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ABSTRACT 13 

Aim: Exposure to artificial light at night (ALAN) is a risk factor for organisms. Considering the spread 14 

and increasing intensity of night brightness across the globe, and the key role of light at all biological 15 

levels, alterations of ecosystems are expected. Yet, we cannot predict the severity of the effects of ALAN 16 

in several biomes because little information is available outside the temperate zone. We reviewed current 17 

knowledge and identified traits that could be targeted to fill this knowledge gap in order to contribute to 18 

the elaboration of a biogeographical framework for the study of ALAN at the global scale. 19 

Location: global 20 

Time period: current and next decades 21 

Method: We analysed the latitudinal variation of ALAN and focused on environmental factors that vary 22 

with latitude but that have been overlooked. We reviewed biological traits that exhibit latitudinal 23 

variation and depend on light and photoperiod and compiled information about the predicted changes of 24 

human demography and road networks across different world regions.  25 

Results:  Cloud cover amplifies ALAN far away from urbanized areas. Because of the increased 26 

frequency of overcast night skies, exposure effects may be stronger both at high latitudes and across a 27 

large fraction of the intertropical zone, though at different times of the year. Intertropical biomes host 28 

the largest fraction of global biodiversity. Although currently they are not the most exposed to ALAN, 29 

their human populations are growing, and urbanized areas and road networks are expanding. Hence, 30 

ALAN could have strong ecological consequences, with cloud cover as an aggravating factor. 31 

Perspectives:  Knowledge gaps currently limit our ability to predict the effects of ALAN in different 32 

biomes. Therefore, it will be important to start investigating the consequences of this novel 33 

environmental factor across the globe, in order to develop a relevant theoretical framework  34 

 35 

Keywords:  ALAN, light pollution, intertropical, latitude, global change, biogeography, exposure  36 
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1 ALAN as an emergent global risk for biodiversity  37 

Habitat loss, climate change, pollution, invasive species, and overexploitation negatively affect a large 38 

part of the Earth’s ecosystems, if not all of them (Millenium Ecosystem Assessment, 2005). Artificial 39 

light at night (ALAN) is emerging as another potential threat to biodiversity worldwide (Bennie et al., 40 

2015b; Davies & Smyth, 2018). ALAN is mainly generated by urbanized areas and transport 41 

infrastructures, and exposure happens either via direct lights or via skyglow. The latter is produced by 42 

the scattering of light by atmospheric particles and aerosols from distant sources. It can be detected 43 

dozens of kilometres away from a major source like a city by animals (Kocifaj & Lamphar, 2014; Aubé, 44 

2015), whose sensitivity can be very high for nocturnal species (Kelber & Roth, 2006; Kelber et al., 45 

2017). ALAN now alters the natural photic regime across a large fraction of Earth (Cinzano et al., 2001; 46 

Longcore & Rich, 2004). Recently, it has been estimated that 23 % of land surfaces between 60°S and 47 

75°N are exposed to light polluted skies (Falchi et al., 2016).  48 

ALAN has been gaining attention from the scientific communities, authorities, and more 49 

generally societies. Concerns have initially sprung from astronomers that warned about the loss of  50 

quality of the nocturnal sky, and spread to other fields. New issues have been raised and expressed in 51 

reviews (Longcore & Rich, 2004; Navara & Nelson, 2007; Hölker et al., 2010; Gaston et al., 2013, 52 

2015) and opinions (Nadis, 2002; Smith, 2009) for the last 15 years. ALAN generates a broad array of 53 

effects on animals, and as far as we know to a lesser extent on plants or micro-organisms (Hölker et al., 54 

2015; ffrench-Constant et al., 2016; Bennie et al., 2017). These effects range from the molecular 55 

(Honnen et al., 2016) to the community (Rich & Longcore, 2006a; Hölker et al., 2015; Bennie et al., 56 

2017), and ecosystem level (Lewanzik & Voigt, 2014; Sanders et al., 2015; Knop et al., 2017). As for 57 

the other major risk factors for biodiversity, ecosystem exposure to ALAN has been assessed at the 58 

global scale (Bennie et al., 2015b; Davies et al., 2016; Falchi et al., 2016; Kyba et al., 2017a; Guetté et 59 

al., 2018). The field is expanding fast as revealed by the recent bloom of publications (Davies & Smyth, 60 

2018). Nevertheless,no framework has been developed to predict whether and how the intensity of the 61 

effects caused by ALAN varies across the globe yet.  62 
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Photoperiod is crucial for many biological processes and ecological interactions. It is a major 63 

environmental cue that resets circadian rhythms and prime seasonal change in activity (Coppack & 64 

Pulido, 2004; Hut et al., 2013). Photoperiod varies widely with latitude and this affects the importance 65 

of light as a cue depending on the location on Earth. Similarly, a general biogeographic rule is the 66 

occurrence of latitudinal biodiversity clines, the intertropical zone hosting more species than temperate 67 

or arctic environments (Willig et al., 2003; Hillebrand, 2004; Mittelbach et al., 2007). Exceptions have 68 

been observed (Willig et al., 2003) but the statement holds true for vertebrates such as freshwater fishes 69 

(Abell et al., 2008), birds, mammals, amphibians (Jenkins et al., 2013), insects (Guenard et al., 2012), 70 

and vascular plants (Kreft & Jetz, 2007). Surprisingly, while the major biodiversity hotspots are mainly 71 

located within the intertropical zone, we do not know whether the effects of ALAN in biodiversity are 72 

stronger at low than at mid or high latitudes. 73 

From a literature survey on Scopus (accessed on 22/09/2019) using the combination of 74 

keywords (tropic* OR equat*) and “artificial light”, “artificial” AND “light”, or “light pollution”, we 75 

identified eleven references (Erkhert, 1976; Thakurdas et al., 2009; Lewanzik & Voigt, 2014; Bennie et 76 

al., 2015b; Dorado-Correa et al., 2016; González-Bernal et al., 2016; Gupta & Pushkala, 2016; De 77 

