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S U M M A R Y
Crystallization experiments in the dendritic regime have been carried out in hypergravity
conditions (from 1 to 1300 g) from an ammonium chloride solution (NH4Cl and H2O). A
commercial centrifuge was equipped with a slip ring so that electric power (needed for a
Peltier device and a heating element), temperature and ultrasonic signals could be transmitted
between the experimental setup and the laboratory. Ultrasound measurements (2–6 MHz) were
used to detect the position of the front of the mushy zone and to determine attenuation in the
mush. Temperature measurements were used to control a Peltier element extracting heat from
the bottom of the setup and to monitor the evolution of crystallization in the mush and in
the liquid. A significant increase of solid fraction and attenuation in the mush is observed
as gravity is increased. Kinetic undercooling is significant in our experiments and has been
included in a macroscopic mush model. The other ingredients of the model are conservation
of energy and chemical species, along with heat/species transfer between the mush and the
liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the
mush (formation of chimneys). The outputs of the model compare well with our experiments.
We have then run the model in a range of parameters suitable for the Earth’s inner core. This
has shown the role of bulk mush convection for the inner core and the reason why a solid
fraction very close to unity should be expected. We have also run melting experiments: after
crystallization of a mush, the liquid has been heated from above until the mush started to
melt, while the bottom cold temperature was maintained. These melting experiments were
motivated by the possible local melting at the inner core boundary that has been invoked to
explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner
core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid
fraction and a decrease in attenuation. It is hence possible that surface seismic velocity and
attenuation of the inner core are strongly affected by melting.

Key words: Core, outer core and inner core; Permeability and porosity; Composition of the
core; Coda waves; Seismic attenuation; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Due to secular cooling, the Earth’s core crystallizes. As the slope
of the Clapeyron profile is steeper than the adiabatic gradient, crys-
tallization starts from the centre of the Earth. The solidification of
the Earth’s inner core is a major source of energy for convection
in the outer core, which generates the magnetic field. Conversely,
convection has an impact on the solidification processes by altering
the transfer of light elements at the inner core boundary (ICB).

∗ Now at: Department of Earth, Environmental, and Planetary Sciences, Case
Western Reserve University, Cleveland, OH 44106, USA.

By analogy with metallurgy, Fearn et al. (1981) have argued that
the solidification conditions at the ICB must lead to the formation of
a mushy layer—a two-phase medium where solid dendrites coexist
with a light-elements-rich liquid—and that ‘the mushy zone will be
very thick, possibly extending to the centre of the Earth’. However,
PKiKP waves show a sharp boundary at the top of the inner core
from 1 s period waves (Engdahl et al. 1974). Moreover, observations
of PKJKP waves (Okal & Cansi 1998; Deuss et al. 2000; Cao et al.
2005) denote the presence of a sharp transition at the ICB to allow
the conversion of compressive waves to shear waves (Deuss 2014).
These observations suggest that the transition zone at the ICB should
be less than 5 km thick (Phinney 1970; Cummins & Johnson 1988a;
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Kawakatsu 2006; Deuss 2014) and this sharpness seems to be at
odds with the presence of a thick mushy layer. The conditions at the
ICB are strongly affected by the vigorous convection in the outer
core (Fearn et al. 1981; Loper & Fearn 1983; Shimizu et al. 2005;
Deguen et al. 2007; Alexandrov & Malygin 2011). In this paper, we
aim at reconciling seismological observations with the existence of
a mushy zone by studying the importance of vigorous convection
on crystallization of an alloy.

The shear velocity contrast at the ICB is estimated using nor-
mal modes (Dziewonski & Anderson 1981), body waves (PKP
and PKiKP) (Häge 1983; Choy & Cormier 1983; Cummins &
Johnson 1988b), and PKiKP/PcP amplitude ratios (Engdahl et al.
1970; Souriau & Souriau 1989; Shearer & Masters 1990; Cao &
Romanowicz 2004; Zeng & Ni 2013). From all methods, the shear
velocity jump ranges between 0 to 4 km s−1. However, Shearer &
Masters (1990) estimated the lower limit at 2.5 km s−1, which is
in agreement with the later studies suggesting 2–3 km s−1 (Cao &
Romanowicz 2004), 2.82 km s−1 (Koper & Dombrovskaya 2005)
and 3.2 to 4 km s−1 (Zeng & Ni 2013). The analysis of PKJKP
(Deuss et al. 2000; Cao et al. 2005) and normal modes (Dziewonski
& Anderson 1981) give consistent values of the shear velocity in
the inner core (≈3.6 km s−1).

In a two-phase medium, the shear velocity is a decreasing function
of the amount of melt (Hashin & Shtrikman 1963), so that the shear
velocity could be used to constrain the solid fraction below the ICB
(Loper & Fearn 1983) or in the bulk of the inner core (Vočadlo
2007). By assuming that the shear velocity given by normal modes
corresponds to the zero melt fraction limit (Loper & Fearn 1983)
and taking Vs = 2.75 km s−1 for the shear wave velocity just below
the ICB, the model of Hashin & Shtrikman (1963) gives a solid
fraction 60 ± 7 per cent just below the ICB. However, Martorell et al.
(2013, 2015) found that the shear velocity decreases significantly
close to the melting point, which implies that the low value of
the shear velocity at the ICB could be due to the proximity to
the melting point rather than to the presence of melt. The density
jump observed by the normal modes and the body waves is also
poorly constrained (between 0.52 kg m−1 and 1.66 kg m−1 (Souriau
& Souriau 1989; Masters & Gubbins 2003; Koper & Pyle 2004;
Koper & Dombrovskaya 2005; Tkalčić et al. 2009)). This jump is
not only due to the phase change between solid and liquid but also
to the differences of concentration in light elements between outer
core and inner core, or to the presence of liquid just below the ICB.

Seismological studies show a complex image of the inner core.
PKIKP waves reveal a depth dependence of velocity and attenua-
tion of P-waves and exhibit east–west hemispherical differences in
the isotropic wave speed, elastic anisotropy, attenuation, and atten-
uation anisotropy in the Earth’s inner core (Tanaka & Hamaguchi
1997; Irving & Deuss 2011; Waszek & Deuss 2011; Deguen 2012;
Lythgoe et al. 2013; Deuss 2014; Tkalčić 2015). These hemispheri-
cal differences may be due to an east–west translation with enhanced
solidification on one side and melting on the other (Alboussière et al.
2010; Monnereau et al. 2010). Inner core translation may lead to
the formation of a dense layer at the base of the outer core due to the
release of Fe-rich liquid (Alboussière et al. 2010). This so-called
‘F-layer’, possibly generated by inner core translation, is inferred
from the observations of PKP waves as a low-velocity zone (Souriau
& Poupinet 1991; Song & Helmberger 1995; Yu et al. 2005). Long-
term mantle control over outer core convection (Sumita & Olson
1999; Aubert et al. 2008; Gubbins et al. 2011) might also explain
the hemispherical differences through variations of the flow in the
outer core due to the variations of heat flux at the core–mantle
boundary. The heat flux may locally reverse towards the inner core

causing melting (Gubbins et al. 2011). It is however unclear how a
nearly perfect hemispherical dichotomy could be created from this
scenario. Observations of PKiKP coda due to scattering also show
that there are small-scale (∼1 km) heterogeneities at the ICB or in
the uppermost inner core (Vidale & Earle 2000; Koper et al. 2004;
Koper & Dombrovskaya 2005; Cormier 2007; Leyton & Koper
2007; Attanayake et al. 2014). However, the heterogeneities at the
ICB do not show clear differences between west and east hemi-
spheres (Cormier 2007; Leyton & Koper 2007).

At the ICB, the existence of a mushy layer is suggested by several
theoretical studies (Fearn et al. 1981; Loper & Fearn 1983; Shimizu
et al. 2005; Deguen et al. 2007; Alexandrov & Malygin 2011). Few
directional solidification experiments applied to the inner core have
been performed (e.g. Tait & Jaupart 1992; Bergman et al. 2005).
Fearn et al. (1981) suggested that the mushy layer could extend to
the Earth’s core centre. However, its solid fraction is expected to
increase rapidly due to the large convective heat and solute fluxes
above the mushy layer (Worster 1991), that is consistent with a sharp
transition at the ICB (Loper 1983). Bergman & Fearn (1994) have
predicted that convection in the mushy layer could be very vigorous.
For the mushy layer in the inner core, the compaction cannot be
ignored. Sumita et al. (1996) proposed a model of compaction of a
passive viscous medium which they applied to the inner core. They
have estimated the thickness of mushy layer between 1 and 10 km
depending on the viscosity of the inner core.

During the solidification of binary alloys, a mushy layer is formed
from the morphological instability of the solidification front, the
so-called ‘Mullins–Sekerka instability’ (Mullins & Sekerka 1964;
Davis 2001). This instability is caused by undercooling associated
with the release of light elements above the solid/liquid interface.
The decrease of liquidus temperature ahead of the crystallization
front can be such that it falls below the actual temperature profile.
Morphological instabilities of the solid/liquid interface develop,
forming small needles or dendrites. The mush itself can be sub-
jected to two buoyancy-driven convective instability modes (Worster
1992): the boundary-layer mode and the mushy-layer mode. The
first one is due to the instability of the compositional boundary
layer ahead of the mush and is associated with salt finger convec-
tion in the liquid region ((1) in Fig. 1). The boundary-layer mode
is the first mode to be active while the interstitial liquid remains
stagnant (Tait & Jaupart 1989; Chen & Chen 1991; Chen 1995).
When the thickness of the mushy layer reaches a critical value, the
mushy-layer mode becomes the main mode and leads to the forma-
tion of chimneys ((2) in Fig. 1) due to the dissolution of dendrites
(Tait & Jaupart 1992) in regions of upwelling which extend in the
liquid in the form of laminar or meandering plume ((3) in Fig. 1).
These two modes extract the solute rejected during solidification.

Jackson et al. (1966) suggested using an ammonium chloride so-
lution as an analogue to metallic alloys. McDonald & Hunt (1970)
and Copley et al. (1970) studied experimentally the solidification
process using this solution, and they observed the formation of
chimneys in the mushy layer. Chimneys are also observed in metal-
lic alloys (e.g. Sarazin & Hellawell 1988; Bergman et al. 1997). The
fluid motions in the mushy layer are well documented by experimen-
tal (e.g. Chen & Chen 1991; Tait & Jaupart 1992; Worster & Wett-
laufer 1997) and numerical studies (e.g. Worster 1997; Rees Jones
& Worster 2013; Wells et al. 2013).

