
HAL Id: hal-02364729
https://univ-lyon1.hal.science/hal-02364729

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Investigation of signal extraction in the frame of laser
induced breakdown spectroscopy imaging
Vincent Motto-Ros, S. Moncayo, F. Trichard, F. Pelascini

To cite this version:
Vincent Motto-Ros, S. Moncayo, F. Trichard, F. Pelascini. Investigation of signal extraction in the
frame of laser induced breakdown spectroscopy imaging. Spectrochimica Acta Part B: Atomic Spec-
troscopy, 2019, 155, pp.127-133. �10.1016/j.sab.2019.04.004�. �hal-02364729�

https://univ-lyon1.hal.science/hal-02364729
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

Investigation of signal extraction in the frame of LIBS imaging 

V. Motto-Ros1*, S. Moncayo1, F. Trichard2, F. Pelascini3

1 Institut Lumière Matière UMR 5306, Université Lyon 1 - CNRS, Université de Lyon 69622

Villeurbanne, France 

2Ablatom S.A.S, Bâtiment Kastler, Domaine Scientifique de la Doua, 10 rue Ada Byron, 

69622 Villeurbanne Cedex, France 

3Cetim Grand Est 67305 Schiltigheim, France 

Keywords: LIBS, Elemental Imaging, Line Intensity Extraction 

Highlights 

• This paper focuses on the evaluation of various intensity extraction methods for LIBS-

based imaging.

• Based on a statistical evaluation, we show the possibility of associating uncertainty with

each extracted value.

• A conditional extraction method is proposed based on this uncertainty estimation.
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Abstract 

Laser-induced breakdown spectroscopy (LIBS)-based imaging techniques have become well 

known among spatially resolved elemental approaches due to their mature instrumentation and 

outstanding advantages and applications. Data processing and in particular signal extraction are 

key in all LIBS-based imaging analyses to provide robust and reliable results. To date, there 

has not been a statistical evaluation of this issue when processing large and complex LIBS 

datasets. In this work, we aimed to test the performance of three extraction methods applied to 

micro-LIBS-based imaging. We also proposed a new conditional data extraction procedure 

relying on the statistical uncertainty associated with the extracted signal. We built a synthetic 

spectral dataset with controlled spectral features and tested the linearity, dynamic range and 

operating speed of different extraction approaches. The results of this study demonstrate the 

importance of data extraction and provide evidence for its optimization. This procedure is of 

particular relevance for the extraction of weak line intensities and in cases where the presence 

or absence of certain elements is critical (i.e., biomedical applications or trace analysis). In 

addition, the proposed conditional approach offers new insights into the means of providing 

LIBS imaging results. 

 

Abstract figure 



3 

 

1. Introduction 

In the last few years, the application of laser-induced breakdown spectroscopy (LIBS) to 

elemental imaging has attracted increasing attention and is currently a promising axis for LIBS 

development. In LIBS-based imaging, a laser-induced plasma is generated at each position of 

the sample surface covering the region to be analyzed. After extracting the line intensities 

associated with the elements of interest from each recorded spectrum, elemental maps are then 

built to obtain the corresponding elemental images [1-5]. Compared to other spatially resolved 

techniques, LIBS-based imaging offers several advantages, such as table-top instrumentation, 

ease of use, speed of operation, detection of light elements, micrometer spatial resolution and 

accessible limit of detection (LOD) at the ppm level [4, 6]. Among the panel of spatially 

resolved elemental approaches, this approach has demonstrated its potential to become a 

reference technique by providing successful results in various fields of application, including 

geological studies [4, 5, 7-10], industrial applications [11-15], and biomedical analysis [16-21]. 

Although LIBS-based imaging technology and instrumentation are currently mature, the 

challenging task of processing large spectral datasets remains vaguely explored. New 

developments and solutions in these aspects are still required. LIBS imaging spectral datasets 

share features and problems with multispectral imaging approaches [22]. Each spectrum (i.e., 

pixel) of the image may be defined by a large number of intensity channels, and difficulties 

arise in extracting and representing the more relevant information of a spectral dataset. 

