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Abstract Geochemical data provide key information on the timing of accretion and on the prevailing
physical conditions during core/mantle differentiation. However, their interpretation depends critically
on the efficiency of metal/silicate chemical equilibration, which is poorly constrained. Fluid dynamics
experiments suggest that, before its fragmentation, a volume of liquid metal falling into a magma ocean
undergoes a change of topology from a compact volume of metal toward a collection of sheets and
ligaments. We investigate here to what extent the vigorous stretching of the metal phase by the turbulent
flow can increase the equilibration efficiency through what is known as stretching enhanced diffusion. We
obtain scaling laws giving the equilibration times of sheets and ligaments as functions of a Péclet number
based on the stretching rate. At large Péclet, stretching drastically decreases the equilibration time, which
in this limit depends only weakly on the diffusivity. We also perform 2-D numerical simulations of the
evolution of a volume of metal falling into a magma ocean, from which we identify several equilibration
regimes depending on the values of the Péclet (Pe), Reynolds (Re), and Bond (Bo) numbers. At large Pe,
Re, and Bo, the metal phase is vigorously stretched and convoluted in what we call a stirring regime. The
equilibration time is found to be independent of viscosity and surface tension and depends weakly on
diffusivity. Equilibration is controlled by an efficient thermochemical stretching enhanced diffusion
mechanism developing from the mean flow and entraining the surrounding silicate phase.

Plain Language Summary During the formation of the solar system 4.5 billion years ago,
collisions between primitive planetary bodies lead to the progressive growth of the Earth through a
mechanism called accretion. Concomitantly, the metal contained in the impactors migrates toward the
center of the accreting Earth, as a result of being denser than the surrounding rocks, through a process
known as differentiation. During its descent, the metal exchanges heat and chemical elements with the
Earth’s rocks, modifying in this way its own temperature and chemical composition, as well as the one of
the surrounding materials. The degree of thermal and compositional homogenization between metal and
rocks is a key parameter for the thermal and magnetic evolution of the Earth, and the interpretation of
geochemical data. Part of the mixing occurs in fully molten rocks (viz., a magma ocean), in which the sinking
metal undergoes vigorous deformation and stretching. In this paper, we use analytical calculations and
numerical simulations to examine the influence of deformation on mixing. We show that stretching of the
metal can drastically accelerate thermal and compositional homogenization between metal and rocks.

1. Introduction

The initial conditions of the Earth and other terrestrial planets of the solar system are inherited from their
concomitant accretion and differentiation. Terrestrial planets differentiate into an iron core and a silicate man-
tle, inducing chemical fractionation and heat partitioning between the metal phase migrating toward the
core and the surrounding silicate phase (Rubie et al., 2015). The partitioning of heat provided by the impacts
and the reduction of the potential gravitational energy sets the initial conditions of the temperature con-
trast between the core and the mantle (Rubie et al., 2015). This is crucial for the early thermal and magnetic
evolution of planetary bodies (Monteux et al., 2011; Williams & Nimmo, 2004), and the formation and evo-
lution of primitives magma oceans (Sun et al., 2018), with in particular the possibility of forming a basal
magma ocean (Labrosse et al., 2007). The partitioning of chemical elements has also profound geodynamical
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Table 1
Typical Parameters of a Metallic Impactor’s Core Falling Into a Magma Ocean

Magma ocean

Magma ocean depth, L 106 m

Gravity, g 10 m/s2

Silicate phase Metal phase

Density, 𝜌i 4 × 103 7.8 × 103 kg/m3

Thermal expansion, 𝛼i 5 × 10−5 10−5 K−1

Specific heat capacity, cpi
103 5 × 102 J.kg−1.K−1

Dynamic viscosity, 𝜂i 10−1 10−2 Pa.s

Diffusion coefficient, 𝜅c
i 10−9 10−9 m2/s

Thermal conductivity, 𝜆i 4 102 W.m−1.K−1

Thermal diffusivity, 𝜅i 10−6 10−5 m2/s

Surface energy, 𝛾 0.5 0.5 J/m2

Reynolds number, Re 1012 1014 —

Thermal Péclet number, PeT 1014 1012 —

Compositional Péclet number, PeC 1017 1017 —

Thermal Ohnesorge number, OhT 10−12 10−10 —

Compositional Ohnesorge number, OhC 10−15 10−15 —

Bond number, Bo 1015 1015 —

Weber number, We 1015 1015 —

Note. Modified after Solomatov (2015) and Deguen et al. (2011). Dimensionless numbers are
calculated for a 100-km impactor’s core.

implications. For example, the identity and abundance of light and radioactive elements in the core (Badro
et al., 2015; Corgne et al., 2007), which are key parameters for the dynamics and evolution of the core, depend
on (P, T , fO2) conditions at which metal and silicate have equilibrated.

Geochemical data such as geochronometers, estimates of the mantle and core composition, meteorite geo-
chemistry, and partition coefficients (Li & Agee, 1996; Righter, 2011; Siebert et al., 2011) constitute an inverse
problem for the timing of accretion, the (P, T , fO2) segregation conditions, and the degree of chemical equili-
bration of the impactors’ cores with the mantle of the Earth. This inverse problem is underdetermined since
there are more degree of freedom than constraints. The interpretation of core formation chronometers well
illustrates this issue since there is a strong trade-off between the estimated accretion time and the equilibra-
tion efficiency: The Hf-W chronometer predicts an accretion time around 30 Myr if perfect equilibration is
assumed (Kleine et al., 2002), but that time is significantly increased in case of imperfect equilibration (Rudge
et al., 2010).

The interpretation of geochemical data crucially depends on the equilibration efficiency of the segregation
mechanisms. The scenario typically used in geochemical core formation models involves the impactor’s core
equilibration in a deep magma ocean (cf. Table 1 for typical physical parameters; Rubie et al., 2015). The metal
phase is assumed to fragment into centimetric drops, before separating quickly from the silicates as an iron
rain and sedimenting to the base of the magma ocean (Ichikawa et al., 2010; Karato & Murthy, 1997; Rubie et al.,
2003; Stevenson, 1990). The centimeter scale corresponds to the size at which surface tension prevents further
fragmentation of the drops (Rubie et al., 2003). It is small enough to ensure efficient chemical equilibration
between the droplets and the surrounding magma ocean (Rubie et al., 2003). Iron finally migrates through the
solid part of the mantle toward the forming core by diapirism, initiated by Rayleigh-Taylor instabilities within
the liquid pond (Karato & Murthy, 1997; Monteux et al., 2009; Samuel et al., 2010; Stevenson, 1990), diking
(Stevenson, 2003), or percolation (Stevenson, 1990). No further equilibration is expected at this stage owing
to the solid state of the underlying mantle and the large size of the diapirs.

The iron rain scenario is based on the assumption of rapid fragmentation of the impactor cores into centimet-
ric drops. Whether this is realistic remains an open question. Differentiation of terrestrial planets started early
and most of the Earth was accreted from large differentiated planetesimals and embryos (100 to 1,000 km)
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Figure 1. A conceptual view of the fragmentation and equilibration of a metal volume falling into a magma ocean.
Typical temperature/concentration profiles are represented for the sheet and the ligament.

(Rubie et al., 2015). Whether the huge volumes of metal delivered by these impacts were indeed able to frag-
ment into centimeter-scale drops is unclear (Dahl & Stevenson, 2010; Deguen et al., 2014; Kendall & Melosh,
2016; Landeau et al., 2014; Wacheul et al., 2014). Liquid fragmentation is a well-studied problem of fluid
mechanics, and the key mechanisms are reasonably well understood: Though the details depends on the
configuration of the flow, the route to fragmentation necessarily involves the formation of elongated liquid
ligaments (e.g., Marmottant & Villermaux, 2004a; Villermaux, 2004, 2007), which is the only geometry unsta-
ble against the Rayleigh-Plateau capillary instability leading to fragmentation into drops. Fragmentation must
therefore be preceded by a change of topology of the metal phase, from a compact volume (the core of the
impactor) toward metal ligaments. Ligaments can be produced either directly by hydrodynamic instabilities
or turbulence, or indirectly by the bursting of metal sheets, the liquid from the sheets then collecting into
ligaments (e.g., Villermaux, 2007). In the context of metal fragmentation in a magma ocean, laboratory exper-
iments and numerical simulations suggest that the production of both metal ligaments and sheets can result
from a combination of Rayleigh-Taylor and shear instabilities, turbulent fluctuations, and interactions with the
shear related to the crater opening and the following flow (Deguen et al., 2011, 2014; Kendall & Melosh, 2016;
Landeau et al., 2014; Wacheul et al., 2014; Wacheul & Le Bars, 2018). Once formed, ligaments can fragment
into drops as a result of the Rayleigh-Plateau capillary instability (Eggers & Villermaux, 2008; Marmottant &
Villermaux, 2004a, 2004b). Figure 1 illustrates the fragmentation sequence just described, which is to be con-
sidered as generic: If fragmentation of planetesimal’s core indeed happens, it corresponds to the typical and
necessary sequence of events required for the fragmentation of an initially spherical metallic impactor into
stable droplets.