Most studies have been restricted to a regime where convective
flow speed is comparable to the velocity of the solidification front
whereas this ratio is around 107 in the core. One implication is that
convective solute and heat transport is expected to have a com-
paratively larger impact on the resulting mushy layer structure and

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/204/3/1729/682317 by guest on 10 Septem

ber 2021



Structure of a mushy layer under hypergravity 1731

Figure 1. Schematic view of directional solidification cooled from below in a Hele-Shaw cell and pictures from an actual experiment using an ammonium
chloride solution. The solidification leads to fluid motions in a mushy layer and in the liquid above. The boundary-layer mode of convection is only associated
with salt fingers when there is also a stable thermal buoyancy gradient (1). A mushy-layer mode leads to the formation of chimneys in the mush (2) and laminar
or meandering plume (3).

dynamics at the ICB. Worster (1991) has shown that an increase
of this ratio leads to a decrease of the height of mushy layer and
increase of its solid fraction. To reach conditions under which the
ratio of the convective velocity to solidification rate is large, we
study the solidification of an ammonium chloride solution under
hypergravity (up to 1300 g) using a centrifuge in order to increase
the vigour of convection. Some previous studies have already used
a centrifuge in metallurgy (e.g. Müller & Neumann 1983; Rodot
et al. 1986, 1990; Battaile et al. 1994) to increase the apparent
gravity (up to about 15 g) and observed an effect of increasing g on
the microstructure of the mushy layer, essentially a reduction in the
primary interdendritic spacing.

Motivated by the inner core translation model (Alboussière et al.
2010; Monnereau et al. 2010) which causes melting on one hemi-
sphere, we are also interested in a mushy layer melted from above.
We have thus performed crystallization experiments after which we
have been heating the top of the mushy layer from above while main-
taining a cold temperature at the bottom. Some experimental studies
have already been carried out on melting a mushy layer (Hallworth
et al. 2004, 2005; Yu et al. 2015). Hallworth et al. (2004) observed
an unexpected result: the melting of a reactive porous medium leads
to recrystallization of the sinking interstitial liquid and produces a
layered structure in the bulk. In Pb–Sn directional solidification ex-
periment, heating and melting the mushy layer from above lead to
the sinking and recrystallization of the melted Pb liquid (Yu et al.
2015). The heavy melt produced by melting drives compositional
convection which redistributes this melt in the lower layer. The
crystallization of this melt leads to an increase of the solid fraction
(Hallworth et al. 2004, 2005; Butler et al. 2006; Butler 2011).

In both solidification and melting experiments, we have used
ultrasonic waves as analogues to the seismic waves to probe the
microstructure of the mushy layer. We have measured the scatter-
ing and the attenuation which depend on the solid fraction and
interdendritic spacing. These measurements can help not only to
characterize the experiments but also to interpret the core phases in
the seismic waves and unravel the mushy layer structure at the ICB.

The paper is outlined as follows. In Section 2, we introduce the
experimental protocol used during the solidification and melting
experiments. All experimental results are presented in Section 3.

We have measured the evolution of the thickness of the mushy
layer at different gravity values, and probed the microstructure of
the mush with ultrasounds to measure their attenuation in a mushy
layer during a melting or solidification experiments. In Section 4,
we introduce a mathematical model describing the macroscopic
evolution of a mushy zone with kinetic under-cooling and we com-
pare our experimental results with the model. Based on a simplified
model, we analyse the dimensionless parameters dependence of the
evolution of the mushy layer in the Section 5. The good agreement
between the two allows us to apply our model to the crystallization
of the inner core and obtain conditions under which large solid frac-
tion can be obtained below the ICB (see Section 6). We discuss our
main results in Section 7.

2 E X P E R I M E N TA L P RO T O C O L

We use a Beckman J-26 XPI centrifuge to increase the apparent
gravity up to 1300 g (Fig. 2). The rotor consists of four buckets, two
of which being empty. The other buckets contain the experimental
cell ((1) in Fig. 2) and a counterweight ((3) in Fig. 2). Each bucket
is free to tilt itself according to the local gravity field (sum of Earth
gravitation and centrifugal forces), depending on the rotation rate
(i.e. for a large rotation rate, each bucket is nearly perpendicular
to the rotation axis). A slip ring allows us to connect the on-board
electronics to the acquisition board ((2) in Fig. 2) and provides
electric power to the experiment. The details of the experimental
protocol can be found in Appendix A.

Fig. 3 presents a longitudinal cross-section of the cell crossing
the ultrasonic probes. The ‘bottom’ and the ‘top’ of the cell are
defined according to the local gravity vector (green arrow) which
controls the tilt of the buckets as function of rotation rate. The
lateral boundary of the cell consists of four Perspex walls ((5) in
Fig. 2), 1 cm thick, surrounded by a perspex tube of thickness 1.5 cm
((6) in Fig. 2) and by the bucket ((7) in Fig. 2). At the bottom, a
Peltier element is used to cool the cell from below ((4) in Fig. 2).
It is able to extract around 20 W. At the top, there is a (resistive)
heater element able to provide around 6 W. Five temperature probes
PT100 are placed on one wall at 3, 16, 28, 40 and 61 mm from the
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Figure 2. (a) Beckman J-26 XPI centrifuge with the rotor composed of four buckets. Two buckets contain the experimental cell (1) and the counterweight (3).
A slip ring (2) with 10 channels allows connecting the cell to the acquisition and control cards. (b) Schematic top view of the experimental cell in the bucket
(1). (4) is the Peltier element at the bottom of the cell. (5) and (6) are the thermal insulation of the cell, which are surrounded by the bucket (7).

Figure 3. Longitudinal plane of the cell crossing the ultrasonic probes. The gravity is towards the right (green arrows). The dimensions of the cell are 6.7 ×
3.5 × 3.5 cm3. The bottom of the cell is 19 cm away from the axis of rotation.
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Figure 4. Phase diagram of aqueous ammonium chloride solution. On the water-rich side of the eutectic point (with freezing temperature Te), the solidified
solid is ice, while on the NH4Cl-rich side of the eutectic point, right-hand-side on this figure, solid formed is almost purely ammonium chloride NH4Cl. The
black arrow denotes the theoretical path of temperature and concentration liquid from an initial solution at 30 wt per cent and 45 ◦C cooled from the bottom at
a target temperature TB.

bottom. Another temperature probe is placed on the Peltier device.
Furthermore, we use three pairs of ultrasonic transducers to send a
sweep between 1.8 and 6 MHz to measure the thickness of the mush
during the experiments under rotation, and to probe its structure.
The first transverse pair of transducers is used to measure the sound
velocity in the liquid ((1) in Fig. 3). The second one allows us to
determine the velocity and the attenuation in the mushy layer ((2)
in Fig. 3). Finally, a vertical pair of transducers gives access to the
height of the mush and the attenuation ((3) in Fig. 3).

At the bottom of the cell, the temperature is maintained at around
5 ◦C by the Peltier element with a PID controller, that is, a control
loop feedback mechanism to cancel the temperature fluctuations in
the centrifuge due to a poor temperature control (Fig. 5). We use
an aqueous solution of ammonium chloride NH4Cl. The initial con-
centration is 30 wt per cent and the initial temperature is around
45 ◦C (Fig. 4). We have carried out solidification experiments at 1,
13, 208 19, 26, 76, 119, 136, 478 and 1327 g and melting experi-
ments at 1, 13, 136 and 478 g. The gravity value is defined at the
bottom of the cell and is 35 per cent smaller at the top of the cell.
We have also run experiments in a transparent tank (15 × 15 ×
7.5 cm3) at 1 g, that is, in the non-rotating frame, to observe visu-
ally the growth of the mush, convection in the liquid and the effects
of the melting from above. In these experiments, we took pictures
every minute.

3 E X P E R I M E N TA L R E S U LT S

3.1 Thermal evolution in the liquid

Fig. 5 shows the typical evolution of temperatures during two dif-
ferent solidification experiments at 13 g. One of these experiments

(Fig. 5b) is followed by a phase of heating from above (from
t � 210 min) causing partial melting of the mush. From its ini-
tial temperature, the liquid is cooled from below with a temperature
prescribed to 5 ◦C at its bottom during 240 min for the solidifica-
tion experiments and 330 min for the melting experiments. It takes
typically 100 min after the beginning of crystallization to actually
reach the target temperature (Fig. 5). The initial temperature can be
different between different runs, but this does not matter as long as
it is above the initial melting point of the liquid: it will only change
the starting time of crystallization. The oscillations of the tempera-
ture measured in the centrifuge, Tcentri, nearly periodic over a typical
time of 40 min and amplitude about 5 ◦C, are due to the poor con-
trol of the machine. The change of slope of the temperature curve
corresponding to the probe just above the Peltier element (dashed
line, marked by a small arrow) is due to the onset of crystallization.
At this time (7 min), the interface temperature is around 28 ◦C, that
is, 7 ◦C lower than the equilibrium solidification temperature Ts(c0)
= 34.57 ◦C. The crystallization produces a release of latent heat
that explains this change in slope. During a melting experiment, the
heater is turned on when the temperature in the liquid is smaller
than 10 ◦C, while the bottom temperature is maintained at 5 ◦C. At
the top, the temperature increases to 20 ◦C.

3.2 Evolution of the mushy layer height and solid fraction

The ultrasonic signal sent by the transducers is a 7.5 ms long linear
sweep with frequencies ranging from 1.8 to 6 MHz. The recorded
signals are cross-correlated with the theoretical sweep sent by the
transducers. This produces a signal equivalent to that from an im-
pulsive source. Fig. 6 shows the evolution of the cross-correlated
signals sent and recorded by the vertical pair of ultrasonic probes
((3) in Fig. 3) during a solidification experiment at 478 g. We have

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/204/3/1729/682317 by guest on 10 Septem

ber 2021



1734 L. Huguet et al.

Figure 5. Evolution of the temperatures in the liquid during two different solidification experiments at 13 g. In panel (b) crystallization is followed by a melting
experiment. Tcentri and Tpeltier denote the temperature in the centrifuge and at the surface of the Peltier device respectively. The 5 ◦C oscillations of Tcentri are
due to the ‘On/Off’ loop temperature control of the centrifuge. T1, 3, 5 are temperatures at three different heights (3, 28 and 61 mm). The arrow at time 7 min
points to a kink in the curve of T5 associated with the onset of crystallization.

picked the arrival time, that is, the first reflection at the surface of
the mushy layer (black dots in Fig. 6) to determine the thickness of
the mushy layer (see Fig. 7). However, this arrival is not always clear
because the mushy layer is a scattering medium at this frequency
range. The first arrival is followed by a coda which demonstrates
the presence of scattering in the mush (Aki & Chouet 1975).

