, and more generally, top-predators, are mostly present 385 

in mountainous areas (the last part of the wild where they were recently re-introduced or 386 

protected) where climate variability is the highest. That could explain, in part, this supposedly 387 

surprising result.  388 

The work from Vermaat et al. (2009) contributed to the understanding of how food web 389 

structure co-varied with primary productivity, where trophic level, omnivory, proportion of 390 

top species co-varied with primary productivity. Here, we raised a similar question, how 391 

resource availability may affect European food web structure in space. Hypotheses relating 392 

resource availability and food web structure predict that larger basal resource availability 393 

should propagate up the food web, promote species richness and increase food chain length; 394 

this relationship should be stronger in low productive environments (Jenkins et al., 1992; 395 

Post, 2002). Here, we observed that variation of the average trophic level and proportion of 396 

basal species was mostly driven by variation in species richness, as revealed by the 397 

comparison to the null model. Therefore such hypothesis linking basal species and trophic 398 

level with productivity could not be supported here. 399 

Human presence may lead to changes in land-use, habitat fragmentation and pollution, 400 

which in turn can negatively affect biodiversity (Barnosky et al., 2011; Cardinale et al., 2012) 401 

and food web structure (Evans et al., 2013). Here, we used the human footprint index as a 402 

measure of anthropogenic pressure to understand its correlation with vertebrate food web 403 

structure. We did find a negative relationship between human footprint and the connectance 404 

composite descriptor (Fig. 4). However, we cannot assume this to be a cause-effect 405 
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relationship, and it is more likely that it comes from a spatial coincidence between human 406 

footprint, species richness and connectance. Climatic conditions and resource availability may 407 

affect the spatial distribution of human densities and species diversity alike, which would 408 

explain why the two are positively correlated with human population densities (Araújo, 2003). 409 

Indeed, despite the weak importance of human footprint on the richness composite descriptor 410 

(Table 3), its effect peaked at intermediate levels of human disturbance, where we also found 411 

food webs with more species (Fig. 3a). On the other hand, even though the two major 412 

complexity food web topological properties, species richness and connectance, were nearly 413 

orthogonal in our ordination space (Fig. 2), they were negatively correlated at extreme low 414 

values of richness. In general, very small food webs had high values of connectance (note in 415 

Fig. 1 that areas with low species richness coincide with areas with high connectance). 416 

Therefore, areas with low human footprint also had high connectance composite descriptor, 417 

via low values of connectance. 418 

 The importance of the spatial residuals variable in connectance composite descriptor model 419 

suggested the presence of other spatial processes. Since we use species distribution to design 420 

European vertebrate assemblages, biogeographical processes, such as barriers to species 421 

dispersal or even other biotic factors could lead to spatial similarities and/or dissimilarities in 422 

food web structure not explained solely by climate nor resource availability. Further work is 423 

needed to include such processes under a beta diversity analysis framework of food web 424 

structure (Poisot et al., 2012).   425 

 A limitation to our design was the even contribution of each prey to the predator’s diet and 426 

every trophic interaction was constant in space (i.e. if two species interacted in the metaweb, 427 

they always interacted across their intercepted spatial range). The former implied that we did 428 

not account for biomass or energetic requirements (in contrast, weighted food webs 429 

interactions may be defined by biomass relationships) and as consequence we may have 430 
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inflated omnivory and connectance. The latter implied no species diet or behavioral 431 

adaptability (e.g. prey behavioral changes in function of predator presence or predator diet 432 

shift due to presence of competitors; Preisser et al., 2009; Van Dijk et al., 2008; Poisot et al., 433 

2012) and as a consequence our webs may have an inflated number of trophic interactions. 434 

Further, the environment could influence the occurrence of interactions, which could also 435 

influence the spatial structure of food webs. In addition, trophic interactions in our metaweb 436 

were defined based not only on empirical studies, but also on by defining a potential array of 437 

preys for each predator species and this may inflate generality and vulnerability. We are 438 

aware of such issues and more work is necessary to quantify the level of uncertainty of our 439 

method, for instance, by using highly resolved empirical food webs and quantify the 440 

difference in topological properties obtained with the two methods. Nevertheless, this work is 441 

a good example of how biogeography may help comprehend terrestrial food webs spatial 442 

patterns. 443 
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