Freitas et al., 2017; Gineste et al., 2017; Rivas et al., 2018; Frank et al., 2019). Another search using 78 

the combination ("artificial light" OR "light pollution") AND "latitud*" accessed on Scopus on the same 79 

date yielded 59 hits. Four additional and partly relevant references were found. These were three reviews 80 

in which artificial lighting was not the main topic (Higuchi, 2010; Borniger & Nelson, 2017; Brelsford 81 

et al., 2019), and one research paper on humans (Martín-Olalla, 2019). In comparison, a search using 82 

“light pollution” OR “artificial light”, and restricted to the Agricultural and Biological Sciences section 83 

yielded 233 relevant references. More information is certainly present but not necessarily in papers 84 

addressing directly ALAN as previously noted (Rich & Longcore, 2006b). Nevertheless, these figures 85 

highlight the publication bias between biomes and the fact that authors do not explicitly consider the 86 

biogeographical context. 87 

Assessing the biological and ecological effects of ALAN at a global scale is now urgent. Yet, 88 

neither the systematic investigation of environmental factors varying at a biogeographic scale and  89 
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affecting the sensitivity of organisms to ALAN, nor the identification of the areas/ecosystems/biomes 90 

the most threatened now or in the near future, has been undertaken. We need a biogeographic framework 91 

to assess how the exposure risk for biodiversity varies across ecosystems or regions, and we present here 92 

the first attempt in that direction. We will focus on the latitudinal variation of environmental factors that 93 

affect the photic regime, summarize what biological processes vary with latitude, and provide a 94 

prospective view of the evolution of ALAN with a particular emphasis on the intertropical zone.  95 

 96 

 97 

2 The geographical extent of ALAN and its effect on biodiversity 98 

ALAN exposure at a given site depends on the distance to the light sources, their power and spectral 99 

composition (Luginbuhl et al., 2014), the natural light regime (moon phase, visual barriers), and the 100 

atmosphere composition, including the presence and altitude of clouds. Cloud cover reflects artificial 101 

light downward and over large distances. For this reason, it has been identified as a major factor 102 

enhancing nocturnal light levels (Kyba et al., 2011; Kocifaj & Lamphar, 2014). ALAN intensity, as 103 

measured by satellites, has kept increasing worldwide for the last decades, with local or regional 104 

variations (Falchi et al., 2016), and changes were still recently detected over a short 5-year period for 105 

most countries (Kyba et al., 2017a). All major ecosystems are now exposed (Bennie et al., 2015b), 106 

including the intertropical zone (Figure 1). To highlight this point, we used the data from the last 107 

published World Atlas (Falchi et al., 2016) and plotted the latitudinal distribution of ALAN in 5° bins. 108 

The highest mean values were observed between 30° and 40° in both hemispheres. The standard 109 

deviation was maximal for northern temperate latitudes. However, the largest variation occurred around 110 

10°N which is explained by the large expanses of darker land in Africa and brightly lit areas in northern 111 

Venezuela, Southern India, and Malaysia. ALAN keeps on increasing in this area. Between 2012 and 112 

2016, an elevation of upward radiance in the intertropical zone was detected at the country level (Kyba 113 

et al., 2017a), while up to 35 % of the area covered by tropical ecosystems in Brazil experienced higher 114 

brightness at night between 2008 and 2012 (De Freitas et al., 2017).  115 
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 116 

Insert Figure 1 117 

 118 

Light intensities consistent with field measurements of ALAN alter the physiology of 119 

organisms, the behaviour of animals, and ecological processes. We will only outline the main traits and 120 

processes relevant to this article. For more extensive treatment, several review articles and book chapters 121 

have been published that can be referred to (Longcore & Rich, 2004; Rich & Longcore, 2006a; Perry et 122 

al., 2008; Gaston et al., 2013, 2015, 2017; Stevens & Zhu, 2015; Grubisic et al., 2018; Owens & Lewis, 123 

2018; Desouhant et al., 2019). ALAN affects activity and time partitioning (Rich & Longcore, 2006a; 124 

Le Tallec et al., 2013; Dominoni et al., 2014; Da Silva et al., 2015), orientation (Salmon, 2003; Pawson 125 

& Bader, 2014; Thums et al., 2016), space use (Moore et al., 2000; Stone et al., 2009), foraging (Dwyer 126 

et al., 2013; Cravens et al., 2017; van Langevelde et al., 2017), social interactions including sexual 127 

behaviour (Kurvers & Hölker, 2015; van Geffen et al., 2015; Firebaugh & Haynes, 2016), and life-128 

history traits (Van Geffen et al., 2014). Foraging behaviour can be modified in opposite ways depending 129 

on the focal species (Dwyer et al., 2013; Cravens et al., 2017). At the sensory level, the effects of ALAN 130 

primarily depend on the spectrum and intensity of ambient light, and the photoreceptor characteristics 131 

(Endler, 1990). Individuals, in insects or amphibians for instance, can be attracted or repelled by unusual 132 

brightly lit areas (Hailman & Jaeger, 1974; Owens & Lewis, 2018), but more subtle process can be 133 

altered, like colour vision. Dim-light colour vision based on cones in insects and reptiles (Kelber & 134 

Roth, 2006), and rods in amphibians (Gomez et al., 2009; Yovanovich et al., 2017) has now been 135 

demonstrated. Therefore, the capacity of individuals to detect and select food items, or catch prey can 136 

be modified under ALAN because the contrast between the target and the background is altered.  137 

