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Abstract

We investigate the filling and emptying of extreme ink-bottle porous media –

micrometer-scale pores connected by nanometer-scale pores – when changing the pres-

sure of the external vapor, in a case where the pore liquid contains solutes. These

phenomena are relevant in diverse contexts, such as the weathering of building ma-

terials and artwork, aerosol formation in the atmosphere, and the hydration of soils

and plants. Using model systems made of vein-shaped microcavities interconnected by

a mesoporous matrix, we show experimentally that the presence of nonvolatile solute

shifts the condensation and evaporation transitions and in a way that is consistent with

a modified Kelvin-Laplace equation that takes into account the osmotic pressure of the

solution. Emptying occurs far below saturation, when the Kelvin stress, mediated by

the large curvature of the liquid-vapor interfaces in the nanopores, is large enough to
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induce spontaneous bubble nucleation in the micro-veins. Filling, on the other hand,

occurs close to equilibrium (i.e., at saturation, psat for pure water and ps < psat for

a solution), driven by the weak capillary pressure of the liquid-vapor interface in the

micro-veins. Interestingly, solutes allow the system to reach situations where the vapor

is supersaturated with respect to the solution (ps < p < psat). We show that in that

latter situation, a condensation layer covers the outer surface of the porous system,

preventing the generation of Kelvin stresses but inducing osmotic stresses and flows

that are vapor-pressure-dependent. The timescales and dynamics reflect these different

driving forces: emptying proceeds through discrete, stochastic nucleation events with

very fast, unsteady bubble growth associated with a poroelastic relaxation process,

while filling occurs collectively in all veins of the sample through a slower steady-state

process driven by a combination of osmosis and capillarity. The dynamics can however

be rendered symmetrical between filling and emptying if bubbles pre-exist during emp-

tying, a case that we explore using cycling of the vapor pressure around equilibrium.

Introduction

Porous media are ubiquitous in nature and technology, and the way they uptake and trans-

port water plays crucial roles in many contexts, such as the stability of food products,1

formation of clouds,2 transport of sap in plants,3 mechanics of granular materials,4 or the

fabrication and aging of concrete.5 In many situations, the pore fluid contains dissolved

species, and the presence of these solutes is thought to have specific effects, such as osmosis-

driven refilling of embolized vessels in plants6 or damage in rocks or building materials due

to osmotic stress7 or crystallization-induced stresses.8 The thermodynamics and kinetics of

hydration in porous media is still an area of active research, with open questions about the

validity of continuum laws at small scales9,10 or the role of pore architecture and disorder.11,12

Experimental efforts to answer these questions have relied on the fabrication of model

porous strucures with well-defined homogeneous pore shape and sizes,12,13 or with controlled
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disorder, such as ink-bottle structures that exhibit large cavities connected by narrower

pores11,14,15 (Figure 1a). Ink-bottle structures are associated with the generation of strongly

metastable states (large, negative pressures) of the pore liquid during desorption, leading to

relaxation by bubble nucleation (cavitation) in the larger pores (Figure 1a).11,15 Recently, we

proposed a new type of extreme ink-bottle porous medium, where several orders of magnitude

separate pore size (rp ∼ nm) and cavitiy size (Hv ∼ µm).16 Such a structure mimics the

architecture of vascular systems in plants3 and is more generally a model of highly hetero-

geneous porous media such as rocks,17 soils,18 or concrete.7 With such extreme-ink bottle

systems, we showed that we could directly visualize the dynamics of of condensation and

evaporation, including cavitation, owing to direct optical access into the larger cavities.16

A large number of existing theories for adsorption and desorption in pores are based

on Kelvin-Laplace equation,9,19,20 which relates the capillary stress (liquid pressure, P < 0,

Figure 1a) in the pore fluid to the sub-saturation of the vapor in contact with the porous

medium (p/psat < 1). One may wonder how the presence of solutes in the pore liquid (Figure

1a) affects these thermodynamic phenomena – phase equilibrium and capillarity – and the

transient filling and emptying dynamics in the porous medium, with specific questions about

the relative effect of the stress implied by Kelvin-Laplace equation and that of osmotic

pressure, or the effects of pore architecture and solute identity.21,22

Here, we report on static and dynamic experiment with extreme ink-bottle porous media

(microscale veins interconnected by nanopores) in the presence of solutes. We focus on

the liquid/vapor phase transition in the microscale cavities (veins), induced by changes in

external water vapor pressure, in a regime where the nanopores stay filled with liquid (no

desorption in the nanopores). To avoid confusion with desorption and condensation in the

nanoporous layer itself (which will be addressed in a future paper), we will describe the

behavior of the micro-veins as filling and emptying.

After describing our experimental methods, we develop a theoretical basis for predicting

the thermodynamics and dynamics of ink-bottle pores filled with solute and subject to vapor
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pressure changes. In the Theory section, we first adapt classical thermodynamical treatments

of phase equilibrium to account for the combined impacts of large capillary stresses (Kelvin-

Laplace) and solution (osmotic equilibrium). We then turn to treatments of the dynamics:

first we consider drying of the material by cavitation of the solution in the micro-veins and

subsequent emptying driven by large tensile stresses and poroelastic relaxation; second, we

consider filling and emptying by osmotic processes in cases when a film of solution forms on

the external surface. We finally present and discuss our experimental observations for the

thermodynamics (isotherms and evaporation/condensation hysteresis) and dynamics (filling

and emptying flows) in extreme ink-bottle structures, in relation to the theoretical elements

established previously.

Materials and methods

We created the extreme ink-bottle structures (Figure 1b-c) from silicon wafers (p-type, 1-

− 10 Ω.cm, 〈111〉 crystal orientation) and borosilicate glass wafers. In the silicon, we etched

channels (W = 10µm-wide, Hv = 3µm-deep, L = 2 mm-long, see Figure 1b-c) using pho-

tolithography and dry, plasma-etching. We then proceeded to porosify a uniform layer of

thickness, Hp = 15µm, in the side of the silicon wafer presenting these channels, using an-

odization in a 1 : 1 49% HF : ethanol electrolyte at current density 20 mA/cm2. Anodization

resulted in the formation of an array of laterally connected mesopores ∼ 3 nm in diameter

and of porosity φ = 0.45, as estimated from nitrogen porosimetry and water imbibition and

permation measurements.23 We bonded the porosified silicon surface to glass to form the ex-

treme ink-bottle structure, i.e. microchannels (referred as veins below) indirectly connected

both to each other and to the outside through nanopores (Figure 1b-c). Note that since the

etch depth of the nanoporous layer (Hp = 15µm) was greater than the depth of the veins

(Hv = 3µm), the veins were surrounded by the nanoporous matrix in the three directions

of space, with non-porous glass defining the top boundary.
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Figure 1: Experimental system. (a) Generic sketch of an ink-bottle geometry with large voids
(width, Hv) connected by small pores (pore radius, rp). The solid and liquid are sketched in gray
and light blue, respectively. In this paper we consider a case where the structure is filled with a
solution (solute is represented as black dots, of hydrodynamic radius, rs) and where only the voids
fill and empty (no desorption in the nanopores). Hypothetical phase behavior and dynamics in such
a situation are represented in Figure 2. The zone delimited by the dotted line is the one depicted
in Figure 2. (b) Cross-section sketch of our actual samples, with extreme ink-bottle geometry: the
voids are vein-shaped with dimensions in the micrometer range (Hv = 3µm), while the porous layer
(porous silicon, poSi) interconnecting the voids consists in a network of pores in the nanometer
range (diameter, 2rp ∼ 3 nm). Insets represent the nanoporous area (not to scale) between veins
(red dashes) and at the sample edge (green dash-dots). Samples are placed in an environment with
controlled, subsaturated vapor pressure, p < psat. (c) Top-view photograph of a sample. (d) The
vein-shaped microcavities allow for optical tracking of filling and emptying.
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We filled the sample by immersing it in liquid for at least two days. For the liquid, we

used pure water and aqueous solutions of both urea and lithium chloride. The main results

described in the present paper were obtained with a urea solution of activity ps/psat =

0.828± 0.004 (osmotic pressure Πin = 25.0± 0.7 MPa), as measured in situ (see SI, section

4). Similar results obtained using lithium chloride solutions of various concentrations are

described in the SI (section 5).