Additionally, LIBS imaging experiments are carried out in single-shot mode. The spectra are 

then generally noisy, and the signal to be extracted is close to the baseline level. In addition, 

the large amount of data generated does not allow manual processing of spectra, and extraction 

procedures able to work in an unsupervised manner and to ensure reliable results are needed. 
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Despite the large amount of literature published on LIBS-based imaging and the importance of 

data processing, very few studies have considered the influence of data extraction procedures 

on the quality of LIBS imaging results. To date, aspects regarding data extraction have only 

been reported in conventional macro-LIBS [23-26]. Our group has proposed several data 

processing strategies adapted to the megapixel LIBS-based imaging of single- and multiphase 

materials [4, 21, 27]. Other approaches based on the use of chemometrics have also been 

reported by several groups with promising results for the future [28-31]. 

To the best of our knowledge, there are no results in the literature focusing on data extraction 

procedures applied to micro-LIBS-based imaging. Here, we aim to evaluate the quality and 

robustness of different extraction methods applied to micro-LIBS-based imaging and to assess 

a new data extraction procedure based on a conditional threshold criterion. The original idea 

introduced in this manuscript consists of working with synthetic spectral datasets that are built 

with controlled spectral features (line intensity, line shape, and noise) and then evaluating the 

extraction methods in terms of sensitivity to noise, dynamic range and processing speed. 

Additionally, we also estimate the statistical uncertainty of the extracted signals and assess a 

conditional extraction approach for both synthetic and real LIBS images. 

 

2. Materials and methods 

2.1. Preamble 

When performing a LIBS imaging experiment, it is common to wonder whether a specific pixel 

is just noise or whether it represents a significant signal. This point is critical in the case of 

analyzing trace elements and samples that produce weak signals, as occurs, for instance, in 

many biomedical applications. Currently, the answer is subjective: the spectrum corresponding 

to such a pixel has to be manually explored, and the analyst will eventually make the decision 
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based on his/her experience. Under these conditions, the validity of the result may be 

questioned, which represents a weakness of the method. To validate a LIBS image and the 

intensities reported in each pixel, the first aspect to be evaluated is the extraction procedures 

that can be applied. As mentioned above, data extraction has to be unsupervised, and it should 

operate as fast as possible and ideally cover a large dynamic range (from trace to major emission 

lines). To assess such extraction procedures, our first idea was to analyze a homogenous sample 

(with known elemental concentrations), then apply different extraction methods to the collected 

spectra and evaluate their figure of merits. This approach is however not possible, because such 

evaluation requires to know in advance the line intensity that should be extracted. In practice, 

there are operational issues such as the shot-to-shot fluctuations of the laser pulse energy, the 

sample flatness and possible surface contaminations, and more importantly the heterogeneity 

of sample itself. It is indeed difficult, if not impossible, to design a material rigorously 

homogenous at the scale of the laser spot (∼ 5 µm in our case).  

To overcome this constraint, we created a synthetic dataset from a dummy image where the 

intensity of and noise associated with each pixel were known. We obtained an experimental 

spectrum to simulate a synthetic dataset as close as possible to an experimental dataset (i.e., 

same line shape and width, similar noise level, etc.). Then, we applied different extraction 

algorithms to evaluate their performances. Notably, this dataset applies to a simple spectrum 

with isolated emission lines (free from interferences) and a simple continuum structure, as 

normally found in most of our numerous biological specimens, calcium carbonate samples, 

aluminum-based matrices and so on [5, 6, 11, 14]. 

