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ABSTRACT

Context. We investigate the hydrostatic shape and gravitational potential coefficients of self-gravitating and rotating bodies large
enough to have undergone internal differentiation and chemical stratification. Quantifying these properties under the assumption of
hydrostatic equilibrium forms the basis for interpreting shape and gravity data in terms of interior structure and infer deviations from
hydrostaticity that can bring information on the thermal and chemical history of the objects.
Aims. The main purpose is to show the importance of developing the reference hydrostatic shape for relatively fast rotating bodies up
to third order to reach an accuracy of a few tens of meters. This paper especially focuses on Ceres, for which high-resolution shape
data are being obtained by the Dawn spacecraft, with a projected accuracy better than 200 m/pixel.
Methods. To improve the accuracy on the determination of geodetic parameters, we numerically integrated Clairaut’s equations of
rotational equilibrium expanded up to third order in a small parameter m, the geodetic parameter.
Results. Previous studies of Ceres have been based on shape models developed to first order. However, we show that the first-order
theory underestimates (a − c) (where a and c are the equatorial and polar radii) by 1.8 km, which leads to underestimating the
extent of mass concentration and is insufficient to interpret the upcoming observations by Dawn space mission. Instead, by using
the third-order theory, we obtain an accuracy of 25 meters that is better than the accuracy expected from Dawn. Then, we derive the
following geodetical quantities: flattening and other shape parameters, gravitational potential coefficients, and moments of inertia,
by using the Ceres models constrained by observations obtained with the Hubble Space Telescope and ground-based adaptive optics
telescopes. The difference in equatorial and polar radii for a large parametric space of interior models is investigated, and the large
(a − c) corresponds to a model with a low density contrast.
Conclusions. This type of modeling will also prove instrumental to infer non-hydrostatic contributions to Ceres’ shape that are to be
measured by Dawn.

Key words. planets and satellites: fundamental parameters – planets and satellites: individual: Ceres – methods: numerical

1. Introduction

We revisit the hydrostatic equilibrium modeling of the global
shape, gravity field, and moment of inertia for rapidly rotating
bodies. This study is motivated by the arrival of the Dawn space-
craft at Ceres (Raymond et al. 2011), which is the main applica-
tion of the proposed modeling approach. The global shape prop-
erties contain information on the density profile, which is critical
to understanding a body’s current internal structure and past evo-
lution (e.g., McCord & Sotin 2005; Castillo-Rogez & McCord
2010; Castillo-Rogez 2011). In addition, knowledge of the the-
oretical hydrostatic shape, gravity coefficients, and moments of
inertia are necessary to assess non-hydrostatic contributions to
the shape, which contain information on a body’s thermal current
state and evolution.

The theoretical approach to modeling the hydrostatic equi-
librium of a planet or satellite typically are first-order develop-
ments that are sufficient for most known bodies because these ro-
tate slowly (i.e., tens of hours to a few days) (e.g., Dermott 1979;
Zharkov et al. 1985) or simply because available observations

are not accurate enough to justify more complex forward model-
ing. Earth is one of several exceptions, requiring a second-order
development, because its parameters are more accurately known.
Ceres also needs a high-order shape expansion because of its fast
rotation and low density. Computing the hydrostatic shape for a
multi-layered solid body is not straightforward and involves the-
oretical and numerical techniques to reach high-order accuracy.
Here, we follow the currently best technique for Earth studies,
which is based on Kopal (1960), Lanzano (1974), and Chambat
et al. (2010).

In the first part of this paper (Sect. 2), we introduce the
shape-modeling framework inherited from Earth geodetic stud-
ies by Chambat et al. (2010) and extended to third order by using
the formalism of Lanzano (1974). Then we introduce the density
profiles we used to apply our modeling to Ceres. We highlight
the importance of using density profiles that preserve chemi-
cal balance, which would otherwise lead to erroneous interpre-
tations (Sect. 3). Finally, we apply our third-order approach to
three representative interior models of Ceres and compare these
results with previous shape models. In addition, we compute the
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difference in equatorial and polar radii, a signature of internal
differentiation, for a large parametric space.