We ran isothermal experiments at temperature T = 15◦C in a pure water vapor envi-

ronment of controlled vapor pressure p, using a thermostated vacuum chamber connected

to a water vapor source. Details on this vacuum system can be found elsewhere.24,25 A

glass window in the vacuum chamber allowed optical monitoring of the sample: veins filled

with liquid appeared dark, while veins filled with vapor were highly reflective (Figure 1d).

The filling state and the dynamics of the liquid in the veins as a function of the imposed

thermodynamic conditions (vapor pressure) were obtained by image analysis by tracking the

position of the menisci in image sequences as in Figure 1d.

The geometry of the sample was such that the total volume of veins (Vv = N×W×L×Hv)

was small compared to the total volume of the nanopores (Vp = φ×L2
s ×Hp), with N = 30

the total number of veins, and Ls = 5 mm the lateral dimension of the sample. Since

Vv/Vp ' 0.01, the solute concentration (equivalently, the osmotic pressure, Πin) in the sample

depended only weakly on the filling state of the veins, and we will assume Πin constant in

the following.

For simplicity, we will use ideal sketches as in Figure 1a to discuss the physical processes

at play in our experiments, i.e., with a single nanopore connecting a micro-vein to the

outside. This sketch of a single nanopore represents, in reality, a large area of nanoporous

matrix situated between the micro-vein and the sample edge (across the distance ` in Figure

1c), the porous layer contains a large density of nanopores that form an interconnected,

isotropic pore space. The typical cross-section of nanoporous material connecting each vein

to the outside is A ∼ d × Hp, where d = 300µm is the separation between veins in the
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y direction, as defined in Figure 1b-c. A typical number of pores in that cross section is

Np ∼ Aφ/(πr2p) ∼ 108 so that every micro-vein in our sample is connected to the outside

(and to the neighboring micro-veins) through a very large number of nanopores, allowing us

to use macroscopic, averaged transport coefficients (e.g. the Darcy permeability).

From the value of the Darcy permeability, κ [m2/(Pa.s)], measured in similar samples with

pure water,23,25 we estimate the intrinsic permeability k = ηwκ = (1.77 ± 0.12) × 10−20 m2

of the nanoporous layer, where ηw (Pa.s) is the viscosity of water. From literature values,

we estimated the ratio of viscosities ηs/ηw = 1.54 between the urea solution and pure liquid

water.26 We also estimated the hydraulic radius of the urea molecule, rs = 0.17 nm, from its

diffusivity in water27 and the Stokes-Einstein relation.

Theory

Here, we describe the theoretical framework for our study, using sketches such as in Figure

1a, focusing on the area inside the dotted rectangle. All sketches of the physical situations

considered in this paper are in Figure 2. As discussed in the Methods section, the sketched

nanopore actually represents a large number of nanopores in our experimental samples, of

total volume much larger than the micro-vein itself. We recall that an important consequence

of this experimental geometry is that filling-emptying processes in the micro-veins do not

change appreciably the solute concentration inside the sample, such that the internal osmotic

pressure, Πin, is constant.

First, we derive a modified Kelvin equation that describes the metastable equilibrium

between a solution and subsaturated vapor. Second, we briefly describe the bubble nucleation

(cavitation) process that occurs as a relaxation of this metastable state. Last, we establish

the fluxes in response to hydrostatic and osmotic pressures in dynamic situations. We

use continuum theories of thermodynamics and fluid mechanics, and we assume that the

fluid behaves as a bulk fluid, even in the nanopores. We have shown previously that this
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assumption holds for pure liquids in this type of nanopores.25 We also neglect limitations

to mass transfer in the vapor phase; this assumption is justified by the geometry and low

permeability of the porous layer, such that transport limitations are within the sample itself

and not in an external boundary layer,23 and by the use of a vacuum system to eliminate

diffusion-limited transport in the vapor phase.25

Thermodynamics of solution-vapor equilibrium

We consider a situation as sketched in Figure 2a, where the solution filling the pore (pressure,

P [Pa]) is in equilibrium with the pure vapor of the solvent (pressure, p [Pa]) across a

meniscus of radius of curvature, r [m]. The solution is characterized by its osmotic pressure

Π(C) [Pa], or its equilibrium bulk vapor pressure ps(C) [Pa], which both depend on the

concentration C [mol/m3] of solute. We consider that the solutes of interest are non-volatile.

The condition of isothermal equilibrium between the pore solution and the vapor is the

equality of the chemical potential µw [J/mol] of the solvent in the solution and in the vapor

phase. The equality of pressure does not hold, in general, across the pore-confined liquid-

vapor interface, due to capillary effects (P 6= p in general). We consider isothermal processes

at temperature, T [K].

Liquid-vapor equilibrium We first recall the expressions of the chemical potential of

pure solvent, in the vapor state (vapor pressure, p [Pa], chemical potential, µvap
w [J/mol])

and in the liquid state (pressure, P , chemical potential, µliq
w ). Equilibrium between the

bulk, pure liquid and its vapor (saturation) occurs when P = p = psat(T ), where psat is

the saturation vapor pressure. We use this situation as the reference thermodynamic state

of the system, with an associated reference chemical potential, µ0(T ). Then, the chemical

potentials can be expressed, in general, as

µvap
w (p) = µ0 +RT ln

(
p

psat

)
(1)
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for the vapor, where RT [J/mol] is the thermal energy, and

µliq
w (P ) = µ0 + vliqw (P − psat) (2)

for the liquid, where vliqw [m3/mol] is the molar volume of the pure solvent. Equation 1 is

obtained by assuming that the vapor behaves as an ideal gas (with molar volume RT/p).

Equation 2 comes from the assumption of an incompressible liquid (vliqw is constant, inde-

pendent of P ), which results in negligible errors even for pressure differences in the 10− 100

MPa range.23

The well-known Kelvin equation is obtained from the equality of chemical potentials in

Equations 1 and 2:

P = psat + Ψ(p) (3)

where we have defined the water potential of the vapor at pressure p.

Ψ(p) =
RT

vliqw
ln

(
p

psat

)
. (4)

Physically, water potential Ψ = (µw − µ0)/v
liq
w [Pa] is the deviation in pressure away from

psat for a pure liquid in metastable equilibrium with a subsaturated vapor phase. Equations

3-4 describe the necessary relation between vapor pressure p and liquid pressure P (or Ψ)

for isothermal equilibrium between a pure liquid and its vapor.