 

2.2. Experimental spectrum 

The general protocol and the LIBS instrument used for this study have already been 

described in previous reports [5, 6, 32]. Briefly, we used an IR laser pulse energy of 1 mJ with 
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a laser spot size of approximately 8 µm, and plasma emission was analyzed by using a 300 mm 

focal length Czerny-Turner spectrometer (Shamrock 303, Andor Technology) coupled to an 

ICCD camera (Istar, Andor Technology). The spectrum was obtained with 1 µs of delay time, 

a time-width gate of 3 µs, an ICCD gain of 1500 and argon gas flowing through the plasma 

region. Our spectrometer was equipped with a 1800 l/mm holographic grating, allowing a 

spectral range of approximately 20 nm to be covered. The entrance slit of the spectrometer was 

set to 30 µm. With this configuration, the spectral resolution was 0.08 nm, and the distance 

between two consecutive points (i.e., spectral channels) was 0.023 nm. 

We recorded a single-shot spectrum from a reference sample containing 50 ppm zinc in an 

epoxy matrix (cf. figure 1). From this spectrum, we retrieved the spectral information required 

to simulate the synthetic dataset: the line shape can be considered a Lorentzian profile; the 

continuum emission was constant in the probed spectral range; and the noise follows a Gaussian 

distribution with a standard deviation of 170 counts. The last of these three points shows that 

when the line intensities are weak (i.e., close to the background value), the spectral noise can 

be considered independent of the intensity level [33]. We will make this assumption in all the 

following studies. 
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Figure 1: Single-shot spectrum from a reference sample containing 50 ppm zinc in an epoxy 

matrix (dotted plot). A fit (red curve) was obtained using four individual Lorentz profiles and 

a polynomial baseline (green curves). The inset shows the histogram of spectral noise retrieved 

from the fit residue, which follows a normal distribution. 

 

2.3. Synthetic spectral dataset 

By keeping the spectral features of our experimental Zn spectrum, we simulated a series of 

spectra for nine different intensity levels (net intensity of Zn I at 213.86 nm) defined from 4 to 

1024 in arbitrary units (a.u.). We added a constant continuum value of 100 a.u. and random 

Gaussian noise with a standard deviation of 8 a.u. (figure 2a). This synthetic dataset was 

simulated from the square image shown in figure 2b, defined by 450x450 pixels. This image is 

composed of nine levels of intensities that result in a dynamic range extending from 0.5 to 128 

in terms of SNR. A zone of the image with a constant intensity level (i.e., the different colors 

in figure 2b) corresponds to a rectangle of 450 x 50 pixels. As we will see in the following, the 

22 500 pixels contained in each rectangle allow evaluation of the average extracted intensity as 

well as its associated standard deviation. 
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Figure 2: a) Simulated spectra for Imax=1024, 256, and 64 a.u. b) Synthetic image containing 9 

levels of intensities, varying from 4 to 1024 a.u. 

 

2.4. Extraction methods 

We considered three different methods for extracting the line intensities from LIBS spectra 

as detailed hereafter and summarized in figure 3. The method description, baseline calculation 

and extraction speed are also given in table 1. These three selected methods were chosen to 

fulfill the requirements in terms of speed imposed by LIBS imaging: they all have an extraction 

speed above 1000 spectra processed per second (cf. table 1). These values were estimated in 

the LabVIEW environment using a personal laptop configured with an Intel core i9 processor 

and 32 GB of RAM. For instance, spectral fitting by using Lorentzian, Gaussian or Voigt 

profiles is not adequate, as it is relatively slow (approximately 10 spectrum/second) and requires 

human supervision to avoid the possible divergence of the fitting algorithm. 

The first selected method (E1) is based on a simple intensity subtraction Imax-Imin, where Imin 

and Imax are respectively the minimum and maximum intensities in a predefined spectral range. 