In our conceptual fragmentation model (Figure 1) and in laboratory experiments on which it is based (Deguen
et al., 2014; Landeau et al., 2014), the liquid metal phase is vigorously stirred and stretched by the turbulent
flow following the impact, before fragmentation actually happens. This suggests that mass and heat transfer
between metal and silicates may be aided, or even controlled, by stretching enhanced diffusion, a mechanism
identified as crucial in the context of the mixing of a stirred diffusive heterogeneity (e.g., Coltice & Schmalzl,
2006; Duplat & Villermaux, 2008; Kellogg & Turcotte, 1987; Olson et al., 1984; Ottino, 1989; Ranz, 1979; Ricard,
2015; Venaille & Sommeria, 2008; Villermaux, 2004). Stretching enhanced diffusion works as follows: take an
initially compact patch of a diffusing tracer (temperature or concentration of solute) advected by a flow. Unless
the flow is uniform, the patch will be deformed according to the local strain tensor. In 2-D, it will be stretched
in one of the principal strain directions, and compressed in the other one (thus leading to the formation of 2-D
sheets). In 3-D, it will be either stretched into one of the principal strain direction and compressed in the two
others (thus leading to the formation of a filament), or compressed into one direction and elongated in the
two others (leading to the formation of sheets). This stretching can drastically accelerate the homogenization
of the tracer because the flow has the effect of increasing the exchange surface and maintaining strong con-
centration gradients in the compression direction(s), thus enabling efficient diffusive transport of the tracer.
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Figure 2. Setup for the 2-D sheet (a), ligament (b), and drop (c) calculations. Dashed arrows represent the imposed velocity field, and the red lines indicate the
numerical box boundary. (a) L0 is the box size, and s0 the initial thickness of the sheet. (b) L0∕2 is the box size, and s0 the initial diameter of the ligament. The
metal phase corresponding to the inner cylinder (black lines) is surrounded by the silicate phase; the shaded radial plan corresponds to the 2-D numerical
simulation area. (c) L0 is the box size, and s0 the initial diameter of the drop. The imposed velocity field compensates the mean falling velocity ⟨uy⟩.

The effect is important if the stretching time (the inverse of the stretching rate) is smaller than the diffusion
timescale based on the initial blob size. For example, if an heterogeneity is stretched into a sheet of thickness
s(t) at a constant rate �̇� = d(ln s)∕dt, the homogenization timescale th is given by

th ∼ 1
2�̇�

ln

[
2
�̇�s2

0

K
+ 1

]
, (1)

where s0 the initial thickness of the heterogeneity and K the tracer diffusivity (e.g., Ranz, 1979; see also ; Kel-
logg & Turcotte, 1987). If the stretching time 1∕�̇� is large compared to the diffusion time s2

0∕K (i.e., if �̇�s2
0∕K ≪ 1),

a Taylor expansion of equation (1) shows that th → s2
0∕K , which shows that in this limit the homogenization is

controlled solely by diffusion. However, if �̇�s2
0∕K ≫ 1, equation (1) shows that th depends predominantly on

the stretching rate �̇�, and only weakly (logarithmically) on the tracer diffusivity K . Stretching enhanced diffu-
sion is a kinematic theory and makes no assumption on the nature of the flow responsible for the stretching.
Though in deep Earth geodynamics this formalism has been used in the context of low-Reynolds, lami-
nar flows (mixing of compositional heterogeneities in the mantle; e.g., Coltice & Schmalzl, 2006; Kellogg &
Turcotte, 1987; Olson et al., 1984), it has been developed with turbulent flows in mind (Ranz, 1979) and
has been used, for example, to characterize mixing in turbulent jets (e.g., Duplat & Villermaux, 2008;
Villermaux, 2004).

Our goal is to test whether stretching enhanced diffusion can be an efficient mean of equilibrating (thermally
and chemically) the metal phase of the impactors’ cores with the immiscible molten silicates of the magma
ocean and to generalize its formalism (and equation (1) in particular) to heat and mass transfer between two
stirred immiscible liquid phases. After presenting the governing equations and introducing a change of vari-
able allowing to consider heat and mass transfer with the same set of equations (section 2), we build a regime
diagram for the deformation of an initially round drop falling under its own weight (section 3). Our numer-
ical simulations and laboratory experiments (Deguen et al., 2014; Landeau et al., 2014; Wacheul et al., 2014;
Wacheul & Le Bars, 2018) show that a mass of metal falling into a magma ocean is most probably in a regime
that we call stirring regime, in which the metal is stretched into convoluted sheets and ligaments, before frag-
menting into drops. We then study in section 4 the equilibration of what we consider to be the “building
blocks” of the fragmentation and equilibration sequence, that is, sheets, ligaments, and droplets. In section 5,
we finally come back to the stirring regime that we characterize in light of our results on the equilibration of
stretched sheets.

2. Equations and Numerical Model
2.1. Geometries
In sections 3–5, we will carry out analytical and numerical calculations (cf. Table S1 in the supporting infor-
mation for numerical parameters) on the temperature and concentration evolution of sheets, ligaments,
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Table 2
Summary of the Correspondence Between Thermal and Compositional Cases

Thermal Ti 𝜅i 𝜆i 𝜌icpi

Compositional Ci∕D𝛿i1
1∕2

𝜅c
i 𝜅c

i D𝛿i1
1∕2

D𝛿i1
1∕2

General 𝜒i Ki ki qi

Note. 𝛿ij is the Kronecker symbol. The general scalar field 𝜒i is associated
with modified diffusivity Ki and conductivity ki in each phase i. qi is also
defined as the ratio between ki and Ki .

and drops. In each geometry (Figure 2), we consider a two-phase flow
involving a liquid silicate-like outer phase (phase 2) and a liquid metallic-like
inner phase (phase 1). Sheets and ligaments are stretched by a constant
pure shear flow at a strain rate �̇�. We do not consider the effect of gravity.
The two phases have different densities, viscosities, and diffusivities, both
for analytical (sections 4.1 and 4.2.1 for sheets and ligaments, respectively)
and numerical calculations (supporting information and section 4.2.2 for
sheet and ligaments, respectively). In numerical simulations, ligaments are
free to fragment. We also consider the case of a free-falling, initially round
metal mass. Numerical calculations on deformed drops assume identical vis-
cosities and diffusivities between the two phases (sections 3, 4.3, and 5).

Analytical calculations on nondeformed drops do take into account the conductivity and diffusivity contrasts
(section 4.3).

2.2. Governing Equations, and Equivalence between the Heat and Mass Transfer Problems
We study here the evolution of either temperature Ti or concentration Ci in a two-phase flow, where i ∈ {1, 2}
refers to the metallic (i = 1) or the silicate phase (i = 2). In the Boussinesq approximation and in the absence
of volumetric heat sources (radioactive heating or latent heat), the evolution of temperature and composition
within both phases is governed by two transport equations of identical mathematical form. Mathematically
speaking, the only difference between heat and mass transfer problems lies in the boundary conditions at the
metal/silicates interface, which can be written as

T1 = T2, (2)

𝜆1∇T1 ⋅ n = 𝜆2∇T2 ⋅ n, (3)

for temperature, and

D1∕2 =
C1

C2
, (4)

𝜅c
1∇C1 ⋅ n = 𝜅C

2 ∇C2 ⋅ n (5)

for composition, where 𝜆i is the thermal conductivity, 𝜅c
i the mass diffusivity, D1∕2 the partition coefficient and

n the unit vector normal to the interface pointing toward phase 2. Equations (3) and (5) express the continuity
of heat and mass flux at the interface, respectively.