Solution-vapor equilibrium Adding a nonvolatile solute to the liquid to form a solution

(concentration, C [mol/m3]) modifies the equilibrium conditions established above, because

the mixing of the solvent (water in our experiments) and the solute modifies the chemical

potential of the solvent, while the chemical potential of the pure vapor as expressed in

Equation 1 remains unchanged. One consequence of this shifted equilibrium is that the

equilibrium vapor pressure, ps, of the bulk solution is different from psat and depends on the

concentration, C, of solute, with ps(C) < psat. The parameter ps is thus a measure of the
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Figure 2: Theoretical sketches (not to scale) of the processes involved during filling and emptying of
ink-bottle pores focusing on the area within the dotted rectangle in Figure 1a. The single nanopore
sketched here for simplicity actually represents a large number of pores connecting the micro-vein
to the outside (see Methods and Figure 1b), of total volume much larger than the micro-veins, so
that filling and emptying of the veins does not induce appreciable concentration changes in the
sample. (a) Phase equilibria governed by Kelvin equation (Equation 11): bulk equilibrium (left),
metastable, negative-pressure equilibrium (center), empty vein (right). (b) Cavitation of solution
in the vein due to negative-pressure metastability (as in (a), center). Cavitation leads to emptying
of the vein (as in (a), right), which is governed by a fast poroelastic process (Equation 13). (c)
Filling (top, for p > p0) and emptying (bottom, for p < p0) flows due to osmosis in partially empty
veins. Due to the small effect of capillarity, p0 is slightly shifted from ps (Equation 22). (d) Full-
vein transient situations with positive (top, for p > ps) and negative (bottom, for p < ps) stresses
induced by osmosis (Equation 23). Panels (a-b) correspond to situations where the sample edge is
dry, while panels (c-d) correspond to transient situations with bulk solution wetting the surface of
the sample. The four panels correspond to the four sections in the Theory part of the article.
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impact of the solute on the solvent chemical potential. In the general case, also taking into

account the effect of the pressure, P , of the solution, the chemical potential of the solvent

in the solution is (see SI, section 1)

µsol
w (P,C) = µ0 +RT ln

(
ps(C)

psat

)
+ vliqw (P − ps(C)) , (5)

where ps is the bulk equilibrium vapor pressure of the solution, and where we have used

the well-verified approximations that the solution is incompressible and that the partial

molar volume of the solvent in the solution is unchanged compared to the pure liquid case

(vsolw = vliqw , see SI section 2). Note that Equation 5 can be rewritten in a similar manner as

Equation 2, i.e. µsol
w = µ0,s(T,C)+vliqw (P −ps), where µ0,s(T,C) = µ0(T )+RT ln(ps(C)/psat)

is the chemical potential corresponding to bulk equilibrium between the solution and the

vapor (see also SI section 1). The difference between the pure liquid reference potential µ0

and the solution reference potential µ0,s encompasses the effect of solute and results in extra

terms due to the non-cancelling of µ0 and µ0,s when equating the vapor and solution chemical

potentials, contrary to the pure liquid case.

An equivalent expression to Equation 5 is

µsol
w (P,C) = µ0 + vliqw (P − Π(C)− psat) . (6)

where Π is the osmotic pressure of the solution, defined as the excess pressure of the pure

solvent that would be in equilibrium with the solution through a semi-permeable membrane

(see SI, section 1). The osmotic pressure, Π is related to the equilibrium vapor pressure of

the solution, ps, through

Π(C) = −RT
vliqw

ln

(
ps(C)

psat

)
+ ps(C)− psat. (7)

The term ps − psat is usually negligible (except for extreme dilutions of the solute, see SI
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section 1) so that the more familiar expression Π ' −RT ln(ps/psat)/v
liq
w is an excellent

approximation in most practical cases.

As a result, the equality of the solvent chemical potentials in the vapor phase (Equation

1) and in the solution (Equations 5-6) now requires

P = ps +
RT

vliqw
ln

(
p

ps(C)

)
(8)

when expressed in terms of vapor pressure, and

P = psat + Ψ(p) + Π(C) (9)

when expressed in terms of osmotic pressure. Equations 8-9 are generalizations of the Kelvin

relation (Equation 3). Note that Kelvin equation for pure solvent is a special case of Equa-

tions 8-9 in the limit of infinite dilution, for which ps = psat and Π = 0. Equation 9 indicates

that the presence of the solute simply shifts the liquid pressure predicted from the standard

Kelvin equation by the osmotic pressure Π. In practice, the liquid pressure predicted by

Kelvin equation is much larger in magnitude (∼ MPa) than the vapor pressure (∼ kPa) so

that to a very good approximation

P ' RT

vliqw
ln

(
p

ps(C)

)
' Ψ(p) + Π(C) (10)

The pressure mismatch between the solution (P ) and the vapor phase (p) imposed by

Equations 8-9 must be accommodated by capillarity through the curvature of the liquid-

vapor interface, as described by the Laplace equation P − p = −2γ/r, where γ [N/m] is

the liquid-vapor interfacial tension and where we have assumed that the menisci have a

hemispherical shape with a radius of curvature, r (Figure 2a, center). From Equations 8-9,

P − p = −2γ

r
=
RT

vliqw
ln

(
p

ps(C)

)
+ ps(C)− p = Ψ(p) + Π(C) + psat − p (11)
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or, neglecting vapor pressures compared to liquid and osmotic pressures,

−2γ

r
' RT

vliqw
ln

(
p

ps

)
' Ψ(p) + Π(C). (12)

Equations 11-12 indicate that when the pressure of the vapor, p, is equal to the bulk vapor

pressure of the solution, ps, the pore solution is at the same pressure as the vapor (P =

p = ps), and the solution-vapor interface is flat (1/r = 0), as depicted in Figure 2a, left. In

this situation, the vapor is sub-saturated with respect to the pure fluid, but saturated with

respect to the solution. When p < ps (vapor sub-saturated with respect to the solution),

from Equation 11, the pore solution must be at reduced pressure P < p, and the meniscus at

the pore mouth takes a shape as sketched in Figure 2a (center), corresponding to r > 0. As

we explain in the next section, this reduced pressure can be responsible for evaporation by

cavitation (nucleation of vapor bubbles, Figure 2b) within the large pores (veins), resulting

in the state with empty veins depicted in Figure 2a, right.

We also note here that if p > ps, Equation 11 predicts that the meniscus should be curved

outwards (r < 0) to accommodate an increased pressure in the pore fluid (P > p). Such a

configuration, however, is not possible for a hydrophilic material, as the solution tends to

spread out on the external surface instead of forming a meniscus with r < 0; as a result

Kelvin equilibrium is only possible when p ≤ ps in a hydrophilic pore.

Thus, imposing vapor conditions p > ps where the vapor is supersaturated with respect

to the solution (while still being sub-saturated with respect to the pure fluid) results in the

formation of a film of solution on the outside of the porous medium as depicted in Figures

2c-d. As we we discuss below (see section Filling–emptying by osmosis and capillarity), this

situation results in stresses (both positive, P > p, and negative, P < p), due to osmosis

instead of Kelvin equation and curved nano-menisci.

13



Cavitation, desorption, and poroelastic emptying

As discussed above, imposing a vapor pressure p < ps results in a reduced pressure P < p

in the pore solution. In fact, from Equation 10, the pressure quickly becomes negative

(P < 0) as p is decreased away from ps. This negative liquid pressure (tension) implies

that the liquid is metastable with respect to the nucleation of vapor bubbles (cavitation, see

Figure 2b).28,29 The probability of nucleation increases when the pressure gets more negative

(tension increases) and the nucleation rate is strongly non-linear as a function of pressure so

that in practice, cavitation happens only in a narrow range of pressure around a typical value

Pcav. Most studies with water in various systems have reported Pcav to be in the range −20

to −30 MPa, however the exact physical mechanism leading to these values is still unclear,

especially when compared to classical nucleation theory (CNT) of homogeneous cavitation;

CNT predicts cavitation of water at much more negative pressures. While the effect of

volume on cavitation pressure is expected to be small, mechanisms such as heterogeneous

nucleation on less hydrophilic solid surfaces or ubiquitous hydrophobic impurities have been

invoked.30 Identification of nucleation pathways is outside the scope of the present paper.

As in previous work,16 we use a modified CNT expression to fit our data, where an effective

surface tension is used instead of that of the bulk fluid, without committing to a specific

cavitation mechanism (see SI, section 3).

As discussed in our previous work with similar extreme ink-bottle systems,16 we also

consider that cavitation is possible only in the microscale cavities (veins), while confinement

in the nanopores hinders nucleation. As a result, the new equilibrium state reached after

cavitation is as depicted in Figure 2a (right panel): the empty vein is filled with vapor at the

same pressure as the outside vapor (p < ps), while the nanopores are still filled with solution

at negative pressure following Equations 8-9; the curvature of the liquid-vapor menisci both

at the vein/nanopore and at the nanopore/outside interfaces is given by Equation 11.