2. Hydrostatic equilibrium models

The dwarf planet Ceres rotates at a period of 9.074170 ±
0.000001 h (Chamberlain et al. 2007). Under the assumption of
hydrostatic equilibrium, its shape is spheroidal in response to
the centrifugal and the self-gravitational potentials. Hence the
hydrostatic shape is defined by the angular spin velocity and the
radial density profile.

2.1. Homogeneous MacLaurin ellipsoid

It has long been known that an ellipsoid can be a hydrostatic
self-gravitating equilibrium figure of a rotating homogeneous
planet. For this Maclaurin’s ellipsoid, the eccentricity e (e.g.,
Chandrasekhar 1969) is given after

Ω2

2πGρ
=

√
1 − e2

e3

(
3 − 2e2

)
arcsin e − 3

1 − e2

e2 , (1)

where Ω is the angular spin velocity, G the gravitational con-
stant, ρ the density, and e the eccentricity defined by

e2 = 1 −
( c
a

)2
, (2)

with a and c the equatorial and polar radii, respectively.
Equation (1) is either solved numerically or expanded in se-

ries of the small parameter ε = 15
8

Ω2

πGρ . In the latter case, the
eccentricity is expressed as

e2 = ε −
1
7
ε2 +

2
49
ε3 + o

(
ε3

)
(3)

up to the third order in ε. This yields the expansion of (a − c):

a − c = Re

(
1
2
ε +

23
168

ε2 +
655

7056
ε3 + o

(
ε3

))
, (4)

where Re =
3√
a2c is the equivolumetric radius of the ellipsoid.

We use this expansion to quantify the uncertainties in the com-
putation of the shape parameters at each order.

2.2. Shape of a heterogeneous planet

The Maclaurin equation, Eq. (1), is valid for any eccentricity,
but does not apply to stratified bodies. The shape modeling of
radially heterogeneous planets originates in Clairaut’s work. It
consists of solving the hydrostatic equilibrium equations to first
order with respect to the height of equipotential surfaces, which
is of first order with respect to the (small) geodetic parameter
m = Ω2R3

GM (M is the mass and R the external radius) (e.g., Kopal
1960; Moritz 1990; Murray & Dermott 1999). For the Earth, the
method has been extended to the second order in m (Lanzano
1974; Chambat et al. 2010). For a fast rotator like Ceres, it is nec-
essary to develop Clairaut’s approach up to third order to reach
a hydrostatic shape estimate with an uncertainty of a few tens
of meters consistently with the measurement accuracy expected
from Dawn (Polanskey et al. 2014). We solve this problem fol-
lowing the equations provided in Lanzano (1974).

In this theory, the equipotential surfaces are described by
their distance s to the center of the body for each co-latitude θ,
and s is developed in the form of Legendre polynomials
P2(cos θ), P4(cos θ), and P6(cos θ). Each surface is referenced by
its mean spherical radius r in such a way that we write

s(r, θ) = r
(
1 + f2(r)P2(cos θ) + f4(r)P4(cos θ) + f6(r)P6(cos θ)

)
,

(5)

where f2(r), f4(r), and f6(r) are functions to be determined. The
condition that the surfaces must be equipotentials leads to differ-
ential relations that allow the numerical determination of these
three functions for a given rotation velocity Ω and density pro-
file ρ(r). We upgrade the free code provided by Chambat et al.
(2010) with the third-order terms given by Lanzano (1974),
Eqs. (26), (34), and (46). The shape parameters f2(r), f4(r), f6(r)
are of magnitudes m, m2, and m3, respectively. Then the (a − c)
radii difference is obtained by

a − c = R
(
−

3
2

f2(R) −
5
8

f4(R) −
21
16

f6(R)
)
. (6)

2.3. Gravity, mass, and moment of inertia

In the same way as for the shape, the external gravity potential
can be expanded in the form of Legendre polynomials up to third
order by

φ(r, θ) =
GM

r

(
1 − J2

(R
r

)2

P2(cos θ) − J4

(R
r

)4

P4(cos θ)

−J6

(R
r

)6

P6(cos θ)
)
, (7)

where the gravitational coefficients J2n are non-dimensionalized
using the length scale that we chose as the mean radius R. We
here used the radius R to normalize all geodetical quantities since
there is no reference value for a. When the Dawn measurements
become available, these expressions can be normalized with the
observed a, as is customary for Earth studies. Writing the con-
dition that the external surface s(R, θ) is a gravity equipotential
and expanding the quantities up to third order, we can express
the gravitational coefficients as functions of the f2n and of m:
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where the equatorial radius is given by a = R(1 − 1
2 f2(R) +