The second (E2) is also based on the subtraction Ipeak-Imin, in which Imin is defined as the value 

of the baseline estimated from a polynomial fit in a spectral window close to Ipeak. Ipeak is 

retrieved from a peak detection algorithm that uses the second derivative of the line shape (Peak 

Detector VI, LabVIEW). The spectral ranges in both E1 and E2 were defined by the analyst as 

corresponding to tenfold the line width for each side, and the signal corresponds to the net peak 

intensity. Finally, the third extraction method (E3) used two spectral windows defined by the 

analyst covering the line of interest and the surrounding background, respectively. The line area 

can then be calculated by Eq. 1: 

  �� = ∑ ��
���	
 − ��������,        (1) 
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where �� and ��� represent the number of points in the signal and background windows, 

respectively, and ������ the average value of the background within ���. 

 

Figure 3: Description of the three methods of data extraction (labeled from 1 to 3) evaluated. 

Methods E1 and E2 are based on the extraction of the intensity of the line, while methods E3 is 

based on the calculation of the peak area. 

Table 1: Features of the three investigated extraction methods. 

Method Description Baseline Extraction speed 

(spectra/seg) 

E1 Max – Min Punctual 32 000 

E2 
Peak 

Detection 
Polynomial fit 

� = 2 
5 000 

E3 Peak Area Averaged 28 000 

 

3. Results 

3.1. Evaluation of the extraction methods 

We applied the three extraction algorithms to retrieve the net intensity (E1 and E2) and line 

area (E3) of the Zn I line and to convert it into a matrix displayed as an image by a false color 

scale. A portion of the extracted image is shown for E1, E2, E3 and the original image in figure 

4a. The 22 500 spectra (450 x 50 pixels) contained at each intensity level were used to calculate 
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the average extracted intensity and its associated standard deviation. Figure 4b shows the 

averaged extracted intensities and the corresponding expected value. E1 showed an important 

bias for spectra with SNR values below 20, as it was highly sensitive to noise and thus was not 

adequate when dealing with weak line intensities. Indeed, the observed bias was mainly 

produced by the extraction of the background Imin. However, to a lesser extent, E2 was also 

affected by spectral noise. This effect became important for those spectra with an SNR lower 

than eight. The polynomial baseline fitting reduced the uncertainty in the estimation of Imin 

compared to E1. However, this algorithm uses 60% of the lowest values to perform the 

polynomial fit, which may have induced an underestimation of the background. Moreover, for 

weak emission lines, the peak detection algorithm was not always able to find the maximum, 

causing inaccuracies in the Imax determination. In contrast, E3 showed a linear correlation within 

the whole dynamical range and was able to accurately extract the intensity values even with 

low SNR spectra. E3 intensity values were rescaled by a factor of 0.14 (ratio between the line 

maximum and the line area) to display the three extraction outputs on the same graph. In the 

following, we aimed to optimize the E3 method by investigating the effect of modifying ��� 

and ��. 
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Figure 4: Extraction results of the three selected methods. The reported intensity values are 

expressed in arbitrary units. a) Portion of the extracted images. b) Evolution of the extracted 

averaged intensities. 

3.2. Uncertainty and optimization of the extraction method E3 

As shown above, method E3 did not introduce any bias; therefore, using Eq. 1 and 

considering the same standard deviation (�) from the emission the line of interest and the 

background, it is possible to determine a statistical uncertainty (��) associated with each 

extracted value (�� ) by Eq. 2: 

��� = ��×��
���

�
�

+ ��� × �
����

�
�

= �� × �)� ! 

��

+ 

���

"    (2) 

This uncertainty may be represented as a function of the number of points that encompasses the 

continuum and the signal windows used, ��  and ��, respectively. The influence on �� of both 