Emptying of the nanopores is possible by further decreasing the external vapor pressure

to induce desorption. This latter process occurs when the radius of curvature, r, of the liquid-

14



vapor interface exceeds the maximum value allowed by the geometry and local mechanical

equilibrium constraints, rdes = rp/ cos θ, where θ is the receding contact angle of the solution

on the solid.16 Using equation 11, desorption occurs when the vapor pressure reaches pdes '

ps exp
[
−2σ cos θ vliqw /(rpRT )

]
. For the urea solution with ps = 0.83×psat, using conservative

values rp = 2 nm, σ = 0.073 N/m, θ = 25o,23 we estimate that desorption occurs for

pdes/psat < 0.5. In the experiments reported here, we kept the vapor pressure far above pdes

so that desorption does not happen. In the following, we will thus consider that the nanopores

always remain full with solution as sketched in Figure 2. We will examine desorption and

condensation in the nanopores in the presence of solute in an upcoming paper.

When cavitation occurs, the tension in the liquid is locally relaxed because of the for-

mation of a bubble (Figure 2b); the negative pressure vanishes and conditions quickly re-

establish around equilibrium in the vein (P ' ps). However, the nanopores surrounding

the vein are still filled with solution at negative pressure: as a result, there exist a pressure

gradient that drives viscous flow out of the vein into the nanopores (blue arrow in Figure

2b). In fact, due to the very large negative pressures, these flows also involve compressibility

effects: as the pressure increases in the surrounding nanoporous layer, the volume of the

fluid decreases. This capacitance effect allows for transient flow into the nanopores that oc-

cur before steady-state flow to the edge of the sample is established. The coupling between

viscous flow and compressibility can be modeled by Biot’s theory of poroelasticity.16,31

We present in the SI (section 6) a simple poroelastic model that reproduces the bubble

growth dynamics observed after cavitation in our experiments. Given the geometrical param-

eters of our medium (nanoporous layer of depth Hp, porosity φ, and intrinsic permeability k,

micro-veins of width W and depth Hv (see Figure 1b-c), the predicted bubble growth (vein

emptying) time is

te =
π

φ

(
HvW

4HpPcav

)2
η

χk
, (13)

where χ[Pa−1] and η [Pa.s] are the compressibility and viscosity of the liquid. The predicted

poroelastic emptying time from equation 13 is te = 0.76 s for water and te = 1.17 s for the

15



urea solution (see SI, section 6 for details).

Filling–emptying by osmosis and capillarity

When the vein is empty as in Figure 2a (right) spontaneous refilling can occur if the vapor

pressure p is increased above ps. As we have discussed above (Thermodynamics of solution-

vapor equilibrium), there is no possible equilibrium in this situation since condensation of

the vapor into the solution at the pore mouths will result in a growing liquid film on the

outside of the sample (Figure 2c, top). Condensation of the vapor into that film will dilute

the solution, creating an imbalance in solute concentration (i.e., an imbalance in osmotic

pressure) between the inside of the sample and the outside, resulting in an osmotic driving

force. This driving force is directed towards high concentrations and thus induces a flow of

solvent into the sample, filling the micro-veins. The situation can be reversed when imposing

a vapor pressure p < ps: then the film evaporates, generating high concentrations at the

sample surface and outwards osmotic flow emptying the micro-veins (Figure 2c, bottom).

The capillary pressure of the liquid-vapor interface inside of the vein (∆Pc in Figure 2c) is

an additional driving force, which favors filling and resists emptying.

We now quantify the effects described qualitatively above. We consider the situation

sketched in Figure 2c with a film of solution covering the outer surface of the sample. Me-

chanical equilibrium imposes that the pressure, Pext, of the solution in that film is equal

to the imposed vapor pressure, p. We also assume that this outer liquid film achieves local

thermodynamic equilibrium with the vapor, so that its chemical potential is imposed by that

of the vapor. This latter condition imposes the solute concentration in the film, and thus

the local osmotic pressure Πext. Indeed, from Equations 1 and 6 we have:

Πext(p) = p− psat −Ψ(p), (14)

using the definition of the vapor water potential Ψ(p) (Equation 4). We assume that the
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osmotic pressure inside of the veins, Πin, is that of the solution used to fill the sample initially;

Πin is thus related to ps through Equation 7. As a result, the osmotic pressure imbalance is,

from Equations 4, 14, and 7

∆Π = Πext − Πin = p− ps −
RT

vliqw
ln

(
p

ps

)
' −RT

vliqw
ln

(
p

ps

)
, (15)

the approximation being justified by the small values of the vapor pressures compared to

osmotic pressures (see SI, section 1).

Equation 15 indicates that in response to the local equilibration with the vapor when

p > ps, the outer solution film gets diluted so that its osmotic pressure reaches a value below

Πin. This dilution is achieved by condensation of the vapor (Figure 2c, top). The osmotic

pressure difference between the outside and inside of the sample described by Equation 15

results in a solvent flux from the outer film to the vein, driven by osmosis. This osmotic flux

occurs even if the nanopores are not fully impermeable to the solute21,22 (see below), and

results in filling of the vein (bubble shrinkage). Symmetrically, for p < ps, the outer solution

is concentrated instead of diluted (Figure 2c, bottom), and the osmotically-driven flux of

solvent now results in emptying of the inner vein.

We note that the gradients of solute concentration existing in the situations depicted in

Figure 2c also induce diffusion of the solute (red arrows). In the filling situation (p > ps,

Figure 2c top), the solute diffuses from the inside to the outside of the sample, tending

to concentrate the solution in the external film. In order to maintain local thermodynamic

equilibrium (Equation 14), condensation of the vapor into the film must occur to maintain the

solute concentration (and thus the osmotic pressure) inside of the film constant, resulting in

growth of the film (black arrows). The situation is reversed during emptying (p < ps, Figure

2c bottom), where diffusion of solute back into the sample results in evaporation and film

shrinkage.

In this regime with a film of solution covering the surface of the sample, it is thus possible
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to switch reversibly between the filling (Figure 2c, top) and the emptying (Figure 2c, bottom)

situations by alternating the imposed vapor pressure between p > ps (filling) and p < ps.

As we explain below, the transition between filling and emptying is actually slightly shifted

from ps to p0 < ps due to capillary effects.

Indeed, in addition to the osmotic driving forces, an additional, small capillary driving

force associated with curvature of the liquid-vapor interface inside of the vein has to be taken

into account. The pressure of the solution in the vein, Pin, is lower than the vapor pressure

in the bubble, ps, i.e. Pin = ps + ∆Pc with

∆Pc = −2γ cos θ

(
1

W
+

1

Hv

)
< 0. (16)

for a vein with a rectangular cross-section W × Hv, and with θ the contact angle of the

meniscus on the solid that we assume equal to zero here (hydrophilic walls). The pressure

difference with the outside film at pressure Pext = p is thus

∆P = Pext − Pin = p− ps −∆Pc ' −∆Pc > 0. (17)

This driving force always favors the filling of the vein.