3
8 f4(R) − 5

16 f6(R)).
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Other useful geodetic parameters are the mass and mean
inertia (one third of the trace of the inertia tensor), which are
defined as

M =

∫
V
ρdV Ī =

2
3

∫
V
ρs2dV, (9)

where V is the volume of the body. We can write it with vari-
ables r, θ instead of s, θ using the Jacobian J = ∂s

∂r of the trans-
formation. By defining the angular average of a function f over
the unit sphere as

〈 f 〉 =
1

4π

∫ 2π

0

∫ π

0
f (θ, λ) sin θ dθdλ, (10)

we can express the mass and inertia for a stratified planet as

M = 4π
∫ R

0
ρ(r)

1
3

d
dr
〈s3〉 dr Ī =

8π
3

∫ R

0
ρ(r)

1
5

d
dr
〈s5〉 dr.

(11)

Using Eq. (5) and after an expansion correct up to third order,
we use the properties of Legendre polynomials (e.g., Lanzano
1974, Eqs. (12), (13)) to infer
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35
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4
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)
r4dr. (13)

This is different from the mass and inertia of the spherical refer-
ence model defined as

M0 = 4π
∫ R

0
ρ(r)r2dr I0 =

8π
3

∫ R

0
ρ(r)r4dr, (14)

and the differences between M and M0, as well as Ī and I0, are
of second order.

Notably, based on Eq. (5) and 〈Pn〉 = 0, the mean radius r
is implicitly defined in this paper as r = 〈s〉 (Chambat et al.
2010). This is a practical definition for geophysics even if it does
not conserve the mass. The equivolumetric radius preserves the
mass but has a nonlinear definition: rv = 〈s3〉

1
3 . Up to third

order, the two are related after rv = r
(
1 + 1

5 f 2
2 + 2

105 f 3
2

)
.

2.4. Radau-Darwin approximation

The Radau-Darwin approximation (RDA) establishes a relation-
ship between the flattening, angular spin velocity, and the mo-
ment of inertia of a body. This approximation is valid only at first
order because it is applied to solve Clairaut’s equations. It gives
the following expression of the inertia (Chambat et al. 2010):

IR

MR2 =
2
3

1 − 2
5

√
4 − k
1 + k

 , (15)

where k is the degree-two Love number defined by

f2(R) = −(k + 1)
m
3
, (16)

which is computed from

k =
3 f2 − R d f2/dr
2 f2 + R d f2/dr

· (17)

We assess the inertia from the Radau-Darwin approximation to
illustrate to which extend this first-order approximation is differ-
ent from the third-order computation presented earlier.

3. Ceres’ differentiation state

3.1. Chemical balance

Two types of interior models have been suggested for large
ice-rock bodies like Ceres: (1) variable fractions of rock and
ice distributed throughout the interior; (2) differentiation of a
core of hydrated silicates and an ice-rich shell. Hydrated ma-
terials can store up to 10wt.% of water. A large proportion
of hydrated materials are expected in Ceres by analogy with
carbonaceous chondrite parent bodies (CM) and icy satellites
(see Castillo-Rogez 2015, for a review). Ground-based obser-
vations also point to the direct detection of carbonates, and pos-
sibly brucite, two products of hydrothermal activity (Milliken &
Rivkin 2009). Aqueous alteration is generally accompanied by
the global scale redistribution of material as a consequence of
the leaching of many elements under aqueous alteration. Some
of these elements (especially alkali and earth alkaline) are solu-
ble in water and eventually freeze in the form of hydrated salts
(e.g., Kargel et al. 2000). Iron-rich compounds (e.g., iron sulfide)
may sink and separate in a small seed, or at least lead to densi-
fication of the hydrated core with depth (e.g., Scott et al. 2002).
Hence it is important that density profiles account for the chem-
ical balance of hydrothermal systems so that the actual extent of
differentiation of the interior is properly reflected.