Regarding physiology, ALAN is a major source of circadian disruption that generates 138 

metabolism, sleep and cognitive disorders, depression syndrome, and may increase risk of some cancers 139 

(Stevens et al., 2013; Borniger et al., 2014; Bedrosian et al., 2015; Chellappa et al., 2018). It inhibits 140 

the production of melatonin, a hormone that modifies stress response, mitochondria functioning, 141 
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oxidative stress, metabolism, and immune defence (Carrillo-Vico et al., 2005; Tan et al., 2010; Tallec 142 

et al., 2016). Melatonin holds a central role in these processes because of its multifarious effects on 143 

circadian timekeeping and the regulation of biological rhythms (Hardeland et al., 2011). The circadian 144 

variation of melatonin has been observed from bacteria to vertebrates (Tan et al., 2010), and the effects 145 

of this molecule on clock genes have been demonstrated in vertebrates and arthropods. These molecular 146 

mechanisms likely date back at least to the cnidarian-bilaterian divergence (Peres et al., 2014), which 147 

illustrates the taxonomic breadth of groups potentially affected by ALAN. The strength of the effects 148 

may depend on the diel activity patterns, with cathemeral species being probably less sensitive to 149 

changes in photoperiod than diurnal, nocturnal or crepuscular species. In plants, effects on physiological 150 

processes, including photosynthesis, and photoperiodism are expected (Aubé et al., 2013; Singhal et al., 151 

2019). Individuals need to be relatively close to the light sources but physiological effects have been 152 

observed (Bennie et al., 2016, 2017; ffrench-Constant et al., 2016). The uncoupling between the thermal 153 

and photic cues caused by ALAN may affect the timing of seasonal processes like dormancy (Aubé et 154 

al., 2013; Hut et al., 2013; ffrench-Constant et al., 2016; Solano-Lamphar & Kocifaj, 2018). However, 155 

the actual consequences for plant population largely remain to be investigated (Knop et al., 2017; 156 

Macgregor et al., 2019). 157 

Because of the biological effects cited above, ALAN is expected to affect ecological processes 158 

like energy or nutrient fluxes or relationships in trophic networks (Longcore & Rich, 2004; Perkin et 159 

al., 2011; Gaston et al., 2013; Meyer & Sullivan, 2013; Bennie et al., 2015a; Mathews et al., 2015; 160 

Sanders et al., 2015; Knop et al., 2017; MacGregor et al., 2017; Miller et al., 2017). More generally, 161 

the synchronisation between the components of any interspecific interactions can be altered (Bennie et 162 

al., 2015a; Helm et al., 2017; Kronfeld-Schor et al., 2017). Therefore, behavioural and physiological 163 

effects on individuals may scale up to the population, community and ecosystem level (Sanders & 164 

Gaston, 2018). Evidence of disruption on micro-organism, arthropod, and plant community has been 165 

provided (Meyer & Sullivan, 2013; Pawson & Bader, 2014; Hölker et al., 2015; Bennie et al., 2017; 166 

Knop et al., 2017), but so far  no evidence of large scale effects on ecosystems have been reported. 167 

Nevertheless, studies showing reduced efficiency of plant pollination by insects (Knop et al., 2017; 168 
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MacGregor et al., 2017) and bats (Lewanzik & Voigt, 2014), or increased predation on agricultural pest 169 

by insect (Miller et al., 2017) suggest that large effects may occur in natural environments and 170 

agrosystems. 171 

 172 

3 Natural factors modulating exposure to ALAN at the global scale 173 

To understand how ALAN affects organisms and populations depending on their position on the globe, 174 

the geographical variation of factors that naturally determine the light-dark regime should be considered: 175 

photoperiod, lunar cycle, twilight, and climate. Photoperiod varies in a predictable way, with annual 176 

variation in daylength increasing with latitude, from about 0 % at the Equator to 100 % at the Arctic 177 

Circle.. In other words, photoperiod is more constant towards the Equator and more variable towards 178 

the poles.  179 

Moonlight is the brightest nocturnal light source in pristine environments. The lunar cycle lasts 180 

29.52 days and is synchronous at all latitudes. While Moon phase and Earth-Moon distance change, the 181 

former parameter contributes much more to the variation of illuminance. Natural maximal illuminance 182 

on Earth and under optimal conditions is 0.32 lux and in the intertropical zone only. Because of its 183 

orbital plane, the Moon can be seen at the sky zenith, where illuminance is maximal, only at locations 184 

lower than 28° latitude (Kyba et al., 2017b). Thus, the Moon is less bright at higher latitudes. 185 

Illuminance lies typically within 0.05-0.2 lux at mid-latitude (Kyba et al., 2017b). Brightness varies 186 

with season because of the change in the distance to the Sun and elevation. Moon elevation is higher in 187 

winter than in summer.  188 

The variation in duration and intensity of moonlight cannot be used to determine the exact time 189 

or date. Yet, moonlight is more and more recognised as a major feature on the nocturnal environment 190 

for animals. Effects on activity, orientation, and communication have been observed in invertebrates 191 

and vertebrates (Dacke et al., 2003; Grant et al., 2009; Kronfeld-Schor et al., 2013). In particular, 192 

moonlight is expected to suppress activity to reduce predation risk, especially in open habitat species. 193 
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This prediction was confirmed in amphibians (Vignoli & Luiselli, 2013) and all groups of nocturnal 194 

mammals but primates for which higher activity during bright nights may reflect a better ability to detect 195 

predators and forage (Prugh & Golden, 2014). One direct consequence of ALAN is that elevated 196 

brightness tends to mask the natural photic variation as moonlight is attenuated against the skyglow 197 

background (Davies et al., 2013a).  198 

Twilight is the transition between day and night when Sun drops under the horizon. It is split 199 

into three periods that are characterized by the Sun declination and the colour of ambient light. During 200 

the civil twilight the sun declination lies between 0 and 6°. Light level drops sharply during the nautical 201 

twilight (declination 6-12°) and less quickly during the astronomical twilight (declination 12-18°). 202 