Temperature is continuous across the interface, but concentration is not. Yet the two problems can be made
mathematically equivalent by introducing a new variable 𝜒i defined as either

𝜒i = Ti or 𝜒i =
Ci

D𝛿i1
1∕2

, (6)

where 𝛿ij is the Kronecker delta. Rather than investigating separately heat and mass transfer, we will thus
consider the scalar field 𝜒i, which evolution is governed by the transport equation

D𝜒i

Dt
= Ki∇2𝜒i, (7)

where D •/Dt is the Lagrangian derivative, with boundary conditions

𝜒1 = 𝜒2, (8)

k1∇𝜒1 ⋅ n = k2∇𝜒2 ⋅ n, (9)

at the metal/silicate interface. 𝜒i has a diffusivity Ki (i.e., thermal diffusivity 𝜅i or mass diffusivity 𝜅c
i ) and a

conductivity ki (equal to either 𝜆i or D𝛿i1
1∕2𝜅

c
i ). We will also make use of the ratio qi = ki∕Ki, which is equal to

either 𝜌icpi
or D𝛿i1

1∕2, where 𝜌i and cpi
are respectively density and specific heat capacity of the phase i. The

correspondence between the material properties of 𝜒i and their thermal and compositional counterparts are
summarized in Table 2.
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In the following calculations, the velocity field will either be imposed, or obtained by solving the Navier-Stokes
equation under the assumption of incompressibility,

𝜌i

(
𝜕u
𝜕t

+ u ⋅ ∇u
)
= −∇P + 𝜂i∇2u + 𝜌ig, (10)

∇ ⋅ u = 0, (11)

where u is the flow velocity, P is pressure, 𝜂i is viscosity, and g is the acceleration of gravity. The nonlinear
term on the left-hand side of equation (10) is the source of turbulence. It is included in our numerical simu-
lations, but since our simulations are 2-D, we will not be able to reach fully developed turbulent regimes. At
the metal/silicates interface, the velocity field and tangential stress are continuous, while the normal stress is
discontinuous due to interfacial tension, [

𝜎1 − 𝜎2

]
⋅ n = 𝛾 (∇ ⋅ n)n, (12)

where 𝜎i is the stress tensor, ∇ ⋅ n is the local curvature, and 𝛾 is interfacial tension.

2.3. Dimensionless Numbers
From these equations, we define a diffusion time t𝜅 = s2

0∕K1, an advection time related to stretching t�̇� =
1∕�̇�, a free-fall time related to gravity tg =

√
(𝜌1∕Δ𝜌)s0∕g, a viscous time t𝜈 = s2

0∕𝜈1 and a capillary time

t𝛾 =
√

𝜌1s3
0∕𝛾 , with s0 the typical length (initial thickness of the sheet, or diameter of the ligament or drop),

K1 the thermal or mass diffusivity of phase 1, �̇� the stretching rate, 𝜌1 the density of phase 1, Δ𝜌 the density
difference, and 𝜈1 the kinematic viscosity of phase 1.

Based on these timescales and the remaining parameters of the set of equations, we build two sets of dimen-
sionless numbers depending on the geometry of the flow we consider. In the case of a stretched sheet
or ligament in which we ignore the effect of gravity, using an advection timescale equal to the stretching
timescale allows to build the following set of independent dimensionless parameters:

Re1 =
s2

0�̇�

𝜈1
, Pe1 =

s2
0�̇�

K1
, Oh𝜅1

=
K1
√
𝜌1√

𝛾s0

,
K1

K2
,

k1

k2
,
𝜌1

𝜌2
,
𝜈1

𝜈2
, (13)

where Re1 is the Reynolds number, Pe1 the Péclet number, and Oh𝜅1
the thermal/compositional Ohnesorge

number. We will also make use of the Weber number defined as

We1 =
𝜌1s3

0�̇�
2

𝛾
, (14)

which is equal to
(

Oh𝜅1
Pe1

)2
. In the case of a free-falling mass of metal, we use an advection timescale equal

to the free-fall time and the problem is now described by the following set of independent dimensionless
parameters:

Re1 =

√√√√Δ𝜌
𝜌1

gs3
0

𝜈2
1

, Pe1 =

√√√√Δ𝜌
𝜌1

gs3
0

K2
1

, Bo =
Δ𝜌gs2

0

𝛾
,

K1

K2
,

k1

k2
,
𝜌1

𝜌2
,
𝜈1

𝜈2
. (15)

The Ohnesorge number can be obtained from Bo and Pe1 as Oh𝜅1
= Bo1∕2∕Pe1.

The Reynolds number defined either as Re1 = t𝜈∕t�̇� or Re1 = t𝜈∕tg compares inertia to viscous forces.
The Péclet number Pe1 = t𝜅∕t�̇� or Pe1 = t𝜅∕tg accounts for the relative importance of advective transport
compared to diffusive transport. The thermal/compositional Ohnesorge number Oh𝜅 = t𝛾∕t𝜅 compares the
influence of surface tension to thermal or mass diffusion. The number Oh𝜅1

thus defined has the same form
as the classical Ohnesorge number (𝜈1

√
𝜌1∕
√
𝛾s0), except that here t𝛾 is compared to the scalar diffusion

time rather than to the momentum diffusion time t𝜈 . The Weber number We = (t𝛾∕t�̇�)2 accounts for the rela-
tive importance of fluid’s inertia compared to interfacial tension, and the Bond number Bo = (t𝛾∕tg)2 for the
relative importance of gravitational forces compared to tension forces.
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2.4. Numerical Simulations with Basilisk
The equations introduced in section 2.2 are solved in 2-D with direct numerical simulations using the free
software Basilisk (see basilisk.fr and Popinet, 2009). This partial differential equations solver uses an adaptive
Cartesian mesh, making simulations possible up to Reynolds number of 104. Mesh refinement is performed
when the discretization error of a selected field (e.g., temperature, concentration, and velocity) is larger than
an arbitrary value. It allows a good spatial resolution when and where it is needed, particularly in the vicinity of
the stretched metal phase. On the contrary, spatial resolution is reduced far from the metal-silicate interface,
where velocity variations are spatially smoother.

The incompressible Navier-Stokes equations (equations (10) and (11)) are solved with a Courant-Friedrichs-
Lewy (CFL) condition limited time step, using a Bell-Collela-Glaz (BCG) advection scheme and a multigrid
Poisson-Helmholtz solver for the viscous term. The BCG solver uses a second order upwind scheme. The dif-
fusion term of the advection-diffusion equation (equation (7)) is solved using a time implicit backward Euler
discretization. The nonlinear advection term of the equation is solved with the BCG scheme.

The two-phase flow is implemented using a level-set method. Each phase is characterized by its physical
properties (e.g., diffusivity and viscosity) and the initial value of the scalar and vector fields (e.g., temperature,
concentration, and velocity). The interface between the two phases is described by a level set function𝜙deter-
mining its shape. The time evolution of the interface between the phases is computed with a volume-of-fluid
(VOF) advection scheme. First, the interface is reconstructed defining lines (2-D) in each cell corresponding to
the interface. Then these lines are moved with a geometrical flux computation. Surface tension (equation (12))
is finally implemented by computing the curvature of the interface.

3. The Path Toward Equilibration: Regime Diagram and Timescales
3.1. Dynamical Shape Regimes
We start here by building a regime diagram (Figure 3) for the deformation of an initially round metal vol-
ume falling from rest into molten silicates, from 2-D numerical simulations. We choose to construct a regime
diagram as a function of the Reynolds number in the inner phase Re1 (equation (15), build with the inertial
terminal velocity scaling) and of the Bond number Bo (equation (15)), which measures the relative impor-
tance of buoyancy and surface tension. Since we use 𝜈1 = 𝜈2 in these simulations, Re2 =

√
𝜌1∕𝜌2Re1 and the

regime diagram is thus a function of Re2 divided by 1.4. Besides, viscosities in the metal and the magma ocean
also vary, with a potential influence on the regime diagram (Wacheul & Le Bars, 2018). Since in the case of a
free-falling drop buoyancy is balanced by the largest of inertia and viscous forces, a small value of Bo implies
that surface tension always dominates over the other forces, irrespectively of Re1. Conversely, a large value of
Bo implies that surface tension is small compared to either viscous forces (low Re1) or inertia (high Re1).

Though based on 2-D simulations, our results are broadly consistent with published results from experiments
and numerical simulations (e.g., Clift et al., 1978; Han & Tryggvason, 1999; Landeau et al., 2014). At low Re1,
the drop remains undeformed, irrespectively of the value of Bo. The flow around the drop is laminar and
stationary, and the drop develops an internal circulation. Keeping Bo small and increasing Re1, the velocity
field eventually becomes time dependent, with the magnitude of the velocity fluctuations increasing with Re1.
The velocity fluctuations do deform the drop surface and modify its trajectory, leading to a wobbling regime
(Clift et al., 1978), but surface tension still remains large compared to the time-dependent inertial stresses,
which prevents any significant stretching of the metal and limits the amount of deformation. At moderate
values of Bo (∼ 10) and Re1 (∼ 10 − 102), we identify an ellipsoidal-cap regime (Clift et al., 1978) similar to the
spherical regime except for the flattened shape of the droplet.