Filling and emptying of the veins thus occur under two types of driving forces: osmotic

(∆Π, from Equation 15) and hydrostatic (∆P , from Equation 17). We assume that transport

limitations are within the nanopores. As a result, gradients are established in the nanoporous

layer between the micro-veins and the sample edge, and the steady-state flow rate of the fluid,

Q [m3/s], is proportional to the quantities ∆P and ∆Π with a relation of the form22

Q = λ
k

η
(∆P − σ∆Π) (18)

where we defined Q as the filling flow rate (from the sample edge to the veins, positive

when the veins are filling), k [m2/s] is the permeability of the porous layer, η[Pa] is the fluid
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viscosity, λ[m] is a geometrical factor,32 and σ ∈ [0−1] is a dimensionless reflection coefficient

that accounts for the fact that the solute is not fully excluded from the pores, resulting in

a partial osmotic effect (σ = 1 for a fully excluding membrane, σ = 0 for a fully permeable

membrane).21,22 The value of σ thus depends on the interaction between the solute and the

pore walls. For purely steric interactions, assuming a spherical solute of radius rs and a pore

of radius rp (Figure 1a, inset), σ takes the simple form21,22

σ =

[
1−

(
1− rs

rp

)2
]2
. (19)

For a rp ' 1 nm pore and a solute with rs = 0.17 nm like urea (see Methods), we expect

σ ' 0.1 from Equation 19. We also note that using Equations 14, 15, 17, and neglecting the

vapor pressures, Equation 18 can be rewritten

Q = λ
k

η
σ (Ψ(p)−Ψ0) (20)

where we have defined

Ψ0 =
∆Pc

σ
− Πin (21)

the vapor water potential for which neither filling nor emptying occur (Q = 0). The corre-

sponding vapor pressure, p0, can be calculated from Equation 4, yielding the following simple

expression (using Equation 7 to relate Πin to ps and neglecting vapor pressures compared to

osmotic and capillary pressures)

p0 = ps exp

(
vliqw ∆Pc

σRT

)
. (22)

In our system, ∆Pc = −0.064 MPa and σ = 0.075 so that p0/ps ' 0.994. As a result, the

transition between the filling and emptying regimes (Figure 2c) should occur very close to

the equilibrium vapor pressure of the solution, ps. Larger deviations from ps would occur in

other systems with smaller vein dimensions (larger magnitude of the capillary pressure ∆Pc)
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or larger nanopores that would exclude the solute less (smaller value of σ). In general, ink-

bottle systems with a less extreme separation of lengthscales between the throats (nanopores)

and the voids (veins) would lead to larger deviations of p0 from ps in Equation 22.

Osmotic stress transients

The reversible filling and emptying by osmosis described in the previous section and Figure

2c are only dynamic, transient situations. Emptying ends when the bubble has expanded

to the full volume of the vein, at which point filling can be triggered again by switching the

vapor pressure to a value above ps. However, if filling is brought to completion, i.e. the

bubble disappears, a new situation appears, where the vein is full with solution (Figure 2d,

top). At this stage, if the pressure is brought back to p < ps, the situation does not reverse to

the osmotic emptying case of Figure 2c (bottom), because there is no more bubble available

for expansion to empty the micro-vein; instead, the situation is as described in Figure 2d,

bottom, with a vein full of solution, and a receding film of solution at the surface of the

sample. Obviously, this situation is only transient until the film completely disappears, at

which point the equilibrium depicted in Figure 2a (center) and governed by Kelvin equation

is established again. As we explain below, the situations in Figure 2d are associated with

osmotic stresses (positive for p > ps and negative for p < ps) that develop inside of the

sample.

The situations of Figure 2d, similarly to those of Figure 2c described in the previous

section, have a film of solution on the outside of the sample equilibrated with vapor. Con-

sequently, the osmotic pressure imbalance between the film and the inside of the sample is

still governed by Equation 15, with ∆Π = Πext − Πin < 0 for p > ps (Figure 2d, top) and

∆Π > 0 for p < ps (Figure 2d, bottom). Since the vein remains full in both situations,

there is no bulk solvent flow, and the osmotic driving force must be counter-balanced by a

pressure difference, ∆P = Pext − Pin of magnitude ∆P = σ∆Π, according to Equation 18
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with Q = 0. Using Equation 15 and neglecting the vapor pressures,

Pin = σ
RT

vliqw
ln

(
p

ps

)
. (23)

Equation 23 predicts that the system experiences an osmotic overpressure, Pin > 0 when

p > ps (Figure 2d, top), and an osmotic negative pressure Pin < 0 when p < ps (Figure 2d,

bottom). As in the previous section, as long as the outside film of solution exists, one can

switch reversibly from one situation to the other at any time by changing the vapor pressure

with respect to ps. We note from Equation 23 that Pin only differs from the equilibrium

pressure, P predicted by Kelvin equilibrium (Figure 2a center) by a corrective factor σ ≤ 1.

Indeed, from Equation 8 (neglecting vapor pressures), the Kelvin stress is P = RT ln(p/ps).

As a result, the stresses induced by steady-state osmosis are smaller than those implied by

Kelvin equilibrium, except in the case of a perfect semi-permeable porous medium (σ = 1)

for which they would be equal. From Equation 19, the osmotic stresses vanish quickly when

the pore radius gets larger (σ ' 4 (rs/rp)2 when rp � rs).

Results and Discussion

Thermodynamics: evaporation and condensation isotherms

We first recorded the state of the liquid in the veins when the sample was equilibrated with a

subsaturated vapor (pressure, p). This observation was possible because of the clear optical

difference between empty veins and veins full with liquid (Figure 1d). We performed these

experiments both with pure water and with solution in the sample.

For the evaporation branch (referred to as emptying branch in the following), we started

with an initially saturated sample, i.e. with both nanopores and micro-veins full with pure

liquid water or aqueous solution. We then imposed a steady value of vapor pressure with

p/psat < 1 and counted the number of full and empty cavities after 6 hours (Fig. 3a, down
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Figure 3: Thermodynamics: filling state of the veins with urea solution (red squares) and with
pure water (blue circles). (a) Isotherms reporting the fraction of micro-veins filled as a function of
vapor pressure. (b) Emptying branches re-plotted as a function of the calculated Kelvin pressure
(Equations 9-10). Continuous and dashed lines are fits from classical nucleation theory for the
emptying branches (SI, section 3). Similar results with lithium chloride solutions at different
concentratoins are presented in the SI (section 5).

arrows). We repeated 6-hour steps of decreasing vapor pressures until the micro-veins in the

sample were all empty.

For the condensation (filling) branch (Fig. 3a, up arrows), we started from a sample with

empty veins and increased the vapor pressure (humidity) until visible filling occurred in the

veins. For the sample filled with pure water, filling only occurred at saturation (p/psat = 1),

while in the case of a solution-filled sample, filling occurred in a narrow range of vapor

pressure around a value p0 far from vapor saturation (psat) but close to the equilibrium

vapor pressure of the solution, ps (p0/psat = 0.821 compared to ps/psat = 0.828, see Methods

and SI).

Both cases of pure water and urea solution displayed a qualitatively similar response, with

a large hysteresis (Fig. 3a). The hysteresis cycle was shifted towards lower vapor pressures

in the case of the solution, and its width was smaller than in the case of pure water.

The fact that filling occurred close to equilibrium for both water (p = psat) and solu-

tion (p = ps) in the micrometer-sized veins contrasts with the behavior of nanopores for
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which filling can occur far from equilibrium by capillary condensation.33 Recent estimates in

our laboratory16,23 have shown that capillary condensation in the porous silicon nanopores

constituting the nanoscale membrane in our samples occurs for p/psat ' 0.6, far below the

vapor pressures investigated here. This observation suggests that the filling and emptying

processes reported here in the micro-veins took place while the nanopores separating the

veins from the vapor phase were always full with liquid. Although this fact can seem sur-

prising at first sight, it is fully compatible with the model developed in the Theory section:

emptying occurs far from equilibrium via the nucleation of vapor bubbles (see Theory, section

Cavitation, desorption, and poroelastic emptying and Figure 2b) and thus does not require

a vapor path to form between the external vapor and the vein. Filling, on the other hand,

occurs close to equilibrium due to condensation of the vapor at the sample edge and the

resulting filling flow driven by a combination of osmosis and capillarity (see Theory, section

Filling-emptying by osmosis and capillarity and Figure 2c). Empyting by nucleation results

from the development of negative pressure (P < 0) in the liquid for p < ps (Equation 8), a

metastable state that relaxes by cavitation. We expect cavitation to occur when the negative

pressure becomes too large in magnitude, in a narrow range around Pcav that we expect to

be in the vicinity of −20 MPa, as we have shown previously.16

We estimated the liquid pressure P in the veins on the evaporation branch from the

modified Kelvin relation (Equations 8-9), neglecting vapor pressures (Equation 10, i.e. P =

Ψ(p)+Πin with Ψ(p) the vapor water potential as defined in Equation 4 and Πin the osmotic

pressure of the solution filling the micro-veins and the nanopores). From the desorption

branch in Figure 3a and Equation 10, we calculated the value of P using the vapor pressure

value p of every data point, both for the urea solution (Πin = 25 MPa) and for pure water

(Πin = 0), resulting in the data in Figure 3b. The data collapses onto a master curve, showing

a sharp transition at a pressure Pcav ' −18 MPa. The continuous lines in Figures 3a-b are

fits to classical nucleation theory (see SI, section 3). We also obtained similar collapse and

cavitation pressures with lithium chloride solutions of various concentrations (see SI, Figure
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S1a-b). These observations suggest that Equation 10 adequately describes the equilibrium

stresses induced in a confined solution by liquid-vapor coexistence. As we will show below,

these large tensile stresses implied by Kelvin equation also manifest themselves in dynamic

situations, but can also be replaced in some regimes by transient stresses of lower magnitude

dominated by osmotic processes.