Irradiance turns from a red dominant spectrum to a blue dominant spectrum (Johnsen, 2011). After 203 

twilight, the irradiance spectrum of the sky depends on the Moon and other light sources. There is a 204 

latitudinal cline in twilight duration that is shorter at lower latitudes (Figure 2). Some authors have 205 

considered as “semi-darkness” the merged periods of twilight and lunar phases where at least 26 % of 206 

the Moon is visible (Mills, 2008). Darkness is a relatively vague concept given the variable visual 207 

capacity of species under dim light  (Kelber & Roth, 2006). Nevertheless, the duration of natural semi-208 

darkness remains constant around 4.5h at the Equator and varies widely from 0h to 9h at 75°(Mills, 209 

2008) and forms a gradient parallel to the photoperiod gradient. ALAN generates light levels in the same 210 

range of those observed during natural twilight and can, therefore, extend the duration of this period. 211 

Circadian rhythms which are reset with twilight. The rapid changes in light intensity and colour are 212 

reliable cues to determine the onsets and the ends of activities like foraging or mating (Daan & Aschoff, 213 

1975; Andersson et al., 1998; Boulos & Macchi, 2005).  214 

The importance of cloud cover in the global assessment of ALAN has probably been overlooked. 215 

Clouds amplify light emitted from the ground, extend the photophase in light-polluted areas whereas 216 

they mask celestial objects, dim their lights, and shorten the photophase in non-polluted areas. It is 217 

important to keep in mind that global models of ALAN underestimate exposure at ground level because 218 

they use upward radiance recorded from satellite images. The representation of a cloud-free world 219 

elicited by these images may thus bias our perception of the phenomenon. The spatial extent of ALAN 220 
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during overcast nights is much broader (Kyba et al., 2011; Kocifaj & Lamphar, 2014). A logical 221 

conclusion is that, all other factors being equal, the intensity, spread, and the annual number of days 222 

with high levels of ALAN should be related to the annual number of days with overcast skies, although 223 

rain or mist could strongly attenuate light transmission. Because cloud cover is crucial to determine the 224 

spatial extent of ALAN, it is important to consider how uneven its annual distribution on Earth is. A 225 

recent multi-year study of cloud cover mapped the average cloud fraction (number of pixels covered) 226 

across the World during the day and at night. Figure 1 shows the latitudinal distribution of cloud fraction 227 

between July 2002 and April 2018 excluding seas and large lakes. Higher values were observed in the 228 

Arctic and subarctic regions and within the intertropical zone where cloud cover was particularly high 229 

in Central Africa, the Amazonian basin and Central America, India, and south-east Asia (King et al., 230 

2013). The annual variation in cloud cover is also the lowest for both areas. Owing to latitude and cloud 231 

cover, organisms in the intertropical zone often experience a stable photoperiod and on average a darker 232 

visual environment than in any other region on the globe. In the tropics, the variation in cloud cover is 233 

maximal and cloud cover low due to the presence of areas with arid or humid climates. Changes in the 234 

fraction of high clouds, and precipitation have been observed in the intertropical convergence zone but 235 

the expected trends for the next decades are still debated (Legates et al., 2014; Mauritsen & Stevens, 236 

2015; Norris et al., 2016; Wodzicki & Rapp, 2016). Rainfall is also expected to decrease or increase 237 

depending on regional trends (Kitoh et al., 2013; IPCC, 2014), and uncertainty is higher for rainfall than 238 

temperature models especially in the tropics (Corlett, 2012). Furthermore, a consensual prediction is a 239 

higher frequency of extreme rainfall events, largely in the form of storms shorter than a day (Westra et 240 

al., 2014), which may not affect the annual number of overcast days. More robustness in climate models 241 

related to cloud cover and precipitation is needed to more precisely assess the exposure of ecosystems 242 

to ALAN across the Earth.  243 

 244 

Insert Figure 2 245 

 246 



11 

 

4 Biological traits vary with latitude 247 

Because of its influence on annual daylength variation, climate, and its current correlation with 248 

economic development, latitude is a key factor that is expected to modulate the sensitivity of populations 249 

to ALAN. We illustrate how the latitudinal variation in photoperiod influences variation in circadian 250 

rhythms, photoperiodism for major life-history traits like reproduction or migration (Hut & Beersma, 251 

2011; Van Geffen et al., 2014; Gaston et al., 2017; Helm et al., 2017), or the characteristics of sensory 252 

systems (Yammouni et al., 2011). Annual life-history events are often synchronised with photoperiod 253 

so that organisms anticipate changes in forthcoming environmental conditions. Latitudinal variation in 254 

photoperiod determines changes in the timing of major events like migration, reproduction in birds, or 255 

diapause in insects. In birds, photoperiod is a major cue for the onset of gonadal maturation, moult, and 256 

migratory activity (Rowan, 1925; Gwinner, 1996; Dawson et al., 2001; Coppack & Pulido, 2004; Bauer 257 

et al., 2008). Great tits Parus major need longer days to initiate sexual maturation at mid-latitude than 258 

at higher latitudes, causing a cline in the onset of male gonadal maturation (Silverin et al., 1993). The 259 

required daylength variation can be as small as 1h or less to initiate sexual maturation in temperate 260 

(Dawson, 2007) and subtropical species (Lewis et al., 1974; Hau et al., 1998; Coppack & Pulido, 2004). 261 