From the signal recorded with the vertical pair of ultrasonic
transducers (Fig. 6), we track the evolution of the thickness of the
mushy layer (Fig. 7a). The evolution of the mushy layer height starts
as independent of gravity but levels off to a final value that decreases
with gravity. Tait & Jaupart (1992) have carried out experiments of
directional solidification of aqueous ammonium chloride solutions,
in relatively similar conditions, in which they used a small amount
of polymerizing agent to increase the viscosity. They have shown
that the final height increases with the liquid viscosity (Fig. 7b).
The decrease of the final height with increasing g observed in our
experiments (Fig. 7a) is consistent with the experimental results of
(Tait & Jaupart 1992; Fig. 7b) if the final height is assumed to be
a function of mushy layer Rayleigh number of the liquid, Rm, only
(the other control parameters being equal in both studies). Since Rm

∝ g/η, increasing η is equivalent to decreasing g. We can therefore
transpose the viscosity values in Tait & Jaupart’s (1992) experiments
to equivalent gravity values. For example, an experiment performed
at 1 g with a 16 mPa s viscosity melt corresponds to an experiment
at 0.09 g with the 1.5 mPa s viscosity of our experiments. The
evolution of the mush thickness diverges earlier and earlier from
the conductive solution (dashed line in Fig. 7b) when gravity is
increased or viscosity is decreased. This behaviour is consistent
with an increase of the vigour of convection in the mushy layer
compared to its solidification rate (Worster 1991).

The main result of the experiments under hypergravity is the
decrease in the final height of the mush with gravity. Fig. 8 shows the
final thickness and solid fraction (red square) as functions of gravity.
We measure the thickness of the mush postmortem (black circle) and
from the ultrasonic signals (blue circles). The discrepancy between
the two is due to: (i) the difficulty to pick the first-arrival in the
ultrasonic signals (Fig. 6), because the mushy layer is a scattering
medium and (ii) the uncertainty on the sound velocity. We use the
transverse transducer pairs ((1) in Fig. 3) to determine the sound

velocity in the liquid which is assumed uniform (corresponding to
a uniform temperature). We estimate the error on the determination
of height to be ∼1.5 mm.

We can write the solid fraction � as

� =
Msolid

ρs

Vmush
(1)

where ρs is the density of solid NH4Cl, Msolid is the mass of solid
NH4Cl at the end and Vmush is the volume of the mushy layer, that
is, Vmush = h × 3.5 × 3.5 cm3. We estimate Msolid assuming ther-
modynamic equilibrium. Because approximately the same quantity
of NH4Cl crystallizes in the different experiments, the decrease
of height corresponds to an increase of solid fraction with gravity
(Fig. 8).

3.3 Interdendritic spacing measurements

We measure the primary interdendritic spacing λ1 from pictures
taken under a binocular microscope with a magnification between
20 and 100×. However, the measurement is difficult and we have
obtained only three value at three different gravity values 13, 136
and 305 g. Fig. 9 shows that λ1 decreases with gravity. Several stud-
ies have shown that vigorous convection in the interstitial liquid
generated by higher apparent gravity or by magnetic fields leads to
a decrease in interdendritic spacing (Battaile et al. 1994; Lehmann
et al. 1998; Chen et al. 2003; Tewari & Tiwari 2003; Spinelli et al.
2005, 2006; Diepers & Steinbach 2006; Steinbach 2009; Viardin
et al. 2014). We compare our results to three analytical models
of Lehmann et al. (1998), Diepers & Steinbach (2006) and Stein-
bach (2009). Note that these studies use a Bridgman furnace, which
controls the velocity of crystallization and temperature gradient
independently, while neither is controlled in our experiment. The
aforementioned studies proposed that λ1 ∝ gα with an exponent α

between −1/4 and −1/8. Our results are more consistent with λ1

∝ g−1/4, although the uncertainty of the control parameters and the
scarceness of our data do not allow us to conclude. The analysis
in Lehmann et al. (1998) is adapted from (Kurz & Fisher 1981) as
interdendritic velocity is substituted to the growth rate in the deter-
mination of the typical undercooling near the tips of dendrites. We
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Figure 6. Evolution of ultrasonic signal from the vertical pairs of transducers ((3) in Fig. 3) during a solidification experiment at 478 g. Top, a zoom on
ultrasonic signal at 63.3 min as indicated by arrow on the left in the bottom panel. The black dot denotes the position of the first arrival. Each line is normalized
by its maximum.

furthermore assume here that the interdendritic convective velocity
scales linearly with the gravity level: this leads to λ1 ∝ g−1/4.

3.4 Melting experiments

Motivated by several studies which suggest melting on one hemi-
sphere of the inner core (Alboussière et al. 2010; Gubbins et al.
2011), we have carried out directional solidification experiments,
producing mushy layers which are subsequently heated from above.

These experiments have been realized in a tank and in a centrifuge.
Due to the heating from above, the mushy layer melts and the thick-
ness decreases slowly (Fig. 10).

Fig. 11 shows the evolution of liquid convection above the so-
lidification front using a transparent tank outside the centrifuge at
1 g. During the crystallization of the mushy layer, convection in
the mush produces plumes in the liquid and chimneys in the mushy
layer (Fig. 11, t = 0 min). The plumes are laminar and meander-
ing. The cones at the solid/liquid interface are due to the difference
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1736 L. Huguet et al.

Figure 7. (a) Height of the mushy layer as a function of time for different apparent gravities. Squares are the experimental results and dashed lines are
predictions from the evolution model presented in Section 4. (b) Fig. 7 of Tait & Jaupart (1992) for different viscosities which correspond to different gravity
levels given purely as an indication. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this paper.)

Figure 8. Height of mushy layer (circles and stars) and solid fraction (square) as a function of gravity. The thickness of the mush is measured postmortem
(circles) and from the ultrasonic signals (stars).

between the thermal and solute diffusivity. The liquid in the vicinity
of plumes is cooled by the cold and depleted liquid expelled by the
chimneys whereas its composition is left unchanged because of the
much smaller solute diffusivity. The melt becomes saturated and
crystallizes in the form of cones. In the liquid, the temperature gra-
dient is stabilizing, that is, the liquid is thermally stably stratified,
while the gradient of solute is destabilizing due to the release of a
NH4Cl-depleted liquid during the solidification. Moreover, horizon-
tal layers appear in the liquid and are produced by double-diffusive
convection (Turner 1979), which can exist when the concentration
and temperature gradients have opposite signs and when the ra-
tio of diffusivity is large (Huppert & Turner 1981; Beckermann &

Viskanta 1988; Chen 1997). The NH4Cl-depleted liquid carried by
the plumes accumulates at the top of the box from which a stable
compositional stratification develops and propagates downward, the
‘filling box mechanism’ of Baines & Turner (1969). After 260 min
of solidification, we impose a constant temperature of 60 ◦C at the
top of the box to heat and melt the mushy layer. In the liquid part,
the plumes become turbulent, with the conical shape typical of tur-
bulent plumes (Morton et al. 1956; Turner 1979), indicating that
convection is probably more vigorous when the mush is heated from
the top (Fig. 11, t = 268, 294 and 320 min). We interpret this to be
due to an increase of the interface temperature and of the tempera-
ture difference across the mush, which corresponds to an increase of
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Figure 9. Primary interdendritic spacing λ1 as function of gravity g. Squares are our measurements at 13, 136 and 305 g. Solid, dotted and dashed lines
correspond to three theoretical models: λ1 ∝ g−1/4 adapted from (Lehmann et al. 1998), λ1 ∝ g−1/7 (Steinbach 2009) and λ1 ∝ g−1/8 (Diepers & Steinbach
2006), respectively.

Figure 10. Evolution of the mush height during crystallization/melting experiments. Vertical dashed, solid and dotted lines denote the beginning of heating
from above for the experiments at 1, 136 and 478 g, respectively.

the concentration difference (see phase diagram on Fig. 4) since the
mush must be close to thermodynamic equilibrium. After 320 min,
the plumes are still active but the chimney cones disappear. The
turbulent regime of the plumes prevents the formation of cones be-

cause the small scale transport of the temperature and concentration
fields are now similar, in contrast to the case of laminar plumes. The
melting of the mushy layer produces a NH4Cl-rich liquid layer at
the interface (Fig. 11, t = 320 min).
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1738 L. Huguet et al.

Figure 11. Evolution of convection in the liquid and in the mushy layer during the melting experiment at 1g. The images are composite images. In the liquid
part, we have used a Schlieren technique with a random background pattern and a smoothing technique. The image of the mushy layer is a straightforward
image from a digital camera.

Figure 12. Solid fraction (squares) and temperature (circles) profile for melting (dashed) and solidification (solid) experiments at their ends. The dashed lines
represent the thickness of the mushy layer for melting (dashed) and solidification (solid) experiments respectively. The prescribed temperature is 3 ◦C for both
experiments.

To track the effects of melting on the mushy layer, we use re-
sistance measurements to determine the solid fraction profile in
the mush, at three different heights, 2, 7 and 12 mm above the
cold bottom boundary, see Fig. 12. This technique has been sug-
gested by Shirtcliffe et al. (1991) and consists in measuring the
resistance between two parallel platinum wires a few millimetres
apart. Assuming that the solid phase is insulating and thermody-
namic equilibrium is reached, we use Archie’s empirical law which
connects the porosity (1− �) to this resistance Rmush. Having pre-
viously measured the resistance Rliq in the pure liquid phase at the
same temperature and composition, Archie’s law takes the follow-
ing form (Archie 1942; Chiareli & Worster 1992; Shirtcliffe & Kerr
1992; Jahrling & Tait 1996)

1 − � =
(

Rliq

Rmush

)1/m

, (2)

where m is an exponent which depends on the tortuosity and is
equal to 1.72 (Shirtcliffe & Kerr 1992; Jahrling & Tait 1996). Fig. 12

shows temperature and solid fraction profiles in melting (green) and
solidification (red) experiments at 13 g at the end of the experiments.
In the solidification experiment, the solid fraction decreases with
height, which is consistent with the study of Chen & Chen (1991).
The melting from above produces an increase of solid fraction just
below the interface, whereas the rest of the solid fraction profile
is unchanged. The mean solid fraction predicted by eq. (1) for the
solidification experiment is about 29 per cent, that is in agreement
with the solid fraction measured by the platinum wires.