Deformation of the drop is significant only at large values of Bo and moderate-to-large values of Re1. At
Bo ≳ 102, we find that the initially round drop deforms into a backward-facing bag shape for Re1 on the order
of 10 (Baumann et al., 1992; Clift et al., 1978; Han & Tryggvason, 1999; Samuel, 2012; Thomson & Newall, 1886),
and into a forward-facing bag shape (similar to the skirted mode of Clift et al., 1978, and to the jellyfish mode of
Landeau et al., 2014) for Re1 on the order of 102. At even larger values of Re1, we identify a regime that we will
refer to as stirring regime where the velocity field consists in two counter-rotating vortices, with smaller-scale
velocity fluctuations superimposed. The metal phase is vigorously stretched and deformed into sheets.
This regime is qualitatively similar to the immiscible turbulent thermal regime observed experimentally by
Deguen et al. (2014) and Landeau et al. (2014), even though the 2-D geometry of our simulations does not
allow as much turbulence to develop.

LHERM AND DEGUEN 10,502

file:basilisk.fr


Journal of Geophysical Research: Solid Earth 10.1029/2018JB016537

Figure 3. Regime diagram of an initially round metal drop falling in a magma ocean, as a function of Re1 and Bo.
Markers correspond to numerical simulations. The blue dashed lines correspond to the relationship between Re1 and Bo
(equation (16)), for viscosities of the metal 𝜂1 between 10−3 and 10−1 Pa.s. In the regime snapshots, the red lines
correspond to the interface between metal and silicates and black vectors to the velocity field in a frame moving with
the center of mass of the metal phase.

From the dimensionless numbers definition of section 2.3, we write Re1 as a function of Bo as

Re1 =

(
𝛾3𝜌2

1

Δ𝜌g𝜂4
1

)1∕4

Bo3∕4
. (16)

The factor in between parenthesis is the inverse of a Morton number (e.g., Clift et al., 1978). It only involves
material properties in addition to g, and typically varies by a factor of 10 mainly due to uncertainties on the
viscosity 𝜂1, which is relatively small compared to Re1 and Bo varying by orders of magnitude depending on
the size of the metal. Equation (16) (with uncertainties) thus define the part of the regime diagram which is
the most relevant for metal segregation in a magma ocean. This is shown in Figure 3 (blue dashed lines) for
parameters values given in Table 1 and a viscosity of the metal phase in the range 10−3 − 10−1 Pa.s (Rubie
et al., 2003; Rubie et al., 2015). If starting from a volume of metal on the large Re and Bo side of the regime
diagram (i.e., Re1 ≳ 103 and Bo≳ 102, which corresponds to a diameter of ≳ 5 cm), the falling metal would
be expected to be in the stirring regime (turbulent thermal). If fragmentation produces droplets at moderate
Re1 and Bo, these droplets will most likely be in either the wobbling or spherical regimes, or possibly in the
ellipsoidal-cap regime.

3.2. Equilibration Times
We now focus on the thermochemical equilibration efficiency, which we characterize with an equilibration
time t1∕2 corresponding to the time at which the mean scalar field in the metal phase ⟨𝜒1⟩ is half its initial
value. Figure 4a shows the equilibration time t1∕2 normalized by the free-fall time tg obtained from numerical
simulations as a function of the Péclet number in the inner phase Pe1, for various values of Re1 and Bo.

At Pe1 ≲ 102, we find that t1∕2∕tg ∼ Pe1, irrespectively of Re1 and Bo. This implies t1∕2 ∼ t𝜅 , which means
that equilibration is controlled by diffusion. Increasing Pe1 above ∼ 102 results in faster equilibration than in
the diffusion regime. At Pe1 ≳ 102 the equilibration time depends on the deformation regime of the drop,
and hence on Re1 and Bo, with the stirring regime being the most efficient at improving equilibration: We
find t1∕2∕tg ∼ Pe1

0.77 in the high Pe spherical regime (circles), while in the stirring regime, t1∕2∕tg shows a
weak dependency on Pe1 (diamonds) with t1∕2∕tg = 0.53 ln(Pe1) (the logarithmic Pe1 dependency will be
explained in section 5). The effect of the deformation regime can also be seen from Figure 4b, which shows
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Figure 4. Equilibration time t1∕2 normalized by tg =
√
(𝜌1∕Δ𝜌)s0∕g as a function of the Péclet number in the inner phase Pe1 (a), the Reynolds number in the

inner phase Re1 (b), and the Bond number Bo (c). t1∕2 is the time at which ⟨𝜒1⟩ is half its initial value. The lines correspond to calculated scaling law.

the effect on t1∕2∕tg of increasing Re1 while keeping Bo and Pe1 constants at 104. At Bo = 104 the deformation
regime changes from spherical to backward-facing bag shape, forward-facing bag shape, and finally stirring
regime as Re1 is increased. The equilibration time decreases significantly with Re1 (as t1∕2∕tg ∼ Re1

−0.59) while
Re1 ≲ 103, but t1∕2∕tg seems to reach a plateau at Re1 ≳ 103 when entering the stirring regime. While higher
Re1 simulations would be needed to confirm this point, this suggests that the equilibration time may become
independent of Re1 (and hence on viscosity) in the stirring regime at high Re1. Figure 4c shows t1∕2∕tg as a
function of the Bond number, for Pe1 fixed at 104 and Re1 fixed at either 10 or 104. We find that t1∕2∕tg decreases
as Bo increases, irrespectively of Re1, before reaching a plateau. This is consistent with the fact that increasing
Bo allows the metal phase to be more deformed, which helps equilibration. This is particularly drastic in the
stirring regime, in which the vigorous stretching and folding of the metal phase leads to very fast equilibration.

4. Equilibration Processes in the “Building Blocks”: Sheets, Ligaments,
and Droplets

The regime diagram obtained in section 3, and experiments (Deguen et al., 2014; Landeau et al., 2014; Wacheul
et al., 2014; Wacheul & Le Bars, 2018), suggest that the most relevant dynamical regime at the beginning of
the fragmentation sequence is the stirring regime, in which the metal phase is stretched into thin sheets (in
our 2-D simulations), and sheets and ligaments in 3-D. The metal phase will then eventually fragment into
drops. We therefore study here heat and mass transfer in what we consider to be the three “building blocks”
of the fragmentation and equilibration sequence: stretched sheets, ligaments, and drops.

4.1. A Stretched Isolated Sheet
We consider here the homogenization of a scalar field 𝜒(x, y, t) in and around a stretched isolated 2-D
sheet. Following Ranz (1979), the evolution of 𝜒 is described in a local Lagrangian frame (x, y) which moves
and rotates with the fluid such that the y−direction is always parallel to the stretching direction, and the
x−direction perpendicular to it. In this frame of reference, the flow is a pure shear flow (or stagnation flow), and
the velocity field is of the form (ux = −�̇�x, uy = �̇�y), where �̇� is the stretching rate. The thickness of the sheet

s(t) is given by s(t) = s0exp
(
−∫ t

0 �̇�(t
′)dt′

)
and is assumed to be much smaller than the radius of curvature

of the sheet. Stretching will tend to align the direction of the gradient of 𝜒 with the compression direction,
and we can therefore consider the sheet and the scalar field to be locally invariant in the stretching direction.
With this assumption and the velocity field given above, the scalar transport equation (7) becomes

𝜕𝜒i(x, t)
𝜕t

+ �̇�x
𝜕𝜒i(x, t)

𝜕x
= Ki

𝜕2𝜒i(x, t)
𝜕x2

. (17)

We transform these equations into diffusion equations with the following change of variable (Ranz, 1979):

𝜉 = x
s(t)

, (18)

𝜏 = K1∫
t

0

dt′

s(t′)2
. (19)
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Figure 5. Scalar profile in and around the sheet for p = −0.61 (a), p = 0 (Jaupart & Mareschal, 2010) (b), and p = +0.61
(c) as a function of 𝜏 . 𝜏 and 𝜉 are respectively the normalized time and length (i.e., equations (18) and (19)). (d) Evolution
of 𝜏1∕2 as a function of p (equation (23)). The dashed line corresponds to the approximation of 𝜏1∕2 when p → −1
(equation (25)). (e) Evolution of the parameter p as a function of the partition coefficient D1∕2 for several values of the
mass diffusivity ratio 𝜅c

1∕𝜅
c
2 (from equation (24)).