However, previous models (e.g., Thomas et al. 2005;
McCord & Sotin 2005) have assumed models of Ceres that were
stratified with a core of density ∼2700 kg/m3 and an icy shell
at ∼1000 kg/m3. These models did not properly account for the
exchange of material from the rock to the icy shell as a con-
sequence of leaching in hydrothermal conditions and also ap-
pear unrealistically devoid of metals. This problem was studied
at length by Kargel et al. (2000), for example, who explored (in
their Fig. 8) multiple chemical evolution pathways for Europa.
This study showed that a model of Europa highly evolved from
a geochemistry standpoint is characterized by a high moment of
inertia as a result of the shell enrichment in a variety of salts and
hydrates. Furthermore, Kirk & Stevenson (1987) pointed out that
the oceanic layer of an icy body may be enriched in phyllosili-
cate particles that do not sink, but remain in suspension; these
would eventually become trapped in Ceres’ frozen ocean layer
at the interface between the shell and the rock-dominated core.

The average density of CM material (silicates mixed with
salts metals Brearley 2006) taken as analog to Ceres’ core is
about 2900 kg/m3 (e.g., McKinnon 1997). Following Scott et al.
(2002), we have assumed that the metals separate from the sil-
icates, a process that may not be warranted in the context of a
low-gravity body like Ceres. The density of the shell is also dif-
ficult to estimate because it depends on the evolution of the salt
mixture as the ice shell freezes and is a function of the temper-
ature profile (Kargel 1991; Kargel et al. 2000). For this study
we assumed an averaged salt and phyllosilicate density of be-
tween 1000 and 2000 kg/m3 based on Kargel et al. (2000) and
Kirk & Stevenson (1987).
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Table 1. Ceres dimensions.

References a = b (km) c (km) ∆ (km) a − c (km)

Millis et al. (1987) 479.6 453.4 4.5 26.2
Thomas et al. (2005) 487.3 454.7 1.8 32.6
Drummond & Christou (2008) 486.5 454 3.5 32.5
Carry et al. (2008) 479.7 444.4 2.3 35.3
Drummond et al. (2014) 483.5 446 5 37.5

Notes. Columns: equatorial radius (a = b), polar radius (c), uncertainties (∆), and radii difference.

Table 2. Geophysical parameters of Ceres.

Ceres parameters From Thomas et al. (2005) From Drummond et al. (2014)

Mass M 9.395 ± 0.125 × 1020 kga 9.4062 × 1020 kgb

Mean spherical radius R 476.200 kma 470.500 kmc

Rotational period 9.076 ha 9.074170 ± 0.000001 hd

Deduced parameters
Geodetic parameter m 0.06368 0.06135
Mean density ρ̄ 2077.02 kg m−3 2156.00 kg m−3

Notes. (a) Thomas et al. (2005). (b) deduced from the GM of Kuchynka & Folkner (2013). (c) Drummond et al. (2014). (d) Chamberlain et al. (2007).

Table 3. Preferred model of Ceres based on observations of Thomas et al. (2005) and Drummond et al. (2014) with a 5 km frozen ocean layer.

Composition Density Mean spherical radius Mean spherical radius
(kg m−3) C3 (km) C4 (km)

Fe-FeS 5500 80 80
Serpentine assemblage 2600 413.981 418.870
Salts 1500 418.981 423.870
Ice 1000 476.2 470.5

Notes. The mean density used for the calculation is 2077.02 kg m−3 and 2156.00 kg m−3, respectively, to facilitate comparison with these papers.

3.2. Test cases

Several shape models are available for Ceres, derived from dif-
ferent observation techniques. Although the results are generally
consistent with each other, the differences encompass a broad
range of (a − c) values that overlap around 33–35 km, as shown
in Table 1 (Millis et al. 1987; Thomas et al. 2005; Drummond
& Christou 2008; Carry et al. 2008; Drummond et al. 2014).
These studies are based on three different techniques: star occul-
tation (Millis et al. 1987), visible imaging with the Hubble Space
Telescope (HST; Thomas et al. 2005), and ground-based adap-
tive optics (AO) for the other references. Differences between
the inferred shape models are in part due to the difference in the
surface coverage enabled by the various techniques. As pointed
out by Rivkin & Volquardsen (2008), longitudinal variations in
the surface albedo are likely to induce a bias in the interpreta-
tion of optical images obtained over a short longitudinal range.
Drummond et al. (2014) also noted the possible bias in limb fit-
ting due to local darkening.