3.5 Attenuation measurements in a mushy layer

We have used ultrasounds to quantify structural changes in the
mush from measurements of attenuation or scattering. During wave
propagation, seismic energy is dissipated through absorption or
scattering. The absorption is due to anelastic properties of the
medium (i.e. seismic energy can be converted to heat). The scatter-
ing depends on the geometric arrangement of the medium and is
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Figure 13. Quality factor Qm of the mush as a function of gravity for four different frequencies.

wavelength-dependent, that is, controlled by the ratio of the size of
the heterogeneities to the wavelength. The attenuation q is written
as

q = 1

Qabsorption
+ 1

Qscattering
(3)

where Q is the quality factor. In a two-phase region, elastic energy
can also be converted into latent heat with a net contribution to
Qabsorption due to irreversible heat conduction. The wavelength used
in this study is close to the length scale of the heterogeneities. Then,
we assume that Qabsorption is negligible compared to Qscattering. We
use two different methods to measure the attenuation in the mushy
layer. The first one is the spectral ratio method (Jordan & Sipkin
1977; Sipkin & Jordan 1980; Romanowicz & Mitchell 2007) and is
applied on the transverse signals (PKIKP like, (2) in Fig. 3). In our
case, we compared in a frequency domain the spectrum of waves
travelling through the liquid to the spectrum of waves travelling
through the mushy layer. The spectral ratio is written

ln

(
Am

Al

)
= πx f

c

(
1

Ql
− 1

Qm

)
, (4)

where Al and Am are spectral amplitudes through the liquid and
through the mush, respectively, x is the distance between the two
ultrasonic probes, c is the wave speed, f is the frequency, and Ql

and Qm are quality factors of the liquid and of the mush. Ql is
determined from the spectral ratio of the spectrum of the wave
travelling one time and three times in the liquid (200 < Ql < 400).
The size of the window is 2 µs around the maximum of the signal
which corresponds to the arrival time. The quality factor Qm is
quasi-independent of this windows size. The error of Qm is due to
the velocity which is measured in the liquid above the mushy layer
during the experiments. The velocity error is estimated to be about
2 per cent.

Fig. 13 presents our measurements of attenuation at different
gravities, under the condition that the mush is thicker than the
size of the ultrasonic probes (15 mm). Between 2.8 and 6 MHz,
Qm is independent of gravity but its significance is questionable
since the signal is largely back-scattered and attenuated, and prob-
ably within noise level. For smaller frequencies (<2.5 MHz), the
quality factor decreases with gravity level (Fig. 13), that is, the
attenuation increases when the microstructure of the mushy layer
changes—solid fraction increasing, interdendritic spacing decreas-
ing and grain sizes decreasing. The waves travelling through the
mushy layer are broadened and attenuated and are not followed by
a coda, which is consistent with the model predictions of Cormier
(2007) for a signal sent perpendicularly to a vertically oriented
structure (like a mushy layer).

The second method measures the exponential decrease in the
coda of the vertical signals (PKiKP like, (3) in Fig. 3; Aki & Chouet
1975). The quality factor of the coda Qc is written as

E( f, t) = S( f )t−αe− 2π f t
Qc (5)

where E is the power spectral density, S is the source term and α

is a positive coefficient, usually equal to 2 (Aki & Chouet 1975).
The quality factor Qc is based on the signal averaged over the last
15 min of the melting or solidification experiments (Fig. 6) when
the thickness of the mushy layer is almost constant. In Fig. 6, the
error bars denote the standard deviation which is due to the noise
level in the ultrasonic signal. For all frequencies, Qc decreases with
gravity (Fig. 14). Moreover, it is observed that Qc is greater when
the top of the mushy layer is melted. However, the amplitude of
Qc depends on the duration of the time windows which prevents a
direct comparison with the Qm value. The presence of a coda in our
signal is consistent with the model of Cormier (2007) for a signal
reflected on a heterogeneous medium.
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1740 L. Huguet et al.

Figure 14. Quality factor Qc as function of gravity for two different frequencies (2 MHz in dotted lines and 4 MHz in solid lines) during melting (circles) and
solidification (squares) experiments.

Figure 15. Schematic diagram of the model. A mushy layer develops after decreasing the bottom temperature to Tb from a melt at temperature and concentration
Tl and cl, respectively. The solid fraction of the mush is assumed constant and uniform. FT and FC are heat and solute fluxes between the liquid and mushy
layers. The suffix bl and ch denote the flux due to the boundary layer convection mode or to the mushy layer convection mode respectively.

4 G ROW T H M O D E L O F T H E
M U S H Y L AY E R

A number of models describe the macroscopic evolution of a crystal-
lizing mush (Woods & Huppert 1989; Huppert 1990; Worster 1991;
Worster & Kerr 1994; Peppin et al. 2008; Wells et al. 2010, 2011,
2013; Rees Jones & Worster 2013): the evolution of the thickness h
and the solid fraction � in the mushy layer, and the (uniform) tem-
perature and concentration in the liquid and at the interface. Fig. 15

shows a sketch of a model where a solution at initial composition
c0 and temperature T0 is cooled from below at the temperature Tb.
The mushy layer grows in the direction opposite to the gravity. We
assume that the liquid convects vigorously, and that the temperature
Tl and concentration cl are homogeneous. The temperature and the
concentration at the interface are Ti and ci. We assume a uniform
(but time-dependent) solid fraction in the mushy layer. The bulk of
the mush is assumed to be locally at thermodynamic equilibrium,
but disequilibrium is allowed at the mush-liquid interface.
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Table 1. Physical property values used in the theoretical calculations. The NH4Cl column is related to our
experiments (a from Worster & Kerr (1994) and Peppin et al. (2008)) while the ‘Inner core’ column shows typical
values for numerical modelling relevant to the inner core (b from Pozzo et al. (2012) and Buffett et al. (1996),
and c from Lum (1996)).

Quantity Symbol NH4Cla Inner coreb Unit

Specific heat of the liquid Cpl 3504.8 715 J kg−1 K−1

Specific heat of the solid Cps 1520 715 J kg−1 K−1

Thermal conductivity of the liquid kl 0.54 150 W m−1 K−1

Thermal conductivity of the solid ks 2.2 150 W m−1 K−1

Latent heat of crystallization L 2.81 105 6 105 J kg−1

Density of the liquid ρl 1050 104 kg m−1

Density of the solid ρs 1520 104 kg m−1

Thermal diffusivity of the liquid κ l 1.47 10−7 2.1 10−5 m2 s−1

Solute diffusivity of the liquid D 10−9 10−9 m2 s−1

Liquidus slope 	 4.79 102 ◦C wt per cent−1

Eutectic temperature Te −15.9 ◦C
Eutectic composition ce 19.7 wt per cent
Kinetic growth parameter G 4.14 10−7 6 10−4 c ms−1 ◦C−2

Initial composition of the liquid c0 30 90 wt per cent
Height of the cell H 0.07 3 106 m
Solidification temperature at c0 Ts(c0) 34.57 5100 ◦C
Bottom temperature TB 5 5000 ◦C
Dynamic viscosity ν 0.93 10−6 10−7 m2 s−1

Solute expansion coefficient β 2.3 10−3 10−2 wt per cent−1

Thermal expansion coefficient α 3.1 10−4 10−5 K−1

The solidification velocity depends on the supercooling at the
interface which corresponds to a difference between the interface Ti

and equilibrium temperature Ts(cl). This under-cooling is of kinetic
origin, that is, corresponds to the disequilibrium necessary for the
mush to grow. The kinetic growth law is written (Kirkpatrick et al.
1976; Worster et al. 1990, 1993; Worster & Kerr 1994)

ḣ = G(Ts(cl ) − Ti )
2 = G�T 2

k (6)

where G = 4.14 × 10−7 m s−1 ◦C−2 a parameter found experimen-
tally by Worster & Kerr (1994), which relates solidification velocity
and kinetic undercooling, and is poorly known (Chan et al. 1976;
Worster & Kerr 1994; Blackmore et al. 1997; Peppin et al. 2008;
Whiteoak et al. 2008). In Table 1, we define all parameters used in
our model.

4.1 Early height evolution

During the first 15 min, the thickness evolution is independent
of gravity (Fig. 16). Hence convection plays a minor role at the
beginning. The heat diffusion equation in the cell is written

∂T

∂t
= κ

∂2T

∂x2
(7)

where T is the temperature, t is time, x is the vertical position and
κ is the thermal diffusivity. At the beginning, the solid fraction is
small, we then assume the same thermal diffusivity in the mush and
in the liquid, and we neglect the latent heat, which is released during
solidification. The solution of this equation, when the temperature
at the bottom decreases as T(t) = ct, is (Carslaw & Jaeger 1986)

T (t, x) = ct

[(
1 + x2

2κl t

)
erfc

(
x

2
√

κl t

)
− x√

πκl t
exp

−x2
4κl t

]
. (8)

Assuming that the temperature of solidification is constant, the
height of the mush is determined by the position at which this
temperature is obtained, which is computed numerically (solid line
in Fig. 16). However, the mushy layer growth imposes a kinetic
under-cooling, which produces a delay of crystallization. Choosing

a supercooling value �Tk to fit the data we get �Tk = 7 ◦C. This is
in agreement with the measurements of temperature, on which we
have observed a change of slope 7 ◦C below the initial solidification
temperature (arrow in Fig. 5).

4.2 Model of the growth of the mushy layer

A specific feature of our model is that kinetic under-cooling is
taken into account. The other ingredients are based on heat and
mass conservation. The mushy layer growth is controlled by the
heat and solute flux due to boundary layer convection (FTbl and
FCbl ) and mushy layer convection when super-critical conditions
are met (FTch and FCch ). In the liquid, heat and solute conservation
equations are written(

Mtot

A − ρh

)
ċl = −FCbl − FCch (9)

and

Cpl

(
Mtot

A − ρh

)
Ṫl = −FTbl − FTch − F liquid

p , (10)

where Mtot is the initial mass of the solution, A is the cross-section
area, ρ is the mean density of the mush and Cpl is the liquid heat
capacity. F liquid

p is the heat flux lost through the walls in the liquid
due the poor thermal insulation. Mean quantities in the mush are
given by

x = (1 − �)xl + �xs, (11)

where x can be the density, the heat capacity or the thermal conduc-
tivity and � is the solid fraction in the mushy layer.

For the boundary-layer mode of convection, we use classical scal-
ing laws for the fluxes based on the theory of boundary layer stability.
We can write the boundary layer flux as proportional to Ra

1
3 , with

Ra the Rayleigh number (Woods & Huppert 1989; Worster & Kerr
1994), giving

FCbl = 2
4
3 (1 − �)ρlλD

(
βg

Dν

) 1
3

(cl − ci )
4
3 , (12)
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1742 L. Huguet et al.