Photoperiod also largely contributes to induce diapause and to regulate voltinism in insects. Critical 262 

photoperiod for diapauses increases with latitude (Danilevskii, 1965; Bradshaw & Lounibos, 1977; Hut 263 

et al., 2013) and the number of diapausing individuals with shorter daylength (Schmidt et al., 2005; Hut 264 

et al., 2013; Paolucci et al., 2013). Photoperiod and local environmental conditions determine the 265 

number of generations per year, more generations being produced at lower latitudes (Altermatt, 2010). 266 

For instance, in the water strider Aquarius remigi, univoltinism is less frequent in southern populations, 267 

and change in growth occurred across a narrow range of 5° (Blanckenhorn & Fairbairn, 1995). In 268 

mammals, latitudinal variation in the timing of the breeding period was observed in the broadly 269 

distributed Peromyscus deermice and Odocoileus deers, and photoresponsiveness decreased with 270 

latitude in a mouse (Bronson, 1988). 271 

Circadian clocks are found from cyanobacteria to plants and animals (Hut & Beersma, 2011). They 272 

generate endogenous circadian rhythms that synchronize physiological processes and activities of 273 
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organisms to the diel variation of environmental conditions. Light is the main cue used to reset circadian 274 

clocks, which explains why activity patterns and other behaviours change with latitude. In mammals, 275 

the occurrence of nocturnal and diurnal species is higher in the intertropical zone whereas crepuscular 276 

and cathemeral species are distributed at higher latitudes, thus reflecting the adaptation to larger 277 

variation in annual daylength and longer twilight periods (Bennie et al., 2014). The photic regime of 278 

Arctic regions favours behavioural plasticity. For instance, populations of Reindeer Rangifer tarandus 279 

above 70°N lose their circadian rhythm of activity in summer and recover it in autumn and spring (Van 280 

Oort et al., 2005), while the Arctic sandpiper Calidris melanotos undergo a drastic reduction of sleep 281 

during the mating period as a likely result of prolonged sexual activity under long days conditions (Lesku 282 

et al., 2012). A large comparative study on shorebirds detected a latitudinal cline in incubation behaviour 283 

(Bulla et al., 2016). The influence of photoperiod was lower at higher latitudes. Although the dataset is 284 

impressive, the study included temperate, boreal and arctic populations between 35° and 75°, and none 285 

from the intertropical zone. Latitudinal variation in diel activity patterns is observed at the intraspecific 286 

level too. In Drosophila melanogaster, ovoposition peaks at dusk at the beginning of the dark period. In 287 

a rare study ranging from 0° to 60°N, authors showed that the percentage of eggs laid during the dark 288 

period decreases from 80 % in Equatorial populations to less than 50 % in Northern Scandinavia 289 

(Allemand & David, 1976). Similarly, an earlier study showed that the onset and end of locomotor 290 

activity of five bird and three mammal species held in captivity at 47°N and 66°N varied more between 291 

days at higher latitude (Daan & Aschoff, 1975). Variation was reduced when species activity occurred 292 

during the civil twilight when light spectrum changes rapidly. Another study ranging from 37°N to 65°N 293 

across Europe found that the onset of dawn singing depended on latitude in some passerines. Under 294 

ALAN conditions, it was advanced for latitude-insensitive species only (Da Silva & Kempenaers, 2017).  295 

Sensory systems experience circadian and seasonal regulation. In vertebrates, the expression of 296 

photoreceptors, and the detection of colour stimuli follow rhythms that are synchronized by photoperiod 297 

(Terman & Terman, 1985; Cahill & Beshare, 1995). In fishes (Shimmura et al., 2017) and humans 298 

(Welbourne et al., 2015) seasonal changes in colour perception occur. The visual system also varies 299 

with latitude. In fishes retinomotor movements are observed during which rods and cones move in 300 
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opposite ways across the retina depending on the time of the day (Yammouni et al., 2011). Retinomotor 301 

movements during twilight track the changes in illumination and keep vision functional. They follow 302 

endogenous rhythms as demonstrated in individuals kept in the dark or exposed to light during the dark 303 

period. Fishes may rely more on changes in ambient illumination and less on endogenous oscillators at 304 

higher than at lower latitudes (Yammouni et al., 2011).  305 

5 A predictive biogeographical framework for ALAN is lacking 306 

Beyond the characteristics of the light sources, exposure to ALAN depends on the time of the 307 

year, latitude, and climate. Logically, individuals should be less exposed during long-day periods than 308 

during short-day periods. Figure 2 illustrates for three towns at low (6°N), medium (43°N), and high 309 

(64°N) latitude the monthly variation in sunrise and sunset, as well as the time of the astronomical 310 

sunrises and sunsets. Before astronomical sunrise and after astronomical sunset, the sun does not 311 

contribute to the ambient light level, and it is a conservative approach to determine when sky brightness 312 

will be for sure elevated beyond its natural value by ALAN, at least during moonless nights or under 313 

overcast skies. We represented the number of extra-lit hours due to ALAN before and after the 314 

astronomical twilight for two lighting scenarios. Lights are turned off at midnight in the first scenario, 315 

as an energy-saving measure, and remain turned on all night in the second. The pattern is the same for 316 

the two scenarios, but the number of extra-lit hours due to ALAN is larger for the second. At high 317 

latitude, there are no extra-lit hours for about 5 months, which period is used for breeding in many arctic 318 

species. One can predict the disruption to be mild or non-existent then. In contrast, ALAN duration is 319 

maximal during wintertime. Effects could be positive if artificial light allows longer foraging periods or 320 

negative if it raises activity and metabolic cost beyond sustainable levels for organisms. At low latitude, 321 

the extent of artificial lighting is constant throughout the year. Therefore, disruption may affect any life-322 

history events regardless of annual timing. At mid-latitudes, the number of extra-lit hours is minimal 323 

around summer equinox, which often corresponds to the end of breeding for birds or amphibians, but is 324 