Dynamics: filling and emptying flows

We investigated the dynamics of filling and emptying in our extreme ink-bottle porous sys-

tems in two distinct situations: complete filling and emptying refer to cases where all the

micro-veins begin empty (resp. full) and end up full (resp. empty) under the action of a

constant imposed vapor pressure, while partial cycles refer to cases where we prevent com-

plete filling by oscillating the vapor pressure to produce a succession of filling and emptying

situations.

Complete emptying and filling

We recorded the dynamics of filling and emptying of the extreme ink-bottle pores by mea-

suring the advancement or retraction of liquid in the veins when subjected to constant

conditions of vapor pressure. For filling, we started from a sample with empty veins (and

filled nanopores) equilibrated with a vapor at p < ps, and then imposed a steady p > ps

after t = 0. Inversely, for emptying, we started with full veins and imposed p < ps at t = 0.

Experiments were conducted with both pure water and solution, and the rates of filling and

emptying were obtained by image analysis by extracting the bubble length as a function of

time in every vein of the sample (Figure 1d).

Typical results are shown in Figure 4 for filling and in Figure 5 for emptying. Filling

and emptying displayed qualitative differences: while filling was a continuous and collective

process with all veins filling simultaneously (Figure 4), emptying occurred by discrete events

well separated in time (Figure 5). Individual emptying events were extremely fast and

24



0 15 30 45 60 75 90
0

0.2

0.4

0.6

0.8

1(b)

t (min)

(a)
fr

ac
tio

n 
em

p
ty

urea at 0.98

water at p / p
sat  = 1

urea at 0.86

Δt = 5 min

x

y

x

y

Figure 4: Dynamics of filling. (a) Typical image sequence (sample with urea solution with ps/psat =
0.83, filling in conditions with p/psat = 0.86 of water vapor), with a time interval, ∆t = 5 minutes.
Contrast has been increased to enhance the vein visibility. The dark spots visible on the sample
were due to defects on the outer surface of the glass and did not impact the dynamics. The inset
is a zoom showing the formation of bulk liquid in the form of droplets at the sample edge, where
the nanoporous membrane was exposed to the vapor. (b) Comparison between the dynamics of
filling with pure water in saturated vapor (p/psat = 1, blue curves, two experiments in the same
conditions are shown) and the dynamics of filling in subsaturated water vapor (p/psat < 1) when
the sample was filled with a urea solution (red curves). In both urea cases displayed, the urea
solution filling the sample was the same (ps/psat = 0.83), but the imposed vapor pressure was
different (p/psat = 0.98 and p/psat = 0.86, indicated as urea at 0.98 and urea at 0.86 in the Figure,
respectively).

25



0 2 4 6
0

0.2

0.4

0.6

0.8

1
(b)

t (min)

(a)

fr
ac

tio
n 

em
p

ty
ureawater

Δt = 2 min

8

 Δt = 0.1 s(c)

Figure 5: Dynamics of emptying. (a) Typical image sequence (sample with urea solution, emptying
in p/psat = 0.60 water vapor), with a time interval, ∆t = 2 minutes. Contrast has been increased
to enhance the vein visibility. (b) Dynamics with urea solution (red curve) and water (blue curve),
at p/psat = 0.60 and p/psat = 0.85, respectively. (c) Image sequence of a single micro-vein emptying
after cavitation in water with a time interval, ∆t = 0.1 s (see SI, section 6 for a detailed analysis of
these individual emptying events). Cavitation occurred between the top-most frame and the frame
just below.

unsteady (non-constant bubble growth rate), with bubble expansion times of ' 1 second

(see Figure 5c and SI, section 6 for a detailed analysis of the dynamics of individual bubble

expansion). In accordance with the equilibrium results described above (Figure 3), filling

with pure water only occurred at p = psat while filling with solution occurred for any situation

where the imposed vapor pressure was higher than p0 ' ps, with faster filling rates for

increasing vapor pressures. Also, no emptying occurred if the vapor pressure was not lowered

sufficiently away from ps, reflecting the thermodynamic hysteresis of Figure 3.

Comparing filling and emptying with pure water, it is clear that the dynamics displayed

a large asymmetry, with a slow filling (Figure 4b in blue) and fast emptying (Figure 5b, in

blue). At first, the difference does not seem as pronounced in the case of the urea solution,

since the total time to fill the sample at high vapor pressure was typically comparable or

faster than emptying (Figures 4b-5b, red curves). However, as noted above, individual

emptying events showed bubble growth rates several orders of magnitude faster than bubble
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collapse rates during filling (Figure 5c and SI, section 6).

Partial emptying and filling cycles
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Figure 6: Dynamics of partial filling and emptying in a single micro-vein, achieved with oscillating
external vapor pressure to prevent bubble collapse. Sample was filled with urea solution (ps/psat =
0.83). (a) Imposed vapor pressure variations. The dashed horizontal line corresponds to the solution
equilibrium vapor pressure, ps. (b) Filling and emptying response, measured as a function of bubble
length, X(t), normalized by the micro-vein length, L. (c) Filling rate, Q, as a function of driving
force. Ψ0 is the vapor water potential at which neither filling nor emptying occurs, as measured
experimentally.

In order to compare emptying and filling in a more symmetrical situation, we also ran

experiments where we prevented the generation of strongly metastable states and their re-

laxation through cavitation by using a micro-vein with a pre-existing bubble. To do so, we
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first did a filling experiment as in Figure 4 with solution in the sample and p > p0 until only

one micro-vein still contained a bubble. Before this last bubble collapsed, we lowered the

vapor pressure to a value below p0 but not low enough to induce cavitation. As a result, the

bubble started expanding again due to the induced emptying of the vein, without bubbles

forming in other veins.

We then made this bubble undergo cycles of filling and emptying, making sure that the

bubble never collapsed completely (Figure 6a-b). The results show a clear, steady-state

response to both emptying and filling; this steady-state behavior contrasts dynamics due

to cavitation that was largely unsteady, both globally (Figure 5a-b) and for single events

(Figure 5c and SI, section 6). We extracted the flow rates from linear fitting of the responses

as in Figure 6b and the geometry of the veins, yielding the results reported in Figure 6c.

General discussion

It emerges from the results above that the comparison between filling and emptying is not

trivial, and the qualitative difference in dynamics (e.g. continuous, collective filling vs.

intermittent emptying mediated by fast, discrete events) indicates different physics at play.

Kelvin equilibrium and filling–emptying isotherms

We have shown from the results displayed in Figure 3 that isotherms of filling-emptying in the

micro-veins of our sample were consistent with Kelvin expression for pure water (Equations

3-4 or Equations 8-9 with Π = 0 and ps = psat) and the modified Kelvin expression (Equations

8-9) for a solution, yielding the following scenario.