Figure 16. Focus on the first 20 min of the height of the mushy layer for different apparent gravities. The black line is the thickness evolution for a conductive
model without undercooling (solid) and with a kinetic undercooling �Tk = 7 ◦C (dashed line). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this paper.)

where D is solute diffusion, β is a solute expansion coefficient, ν

is the liquid viscosity, ci is the interface concentration, and ρ l is
the density of the liquid. We assume that this density is constant
during the experiment. λ is a constant which depends on the buoy-
ancy ratio (Turner 1979; Worster & Kerr 1994). The factor (1 −
�) corresponds to the fraction of the surface area where the com-
position difference cl − ci is relevant, i.e., where the bulk liquid is
facing the interdendritic liquid. Where the liquid is in contact with
the solid phase, Stefan’s condition of an imposed composition flux
holds, leading to a much smaller value than that with the interden-
dritic liquid. Assuming heat is transported along with compositional
convection as a passive tracer, the heat flux FTbl is written

FTbl = ACpl

(
Tl − Ti

cl − ci

)
FCbl , (13)

where A is a constant which depends on the ratio of heat to solute
diffusivity (Huppert 1990).

Mushy layer convection is controlled by the mushy layer Rayleigh
number Rm (Wells et al. 2010, 2011, 2013; Rees Jones & Worster
2013) written as

Rm = β�(ci − cb)g�(�)h

νκl
, (14)

with β� = β − 	α the expansion coefficient due to temperature
and concentration changes. The permeability �(�) depends on the
solid fraction as (Tait & Jaupart 1992)

�(�) = λ2
1

32

(−2ln� − �2 + 4� − 3
)
. (15)

The convective solute flux in the mush is given by (Wells et al.
2011; Rees Jones & Worster 2013)

FCch = γ κlρl

(
ci − cb

h

)
(Rm − Rc), (16)

with Rc = 25 the critical Rayleigh number and determined experi-
mentally by Tait & Jaupart (1992). Similarly to the boundary layer
heat flux FTbl , we assume that the velocity field is due to composi-
tional convection alone and the convective heat flux is (Wells et al.
2011; Rees Jones & Worster 2013)

FTch = γ kl

(
Ti − Tb

h

)
(Rm − Rc). (17)

The parameter γ is determined experimentally by Wells et al. (2011)
for small C, the ratio of the difference between the concentration of
solid and liquid phases (Worster 1991) and the typical variations of
concentration in the liquid

C = cs − c0

c0 − cB
. (18)

where cs = 1 is the solid concentration and cB is the concentration at
the target temperature TB at the bottom of the cell (5 ◦C). However
in our case, this ratio is large (C=11.8). Then γ will be a parameter
to determine with our experimental results.

Assuming a constant profile of solid fraction in the mushy layer,
we write the global solute and heat conservation(

Mtot

A − ρh

)
cl + 〈ρc〉h = Mtot

A c0 (19)

and

∂

∂t

[(
Mtot

A − ρh

)
Cpl Tl + ρCph〈T 〉

]

= −k
∂T

∂z

∣∣∣∣
bottom

+ ρs L
∂h�

∂t
− (

F liquid
p + Fmush

p

)
, (20)

where ρs is the density of solid. Fmush
p and F liquid

p are the heat flux lost
through the walls in the mushy layer and in the liquid, respectively.
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The heat flux extracted by the Peltier device at the bottom of the
cell is equal to the sum of the convective (chimney) part (eq. 17)
and of the conductive contribution along the liquidus gradient

k
∂T

∂z

∣∣∣∣
bottom

= k
Ti − Tb

h
+ FTch . (21)

The chimneys contribution FTch is included in the bottom heat flux
because it corresponds to a global mode of convection in the mush
(of uniform permeability in our model). Hence, this mode is capable
of changing the temperature profile in the mush and in particular at
the bottom in a thermal boundary layer. Its contribution comes in
addition to the pure conduction term.

〈ρc〉 and 〈T〉 are the mean concentration and temperature in the
mushy layer and are given by

〈ρc〉 = (1 − �)ρl
(ci + cb)

2
+ �csρs (22)

and

〈T 〉 = (Ti + Tb)

2
. (23)

These equations can be made dimensionless using the total height
H and diffusion time τκ = H2

κl
. The dimensionless temperature and

concentration are written

θ = T − Ts(c0)

Ts(c0) − TB
= T − Ts(c0)

�T
(24)

and

χ = c − c0

c0 − cB
= c − c0

	−1�T
. (25)

With this scaling, θ is equal to χ at all heights in the mush (assuming
thermodynamic equilibrium).

Finally, noting time derivatives with an overdot, we write the
dimensionless system of equations as

ḣ = μ(χl − θi )
2 (26)

(
1 − ρ

ρl
h

)
χ̇l = −γ

χi − χb

h
(Rh�(�)(χi − χb) − Rc)

− Nuχ (χl − χi )
4
3 (1 − �) (27)

(
1 − ρ

ρl
h

)
θ̇l = −γ

θi − θb

h
(Rh�(�)(χi − χb) − Rc)

− Nu�(θl − θi )(χl − χi )
1
3 (1 − �) − F liq

p (28)

˙̂h� =
{(

1 − ρs

ρl

)
θl + ḣ [〈θ〉 − θl ]+h〈θ̇〉

[
1 + �

(
ρsCps

ρlCpl
− 1

)]
+ θi − θb

h

(
k

kl
+ γ (Rh�(�)(χi − χb) − Rc)

)

+ (
F liq

p + Fmush
p

) } {
S

ρs

ρl
−

(
ρsCps

ρlCpl
− 1

)
〈θ〉

−
(

1 − ρs

ρl

)
θl

}−1

(29)

C
(

ρs

ρl

)
h� = −

(
1 − ρ

ρl
h

)
χl − 〈θ〉(h − h�) (30)

The system of eqs (26)–(30) introduces six dimensionless numbers:

μ = G H�T 2

κl
, S = L

�T Cpl
,

Nuχ = 2
4
3 λ

D

κl

(
βg�T H 3

	Dν

) 1
3

, Nu� = ANuχ ,

R = β�g�T λ2
1 H

	νκl
, and C = cs − c0

c0 − cB
.

μ is a dimensionless kinetic growth parameter. S is the Stefan num-
ber. Nu� and Nuχ are the thermal and solute Nusselt numbers,
respectively. C is the dimensionless solid concentration or the com-
positional ratio (Worster 1991).

Eq. (30) can be used to obtain �h when t tends to infinity, by
setting θ and χ l to −1, which are the values for a uniform T = 5 ◦C
and thermodynamic equilibrium. The value obtained at the final
thermal equilibrium depends only on the solid concentration cs and
the density ratio ρs

ρl
and is independent from gravity:

�h = 1
ρs
ρl

(1 + C)
. (31)

With the parameters of Table 1, the minimal value of mushy layer
height is 3.78 mm which corresponds to � = 1.

The heat flux lost through the perspex walls by the liquid and by
the mushy layer cannot be neglected because the thermal insulation
is not perfect especially in the centrifuge. The corresponding fluxes
are written as

F liq
p = p

4kp

kl

H 2

le
(θl − θext)(1 − h) and

Fmush
p = p

4kp

kl

H 2

le
(〈θ〉 − θext)h, (32)

where kp = 0.17 W m−1 K−1 is the thermal conductivity of perspex,
l = 0.15 or 0.035 m and e = 0.0125 or 0.03 m are the length and
the thickness of the wall respectively for the tank or the cell in the
centrifuge respectively. The prefactor p accounts for the contribution
of the convective heat transport in the centrifuge, for the exact
geometry and for the uncertainty related to the measurement of θ ext.
The value of this parameter p is determined using the temperature
fluctuations in the liquid due to the poor thermal regulation in
the centrifuge (cf. Fig. 5). For each rotation rate, p is adjusted so
that the temperature fluctuations are equal in the model and in the
experimental setup.

4.3 Comparison between the model
and our the experiments

We have applied our model to the conditions of the experiments
carried out at 1, 13, 26 and 478 g. The radius dependence of the
gravity is assumed to be not significant on the evolution of mushy
layer. Using the parameter values of Table 1 to compute the dimen-
sionless control parameters (S = 2.81, μ = 159.7 and C = 11.8)
leaves three free parameters that need to be fitted using the exper-
imental results, A, λ and γ , which depend on the boundary layer
and mushy layer convection. Moreover, λ1 is not well-known and
plays an important role to determine when the mushy layer Rayleigh
number Rm becomes supercritical. The main experimental data are
the evolution of height and the temperature in the liquid. At 1 g, we
know also that convection in the mushy layer begins after 15 min
and is always active at the end of experiment. Moreover, we know
approximately the interface temperature at the end.
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Table 2. Dimensionless parameters of the solidification experiments at five
different gravity values.

g Nu� Nuχ R λ1 (µm) p

1 15.12 37.80 2.81 103 340 1
13 35.80 89.51 2.53 104 280 0.8
26 44.80 112.02 3.64 104 240 0.7

478 118.23 295.58 2.28 105 140 0.35
1327 166.19 415.47 x x x

Based on the experimental results at different gravity value and
a prior information on free parameters, we have computed models
in the 4-D space (A, λ, γ and λ1). To find the best models to fit
our experimental data at 1, 13, 26 and 478 g, we have minimized
the errors between our model outputs and the experimental results
(height, liquid temperature, final solid fraction, time of start of the
mushy layer convection and the temperature at the interface (only
at 1 g)). Table 2 presents the dimensionless numbers used in the
model for a set of parameters: A = 0.4, λ = 0.6 and γ = 0.01.

Fig. 17 presents the comparison between the model (solid lines)
and the experimental results (squares) at 1 g. There is a good agree-
ment between both with A = 0.4, λ= 0.6, γ = 0.01 and λ1 = 340 µm.
Concerning temperature at the interface, the experimental value is
estimated by linear interpolation of the temperatures of the probes
on the side, given the interface position determined by direct visual-
ization. There is a reasonable agreement between that experimental
temperature (blue squares) and that provided by the model (blue
line). The value of A is consistent with experiments of double-
diffusive convection which suggest that the value is order of unity
when D/κ l � 1 (Woods & Huppert 1989). Turner (1967) deter-
mined the ratio between heat and solute flux in the case of finger
salt convection, and found 0.56 (Turner 1979).

Table 3. Comparison between the model prediction and the experimental
data at 1, 13, 26 and 478 g.