the main active period for insects or bats. The extension of ALAN is maximal in winter and the concern 325 

is the same as for arctic organisms with the addition that reproduction occurs in winter for some 326 
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mammals too. In temperate species, the seasonal effect of ALAN may be more diverse than at lower or 327 

higher latitudes and depend on the taxonomic group. 328 

We have knowledge about the latitudinal variation of some traits and expectations about how 329 

exposure to ALAN may change across latitudes and seasons. Yet, we still do not know whether and how 330 

latitude determines the short or long-term responses of individuals and populations to ALAN. We make 331 

some propositions to go forward in that direction by pointing to candidate traits that would deserve more 332 

attention. We also make some predictions about the evolutionary responses that could be expected at 333 

different latitudes. Most physiological or behavioural traits are potentially affected but we can 334 

nevertheless identify some traits to address key issues, namely whether and how the strength of ALAN-335 

induced effects varies with latitudes, if some periods of the year are more critical for biodiversity 336 

exposed to ALAN, and whether these periods change latitudinally. A major pending question is whether 337 

latitude can predict at least qualitatively the time taken by populations to develop responses to ALAN 338 

exposure.  339 

As mentioned above, a longer photoperiod could have beneficial or detrimental effects on 340 

individuals in terms of time and energy budget. Thus, it is important to determine whether diurnal and 341 

nocturnal species respectively prolong or delay their activity period, and how they partition key activities 342 

like foraging or reproduction during a day. In this regard, light pollution may contribute to the stronger 343 

homogenizing effect of urbanization on nocturnal moths than on diurnal butterflies (Merckx & Van 344 

Dyck, 2019). The latitudinal effect on incubating bouts in shorebirds (Bulla et al., 2016), where ALAN 345 

exposure was not assessed, or on the advanced onset of dawn singing in passerines (Da Silva & 346 

Kempenaers, 2017), illustrate which type of behaviour could be targeted. Focusing on activity alone 347 

may not unravel the complexity of the disruption process for organisms. The diel distribution of feeding 348 

bouts was altered in mice, resulting in obese individuals (Fonken et al., 2010), while activity and 349 

metabolism were uncoupled in amphibians exposed to light at night (Touzot et al., 2019). These lab 350 

studies highlight the need for analysing together activity and metabolic budgets or relevant proxies when 351 

other physiological measurements cannot be made. Because physiological constraints may be stronger 352 

at higher than at lower latitudes, short-term effects on survival may be quicker. More generally, we do 353 
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not know well how circadian clocks are affected by ALAN in most species. Even less do we know about 354 

how the clocks of populations located at different latitudes respond to novel photic regimes. Birds 355 

provide a good illustration of our limited capacity to predict the effects of ALAN in animals. Life-history 356 

traits like the onset of breeding, migration, dispersal, moult are important for individual fitness and 357 

population growth rate. They are all potentially affected by ALAN even in populations at low latitudes. 358 

The increase in the apparent daylength by ALAN may lead to maladaptive decision by desynchronizing 359 

the onset of biological events and the time window of optimal climate/trophic conditions. 360 

Desynchronization may affect the reproductive output and survival of individuals in resident 361 

intertropical species and migratory species. For instance, the extension of the photoperiod by ALAN 362 

could affect photorefractoriness, i.e. the loss of sensitivity to long days that prevents the initiation of 363 

spring migration and maturation. Slight changes in migration timing in a context of climate change may 364 

have negative consequences for bird populations. We simply do not know whether the sensitivity to the 365 

disturbance generated by ALAN depends on latitude and hardly what to predict. At the sensory level, 366 

ALAN is expected to affect the efficiency of visual tasks carried out at night or under crepuscular 367 

conditions like orientation (Somanathan et al., 2008), or the selection of food sources (Kelber et al., 368 

2002), or mates (Gomez et al., 2009). Adaptation to the light/dark transitions may be partly inefficient 369 

in populations that do not use photic cues to reset the circadian rhythm of their visual system (Yammouni 370 

et al., 2011). 371 

 The novel pattern of annual daylength variation generated by ALAN may not be necessarily 372 

harder to overcome, at the evolutionary scale, than the colonization of higher latitudes for a species 373 

though. Latitudinal clines in activity illustrate the evolutionary potential of some populations to adjust 374 

to spatially heterogeneous conditions even over a few degrees of latitude (Blanckenhorn & Fairbairn, 375 

1995). In the long-term, populations are expected to develop higher resistance to this novel disturbance 376 

(Hopkins et al., 2018). For instance, urban populations of a moth developed a lower attraction to light 377 

than populations from less non-polluted areas (Altermatt 2018). A major issue is which response type 378 

should be favoured at different latitudes and what time scale is relevant for such changes to occur. The 379 

stability of the natural daylength and the ALAN period should favour adaptation to a longer photophase 380 
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at lower latitudes unless the physiological and ecological costs of plasticity are small (DeWitt et al., 381 

1998). In contrast, plastic phenotypes able to respond to varying daylength should be selected at higher 382 

latitudes. In this regard, it has been argued that individuals rely more on transitions between the light 383 

and dark period than on internal oscillators at higher latitudes, whereas the opposite pattern should be 384 

observed at lower latitudes (Gaston et al., 2017; Helm et al., 2017). Whether plasticity is adaptive in 385 

winter time, when the higher numbers of extra-lit hours may require a higher energetic demand, remains 386 

to be tested. We observed a limit to the studies on the latitudinal variation of biological traits. The 387 

behavioural and physiological clines observed at the interspecific or intraspecific level spanned a 388 

fraction of the latitudinal range between temperate and higher latitudes. Information about the transition 389 

between the intertropical and the temperate zones is lacking. However, such knowledge is necessary if 390 

we want to build a biogeographical framework robust enough to predict the latitudinal effect of ALAN. 391 