This amounts to normalize lengths by s(t), which sets the thickness of the sheet to 𝜉 = 1, and time by a diffu-
sion timescale based on the diffusivity inside the sheet (phase 1). With this change of variable, equation (17)
reduces to

𝜕𝜒i(𝜉, 𝜏)
𝜕𝜏

=
Ki

K1

𝜕2𝜒i(𝜉, 𝜏)
𝜕𝜉2

. (20)

The scalar field is initialized with a difference Δ𝜒 between the phases such as

𝜒1(|𝜉| ≤ 1, 𝜏 = 0) = Δ𝜒, (21)

𝜒2(|𝜉|> 1, 𝜏 = 0) = 0. (22)

The boundary conditions are the continuity of the scalar field and its flux at the phase interface (equations (8)
and (9)), and 𝜒 → 0 at infinity.

The full solution of this set of equations is given in Appendix A, based on Lovering (1936). In particular, the
scalar in the middle of the sheet 𝜒(𝜉 = 0) evolves in time according to

𝜒(𝜉 = 0, 𝜏) = Δ𝜒(1 + p)
∞∑

n=0

(−p)nerf

(
2n + 1

4
√
𝜏

)
. (23)

The parameter p ∈ [−1, 1] accounts for the diffusivity contrast in the two-phase flow and depends on the
diffusivity ratio k1∕k2 and on the ratio q1∕q2 (see Table 2) as
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p =
1 −
√

k1

k2

q1

q2

1 +
√

k1

k2

q1

q2

. (24)

Its value dramatically affects the scalar profiles (Figure 5b). If p < 0 (Figure 5a), the diffusivity in the inner
phase is larger than in the outer phase, leading to a flatter profile in the inner phase. On the contrary, if p> 0
(Figure 5c), the diffusivity in the outer phase is larger than in the inner phase, leading to a flatter profile in the
outer phase.

We compute from equation (23) the normalized equilibration time 𝜏1∕2 at which 𝜒(𝜉 = 0, 𝜏1∕2) = Δ𝜒∕2.
Equation (23) shows that 𝜏1∕2 is a function of p only, and Figure 5d shows that 𝜏1∕2 decreases when p increases.
An approximate expression for 𝜏1∕2 can be found in the limit of p close to −1, corresponding to k1q1 ≫ k2q2,
as follows. In this limit, we expect equilibration to be limited by diffusion in the outer phase 2. The equilibra-
tion time t1∕2, corresponding to the normalized equilibration time 𝜏1∕2, should therefore be independent of
k1. According to equation (19), t1∕2 is a function of 𝜏1∕2∕K1 = 𝜏1∕2 q1∕k1, the form of which depends on the
evolution of the thickness of the sheet. 𝜏1∕2(p) must therefore be proportional to k1. If p → −1, p simplifies as

p ∼ −1 + 2
√

k2

k1

q2

q1
from equation (24). 𝜏1∕2 thus satisfies the proportionality with k1 only if

𝜏1∕2(p) ∼
1

(p + 1)2
, (25)

which in the limit p → −1 tends toward ∼ 1
4

k1

k2

q1

q2
. Figure 5d shows that the prediction of equation (25) with a

proportionality factor equal to 0.6 is indeed very close to the full solution of equation (23) when p approaches
−1. It is still reasonably accurate at higher values of p: It overestimates 𝜏1∕2 by a factor 2 at most over the all
range of p.

In the heat transfer case, the value of p in a magma ocean (Table 1) is p ∼ −0.6. In the composition case,
p = (1−

√
𝜅c

1∕𝜅
c
2D1∕2)∕(1+

√
𝜅c

1∕𝜅
c
2D1∕2)depends on the partition coefficient and the mass diffusivity contrast

between metal and silicates (Figure 5e). In particular, it can be seen that p approaches −1 for siderophile
elements (e.g., W, Co, Cr, V, and Ni), since D1∕2 ≫ 1 and 𝜅c

1∕𝜅
c
2 is larger than unity (O’Neill & Palme, 1998).

We now go back to the stretching of the metal sheet and calculate the equilibration time t1∕2 from
equation (19) taken at 𝜏 = 𝜏1∕2. For that purpose, we assume that �̇� is constant, as predicted in the case of
homogeneous turbulence (Batchelor, 1952), which implies an exponential decrease of the layer thickness

s(t) = s0exp (−�̇�t) . (26)

Using equation (19), we obtain

t1∕2 = 1
2�̇�

ln
[
2Pe1𝜏1∕2(p) + 1

]
= 1

2�̇�
ln

[
2s2

0�̇�

K1
𝜏1∕2(p) + 1

]
, (27)

which is a generalization of equation (1) to the homogenization of a scalar field between two liquid phases
with different transport properties. In the small Péclet limit, a Taylor expansion of equation (27) shows that
t1∕2 ≃ 𝜏1∕2(p) s2

0∕K1, as expected. In the large Péclet limit when advection dominates over diffusion, that is, in
the stretching enhanced diffusion regime, equation (27) simplifies to

t1∕2 ∼ 1
2�̇�

ln
[
Pe1𝜏1∕2(p)

]
. (28)

In the limit p → −1 relevant to siderophile elements (Figure 5e), using equation (25) gives

t1∕2 ∼ 1
2�̇�

ln

[
Pe1

1
(p + 1)2

]
∼ 1

2�̇�
ln

[
Pe2

(
q1

q2

)2
]
, (29)

with Pe2 the Péclet number of the phase 2 defined in the same way as Pe1 (equation (15)).
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Figure 6. (a) Value of 𝜒1 in the middle of the sheet (calculated from equation (23) at p = −0.61) as a function of the time
normalized by t𝜅 = s2

0∕K1, for several values of the Péclet number in the inner phase Pe1. (b) Equilibration timescale t1∕2
normalized by t𝜅 = s2

0∕K1 as a function of the Péclet number in the inner phase Pe1, for several values of p (from
equation (27)). The dash-dotted line corresponds to the large Pe approximation of equation (28), calculated for p = 0.
The dashed line corresponds to the large Pe and p → −1 approximation of equation (29), calculated for p = −0.99.

Figure 6a shows the evolution of 𝜒 in the middle of the sheet as a function of the time normalized by
t𝜅 = s2

0∕K1, as given by equation (23). If Pe1 ≲ 1, the equilibration time is nearly independent of Pe1, whereas if
Pe1 ≳ 1, 𝜒(𝜉 = 0) decreases over a timescale significantly reduced as Pe1 increases. Figure 6b shows the equi-
libration time t1∕2 as a function of Pe1 according to equation (27). If Pe1 ≪ 1, t1∕2∕t𝜅 is independent of Pe1 and
t1∕2 scales as the diffusion time t𝜅 , consistently with the low Péclet number approximation of equation (27).
We thus obtain the diffusive regime expected in that range of Péclet number (Figure S1). On the contrary, if
Pe1 ≫ 1, t1∕2∕t𝜅 is well approximated by equation (28) with a weaker dependence on p than in the diffu-
sive regime (Figure 6b, dash-dotted line). If in addition p → −1, t1∕2∕t𝜅 scales as equation (29) at large Pe1

(Figure 6b, dashed line). t1∕2 depends predominantly on the stretching rate with a comparatively weak (loga-
rithmic) dependency on the diffusivity. If the stretching rate �̇� increases, the equilibration time t1∕2 decreases
dramatically (equation (27) and Figure 6b). In other words, if stretching intensifies, the equilibration efficiency
between metal and silicates increases. In that case, we obtain a stretching enhanced diffusion regime (Figure
S2). The critical Pe1 separating the two regimes depends on p. In particular, when p → −1, that is, for large
partition coefficient and diffusivity ratio 𝜅c

1∕𝜅
c
2, the critical Pe1 is significantly decreased below 1.