∫
FTtot dt denotes the total heat flux, that is, the

sum of right-hand side of eq. (28).

g hf �f

∫
FTbl dt∫
FTtot dt

∫
FTch dt∫
FTtot dt

∫
F

liq
p dt∫

FTtot dt

model exp model exp (per cent) (per cent) (per cent)

1 0.38 0.37 0.10 0.05 72.3 5.8 21.9
13 0.30 0.31 0.17 0.14 36.6 6.0 57.4
26 0.23 0.24 0.19 0.17 41.2 9.6 49.2
478 0.13 0.12 0.40 0.40 59.0 24.3 16.7

Using the same set of parameters, we applied the same evolution
model to cases corresponding to three experiment which have been
carried out in the centrifuge at three different gravities 13, 26 and
478 g. Table 3 summarizes the model predictions and compares
them with the experimental data. Our model predicts with a good
confidence the final height hf and final solid fraction �f. There
is also a good agreement for the evolution of thickness of mush
(Fig. 7). The integrated heat flux

∫
FTch dt is smaller than

∫
FTbl dt

in all experiments but
∫

FTch dt becomes significant when g is very
large. The integrated heat flux lost through the wall

∫
F liq

p dt is not
negligible especially in the centrifuge at small rotation rate (Table 3).

5 M O D E L A NA LY S I S

The model of mush (Fig. 15) evolution with kinetic undercooling
presented above (equations 26 to 30) is rather complex, with five
unknowns and eight dimensionless parameters μ, S, Nuχ , Nu�, C,
ρ l/ρs, kl/ks and R (and even more when heat flux losses through
side-walls are considered). Here, we write a simplified version of
this model and analyse the evolution of the mush, depending on the

Figure 17. Evolution of dimensionless height, temperature, concentration and solid fraction based on the model (solid lines) for A = 0.4, λ = 0.6, γ = 0.01
and λ1 = 340 µm. Different squares denote the experimental results at 1 g. The evolution of interface temperature θ i is obtained by linear interpolation between
temperatures probes spaced 1.25 cm (blue squares). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this paper.)
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values of the dimensionless parameters. The simplifications consist
in neglecting the density and conductivity difference between solid
and liquid, and in considering an initial condition on the liquidus
for the melt. Both Nusselt numbers Nuχ and Nu� are supposed
to be equal and simply denoted Nu, thermal and solute chimney
fluxes appear to be equal from eqs (26–30), so that θ l = χ l at each
time, reducing the system to four unknowns. We also restrict the
analysis to C 
 1 and S/C � 1, which are acceptable assumptions
for the experiments and geophysical applications. Moreover, it is
assumed that the bottom temperature is a Heaviside step function
of time, from 0 to −1 (in dimensionless terms) at the onset of
crystallization. A final simplifying assumption is made by taking a
constant interdendritic spacing in the mush.

With those approximations described above, the governing di-
mensionless equations for the evolution of the mush can be re-
written as follows:

0 = (1 − h)χl + Ch� + χi + χb

2
h(1 − �), (33)

∂

∂t
[(1 − h)χl ] + ∂

∂t

[
χi + χb

2
h

]
= −χi − χb

h
[1 + γ (R�(�)h(χi − χb) − Rc)] + S

∂h�

∂t
, (34)

ḣ = μ (χl − χi )
2 , (35)

(1 − h)χ̇l = −Nu
(
χl − χi

) 4
3 (1 − �)

− γ
χi − χb

h
[R�(�)h(χi − χb) − Rc] , (36)

where R and �(�) are given by eqs (14) and (15), and Nu =
2(4/3)λDκ−1(βg�TH3/(	Dν))(1/3). The first equation corresponds
to the global conservation of ammonium chloride, the second to the
heat budget, the third is the kinetic undercooling condition and the
last describes solutal exchanges between the mush and liquid layer.

The initial conditions are such that the dimensionless concen-
tration is zero in the liquid χ l = 0. From a specific starting time,
we impose a fixed temperature (concentration) at the bottom of the
cavity χ b = −1. Initially, χ i must be equal to χ b = −1 to avoid an
infinite heat transfer (36).

The final state of the system is characterized by a uniform di-
mensionless temperature χ l = χ i = χ b = −1. Eq. (33) then leads
to the final quantity of solid formed h�∞:

h�∞ = 1

C + 1
. (37)

5.1 Undercooling kinetic phase

Immediately after the bottom temperature is set to −1, the bulk liq-
uid composition χ l (and bulk temperature, θ l = χ l) has not changed
much (χ l = 0) and the composition of the first interdendritic liquid is
χ i = −1, as discussed above. The undercooling condition allows us
to derive the growth rate of the mushy layer, ḣ = μ(χl − χi )2 = μ.
So that the first phase of the growing mush is linear in time:

h = μt, (38)

where t is the time elapsed since the cold temperature has been
imposed at the bottom. The interfacial compositional flux condition
(36) leads initially to a linear decrease of χ l:

χl = −Nu t, (39)

as χ l − χ i � 1 and the mode of convection within the mush has not
started yet (Rm < Rc). During this initial phase (h � 1), eq. (33)
can be used along with eqs (38) and (39) to evaluate h�:

h� = μ + Nu

μ(C + 1)
h, (40)

hence providing the solid fraction �:

� = μ + Nu

μ(C + 1)
. (41)

Then eq. (34) can be used to obtain the evolution of χ i:

−Nu − μ = −χi + 1

h
+ S

μ + Nu

μ(C + 1)
μ, (42)

which leads to

χi = −1 + μ(μ + Nu)

[
1 + S

C + 1

]
t, (43)

At this stage, we only consider the case S/C � 1 and C 
 1, as
this is a reasonable assumption for both our experiments and appli-
cations to Earth’s inner core. Eq. (43) can be written χ i = −1 +
μ(μ + Nu)t. This provides us with a timescale for when this first
regime must stop, that is, for when χ i approaches zero, as χ i must
remain smaller than χ l which will itself be smaller than zero, its
initial value. The first regime stops at a typical time T1 and height
H1:

T1 = 1

μ(μ + Nu)
H1 = 1

(μ + Nu)
. (44)

This must be changed when Nu ≥ Cμ, or the solid fraction (41)
would exceed unity. With � � 1, eq. (33) leads to χl = Ch (when
h � 1), and (34) to χi = −1 + (S + C + 1)μ2t � −1 + Cμ2t . The
duration T1b and final height H1b of the undercooling kinetic phase
is then:

T1b = 1

μ2C H1b = 1

μC . (45)

5.2 Thermal diffusion regime

Typically, after χ i has changed from −1 to a value close to χ l which
is itself still close to zero, we make the assumption that χ̇i plays a
negligible role in eq. (34) and check this assumption later. The heat
budget eq. (34) can be written:

1

h
= −χ̇l + ḣ

2
+ S ˙̂h�, (46)

when h is still very small compared to unity and convection in the
mush not yet effective (Rm < Rc). Eq. (33) is used to evaluate h�:

χl + Ch� − h

2
= 0, (47)

so that eq. (46) can be written as follows:

1

h
� −χ̇l + ḣ

2
. (48)

The conduction heat flux 1/h extracted at the base of the experiment
is balanced by cooling the bulk of the fluid −χ̇l or by cooling the
mushy layer (ḣ/2) and the negligible contribution of the latent heat
release corresponding to the factor S/C. The relative importance of
these terms is measured, near the end of the first kinetic phase, by
Nu and μ/2 respectively. Hence the study of the evolution of the
system is divided in two cases Nu 
 μ and Nu � μ.
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5.2.1 Nu 
 μ

The thermal eq. (48) is approximated by

1

h
= −χ̇l = Nu

(
χl − χi

) 4
3 (1 − �), (49)

using the interface condition (36). With the undercooling condition
(35), this equation can be written:

1

h
= Nu

(
ḣ

μ

) 2
3

(1 − �). (50)

When the solid fraction is small (not very close to unity), this
equation takes the form:

h

(
ḣ

μ

) 2
3

= 1

Nu
, (51)

leading to

h

H1
�

(
t

T1

) 2
5

. (52)

From (33), we have (C + 1/2) ˙̂h� = ḣ/2 − χ̇l and with (48) we
obtain:

C ˙̂h� = 1

h
, (53)

which can be integrated to provide h�:

h� � 1

μC
(

t

T1

) 3
5

, (54)

which then, using eq. (52), leads to an expression for the solid
fraction �:

� � Nu

μC
(

t

T1

) 1
5

, (55)

This regime can only exist when � ≤ 1 at t = T1. This is the case
when Nu < Cμ. Otherwise, when � is nearly unity, our approxi-
mations fail and a new analysis must be done. When � � 1 and
h � 1, eq. (33) can be written:

χl = −Ch, (56)

and eq. (48) leads to:

1

h
= Cḣ. (57)

The solution is:

h

H1b
∼

(
t

T1b

) 1
2

, (58)

where T1b and H1b are defined in eq. (45). This regime number 1 in
the Nu–μ diagram on Fig. 18 is typically represented by the case
(a) (see also Fig. 19 and Table 4).

When Nu < Cμ, the h ∼ t2/5 regime ends when one of the
following conditions is met: either h� has reached its final value
(37), or � has reached 1. The times when these conditions are met
is evaluated from (54) and (55):

T2a

T1
= μ

5
3

T2b

T1
=

(
μC
Nu

)5

(59)

Those times coincide when:

Nu ∼ Cμ
2
3 , (60)

When Nu > Cμ2/3, the condition � = 1 is met at the time T2b

before the end of the crystallization, hence a phase h ∼ t1/2 follows
(regime 3, case (c) on Figs 18 and 19, and Table 4). On the contrary,
when Nu < Cμ2/3, crystallization stops before the solid fraction
reaches unity, at a time T2a. In that case, the final height scales as
μ2/3/Nu (regime 2, case (b) on Figs 18 and 19, and Table 4).

5.2.2 Nu � μ

Now, in eq. (48) we must retain the term ḣ, which under the same
assumption of constant χ i, can be rewritten into:

hḣ = 2, (61)

with solution

h

H1
=

(
t

T1

) 1
2

. (62)

Eq. (53) is still valid so that it can be concluded that the solid fraction
is a constant � ∼ 1/C, similarly as for the initial undercooling
kinetic phase. This regime can stop if −χ̇l becomes larger than ḣ
(see eq. 48) or if the total quantity of solid has been produced, that
is, when h ∼ 1. This corresponds to the respective times

T2c ∼ μ4

Nu6
, T2d ∼ 1. (63)

Those times are equal when Nu ∼ μ2/3. For smaller Nusselt num-
bers, the crystallization is completed before −χ̇l becomes larger
than ḣ, so that there is only a regime with h ∼ t1/2, with a final
height of order unity and final solid fraction 1/C (regime 6, case (f)
or (g) on Figs 18 and 19, and Table 4). For larger Nusselt numbers,
at time T2c, the h ∼ t1/2 regime is changed into a h ∼ t2/5, as in the
previous section:

h

H2c
=

(
t

T2c

) 2
5

, (64)

where H2c = H1(T2c/T1)1/2. From (53), we obtain h� ∼
μ2/(CNu3)(t/T2c)3/5 and � ∼ 1/C(t/T2c)1/5. In this last regime,
two possibilities exist again: either crystallization is completed be-
fore the solid fraction reaches unity, or � become unity before the
end of the process and a final phase takes place with h ∼ t1/2 (regime
5, case (e) on Figs 18 and 20, and Table 4). The boundary between
these possibilities is found to be:

Nu ∼ Cμ
2
3 . (65)

In the regime where the solid fraction does not reach unity, μ2/3 <

Nu < Cμ2/3, the final height is found to be of order μ2/3/Nu (regime
4, case (d) on Figs 18 and 19, and Table 4).