This publication bias has been noticed for the study of the evolution of breeding in mammals (Bronson, 392 

1988). It is likely that the historical distribution of laboratories and the difficulty to identify species or 393 

groups of species spanning the entire latitudinal range, as well as the logistic constraint of these studies, 394 

account for the current situation. Up to now, only a few species distributed across the whole range like 395 

D. melanogaster have been tested (but see Bronson (1988) for mammals).  396 

 397 

6 Prospective view about the geographical spread of ALAN: a concern for 398 

intertropical biomes?   399 

The increase of ALAN essentially results from demographic growth and economic development, i.e. the 400 

greater use of electricity. World population is forecast to grow from 7.5 billion in 2017 to 9.8 billion in 401 

2050 and over 11 billion in 2100 (United Nations Department of Economic and social affair Population 402 

division, 2017). Between 2017 and 2050, the intertropical region including Western, Middle and Eastern 403 

Africa should increase its population by 217 %. South-Eastern Asia, and the region including Central 404 

and Latin America (but excluding Argentina, Chile, and Uruguay), should grow respectively of 23 % 405 
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and 21 %. In comparison population in Europe and Eastern Asia should decrease by 4 % and Northern 406 

America raise by 20 % (United Nations Department of Economic and social affair Population division, 407 

2017). Larger use of lighting can also be predicted according to prospective studies that forecast the 408 

expansion of urban areas and road networks. Roads generate light by their traffic, but they also facilitate 409 

new settlements and the expansion of existing settlements. A recent study predicted an increase of 185 410 

% of the global urban extent between 2000 and 2030 for the land category with the highest probability 411 

of being urbanized (Seto et al., 2012). In Africa a 590 % increase of urbanized areas is expected with a 412 

concentration of this process in five areas, four of which are located in the intertropical zone. 413 

Furthermore, the percentage of urbanization in 34 World major biodiversity hotspots is predicted to 414 

triple during that period. The largest changes are expected in regions undisturbed by urban development 415 

so far, and all concern inter-tropical areas (Seto et al., 2012). Regarding road networks only 43 % of the 416 

emerged land (except Antarctica and Greenland), were considered roadless, i.e. distant more than 5 km 417 

from a road, in 2016 (Ibisch et al., 2016), a distance at which a nocturnal light source is detected. In 418 

tropical and subtropical countries, one-fifth of national parks is crossed by at least one main road (Caro 419 

et al., 2014).  Expansion of logging creates roads and gaps that are likely to increase exposure to light 420 

in the vicinity of human settlements (Laporte et al., 2007). Therefore, population growth, urbanized 421 

land, and road networks are expected to keep growing in the next decades especially in areas of high 422 

conservation value and in the intertropical zone (Figure 3).  423 

International initiatives seeking to increase the access to electricity in developing countries are 424 

welcome (see for instance www.AREI.org), but they may contribute to the increase of night brightness 425 

in preserved environments. There is little doubt that a larger fraction of land in the intertropical zone 426 

will experience higher levels of ALAN in the next decades. The increasing use of LEDs for outdoor 427 

lighting may further deteriorate the nocturnal environment and generate more deleterious effects for 428 

biodiversity than older technical solutions (Cajochen et al., 2011; Davies et al., 2013b; Pawson & Bader, 429 

2014). For a given power, LEDs provide better lighting conditions than older sodium lamps because 430 

they stimulate a broader range of the visual system of many organisms (Davies et al., 2013b). In addition, 431 

this cheaper technology tends to favour greater use of nocturnal light (Kyba et al., 2017a). Countries in 432 
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the intertropical zone are developing their territory and will likely use the technology that is the most 433 

disrupting for biodiversity. By doing so, they will generate a more sudden change than the one 434 

experienced by wildlife earlier in other parts of the World. Such a rapid transition in lighting has been 435 

documented in Peru (Kyba et al., 2017a). At a broader scale, an increase in nocturnal light was detected 436 

by satellites in the tropical/subtropical biomes. The proportion of the area that experienced higher 437 

brightness raised by 2 % between 1992-1996 and 2008-2012. The largest increase was observed for 438 

needle-leaf and mixed forests that occupy a restricted fraction of the total area but host rich endemic 439 

biodiversity (Bennie et al., 2015b). 440 

Insert Figure 3 441 

 442 

7 Conclusion 443 

We are clearly lacking a biogeographical framework to predict how species adapt or acclimate to ALAN 444 

and by which way. We do not know in which biomes ecological networks are the most sensitive to the 445 

elevation of nocturnal brightness, which ecosystems will be the most strongly exposed in the near future, 446 

and to which extent climate modulates exposure to ALAN at a given latitude. Only fragmentary 447 

information is available to generate testable hypotheses. Climate has probably a still unappreciated 448 

influence on the intensity of the biological and ecological effects of ALAN. In particular, more attention 449 

should be paid to the geographical variation in cloud cover. A higher sensitivity to change in nocturnal 450 

ambient light is expected in organisms from ecosystems where cloud cover is frequent because nocturnal 451 

light intensity is often low. Furthermore, within the same latitudinal range, areas where rain, fog, or mist 452 

is frequent may be less exposed than arid areas where moonlight is more present most of the nights, and 453 

negative effects on organisms and ecosystems may be milder. In forest, light exposure depends on the 454 

position of the organism relative to canopy. A large fraction of tropical forest biodiversity lies at the 455 

canopy level where individuals are more easily exposed to distant sources of ALAN. Under the canopy 456 

where the light level is very low, species are probably less exposed, but they could be highly sensitive 457 
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to small changes in light intensity. Species naturally living in forest edges, clearings, riparian or open 458 

habitats may be more exposed and suffer more from new lighting conditions. In this regard, roads or 459 

clearings in tropical forest generate a barrier effect, many organisms avoiding gaps as narrow as 30 460 

meters (Laurance et al., 2009). The occurrence of ALAN in an otherwise dark environment could 461 

strongly enhance the barrier effect for these species (Lewanzik & Voigt, 2014). 462 