Following the emptying (evaporation) branch, as the vapor pressure is lowered below

psat for pure water or ps for the solution, the curvature of the liquid-vapor interface in the

nanopores (Figure 2a, center) results in a large negative pressure (tension) in the liquid;

this tension gets larger in magnitude for lower vapor pressures. At some point the stress is

so large that bubbles spontaneously nucleate in the liquid in the micro-veins, triggering an
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emptying of the microcavities by cavitation and subsequent bubble expansion (Figure 2b).

Using the Kelvin expressions, the pressure for cavitation was found to be ' −18 MPa for

both water and urea solution (and lithium chloride solutions, see SI section 5), suggesting a

weak effect of the presence of solute on the cavitation pressure. As discussed in the Theory

section, it is unclear what physical mechanisms explain cavitation pressures around -20 MPa

for water, but this value seem to be found in a variety of experiments, including some earlier

studies from our group on similar silicon/glass extreme ink-bottle systems.16 Regardless of

the cavitation mechanism, nucleation rates are expected to depend mostly on the pressure,

P , in the liquid,28 so that emptying branches of isotherms originating from cavitation should

be universal when plotted as a function of the calculated Kelvin pressure, P in Equations 3

and 8-9, as we have demonstrated in Figures 3a-b and S1a-b.

On the filling (condensation) branch, we have shown filling at a vapor pressure p0 very

close to saturation (psat for water, ps for solution). From Equations 3 and 8, this situation

corresponds to P ' 0 (neglecting vapor pressures) so that filling isotherms also collapse when

plotting them in terms of the Kelvin pressure, P (Equations 3 and 8-9), in the form of a

step jump from empty to full at P = 0 (Figure 3b). We note that filling occurring at p0 ' ps

(P ' 0) is characteristic of the extreme ink-bottle geometry, due to the weak capillary

pressure in the micro-veins. For regular ink-bottles without extreme size separation, filling

should occur further away from saturation, (p0 < ps and P < 0), as described by Equation

22. However, we expect that the collapse of isotherms when plotted in terms of Kelvin

pressure P should still exist.

Cavitation and poroelastic emptying: unsteady dynamics

The fast emptying dynamics after cavitation as in Figure 5c also provides a way to check

the magnitude of the negative pressures generated prior to cavitation in the liquid. The

excellent agreement between bubble expansion times measured experimentally (Figures 5c

and S2) and our model (Equation 13 and SI section 6) indeed confirms that emptying flows
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are driven by ' −18 MPa driving forces that relax through a poroelastic process.

This poroelastic relaxation is also responsible for the intermittent dynamics observed

experimentally (Figure 5b): as we have shown recently,16 this complex dynamics is typical

of extreme ink-bottle porous media and comes from the large spatio-temporal fluctuations

in pressure associated with the coupling between nucleation kinetics in the metastable liquid

and poroelastic relaxations in the porous medium. We refer the reader to our previous work

for a detailed analysis of these effects.16

Steady-state filling: Kelvin vs capillarity vs osmosis

In contrast to the dynamics of emptying by cavitation, the continuous filling dynamics

(Figures 4 and 6) suggests a response to a quasi-steady driving force. Here, we examine

the origin of this driving force and show that it is not governed by Kelvin equation, but is

dominated by an osmotic process associated with the formation of a condensation film on

the outside surface of the medium, with a weak contribution of the capillary pressure of the

liquid-vapor interface in the micro-veins.

The dynamics of filling (Figures 4 and 6) for p > ps showed a clear decrease of the filling

time when p is increased, demonstrating a vapor-pressure-dependent driving force for filling.

At first sight, this response seems consistent with vapor pressure-dependent stresses implied

by Kelvin equation: Equation 10 predicts that for p > ps, large positive pressures should

be generated at the sample edge for a solution. However with pure water, generating such

positive pressures would require p > psat (see Equation 3), i.e., a vapor supersaturated with

respect to bulk water condensation, a case that we do not consider here. As a result, the only

driving force for filling with pure water is the negative capillary pressure ∆Pc associated with

the curvature of the liquid-vapor menisci inside of the microscale veins (Figure 2c). Following

this reasoning, the rates of filling between pure water (Qw) and solution (Qsol) should scale

as Qsol/Qw ' (Ψ + Πs)/(−∆Pc). However, the ratio predicted by the latter expression is an

order of magnitude higher than observed in the experiments (e.g., Figure 4); this discrepancy
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cannot be explained by the viscosity ratio between pure water and the solution. In other

words, the driving force for filling is apparently not as large as predicted from the modified

Kelvin equation.

The experimental observation of the formation of bulk droplets on the edge of the sample

during filling at p > ps (Figure 4a, inset) suggests why the dynamics is different than

predicted from Kelvin equation. Indeed, as we discussed in the Theory section, Equations

8–10 imply the formation of individual nano-menisci at each pore mouth supporting the

large difference in pressure between liquid and vapor through Laplace equation. Bulk liquid

present at the sample surface prevents the formation of these nano-menisci, as pore mouths

are covered with liquid and not in contact with the external vapor. Kelvin equilibrium is

thus not applicable in this situation. As explained in the Theory section, the origin of this

external liquid is spontaneous condensation of the vapor at the surface when p > ps, because

the vapor is then supersaturated with respect to the solution. Local equilibrium between that

surface layer and the vapor imposes a solute concentration different than that inside of the

sample, resulting in an osmotic imbalance. Filling dynamics is thus driven by osmosis, with

a small extra capillary driving force from the meniscus inside of the micro-vein (Figure 2c).

As illustrated by Equation 23, we expect that the stresses induced by osmosis are reduced by

a factor σ ' 0.1 compared to Kelvin, thus explaining the Kelvin-based order-of-magnitude

overestimation in the previous paragraph.

Symmetrical emptying and filling responses in partial cycles

From the discussion above, the stresses and associated dynamics should show a clear change

of behavior between filling and emptying, with a strong, Kelvin-induced response for p < ps

(emptying), and a ∼ 10-fold reduced osmotic response for filling. This proposition is in

apparent contradiction with the results of Figure 6c, which show a response that varies

continuously across all vapor pressures when performing filling-emptying cycles.

As we show below, the solution of this contradiction lies in the existence, when imposing
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p < ps, of a transient phase dominated by osmosis, before the establishment of the Kelvin

metastable equilibrium. As we discussed previously, imposing p > ps results in the formation

of a film of diluted solution on the sample surface (Figure 2c, top and Figure 4a, inset). This

film grows in thickness over time, as solute is driven into the film by diffusion while further

condensation from the vapor ensures that the outer solute concentration remains constant in

the film to maintain local equilibrium with the vapor (Figure 2c, top). If the vapor pressure is

now switched to p < ps, the situation is reversed in a symmetric way: the outer solution must

increase in concentration to achieve equilibrium with the vapor, thus diffusion drives solute

back into the pores, and evaporation into the vapor occurs to keep the film concentration

constant (Figure 2c, bottom). With this picture of the processes, the filling and emptying

processes are symmetrical, explaining the continuous behavior of the flow rates, governed by

Equation 20.

Note that since in the osmotic emptying situation (Figure 2c, bottom) the outer solution

layer shrinks over time, the film eventually disappears, and nano-menisci compatible with

the pore-scale picture of the modified Kelvin equation (Figure 2a, center) can form again.

There are thus two types of driving forces during emptying: when a transient film of solution

is present at the sample surface, an osmotic driving force dominates, associated with a solute

concentration larger on the outside of the sample than inside, while for longer times, a larger

hydrostatic driving force develops, governed by Kelvin equation. The transition between

these two regimes could explain the increase in emptying rate that can be observed in Figure

5b for the urea solution after t ' 4 min.

Magnitude of the osmotic effect: the reflection coefficient

Since filling with pure water is driven by capillarity while filling with solution is driven

by osmosis, comparison between the flow rates obtained in the case of pure water and in

the case of a solution allows us to quantify the osmotic effect. Indeed, with pure water

only the micro-vein capillary pressure, ∆Pc = −0.064 MPa (Equation 16) drives the filling
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flow. From Equation 18, Qw = λk(−∆Pc)/ηw, with ηw the viscosity of pure water. In

the presence of solute, the flow rate resulting from osmosis is given by Equation 20, i.e.