We used the measurements of Thomas et al. (2005) and
Drummond et al. (2014) because those of Thomas et al. (2005)
are similar to the results of Drummond & Christou (2008) and
the measurements of Drummond et al. (2014) are the most recent

estimate of Ceres’ shape. The corresponding geophysical param-
eters are listed in Table 2. We used the same rotational periods
as in these papers to facilitate the comparison of the computed
shapes. The results are illustrated for four interior models. Three
models use the Thomas et al. (2005) mass, radius and period:
(C1) a homogeneous interior with a bulk density of 2077 kg m−3,
(C2) a two-layer model with a core density of 2700 kg m−3 and
an icy shell density of 1000 kg m−3, and (C3) a four-layer model
whose stratification reflects a more realistic petrological model,
with a core composed of Fe-FeS (5500 kg m−3), serpentine as-
semblage (2600 kg m−3), frozen ocean (1500 kg m−3), and ice
layer (1000 kg m−3). The fourth model (C4) assumes the same
structure as (C3) but using the Drummond et al. (2014) mass, ra-
dius and period. The parameters describing C3 and C4 are listed
in Table 3.

4. Results

In this section we present the geodetic hydrostatic equilib-
rium computed for Ceres using the third-order approach de-
scribed above for several petrological models. First, we assess
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Table 4. (a − c) radii difference for different interior models of Ceres assuming the mean radius derived from the Hubble Space Telescope
observations by Thomas et al. (2005) (C1, C2, C3) and the mean radius derived from adaptive optics imaging Drummond et al. (2014) (C4).

(a − c) Homogeneous Two-layer Four-layer Four-layer
Method C1 (km) C2 (km) C3 (km) C4 (km)
This paper, numericala

First order 37.908 30.939 31.286 30.480
Second order 39.561 32.011 32.384 31.541
Third order 39.739 32.107 32.483 31.635
MacLaurin, analyticalb

First order 37.908 (1.856) – – –
Second order 39.561 (0.203) – – –
Third order 39.739 (0.025) – – –
(exact) 39.764 – – –
Approximate, analytical
First orderc 37.908 30.939 – –
First orderd 37.908 30.948 – –
Numericale 39.7 33.1 – –

Notes. The number in parentheses in the second column describes the accuracy of the Maclaurin solution. (a) This paper. (b) Analytical, homoge-
neous Maclaurin ellipsoid. (c) Dermott (1979). (d) Zharkov et al. (1985). (e) Thomas et al. (2005).

the (a − c) radii using various methods. Then we present the
gravity coefficients and moments of inertia for Ceres.

4.1. Shape models

Table 4 presents the (a − c) radii difference computed for sev-
eral interior models and modeling methods. Column C1 shows
the results for the homogeneous case. This case is used to pro-
vide a benchmark of the approximation intrinsic to the other
approaches.

The first section of this table corresponds to the values nu-
merically computed by the method described in Sect. 2.1. The
results agree very well (below 0.001 m) with the Maclaurin so-
lution displayed in the second section, which corresponds to the
developments to first, second, and third order of the small pa-
rameter m. Moreoever, the last row of the Maclaurin section cor-
responds to the exact solution equal to 39.764 km. The depar-
ture of the first-order estimate from the exact value is significant
(1.8 km). It is reduced to 200 meters and 25 meters at second
and third order, respectively. Hence, development to third order
is required for the forward modeling to be on the same level as
Dawn’s observations. The numbers in parentheses correspond to
the uncertainties computed at each order by using Eq. (4). These
uncertainties are computed as the difference between the exact
solution and the value obtained at each order. We assume that
this uncertainty also applies to the heterogeneous models.

Column C1 also contains the analytical solution of the mod-
els of (c) Dermott (1979) and (d) Zharkov et al. (1985), which
are developed to first order. The comparison of these values
with the first order of this paper (a) agree well, as expected.
Finally, the analytical method of (e) Thomas et al. (2005) agrees
well with the exact value of the Maclaurin equation. The differ-
ence in (a − c) is about 150 meters, as quoted by Thomas et al.
(2005).