��  and ��  is shown in figure 5 in the case of an SNR of 32. Figure 5a represents a single 

spectrum in the range of the Zn I line of interest. The signal window ∆λ (associated with ��) 

and the full width at half maximum of the emission line (δλ) are also indicated. Figure 5b 

presents the signal uncertainty, calculated as �#$%�%) = �� ��⁄ , for two �� values, 7 and 17, and 

varying �� . The plain curves represent the �� model, as determined from Eq. 2, and the points 

are the relative standard deviations extracted from the image shown in figure 4 for the SNR 

value of 32 (yellow rectangle). Both show good agreement, confirming the validity of Eq. 2 for 

estimating the statistical fluctuations related to extraction. In addition, the number of points 

used to estimate the background had a strong influence on ��. Background windows smaller 

than 2 nm (i.e., ���~ 87 points) resulted in larger �� values, whereas for larger background 

widths, the uncertainty tended to a constant and minimal value. Regardless of the �� considered, 

we observed a similar curve trend; however, the smaller the value of �� is, the lower the �� 
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value. The influence of �� is represented more accurately in figure 5c. This graph represents 

the signal uncertainty obtained by fixing three different ��  values and modifying the number 

of points used to extract the signal. Here, we observed an opposite effect: increasing �� resulted 

in a larger uncertainty value. This phenomenon is due to the average value of continuum ������ 

that has to be subtracted ��  times from the signal ∑ ��
���	
  (Eq. 1), thus enhancing the effect of 

the background noise. At ��~5, the �#$% reaches a minimum, and this optimal value 

corresponds to ∆- .-~1⁄ . 

 

Figure 5: Uncertainties associated with E3 as a function of both spectral windows for the SNR 

= 32. a) Definition of both spectral windows, where .- is the full width at half maximum of the 

emission line. b) Influence of the background range for �� = 5 and �� = 17 on �#$%. c) 

Influence of the signal range for �� = 10, 30, and 90 on �#$%. 

 

3.3. Conditional extraction data processing 

The possibility of estimating the statistical uncertainty associated with each extracted signal 

opens interesting perspectives for LIBS imaging data processing. For instance, we can create a 
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conditional extraction method able to discriminate statistically relevant pixels corresponding to 

real signals from those containing noise. This discrimination process can be defined on the basis 

of the definition of the limit of detection (LOD). The LOD is generally considered the ultimate 

concentration at which it is possible to provide statistical evidence of the presence of an analyte 

[34, 35]. Similarly, in analytical methods where the concentration is obtained by interpolating 

an unknown spectral intensity in a calibration curve, the 3σ approach is widely adopted to 

calculate the LOD. In this approach, the LOD is defined as three times the standard deviation 

of the background measured at the close vicinity of the line of interest, considering a normal 

distribution of noise and α = 0.05 at the statistical level. 

In an equivalent manner, instead of using the conventional 3 x σ for defining the minimum 

significant signal, we considered here k x �  with k = 3 as the lowest significant extracted 

intensity. Therefore, those spectra with an Is lower than 3 x �  will not be considered, and their 

pixel value in the image is set arbitrarily to 0. 

To evaluate this conditional approach, we selected a well-known image of A. Einstein (cf. 

figure 6a) composed of 500 x 500 pixels and containing 256 different levels of intensities (from 

0 to 255). Based on this image, as previously described, we created a second synthetic series of 

spectra by adding the same random Gaussian noise (i.e., � = 8 a.u.). In this dataset, the net line 

intensity of the different simulated spectra extends from 0 to 255 according to each pixel value 

of the image. Figure 6b shows the same image, but all pixels with intensity values below 3 × � 

are now displayed in red, following the conventional LOD definition discussed above. In this 

case, 37% of pixels are not statistically significant (proportion of red pixels in the entire image). 

Note that pixels of the image having an actual 0 value are displayed in yellow; however, their 

numbers are not significant enough to consider them in the following. As shown in figure 6c, 

when applying the peak surface method (E3) combined with the conditional rule described 
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above, the detection capability improves, and the percentage of significant signals increases 

(only 27% of pixels are not significant). The improvement factor was estimated to be 

approximately 3 when using optimal settings of �� and �� . Therefore, this extraction method 

allows extraction of a significant signal for a line intensity corresponding to an SNR=1. 