5.3 Convection in the mush

We now consider convection effects within the mush, when buoy-
ancy forces are supercritical R�(�)h(χ i − χ b) > Rc, especially
when a small solid fraction is expected from the regime analysis
of the previous section Nu < μ2/3. In geophysical conditions, with
a sufficiently large Rayleigh parameter R, convection in the mush
can change a small solid fraction into a solid fraction very close to
unity.

With a solid fraction close to unity and h � 1, eq. (33) leads
to χl = −Ch. Eq. (34), with a large dimensionless Rayleigh R, and
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Structure of a mushy layer under hypergravity 1747

Figure 18. Identification of the different regimes of the set of governing equations in the Nu–μ space of parameters (ignoring bulk convection within the mush,
i.e. small R). The characteristics of the different regimes are summarized in Table 4. Above the green line, the solid fraction is of order unity at the end of the
crystallization.

C 
 1, takes the form(
1 + S

C + 1

2 C
)

χ̇l = −χi − χb

h

× [1 + γ (R�(�)h(χi − χb) − Rc)] . (66)

This equation has to be compared to the equation of heat transfer
between the mush and the liquid (36). If the boundary layer heat
transfer can be neglected compared to the contribution of convection
in the mush, this equation can be written

χ̇l = −γ
χi − χb

h
[R�(�)h(χi − χb) − Rc] . (67)

It follows from eqs (66) and (67) that the actual Rayleigh number
of the mush R�(�)h(χ i − χ b) is constrained

R�(�)h(χi − χb) = Rc + C
γ

(
S + 1

2

) . (68)

What actually happens is that, however large the parameter R is, the
solid fraction becomes close enough to unity, so that the permeabil-
ity function �(�) is small enough to bring the Rayleigh number
R�(�)h(χ i − χ b) just above the critical threshold Rc by the finite
amount given by eq. (68).

In a large time range, χ i − χ b � 1 so that eq. (67) can be
integrated (using eq (68)):

h �
√

2

S + 1
2

t
1
2 . (69)

A better approximation is obtained, using the approximation χ i �
χ l. In this case, eq. (67) can be written as

Cḣ = 1 − Ch

h

C(
S + 1

2

) , (70)

with implicit solution

Ch + ln (1 − Ch) = − C2t

S + 1
2

, (71)

for which eq. (69) is an approximation when Ch � 1.
Before that phase of saturated Rayleigh number, when the

Rayleigh number goes above the critical value Rc, there is an inter-
mediate regime where the heat extracted by the convection in the
mush is nearly constant: χ i − χ b � 1, �(�) ∼ 1:

χ̇l � −γ R, (72)

implying that χ l decreases linearly with time. From eq. (33), we have
Ch� � −χl so that the product h� increases linearly with time. As
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Figure 19. Five curves of mush thickness evolution corresponding to the points (a) to (d) and (f) on Fig. 18, in the asymptotic case C = 104, S = 102,
μ = 106, Nu = 103 (f), 105 (d), 107 (b), 109 (c) and 1011 (a). The slope is plotted in logarithmic colour scale. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this paper.)

h ∼ t1/2 at the end of the previous regime (t < 10−15, Fig. 21), this
leads to � ∼ t1/2 (10−15 < t < 10−10). As χ l is decreasing, χ l − χ i

decreases as well, hence h increases has a tendency to increase at a
slower pace, so that � increases slightly faster than t1/2.

In summary, in this section, the analysis of an idealized system of
equations for the evolution of the mush has been carried on in two
stages. In a first stage, the evolution of the mush has been studied
in the absence of bulk mush convection (R = 0), in a 2-D param-
eter space spanned by the dimensionless numbers Nu and μ. The
results of this analysis are summarized in Fig. 18 and Table 4. Both
parameters affect the strength of convection in the boundary layer
at the top of the mush, in opposite ways. Increasing Nu enhances
heat and mass transfer between the liquid and the mush, resulting
in a larger solid fraction in the mush. Alternatively, increasing μ

amounts to reducing kinetic undercooling (for a given growth rate
of the mush), which is the driving temperature difference for con-
vection in the boundary layer. Immediately after a cold temperature
is set at the bottom of the crystallization cell, whatever Nu and μ,

Table 4. Description of the evolution and final state of the differential
equations modelling mush crystallization, with kinetic undercooling and
without convection in the mush.

Number Height evolution h∞ �∞

1 (a) h � μt then h ∼ t1/2 C−1 1
2 (b) h � μt then h ∼ t2/5 μ2/3Nu−1 C−1μ−2/3 Nu
3 (c) h � μt then h ∼ t2/5

then h ∼ t1/2
C−1 1

4 (d) h � μt then h ∼ t1/2

then h ∼ t2/5
μ2/3Nu−1 C−1μ−2/3 Nu

5 (e) h � μt then h ∼ t1/2

then h ∼ t2/5

then h ∼ t1/2

C−1 1

6 (f,g) h � μt then h ∼ t1/2 1 C−1

there is a short phase of kinetic undercooling, during which the
growth rate of the mush is directly related to the temperature dif-
ference between the liquid and the boundary. During this phase, the
solid fraction is small in the mush (of order C−1). A second phase
is dominated by thermal diffusion, during which the growth of the
mush is limited by conduction through the mush. This is the start-
ing point for the competition between Nu and μ. When Nu 
 μ

(regime 1 on Fig. 18), boundary-layer convection is efficient and
transfers ‘fresh’ liquid that can crystallize in the mush, increasing
solid fraction close to unity. On the contrary, when Nu � μ (regime
6 on Fig. 18), convective mass transfer is negligible and the solid
fraction remains close to C−1. In an intermediate parameter region
(between Nu = μ2/3 and Nu = Cμ), different regimes exist, lead-
ing to a final intermediate value for the solid fraction in the mush,
between C−1 and 1.

In a second stage, the effect of convection within the mush is con-
sidered. Its effect is less important when boundary-layer convection
was already able to increase solid fraction close to unity. More im-
portantly, in the regime 6, when Nu � μ, the effect of the mush
convection parameter R may change completely the fate of the solid
fraction in the mush: instead of a small value of order C−1, bulk con-
vection within the mush can lead to a solid fraction of order unity.

6 I M P L I C AT I O N S F O R T H E
E A RT H ’ s C O R E

Many aspects of our experimental setup differ from the conditions
of inner core crystallization. Our model is designed for a Cartesian
geometry, not spherical. Heat is extracted from below in the model,
while it is actually extracted from above for the inner core. However,
we can make an attempt to run the model in a range of parameters
that would be appropriate for the inner core and observe the resulting
mush structure.
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Structure of a mushy layer under hypergravity 1749

Figure 20. Regime 5 computed with C = 10, S = 1, μ = 1013, Nu = 1011, cf. Fig. 18(e). Height is plotted while the slope (in logarithmic colour scale) shows
that, after the linear phase (slope 1), the slope is around 1/2, decreasing towards 2/5 and increasing again towards 1/2, before the end of the crystallization
process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this paper.)

The typical relevant dimensional scales are shown in Table 1.
They are not meant to be values at the cutting-edge of our current
knowledge, just values of the correct order of magnitude. The liquid
core is supposed to be made of 90 per cent iron with light elements.
In these parameters, the temperature difference 100 K corresponds
to the typical drop of crystallization temperature on the ICB be-
tween its origin and the present days. These parameters lead to the
following values for the dimensionless quantities playing a role in
our mush model:

μ = 8.6 1011, Nuχ = 1.3 107, C = 10, S = 8.4,

R = 5.15 1016, (73)

obtained for a gravity level of 4 m s−2 and an interdendritic primary
spacing of 1 m (Esbensen & Buchwald 1982; Deguen et al. 2007).
In the Nu–μ parameter space (Fig. 18), these values of Nu and μ

put it clearly within regime number 6. As shown in Section 5 (see
Fig. 21), boundary layer convection is not very efficient and the solid
fraction should remain very low, of order � � 0.1. However, with
a large Rayleigh number in the mush, mush convection is capable
of changing it for a solid fraction close to unity (see Fig. 22).
Moreover, it can be seen that the Rayleigh number remains close to
the expected value, Rm � Rc + C/ (γ (S + 1/2)) � 137. It can also
be seen that the flux (heat and mass transfer) due to convection in
the mush exceeds that due to boundary layer convection by orders
of magnitude (Fig. 22).

This application of our mush model to the inner core highlights a
crucial difference in regime compared to that of the hypergravity ex-
periments. In these experiments, convection in the mush is certainly
present and chimneys are indeed observed, however convection in
the mush is not dominant compared to boundary layer convection.
It has a moderate impact on the solid fraction (or mush height). On
the contrary, for inner core conditions, it is expected that convec-

tion in the mush is the key player and essentially responsible for
the expected solid fraction very close to unity. In addition, we have
not taken into account the deformation of the solid matrix (Sumita
et al. 1996), and we can expect a further increase in solid fraction
due to compaction.

7 D I S C U S S I O N

In this paper, we essentially investigate the opportunity to study
crystallization under gravity levels significantly larger than usual on
Earth (up to 1300 g). This proves to be a useful tool: other parame-
ters can be varied (size, thermal conditions, ...) and perhaps lead to
similar effects, but it is for instance very difficult to change signifi-
cantly the interdendritic spacing, or mush permeability, so that the
effect of convection cannot be changed much under 1 g. This is due
to the weak dependence of interdendritic spacing on crystallization
rate or thermal gradient. On the contrary, increasing gravity has
an immediate linear impact on convection, on the boundary-layer
mode above or within the mush. A related observation is that the
solid fraction in laboratory experiments using ammonium chloride
is always rather small, below 10 per cent. With an enhanced gravity,
larger solid fractions can be reached, which may be more relevant
to some applications in industry or geophysics.