Building a theoretical framework that describes how biogeographical factors modulate ALAN 463 

is a necessary step but it may not be sufficient. The spread of light at night co-occurs with the other 464 

drivers of biodiversity decline such as habitat fragmentation, chemical pollution, invasive species, that 465 

all generate stress for individuals. Negative synergistic effects of multiple stressors on organisms and 466 

populations are well known (Sih et al., 2004). Climate change is likely the main global factor to focus 467 

on. A recent review highlighted the negative effects on animal fitness of changing climate under stable 468 

photoperiod (Walker et al., 2019). The evolution towards a less frequent or less reflecting cloud cover 469 

would reduce exposure of organisms in terms of intensity and duration but also the size of the areas 470 

experiencing light pollution, compensating in a way the expansion of urbanized area. In contrast, more 471 

clouds are likely to enhance the biological and ecological effects of ALAN. Temperature, the main focus 472 

of attention of climate change, is also relevant. It modulates biological rhythms entrained by light 473 

(Underwood, 1989; Helm et al., 2017), resets circadian clocks (Chen et al., 2015), affects gene 474 

expression in insects and mammals (Helm et al., 2017), alters the daily expression peak of melatonin in 475 

lower vertebrates (Mayer et al., 1997), and induces seasonal shift from nocturnality to diurnality in 476 

insects and mammals (van der Vinne et al., 2014; Helm et al., 2017). The sensitivity of insects to 477 

warming is believed to be the highest in the intertropical zone because individuals are already close to 478 

their thermal tolerance threshold (Deutsch et al., 2008). The annual covariation of temperature and 479 

photoperiod at a location determines an environmental envelope that enlarges in both dimensions with 480 

latitude (Hut et al., 2013), as a result of increasing temperature and daylength range. Global warming 481 

changes one dimension of the envelope while ALAN changes the other dimension, giving rise to entirely 482 

new conditions with unknown consequences about the desynchronization of physiological and 483 

behavioural rhythms at the individual level, and the timing and intensity of interspecific relationships at 484 



20 

 

the ecological level (but see Miller (2017)). Effects are expected at any location on the globe but 485 

predicting the outcome of the interaction remains difficult since temperature is rising faster at higher 486 

latitudes (Hansen et al., 2006) and light at night strongly changes the photic regime year-round at lower 487 

latitudes. 488 

The demographic and macro-economic projections for the next decades support the expansion of ALAN 489 

across the World and particularly within the intertropical zone. Because synergies with other drivers of 490 

global decline are not known so far, even if some may be anticipated, prevention and caution remain the 491 

most appropriate approaches. We did not attempt a meta-analysis of the papers published on biological 492 

rhythms or ALAN for species in the intertropical zone but it is no doubt that there are many less than 493 

papers devoted to temperate or high-latitude species. The time is ripe to shift the balance and start 494 

investigating the effects of ALAN at different latitudes. In particular, attention should be given to the 495 

capacity of intertropical species to respond to the novel conditions generated by ALAN and climate 496 

change. A good starting point could be to focus on groups originating from the intertropical zone. Habitat 497 

loss, climate change, overexploitation have received so far the main attention in many areas for obvious 498 

reasons. It should be acknowledged that ALAN might be a more insidious form of threat to local 499 

biodiversity. Eco-tourism has been a major source of income for several countries and it is becoming a 500 

major contribution for new ones particularly in countries benefiting from hotspots. It may also contribute 501 

to accelerate the change of the photic environment at night. In this regard, a recent global study showed 502 

that the increase in ALAN was much higher around protected areas than farther away (Guetté et al., 503 

2018). The demand for biodiversity will keep on growing with the global human population. A 504 

cautionary message would be to remind that increasing population, infrastructures and facilities, and 505 

more generally the use of electricity for nocturnal lighting may be harmful even in the most 506 

environment-friendly areas that value biodiversity as a resource for their economic development.   507 

 508 

 509 

 510 
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Figure 1 Mean latitudinal distribution of ALAN and cloud cover fraction (A and C) as measured from 953 

satellite images and their standard deviation (B, D). Data were binned in 5° categories. Only terrestrial 954 

areas have been included in the analysis. Seas and large lakes have been excluded. The grey band 955 

represents the intertropical zone. Original data reused with permission. For ALAN, the unit is relative 956 

and expressed as the ratio of the difference between the observed pixel value and the reference value of 957 

a natural sky (174 µCd/m²) to the reference value. Data source: Falchi et al. (2016), NASA, MODIS 958 

mission, and Giovanni only data system. For a global map of cloud cover fraction over the period 2002-959 

2018, see Supplementary information. 960 
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Figure 2 (A-C) Annual variation in twilight for three towns at low, mid, and high latitudes.  Twilight 965 

represents the periods of the day when sun declination is between 0° and 18° below horizon. When the 966 

declination is lower, the sun does contribute to ambient light. The right column shows for two lighting 967 

scenarios the annual variation in the time period when ALAN elevates the ambient light level outside 968 

the twilight periods. Artificial lights are turned off at midnight (D) or stay turned on all night (E). Sources 969 

: https://www.esrl.noaa.gov/gmd/grad/solcalc/ ; https://earthsky.org/?p=235797. 970 
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Figure 3 Expected change in Urbanization/demography between 2018 and 2030 (Source UNICEF, 973 

United Nations). The green latitudinal band represents the intertropical zone.  974 
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Supplementary Material S1 – Global cloud cover fraction 978 