Using equations (26) and (28), we can also calculate the width of the sheet s1∕2 at t = t1∕2. In the Pe1 ≫ 1 limit,
this gives

s1∕2 ∼ 1√
𝜏1∕2(p)

(
K1

�̇�

)1∕2

, (30)

where (K1∕�̇�)1∕2 is a characteristic diffusion length, known as the Batchelor length scale (Kellogg & Turcotte,
1987). s1∕2 corresponds to the length at which diffusion is no longer negligible, the sheet being sufficiently
thin for diffusion to complete equilibration. A 100-km metallic core falling at 100 m/s (Deguen et al., 2011)
produces a large-scale stretching rate of 100 m/s∕100 km = 10−3 s−1. Using a thermal diffusivity of 10−5 m2/s
(Table 1), we obtain a thermal equilibration scale around 6 cm. Concerning chemical equilibration, the p → −1
limit of 𝜏1∕2(p) (equation (25)) gives

s1∕2 ∼ 2
D1∕2

(
𝜅c

2

�̇�

)1∕2

. (31)

Using a mass diffusivity of 10−9 m2/s and D1∕2 equal to 1, 10, and 100, the width of chemical equilibration is
around 2, 0.2, and 0.02 mm, respectively. Thermal equilibration may happen prior to fragmentation because
the typical fragmentation scale corresponding to a capillary length is around 3 mm. However, the chemical
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Figure 7. Equilibration time t1∕2 normalized by t𝜅 = s2
0∕K1 (a and c) or t�̇� = �̇�−1 (b) as a function of the Péclet number Pe1 (a), the Weber number We1 (b), and

the thermal/compositional Ohnesorge number Oh𝜅1
(c), in the inner phase. Red circles corresponds to the analytical solution presented in equation (32). The

dashed line corresponds to the calculated power-law trend.

equilibration length is of the same order as the fragmentation scale, or even smaller regarding siderophile
elements. It means that chemical equilibration may happen at the same time, or after, fragmentation of the
metallic core occurs.

4.2. A Stretched Isolated Ligament
4.2.1. Analytical Solution
Using the same change of variable as for the sheet (equations (18) and (19)) allows to obtain an analytical
solution of the axisymmetric advection-diffusion equation of the stretched ligament (Figure 2b). The scalar
field and its flux are continuous across the phase interface. From Carslaw and Jaeger (1959, p. 346), we obtain
the solutions given in Appendix B.

Using the same method as for the sheet (equations (19) and (26)), we obtain a law for the equilibration time
similar to equation (27), except for 𝜏1∕2, which now depends independently on K and k (Figure S8), leading to

t1∕2 = 1
2�̇�

ln
[
2Pe1𝜏1∕2(K , k) + 1

]
. (32)

We obtain a good agreement between the analytical solution from equation (32) (Figure 7a, red circles) and
numerical simulations (Figure 7a, black circles).

As in section 4.1, we obtain the equilibration length, which can be written

s1∕2 ∼ 1√
𝜏1∕2(K , k)

(
K1

�̇�

)1∕2

(33)

in the large Péclet limit. For a 100-km metallic core falling at 100 m/s (Deguen et al., 2011) and using typical
parameters of Table 1, we obtain 𝜏1∕2(K , k) ∼ 5.5 and a thermal equilibration length around 4 cm. The chemical
equilibration length is around 1.6, 0.5, and 0.1 mm for D1∕2 equal to 1, 10, and 100, respectively. As for the
sheet in section 4.1, thermal equilibration may happen prior to fragmentation whereas chemical equilibration
may happen during or after fragmentation.
4.2.2. Effect of Surface Tension
Ligaments are unstable against the Rayleigh-Plateau capillary instability and will eventually fragment into
drops, possibly affecting equilibration. Fragmentation (Figure S5) results from the development of the cap-
illary instability, which grows on a timescale on the order of t𝛾 (capillary time based on the ligament initial
diameter) in the absence of significant stretching, if t𝛾 ≪ t�̇� . It is known that the capillary instability can be
damped if the ligament is stretched (e.g., Eggers & Villermaux, 2008; Mikami et al., 1975; Taylor, 1934; Tomotika,
1936); stretching can delay fragmentation if t�̇� ≪ t𝛾 , that is, if We1 ≫ 1.

Figure 7 shows the equilibration time t1∕2, defined here as the time at which the mean value of 𝜒 of the inner
phase ⟨𝜒1⟩ is half its initial value, obtained from numerical calculations as a function of Pe1, We1, and Oh𝜅1

.
Fragmentation happens after equilibration if t𝛾 is large compared to the (no surface tension) equilibration
time given by equation (32). This would be the case if t𝛾 is large compared to either t𝜅𝜏1∕2 (at small Péclet) or

LHERM AND DEGUEN 10,508



Journal of Geophysical Research: Solid Earth 10.1029/2018JB016537

t�̇� ln(Pe1𝜏1∕2) (at large Péclet), that is, if Oh𝜅1
∕𝜏1∕2 ≫ 1 or We1 ≫

[
ln(Pe1𝜏1∕2)

]2
. Fragmentation has no effect

on equilibration in this limit, and the equilibration time obtained from the numerical calculations is consistent
with the prediction of equation (32). The flat slopes at large We1 (Figure 7b) and Oh𝜅1

(Figure 7c) show that
equilibration is indeed independent of surface tension. The diffusive (Figure S3) and the stretching enhanced
diffusion (Figure S4) regimes are thus retrieved at small and large Péclet, respectively (Figure 7a, circles).

If now fragmentation happens before the equilibration time predicted by equation (32), we find that equili-
bration is controlled by the time required to develop the Rayleigh-Plateau capillary instability and break the
ligament. At low We1 and Oh𝜅1

, we indeed find that t1∕2∕t�̇� ∼ We1
1∕2 (Figure 7b) and t1∕2∕t𝜅 ∼ Oh𝜅1

(Figure 7c),
which correspond to t1∕2 ∼ t𝛾 . This suggest that the flow associated with the fragmentation of the ligament
into drops is strong enough to allow for fast equilibration of the drops.

4.3. A Free-Falling Droplet
At the end of the fragmentation sequence of the impactors’ cores (Figure 1), the fate of the remaining heat
and chemical elements in the droplets depends on the Péclet number, that is, if they equilibrate in the high
Pe spherical or in the diffusive regime. In the diffusive regime (Figure S6), the equilibration timescales as the
typical diffusion time of the drop t𝜅 = s2

0∕K1, irrespectively of viscosity and surface tension (Figure 4).

In the high Pe spherical regime (Figure S7), equilibration is accelerated by the formation of thin thermal or
compositional boundary layers on the leading side of the drop, on both sides of the interface, where advec-
tion maintains a strong radial gradient of𝜒 . At a viscosity ratio 𝜂1∕𝜂2 on the order of 1 or smaller, equilibration
is aided by the circulation forced within the drop by the viscous stress at the interface (Ulvrová et al., 2011).
The outer boundary layer is connected to a wake tail on the rear side of the drop. A prediction for the equili-
bration time is obtained from mass conservation on the spherical drop and estimates of the convective flux
(see Appendix C for details). We find that

t1∕2 ∼
s2

0q1

6k2
Pe2

−1∕2

[
1 +
(

q2k2

q1k1

)1∕2
]

regarding 𝜒, (34)

t1∕2 ∼
s2

0𝜌1cp1

6𝜆2
Pe2

−1∕2
⎡⎢⎢⎣1 +

(
𝜌2cp2

𝜆2

𝜌1cp1
𝜆1

)1∕2⎤⎥⎥⎦ regarding T , (35)

t1∕2 ∼
s2

0D1∕2

6𝜅c
2

Pe2
−1∕2

[
1 + 1

D1∕2

(
𝜅c

2

𝜅c
1

)1∕2
]

regarding C. (36)

Equation (36) simplify as t1∕2 ∼ (s2
0D1∕2)∕(6𝜅c

2)Pe2
−1∕2 and t1∕2 ∼ (s2

0∕6)(𝜅c
1𝜅

c
2)

−1∕2Pe2
−1∕2 in the limits of

siderophile (D1∕2 ≫ 1) and lithophile (D1∕2 ≪ 1) elements, respectively. The equilibration time we predict
for siderophile elements depends linearly on the partition coefficient, which is consistent with the numeri-
cal results of Ulvrová et al. (2011). On the contrary, the equilibration time obtained for lithophile elements is
independent of the partition coefficient, consistently with the analysis of Samuel (2012).

5. Stirring Regime
5.1. Deformation and Stretching Dynamic
We now focus on the stirring regime identified in section 3, which we think is the most relevant for metal
segregation in a magma ocean (Dahl & Stevenson, 2010; Deguen et al., 2011, 2014; Landeau et al., 2014).