Hypergravity crystallization experiments can be considered as the
(cheap) counterpart of microgravity experiments, where convective
effects have been reduced as much as possible (e.g. Dupouy et al.
1992; O’Rourke et al. 2012). Another possibility (Tait & Jaupart
1992) is to increase the viscosity of the melt with the addition of
a polymer. Hypergravity in a centrifuge comes necessarily with
Coriolis forces. We have considered that Coriolis forces do not play
a major role in the boundary-layer mode or in mush convection. This
is justified when the Ekman number, which compares the Coriolis
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Figure 21. Within the regime (6), when a large parameter R is imposed C = 104, S = 102, μ = 1010, Nu = 105, R = 1010 and γ = 0.01, cf Fig. 18(g). Height
(a), solid fraction (b) and mush Rayleigh number (c) are plotted as the solidification proceeds. This is compared to the case without mush convection: same
parameters except R = 10−4 (thick line in panel (a) and solid line in panel (b)). In panel (c), the dashed line corresponds to eq. (68). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this paper.)

and viscous forces, based on the typical length scale (boundary-
layer thickness, dendritic primary arm spacing) is not very small
compared to unity.

Regarding the study of the Earth’s inner core, our rationale for
using hypergravity in a centrifuge was motivated by similar argu-
ments. The timescale and length scale are 1 Gyr and 103 km with
effectively small thermal driving forces as the heat extracted from
the inner core is of order 1 TW (or less), corresponding to 5 mW
m−2. With such parameters, the microstructures of crystallization
are presumably metres or larger (Deguen et al. 2007). Convection

can act strongly to exchange species between the mush and the liquid
outer core. In order to mimic a similar degree of convective effects
in a laboratory experiment with submillimetre microstructures, we
decided to use the apparent gravity of a laboratory centrifuge.

The results obtained in this paper concern different aspects. The
main first order observation is the increase in solid fraction within
the mush with increasing gravity levels. This is directly related to
the measured thickness of the mush, as each crystallization exper-
iment is run until the same mass of ammonium chloride has been
solidified. We have also built a numerical model, based on heat and
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Figure 22. Simulation with a set of parameters relevant to the Earth’s inner core: Nu� = Nuχ = 1.3 × 107, μ = 8.6 × 1011, S = 8.4 and C = 10, γ = 0.01,
and R = 5.15 × 1016. ε denotes the porosity (ε = (1 − �)).

species conservations, heat and mass transfer at the mush–liquid
front and on a relation of kinetic undercooling. A value of the
kinetic undercooling parameter has been obtained from our tem-
perature measurements during the initial phase of crystallization.
Chimneys observed in the mush at the end of the experiments attest
the presence of convection in the mush. However, from our dy-
namical model and for our experimental parameters, heat and mass
transfers at the crystallization front are found to be mostly governed
by the boundary-layer mode of convection (between the top of the
mush and the liquid bulk). Since the final solid fraction for the max-
imal apparent gravity level is not very large (about 40 per cent), our
model suggests (see analysis of the dynamical model in Section 5)
that the final mush height should be proportional to g−1/3 (equiv-
alently, the mass fraction is proportional to g1/3, which is indeed
compatible with our experiments.

The extension of our experiments to the crystallization of the
inner core is not straightforward though. Our model (even more
so our simplified model in Section 5) is a highly idealized view
of the growth of the inner core, however the typical estimates for
the relevant dimensionless numbers put them in a regime where
convection in the mush must be a dominant feature. Without mush
convection (but with the boundary-layer mode), we should expect
a small solid fraction of order 0.1. Due to the expected spacing
between dendrites, convection in the mush is bound to become very
strong and can only be limited by the increase of the solid fraction
very near unity. Our numerical model indicates that convection in
the mush is likely to produce a solid fraction above 0.95. This value
is not due to compaction, and its associated deformation of the solid
matrix, which should further increase the solid fraction of the mush.

Except for the averaged solid fraction, our experimental work
shows the slow decrease of the interdendritic primary spacing when
gravity (and convection effects) is increased. In addition, we have
obtained some results on the attenuation of acoustic waves in the
mush. Once again, ultrasonic waves (MHz) in a submillimetre mi-
crostructure is in rough correspondence with seismic waves (1 s

typical period) in a mush made of 10 m spaced dendrites. Similarly
to seismic codas, we detect ultrasonic codas indicating diffusion of
sound waves in the mush. We also analyse the attenuation across
the mush, between ultrasonic transducers on opposite sides of the
mush in a direction perpendicular to the crystallization axis. These
results reveal an increase of attenuation (decrease of quality factor)
as gravity level and solid fraction increase.

Finally, we have experimental results on the effect of melting the
mush from above. They show that the solid fraction in the mush
stays constant or increases slightly. However, this is associated with
a decrease in attenuation (increase of quality factor). This is surpris-
ing as we have observed that attenuation was decreasing with in-
creasing solid fraction (gravity level) in crystallization experiments.
Our interpretation is that melting changes the three-dimensional mi-
crostructure of the mush in such a way that attenuation is decreased.
This is perhaps related to the melting of secondary dendritic arms
which can be observed after crystallization experiments and are
absent after melting experiments.

The initial motivation for running melting experiments is also
related to hemispherical structure of the inner core. The east–west
dichotomy on surface velocity and attenuation below the ICB might
be related to a model of crystallization/melting (Alboussière et al.
2010; Monnereau et al. 2010). Attenuation is stronger in the eastern
hemisphere compared to the western hemisphere. Based on our at-
tenuation measurement in crystallization and melting experiments,
we favour the hypothesis of crystallization on the eastern hemi-
sphere and melting on the western hemisphere. Another argument
in favour of the same orientation of the translation mode is based
on the fact that stronger buoyancy forces are induced on the melting
hemisphere within the translation mode, which can be associated
with the stronger anisotropy in the western hemisphere of the inner
core (Deguen et al. 2013). Finally, recent numerical studies of the
dynamics in the outer core have considered an asymmetric buoy-
ant forcing on the ICB (Aubert 2013, 2014; Aubert et al. 2013;
Davies et al. 2013; Deguen et al. 2014; Mound et al. 2015). They
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all reach the conclusion that crystallization on the eastern hemi-
sphere (increased release of buoyant light elements) and melting on
the western hemisphere is the preferred scenario to explain features
of the outer core flow inferred from geomagnetic studies, such as
the large asymmetric gyre (Pais & Jault 2008).

This work is restricted to some aspects only of the general ques-
tion of the crystallization of the inner core. The geometry is simpli-
fied, a simple binary phase diagram is appropriate for ammonium
chloride (probably not for the Earth’s core), compaction effects are
not present in our experiments. Yet, we need at least five dimension-
less numbers in an idealized model governing the global evolution
of the mush. The complexity of crystallization, with the range of
scales between dendritic microstructures, through grains, up to the
entire object (the inner core, for instance), precludes full three-
dimensional calculations of mush structures and gives an important
role to experiments. Adding a new external parameter, gravity, gives
more power to experiments as the range of possible crystallization
regimes is enlarged.
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conductivity of iron at Earth’s core conditions, Nature, 485(7398), 355–
358.

Rees Jones, D.W. & Worster, M.G., 2013. Fluxes through steady chimneys
in a mushy layer during binary alloy solidification, J. Fluid Mech., 714,
127–151.

Rodot, H., Regel, L. & Turtchaninov, A., 1990. Crystal growth of IV–VI
semiconductors in a centrifuge, J. Cryst. Growth, 104(2), 280–284.

Rodot, H., Regel, L., Sarafanov, G., Hamidi, M., Videskii, I. & Turtchaninov,
A., 1986. Cristaux de tellurure de plomb élaborés en centrifugeuse, J.
Cryst. Growth, 79(1), 77–83.

Romanowicz, B. & Mitchell, B., 2007. Q in the Earth from crust to core,
Treatise of Geophysics, 1, 731–774.

Sarazin, J. & Hellawell, A., 1988. Channel formation in Pb-Sb, Pb-Sn,
and Pb-Sn-Sb alloy ingots and comparison with the system NH4Cl-H2O,
Metall. Trans. A, 19(7), 1861–1871.

Shearer, P. & Masters, G., 1990. The density and shear velocity contrast at
the inner core boundary, Geophys. J. Int., 102(2), 491–498.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/204/3/1729/682317 by guest on 10 Septem

ber 2021



1754 L. Huguet et al.
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Tkalčić, H., 2015. Complex inner core of the Earth: the last frontier of global
seismology, Rev. Geophys., 53(1), 59–94.
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A P P E N D I X A : E X P E R I M E N TA L
A C Q U I S I T I O N P RO T O C O L

Here, we describe our experimental acquisition protocol. To collect
the data during rotation, we have used small and high-speed slip
rings (MOOG EC3848) which is limited to 10 wires. This bound
implies to use an on-board electronic which allows the multiplexing
of all signals. Fig. A1 shows a sketch of data acquisition. Four power
generators supply the on-board electronics, the heater, the amplifier
and one temperature probe respectively. The ultrasound signal is
generated by the waveform function generator (Agilent 33220A)
and is amplified by the on-board electronics. The ultrasonic sig-
nals, the temperature signal and the current of the Peltier device
are recorded by the acquisition cards (NI-6211, NI-6210, NI PXI-
5122). To maintain a constant temperature at the bottom of the cell,
we have used a Peltier element with a PID controller, that is, a con-
trol loop feedback mechanism. The Peltier voltage is delivered by
the NI-6211 card through the voltage amplifiers (Ampli/Peltier card
in Fig. A1). On the on-board electronic card, voltage amplifiers are
used for the ultrasonic signals before emission and after reception to
increase the ratio signal/noise. A microcontroller allows the multi-
plexing of the temperature signals. It generates a step periodical sig-
nal which contains the temperature signals and the trigger (Fig. A2),
which is composed of 24 6 ms-periods between each trigger. Each
step of the half-period corresponds to the voltage measured across
one of the PT100 probe (colours corresponds to temperature probes
in Fig. 3). The mean of each step during 24 × 6 ms gives us
the voltage across each temperature probes and the temperature.
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Figure A1. Schematic experimental protocol of acquisition.

Figure A2. Sketch of step periodical signal (top) generated by the microcontroller which triggers ultrasonic signals (bottom). Each colour corresponds to
temperature probes in Fig. 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this paper.)

Moreover, there are three different trigger signals—short ((1) in
Fig. A2), medium ((2) in Fig. A2) and long ((3) in Fig. A2) that cor-
respond to the emission/reception of the ultrasonic signal at one of
the three different pairs (Fig. A2). Moreover, there are three differ-

ent trigger signals—short ((1) in Fig. A2), medium ((2) in Fig. A2)
and long ((3) in Fig. A2) that correspond to the emission/reception
of the ultrasonic signal at one of the three different pairs
(Fig. A2).
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