The heterogeneous models described in Sect. 3.2 are re-
ported in Cols. C2 through C4. The corresponding (a− c) values
are lower than in the homogeneous case by 7 km at third or-
der, including the uncertainties. This is a departure of 2 km from

Table 5. Parametric space ranged for the models presented in Fig. 2.

Thickness (km) Density (kg/m3)

Ice 0–80 1000–1200
Salt and phyllosilicate layer 0–220 1000–2000
Hydrated silicate 173–420 2610–2990
Metallic 0, 80 5150

the first-order solution (accounting for uncertainties). However,
it is outside the error bars of the HST shape model, which led
Thomas et al. (2005) to conclude on the stratified nature of
Ceres’ interior. The first-order computations with (c) and (d)
agree very well, but the comparison with the determination of
Thomas et al. (2005) shows a discrepancy of about 1 km for the
C2 model.

Recently, Kong et al. (2010), Schubert et al. (2011), and
Tricarico (2014) used an alternative approach to solve the
hydrostatic shape of Ceres in terms of concentric ellipsoids. The
problem with this approach is that the equilibrium shape can-
not be described by heterogeneous ellipsoids as stated in Hamy’s
theorem (Hamy 1889; Tassoul 1978; Moritz 1990). This equilib-
rium is possible only at first order in ellipticity (Clairaut’s equa-
tions); at higher orders, the equidensity surfaces can no longer
be described by ellipsoids. This theorem is also called the “no
go theorem” by Moritz (1990). On the other hand, the method
developed by Hubbard (2012, 2013), which consists of a nu-
merically computed closed equation, the interior equipotential
surfaces, and gravitational coefficients, also yields an accurate
solution of the shape, as demonstrated by this author for Jupiter.

Figure 1 illustrates that a 25-m shape measurement accu-
racy is required to separate the four selected interior models
we highlighted here. In addition to these four examples, we
built 16 343 interior models covering the range of parameters
listed in Table 5. These models include an ice layer thickness
of density 1000–1200 kg/m3 varying between 0 and 80 km
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Fig. 1. Comparison of the solutions (a− c) for the models described in Table 3 with published observations. The blue boxes represent the values of
(a− c) with uncertainties listed in Table 4 for the four models. For each model, the solutions are given with their uncertainties at first (left), second
(center), and third order (right). Reported observations include Millis et al. (1987, Mi87), Thomas et al. (2005, Th05), Drummond & Christou
(2008, Dr08), Carry et al. (2008, Ca08), and Drummond et al. (2014, Dr14).
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Fig. 2. Differences between the equatorial and polar radii as a function of the thickness of the hydrated silicate layer for the broad parametric space
described in Table 5 . Each dot corresponds to one model, and the dot separation shows the discretization used in the calculation. The blue dots
correspond to models with a salt and phyllosilicate density below 1500 kg/m3, the green points to a density between 1500 kg/m3 and 2000 kg/m3,
and red points to a density equal to 2000 kg/m3.

(step 20 km); it overlies a mixture of ice, salts, and phyllosil-
icates ranging from 0 to 220 km. We fixed the density of this
layer at 1000–2000 kg/m3, 50 kg/m3 steps to reduce the com-
puter time. The deep interior consists of a hydrated silicate layer

with a density varying between 2610 and 2990 kg/m3, which
may overlie a metallic core with a density of 5500 kg/m3 of
up to 80 km radius. We solved the equation of mass conserva-
tion and deduced the hydrated silicate layer thickness. Figure 2
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Table 6. Gravity coefficients J2, J4, and J6, mean moments of inertia
Ī

MR2 , moment of inertia of the spherical model I0
MR2 , moment of inertia

computed with the RDA IR
MR2 , M the mass of the flattened hydrostatic

model, and M0 mass of the spherical model.