 

Figure 6: Example of conditional extraction. a) Original 8-bit image of 500x500 pixels used to 

build a synthetic dataset. b) Same image as that in a) with all the pixels lower than (3 x σ) 

displayed in red considering σ = 8 a.u. c) Image obtained when applying the conditional 

extraction method E3 with a confidence level k = 3 to the synthetic dataset. 

 

3.4. Application to a real LIBS-based image 

Finally, we demonstrated the advantages of applying the peak surface method (E3) and the 

proposed conditional approach in a real LIBS-based image. We selected an experimental 

dataset obtained to determine the gadolinium (Gd) level in a section of a murine kidney [36]. 

Figure 7 shows the Gd image (Gd II 342.247 nm) extracted by applying method E3 (left panel) 

and the image of the relative uncertainty, �  �%), calculated for each pixel (right panel). This 

dataset consists of 80 000 individual spectra. The determination of � was performed for each 
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individual spectrum by estimating its baseline noise (σ) in the windows used to extract the 

background value ������. The extracted intensity �� was then conditionally evaluated as described 

above. This extraction was conducted in a completely unsupervised manner, and the 80 000 

spectra were processed in approximately 6 seconds. Due to the additional operations performed 

by the algorithm (determination of σ, calculation of � , and conditional evaluation), compared 

to the value reported in table 1, the extraction speed was indeed reduced. However, the current 

extraction speed (i.e., ~14 000 spectra / second) remains completely acceptable. 

The combination of LIBS elemental images with their corresponding uncertainty image is 

of paramount importance to ensure the quality and accuracy of results. The proposed data 

processing methodology eliminates the subjective decision by uniquely relying on statistics. In 

summary, our results shed light on data processing aspects and provide new tools to strengthen 

LIBS-based imaging development. 
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Figure 7: Elemental images of Gd distribution in a murine kidney with a 10 μm spatial 

resolution and a sequence of 200x400 pixels [36]. a) Intensity images extracted by using E3. b) 

Associated relative uncertainty image expressed in %. 

 

 

4. Conclusion 

Here, we studied the influence of three data extraction procedures on the quality of micro-

LIBS-based imaging by evaluating their performance and robustness. One of the most 

remarkable results was that the use of two spectral windows covering the line of interest and 

the surrounding background (E3) provided the best extraction performance in terms of linearity, 

dynamic range and processing speed. We noticed that E3 not only was perfectly suitable to 

process large LIBS-based imaging datasets for lines that present a low SNR but also remains 

robust for strong emission lines. We also proposed a method to estimate the uncertainty 

associated with an extracted line intensity in a single-shot LIBS-based imaging experiment. Our 

results indicated that the number of points that covers each spectral window, ��  and ��, had a 

key influence on the uncertainty degree and had to be optimized for each emission line. In 

practice, we may consider a background range covering one or two nanometers (��~50 in our 

case) as ideal, whereas the width of the signal window should be restricted to the points 

corresponding to the half maximum of the emission line (�� = 5 in our case). 

Based on the uncertainty associated with each pixel image, we proposed a conditional data 

processing approach able to provide the best line intensity extraction and to display only those 

pixels that are statistically significant in a robust, fast and unsupervised manner. Compared to 

conventional data extraction, this method provides threefold detection capability and enables 

the successful extraction of emission lines with an SNR close to one. The confidence level 4 
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can be set arbitrarily according to the application; this ability is of particular interest when the 

presence/absence of an element in the image implies important decisions to be made. 

This work also opens new perspectives progressing towards quantitative LIBS imaging. The 

possibility of providing an estimation of the uncertainty associated with single-shot analysis 

may represent a step forward for developing models able to address quantitative analysis. In 

practice, different ablated masses and/or plasma parameters (Ne, T) produced by shot-to-shot 

variations and different physical and chemical properties (i.e., roughness, composition) within 

samples are important sources of uncertainty to be considered as well. Further studies dedicated 

to these issues need to be conducted. 
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