Qsol = λkσ(Ψ(p) − Ψ0)/ηs, with ηs the viscosity of the solution. As a result, the ratio of

filling flow rates

Qsol

Qw

= σ
ηw
ηs

Ψ(p)−Ψ0

(−∆Pc)
(24)

provides access to the reflection coefficient σ, which quantifies the magnitude of the osmotic

effect (see Theory).

Using the data in Fig. 6c from partial filling-emptying cycles, yields σ = 0.064 if the data

is linearized around Ψ = Ψ0, with a range σ = 0.041 − 0.103 across all data points due to

the nonlinearity of the experimental response. Similarly, the complete filling dynamics data

from Figure 4b can be used to measure the average filling flux as Q = Vveins/τ where Vveins

is the total combined volume of the veins, and τ is the total filling time. Comparing the

filling rate for water (Figure 4b, blue) and for the urea solution at a variety of concentrations

(Figure 4b red, and SI, Figure S1c) yields σ = 0.09 ± 0.02, using Equation 24. All these

values (from partial cycles and from global filling dynamics) are comprised in the range

σ = 0.075± 0.035, (25)

a value that is in good agreement with theoretical estimates based on steric interactions

between the solvent and the pore walls. Indeed, Equation 19 predicts σ = 0.065 ± 0.032

using the pore size estimate 1.4±0.4 nm obtained from N2 porosimetry.16,23 We also checked

the consistency of the above value of the reflection coefficient σ by studying the competition

of osmotic filling with inner gas pressure when performing experiments in air rather than

in vacuum (see SI, section 7). We obtained similar, but slightly larger values of σ from the

analysis of lithium chloride experiments (see SI, section 5), suggesting that penetration of

the solute into the pore is more hindered (larger σ) for lithium chloride than for urea.

It is unclear why the flux response as a function of the osmotic driving force as in Figure 6c
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is nonlinear. This observation could be the result of several effects, including the dependency

of transport coefficients (viscosity, diffusivities) on the solute concentration, concentration

polarization effects due to convection as the fluxes get larger in magnitude, and effects of

concentrated diffusion.34

General picture

The data and discussion above yield the following picture for statics and dynamics of confined

liquid-vapor equilibria in the presence of solutes, consistent with the diagrams in Figure 2.

First, considering thermodynamics along quasi-static isotherms, we have shown that the

solutes impose a shift in the condensation-evaporation characteristics in the micro-veins

that can be described by a modified Kelvin equation that includes the osmotic pressure

of the solution (Equations 8-9). In the evaporation branch, strong metastability (negative

pressure) develops until spontaneous cavitation induces emptying of the micro-veins, while

on the condensation branch filling of the veins occurs close to equilibrium (saturation), driven

by capillarity in the micro-veins. Saturation occurs at p = psat for water, and p = ps < psat

for a solution.

Second, we have considered the dynamics of filling and emptying in out-of equilibrium

situations. At vapor pressures low enough to induce cavitation, we observed emptying dy-

namics dominated by discrete nucleation events followed by fast, unsteady, poroelastic bubble

expansion driven by the large Kelvin stresses. Filling, on the other hand, occurred at high

vapor pressure. With pure water, filling only occurred by capillarity at p = psat, but solu-

tions allow us to explore situations where the vapor is actually supersaturated with respect

to the equilibrium vapor pressure of the solution, i.e. ps < p < psat. We have shown that

the resulting condensation on the sample edge triggers a faster filling process dominated by

osmosis, which is directly controlled by the degree of supersaturation, p/ps of the vapor.

We have also explored filling-emptying cycles induced by oscillating the vapor pressure

above and below ps when a film of solution is present at the sample surface. With a partially
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empty micro-vein, the oscillation results in more symmetrical filling and emptying flows both

driven by osmosis, as long as a bubble is maintained in the vein (Figure 2c). If the bubble

collapses, potentially large, transient osmotic stresses are generated, with a sign that depends

on the saturation of the vapor with respect to ps.

Conclusion

We have studied the thermodynamics and dynamics of condensation and evaporation from

extreme ink-bottle porous structures (micro-veins combined with nanopores) filled with aque-

ous solutions. We have shown that emptying of the micro-veins upon evaporation occurred

far from equilibrium due to the generation of metastability (negative pressure) in the liq-

uid, relaxing by cavitation, i.e., the nucleation of vapor bubbles. Inversely, filling during

condensation proceeded at near equilibrium conditions. This striking difference between

evaporation and condensation resulted in large, steep hysteresis of the filling state of the

medium as a function of vapor pressure.

We have demonstrated that the tensile stresses in the liquid were well described by a

modified Kelvin equation that takes into account the osmotic pressure of the solution. These

large tensile stresses played a direct role in the kinetics of cavitation (classical nucleation

theory) and in the fast, poroelastic expansion dynamics of bubbles after nucleation. On

the contrary, we showed that Kelvin equation failed to describe positive liquid pressures,

due to the formation of bulk solution films on the outer edge of the sample; these films are

incompatible with the presence of pore-scale nano-menisci. In this situation, the driving

forces were due to partial osmosis (reflection coefficient, σ < 1), resulting in limited stresses

compared to Kelvin equation. In fact, we showed that this osmosis effect could also play a role

in the negative-pressure regime, by replacing the Kelvin effect when the sample is temporarily

covered with a layer of solution, resulting in a steady-state transient of lower stress and slower

emptying fluxes compared to those induced by Kelvin stresses. The resulting relaxation
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dynamics under vapor pressure changes reflected the various driving forces, with symmetrical,

slow osmotic filling-emptying dynamics at short timescales, and significantly faster emptying

by cavitation at longer timescales due to the large Kelvin stresses.

We note that although we have only analyzed the effect of Kelvin and osmotic stresses

from the bubble nucleation and dynamic flow response that they generated, these stresses

(that can be both tensile and compressive depending on the imposed vapor pressure) should

also impact the solid matrix and trigger reversible deformations or potential damage, de-

pending on the mechanical characteristics of the material. This opens perspectives to extend

existing studies of the impact of liquid-vapor equilibria on the mechanics of materials (e.g.

granular cohesion4 or elastocapillarity35) to the case of solutions, with the new phenomena

(osmosis, shifted Kelvin) elucidated here.

Globally, the results reported in this paper a) show the usefulness of the extreme ink-

bottle platforms for the study of basic processes in porous media, with convenient optical

access and direct visualization of the filling state of the larger pores (veins), b) elucidate the

interplay between liquid-vapor equilibria (Kelvin), capillarity and osmosis when the pores

are filled with solution, providing a solid basis to model more complex porous media, c)

can be applied to technologies using stresses induced by evaporation-condensation such as

tensiometers,36 heat pipes37 and actuators.38

Some important aspects not considered in this paper deserve to be mentioned. First,

by working in vacuum we have eliminated complications due to the presence of air. While

we do not expect air to modify appreciably the thermodynamic equilibria investigated here,

its presence could impact dynamics significantly. As illustrated by the complementary ex-

periments described in the SI (section 7), air pressure adds an extra driving force, which

depends on how fast air diffuses into the solution-filled matrix. Future work should elucidate

the complex interplay between different transport mechanisms and driving forces. Second,

we have focused on filling and emptying of the microstructure (veins) in situations where

the nanopores stayed full with liquid. Going to vapor pressures low enough so that the
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nanoporous matrix itself starts drying brings new phenomena, such as desorption, solution

concentration, and crystallization of the solute. We investigate this situation in an upcoming

article.

We finally note that most of the results obtained here for extreme ink-bottles are appli-

cable to more general pore architectures, in particular the modified Kelvin equation and the

effects of osmosis on filling and emptying dynamics. The specificity of ink-bottles is that

emptying occurs by bubble nucleation rather than the invasion of vapor from the edge.
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