Model Homogeneous Two-layer Four-layer Four-layer
2077 kg m−3

C1 C2 C3 C4
J2 0.03240 0.02241 0.02291 0.02309
J4 –0.00237 –0.00118 –0.00123 –0.00123
J6 0.00025 0.00009 0.00010 0.00010
I0/M0R2 0.400 0.345584 0.348618 0.354784
IR/M0R2 0.400 0.345502 0.348529 0.354710
Ī/M0R2 0.402 0.346972 0.350053 0.356201
M (1020 kg) 9.425 9.414 9.415 9.425
M0 (1020 kg) 9.395 9.395 9.395 9.406

Notes. All quantities are computed up to third order except for IR (first
order) and M0 and I0, which are are zeroth-order quantities.

shows the results of (a − c) to third order as a function of hy-
drated silicate layer thickness for core radius of 0 and 80 km,
with color points as function of the densities chosen for the salt-
phyllosilicates layer.

The first-order calculation would yield an offset of
about −1.5 km for all models. Figure 2 shows that, as expected,
the difference (a − c) is especially sensitive to the mass of ma-
terial in the shell relative to the mass of the silicate mantle.
Parameters of secondary influence are the thickness of an outer
shell dominated by ice and the density of the hydrated silicate.
On the other hand, (a − c) cannot distinguish the presence of a
core. Upper limit models yield an (a − c) of about 35 km and
cannot reproduce the mean 37.5 km radii difference reported
by Drummond et al. (2014). They correspond to models with-
out an ice layer on the top and density of phyllosilicates equal
to 2000 kg/m3. Future observations of the shape combined with
gravity field determinations will solve this uncertainty.

4.2. Gravity models

In addition to the equipotential shape, we computed and report
in Table 6 the hydrostatic gravity coefficients of J2, J4, J6, the
moments of inertia, and the masses for each interior models de-
fined in Sect. 3.3. Table 6 shows that the difference in J2 am-
plitude between the homogeneous (C1) and the heterogeneous
cases (C2, C3, C4) is about 30%. However, the variation of J2
across the set of heterogeneous cases (C2, C3, C4) is only ∼3%.
It is about 5% for J4 and less than 1% for J6. For the mo-
ment of inertia, whether Ī

MR2 or I0
MR2 , the difference between

the homogeneous (C1) and heterogeneous cases (C2, C3, C4) is
about 11–13%, whereas the variation across the heterogeneous
cases (C2, C3, C4) is below 3%. The values of the mean Ī

MR2 and
mean spherical I0

MR2 are similar, whereas the RDA overestimates
that parameter by only 0.04%. This small offset agrees with Gao
& Stevenson (2013), who found that the difference between the
direct value of the moment of inertia and that computed via the
RDA is small for fast-rotating bodies.

5. Discussion and conclusion
To infer the non-hydrostatic contributions to the shape and grav-
ity, the hydrostatic shape needs to be accurately developed.

We here investigated the hydrostatic shape and gravitational po-
tential coefficients for Ceres. We expanded the Maclaurin solu-
tion to third order in small parameter m and compared test cases
with the numerical integration of third-order Clairaut equations
developed by Kopal (1960) and Lanzano (1974). We found that
the third order is required to reach an accuracy below that ex-
pected for Dawn’s shape model (6200 m/pixel) since the sec-
ond order is inaccurate by about 200 meters. We also demon-
strated that developments to first order underestimate the shape
by up to 1.8 km. This in turn can lead to underestimating the
extent of differentiation of Ceres’ interior. We also highlighted
the importance of properly bookkeeping material redistribution
for a body that is subject to early hydrothermal activity, as is be-
lieved to be the case for Ceres (Castillo-Rogez & McCord 2010;
Castillo-Rogez 2015).

The Dawn spacecraft has been orbiting Ceres since
March 2015 and will determine the shape, topography, and grav-
ity field of Ceres with unprecedented accuracy (Raymond et al.
2011; Konopliv et al. 2011). Like for many other bodies, it
is expected that the comparison of the measurements against
the computed hydrostatic solution will reveal non-hydrostatic
anomalies. The latter carry important information on past ther-
mal evolution and large-scale events, such as large impact craters
that may not have relaxed (e.g., Davison et al. 2015), fossil shape
linked to a late stage of differentiation through silicate dehydra-
tion (Castillo-Rogez & McCord 2010), or large-scale material
removal (Bowling et al. 2015). Supplementary information on
the density profile can also be revealed by measuring the mo-
ment inertia by accurately measuring the precession-nutation
motion from control point images and radio-science investiga-
tion as explained in Rambaux et al. (2011).
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