Figure 8 shows snapshots of a simulation in this regime, at Re1 = 104, Bo = 103, and Pe1 = 104. The ini-
tially round drop quickly deforms, both because of an instability, which we interpret as a combination of
Kelvin-Helmholtz (shear-driven) and Rayleigh-Taylor (buoyancy-driven) instabilities, and because of the action
of the mean flow, which takes the form of a pair of expanding counter-rotating vortices (the 2-D analogue
of a vortex ring). The interaction between the vortices and the interface instability leads to strong deforma-
tion and stretching of the metal phase, which topology evolves toward a collection of convoluted sheets
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Figure 8. Stirring regime, Pe1 = 104, Re1 = 104, and Bo = 103. (upper) Average value of 𝜒1 in phase 1 as a function of
time normalized by tg =

√
(𝜌1∕Δ𝜌)s0∕g. (lower) Snapshots showing maps of 𝜒 at different times. The gray dashed lines

correspond to the interface position between phases 1 and 2. The gray lines correspond to the streamlines of the
velocity field on a frame moving with the center of mass of the metal.

(see, e.g., Figure 8 at t∕tg = 4.2 and Figure 10b). In our 2-D numerical calculations, the metal phase eventually
becomes discontinuous, but this “fragmentation” is an artifact due to the resolution limits of the computa-
tion grid. The 2-D sheets are stable against Rayleigh-Plateau capillary instabilities and are not expected to
break. In the simulations, the metal phase becomes discontinuous when the stretched structures become
locally too thin to be resolved, but this is not a physical effect. A finer mesh indeed delays this apparent frag-
mentation. We therefore use the maximum resolution possible, but 2-D simulations are fundamentally not
designed to address fragmentation. Nonetheless, these calculations are relevant for understanding the inter-
play between stretching and thermochemical equilibration, considering scales larger than the resolution limit.
The Batchelor scale (e.g., equation (30)), estimated using a large-scale stretching rate related to the pair of
counter-rotating vortices, is indeed 2 orders of magnitude larger than the resolution of the grid.

5.2. Equilibration Time
The development of sheets from the initial volume of metal can be considered as the superposition of isolated
stretched sheets with uniform stretching similar to that of section 4.1. We thus expect the equilibration time
to be of the form t1∕2 ∼ t�̇� ln(Pe1𝜏1∕2) (equation (28)), where �̇� is the stretching rate of the sheets, which needs
to be estimated as a function of the flow geometry and strength. 𝜏1∕2 is a function of p in 2-D (section 4.1
and Figure 5d), or a function of K1∕K2 and k1∕k2 in 3-D (section 4.2.1), owing to the presence of both sheets
and ligaments. The flow has a vortex ring structure (Figure 8), with a falling velocity ⟨uy⟩ ∼

√
(Δ𝜌∕𝜌1)gs0

varying on a scale s0. If stretching is governed by the vortices, then �̇� should be on the order of ⟨uy⟩∕s0, which
is equivalent to a stretching timescale equal to the free-fall timescale of the drop tg. This leads to

t1∕2 ∼ tgln(Pe1𝜏1∕2). (37)

There is a good agreement between this prediction and the results from the numerical calculations of section
3, which shows that in the stirring regime t1∕2∕tg is independent of Re1 (Figure 4b, diamonds) and Bo (Figure 4c,
diamonds), and has a Pe1 dependency (Figure 4a, dash-dotted line) well fitted by t1∕2 = 0.53tgln(Pe1). This
suggests that equilibration is controlled by stretching enhanced diffusion, with a stretching rate controlled
by the large-scale component of the flow.
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Figure 9. (upper) Time evolution of the terms in equation (38), that is, the rate of gradient production, the advection term, and the diffusion term (Ricard, 2015),
in the small Pe diffusive (a), the high Pe spherical (b), and the stirring (c) regime. (lower) Snapshots showing maps of 𝜒i in these regimes. The gray dashed lines
correspond to the interface position between phases 1 and 2. The gray lines correspond to the streamlines of the velocity field on a frame moving with the
center of mass of the metal.

5.3. The Role of Stretching on Equilibration
To address the role of stretching enhanced diffusion, we focus on the rate of gradient production (Ricard,
2015), obtained by applying the operator 2∇𝜒 ⋅ ∇ to the advection-diffusion equation (equation (7)) and
integrating over the 2-D numerical domain Ω

d
dt ∫Ω

|∇𝜒|2dS = −2∫Ω
∇𝜒 ⋅ �̇� ⋅ ∇𝜒dS − 2K ∫Ω

(∇2𝜒)2dS, (38)

where �̇� is the strain rate tensor. The rate of gradient production (term on the left-hand side) is equal to the sum
of an advection term (first term on the right-hand side) and a diffusion term (second term on the right-hand
side). The advection term is related to the properties of the flow through the strain rate tensor �̇� and corre-
sponds to the source of gradient production. It can be either positive or negative depending on the geometry
of the flow and scalar field. In contrast, the diffusion term is always negative and damps scalar gradients.

These integrals are calculated in three examples corresponding to small Pe diffusive, high Pe spherical, and
stirring regime:

(i) In the small Pe diffusive regime (Figure 9a), the advection term is equal to zero and the rate of gradient
production is equal to the diffusion term because scalar gradients are only dissipated and never gener-
ated. The diffusion term converges toward zero over time owing to the progressive equilibration of the
drop, on a timescale ∼ t𝜅 .

(ii) In the high Pe spherical regime (Figure 9b), the advection term is positive because scalar gradients are
produced by advection in the boundary layer in front of the drop during its fall. Starting from 0, the
advection term first increases during a short transient during which the thermal boundary layer grows
by diffusion up to a thickness at which advection balances diffusion. The advection term then slowly
decrease due to the decrease of difference of 𝜒 between the drop and the surrounding, while the thick-
ness of the thermal boundary layer remains constant. The magnitude of the diffusion term follows closely
the evolution of the advection term but is slightly smaller, which shows that equilibration is controlled by
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Figure 10. Map of the local negative eigenvalue of the strain rate tensor �̇� in the high Pe spherical (a) and the stirring
regime (b). The gray lines corresponds to the interface between the metallic and the silicate phase.

the advection and gradients production. The advection term and the diffusion term converge toward zero
as the drop equilibrates with the surrounding fluid, with an equilibration time about 100 times smaller
than the diffusion time. In the simulation, the shape of the drop slightly varies in time, explaining the
fluctuations around the mean exponential decrease obtained on the integrals.

(iii) In the stirring regime (Figure 9c), the advection term becomes positive owing to the production of scalar
gradients by the stretching. The advection term is larger than the diffusion term as soon as deforma-
tion and stretching of the drop develop, leading to a positive rate of gradient production. Equilibration
is then controlled by the production of scalar gradients (whose stirring is the source). At first, the rate
of gradient production increases, in connection with the development of stretched structures through
hydrodynamics instabilities and stirring. Then the rate of gradient production decreases owing to the
diffusive equilibration of the metal phase with the surrounding fluid when the thickness of the sheets
become small enough.

Figure 10 shows the negative eigenvalue of the strain rate tensor �̇�, which we interpret as a stretching mag-
nitude (Ricard, 2015). In the high Pe spherical regime (a), stretching develops on a scale comparable with the
size of the drop, which is significantly larger than the thin boundary layer where thermal and compositional
exchanges occur. On the contrary, in the stirring regime (b), stretching occurs in the vicinity of the interface,
over a very localized deformation area. The source of gradient production responsible for the large advection
term (Figure 9c, upper) is then located at the same place as the interface deformation. Small-scale stretching
processes related to the stirring are responsible for gradient production, arguing in turn for an equilibration
controlled by stretching enhanced diffusion.

5.4. Probability Distribution Functions of 𝝌
The qualitative difference between the three regimes is also highlighted by the probability distribution func-
tions (PDF) of the scalar field. In the small Pe diffusive regime (Figure 11a), the distribution of 𝜒 tends toward
a probability density ∝ 1∕𝜒 . This is consistent with the radial dependency of 𝜒 , which, after the initially
discontinuous radial profile of 𝜒 has smoothed out, tends toward a self-similar profile of the form 𝜒(r, t) ∝
exp(−r2∕(K2t)). It can be verified that the PDF of a field with this spatial distribution is indeed ∝ 1∕𝜒 . In the
high Pe spherical regime (Figure 11b), the PDF slowly shifts toward smaller scalar values over time, conserving
its shape consistently with the stable evolution of the scalar field inside the drop during its fall. In the stirring
regime (Figure 11c), 𝜒 has a peaked distribution, which over time becomes narrower and shifts toward lower
scalar levels as a result of the progressive homogenization.

It has been argued (Duplat et al., 2010; Meunier & Villermaux, 2003; Villermaux, 2004) that the interac-
tion between stretched sheets and ligaments lead to the addition of their scalar fields and to the stable
self-convolution of their scalar distributions. It is predicted that in this regime the scalar field distribution
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Figure 11. Time evolution of the probability distribution function (PDF) of the scalar field in the small Pe diffusive (a), the high Pe spherical (b), and the stirring
regime (c). Insets correspond to the time evolution of the cumulative distribution function (CDF) of the scalar field. The solid lines correspond to the fitted
one-parameter gamma distributions (equation (39)).

follows a one-parameter gamma distribution,

P(X = 𝜒∕⟨𝜒⟩) = nn

Γ(n)
Xn−1e−nX , (39)

where n = 1∕𝜎2 is related to the standard deviation 𝜎 of the distribution. After a time corresponding to the
development of stretched structures, the PDFs from our calculations are indeed well approximated by these
one-parameter gamma distributions (Figure 11c), except in the tail where the probability density is higher.
This again is consistent with an equilibration controlled by stretching enhanced diffusion. Self-convolution
as a result of scalar fields addition also supports the assumption on the superposition of isolated sheets we
made to predict the equilibration time of the drop (equation (37)).

6. Conclusion

Deformation and fragmentation of differentiated impactors’ cores are key mechanisms for heat and chem-
ical elements transfer during the differentiation of planetary bodies. We argue that fragmentation of the
metallic core of an impactor must involve a change of topology leading to a collection of sheets and liga-
ments, which can then fragment into drops (Figure 1). This picture is consistent with previous experimental
results (Deguen et al., 2011; Deguen et al., 2014; Landeau et al., 2014; Wacheul et al., 2014; Wacheul & Le Bars,
2018) and our numerical simulations (section 5.1), which suggest that a large volume of metal falling into a
magma ocean would be vigorously stirred and stretched. We focus here on the physical concepts associated
with the fragmentation and equilibration sequence. The “building blocks” of the fragmentation sequence
involve stretched structures (sheets and ligaments) in which stretching enhanced diffusion, generalized here
to immiscible fluids, improves significantly chemical and thermal equilibration efficiency between metal and
silicates. The equilibration time depends mainly on the stretching rate with, if the stretching rate is constant, a
logarithmic dependency on diffusivity and partition coefficient. We find that thermal equilibration may occur
before fragmentation whereas chemical equilibration may still be incomplete at this moment. Fragmenta-
tion eventually produces droplets whose chemical equilibration depends critically on the partition coefficient
(equation (36)).

In the stirring regime identified for large volume of metals (in the sense of having large Reynolds and Bond
numbers), the metal phase is vigorously stretched and deformed. We find from numerical simulations in that
regime that the equilibration time depends mainly on the stretching rate of the metal phase and weakly on
diffusivity, irrespectively of viscosity and surface tension. Our results suggest that thermochemical equilibra-
tion is controlled by the stretching enhanced diffusion process, which in our numerical simulations develops
from the mean flow, as the fall of the drop entrains surrounding silicates. We find that in our numerical calcu-
lations the equilibration time is well approximated by t1∕2 ∼

√
𝜌1

Δ𝜌
s0

g
ln Pe1 (equation (37)), where the Péclet
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number is built on a stretching rate equal to ⟨uy⟩∕s0 =
√
(Δ𝜌∕𝜌1)gs0∕s0. Using this scaling would predict rela-

tively large equilibration distances (50% of the initial temperature/composition difference) in a magma ocean:
As an example, the composition and temperature equilibration distances of a 1-km impactor’s core sinking
in a magma ocean would be 12 and 8 km, respectively. Equation (37) could also be used to predict that only
impactors with a core smaller than 56 and 41 km will significantly equilibrate thermally or chemically in a
3,000-km-deep magma ocean.

However, these predictions are based on the assumption that the stretching rate is governed by the mean flow
(equation (37)). This seems to be correct in our 2-D calculations but is unlikely to hold in 3-D at higher Re and Bo
due to the development of turbulent fluctuations. Turbulent velocity fluctuations would increase the stretch-
ing of the metal phase and thus decrease the equilibration time. The prediction of equation (37) therefore
most probably overestimates significantly the equilibration time. We may anticipate that in the limit of high
Re1, Bo, and Pe1, equilibration of the metal with the surrounding silicates would even be fast enough for the
evolution of the mean value of 𝜒 in the metal phase to be limited by the rate of entrainment of fresh silicates
rather than by equilibration at the local scale. Our analysis suggests that the key for testing this hypothesis
and estimating the equilibration times is to obtain models predicting the stretching rate of the metal phase
during the cratering phase and postcratering flow.

Appendix A : Solution of the Diffusion Equation for the Stretched Sheet

The solution of the diffusion equation (20) for a stretched isolated sheet is given in each phase by

𝜒1(𝜉 ≤ 1∕2, 𝜏) =
Δ𝜒

2

{
− (1 + p)erf

(
𝜉 − 1∕2

2
√
𝜏

)
+ (1 + p)

⋅
∞∑

n=1

(−p)n−1

[
erf

(
n + 𝜉 − 1∕2

2
√
𝜏

)
− perf

(
n − 𝜉 + 1∕2

2
√
𝜏

)]}
,

(A1)

𝜒2(𝜉 ≥ 1∕2, 𝜏) =
Δ𝜒

2

{
− (1 − p)erf

(
𝜉 − 1∕2

2
√

K2∕K1𝜏

)
+ (1 − p2)

⋅
∞∑

n=1

(−p)n−1erf

(√
K2∕K1n + 𝜉 − 1∕2

2
√

K2∕K1𝜏

)}
. (A2)

Appendix B : Solution of the Diffusion Equation for the Stretched Ligament

The solution of the diffusion equation for a stretched isolated ligament is given in each phase by

𝜒1(𝜉 ≤ 1, 𝜏) =
4Δ𝜒k2

𝜋2K2 ∫
∞

0
e−u2𝜏

J0(u𝜉)J1(u)du

u2[𝜙2(u) + 𝜓2(u)]
, (B1)

𝜒2(𝜉 ≥ 1, 𝜏) =
2Δ𝜒k2

𝜋K ∫
∞

0
e−u2𝜏J1(u)

J0(Ku𝜉)𝜙(u) − Y0(Ku𝜉)𝜓(u)
u[𝜙2(u) + 𝜓2(u)]

du, (B2)

where K =
√

K1∕K2, k =
√

k1∕k2 and

𝜓(u) = k2

K
J1(u)J0(Ku) − J0(u)J1(Ku), (B3)

𝜙(u) = k2

K
J1(u)Y0(Ku) − J0(u)Y1(Ku). (B4)

J𝜈 and Y𝜈 are respectively the Bessel function of the first and the second kind, with 𝜈 their order.

Appendix C: Equilibration Time for the Free-Falling Droplet

We consider here the equilibration of a drop of diameter s0 and falling velocity u, with internal circulation, at
high Pe1 and Pe2. In this limit, we expect the formation of two thin thermal/compositional boundary layers,
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on both sides of the droplet interface, with respective thicknesses 𝛿1 and 𝛿2. Depending on the properties of
the two phases, the flux can be limited by one or the other of the boundaries. Denoting by ⟨𝜒1⟩ the mean of
𝜒1 in the drop, by 𝜒i the value of𝜒 at the interface, and by 𝜒∞

2 the value of 𝜒2 far from the drop, the heat/mass
flux Φ across the interface is

Φ ∼ k1
⟨𝜒1⟩ − 𝜒i

𝛿1
∼ k2

𝜒i − 𝜒∞
2

𝛿2
. (C1)

The boundary layers thickness on both sides of the interface can be shown to be 𝛿i ∼
√

Kis0∕u ∼ s0 Pe−1∕2
i by

balancing advection and diffusion in the vicinity of the interface (see, e.g., Ribe, 2015, for the outer boundary
layer scaling; a similar reasoning leads to the scaling of the inner boundary layer, which has the same form).
Writing𝜒i as a function of ⟨𝜒1⟩ and𝜒∞

2 from equation (C1), and noting that 𝛿1∕𝛿2 ∼
√

K1∕K2, the flux becomes

Φ ∼
k2

s0
Pe1∕2

2

⟨𝜒1⟩ − 𝜒∞
2

1 +
(

q2k2

q1k1

)1∕2
, (C2)

which is consistent with the heat flux given by Ribe (2015) in the limit q1k1 ≫ q2k2. Using conservation of 𝜒
gives

𝜋

6
s3

0q1
d⟨𝜒1⟩

dt
= −𝜋s2

0Φ, (C3)

from which we obtain the equilibration time

t1∕2 ∼
s2

0q1

6k2
Pe2

−1∕2

[
1 +
(

q2k2

q1k1

)1∕2
]
. (C4)
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