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Abstract Specific n-alkanes and n-alkanoic acids are commonly used as biomarkers in
paleoenvironmental reconstruction, yet any individual homologue may originate from multiple biological
sources. Here we improve source and age controls for these compounds in meromictic systems by
measuring the radiocarbon (14C) ages of specific homologues preserved in twentieth century Lake Pavin
(France) sediments. In contrast to many studies, 14C ages generally decreased with increasing carbon chain
length, from 7.3 to 2.6 ka for the C14-C30 n-alkanoic acids and from 9.2 to 0.3 ka for the C21-C33 n-alkanes.
Given a known hard water effect, these values suggest that aquatic microbial sources predominate and
contributed to most of the homologues measured. Only the longest chain n-alkanes exclusively represent
inputs of higher plant waxes, which were previously sequestered in soils over centennial to millennial
timescales prior to transport and deposition. These findings suggest that biomarker source and age should
be carefully established for lacustrine settings.

1. Introduction

Being universally biosynthesized and generally well preserved in recent and geologic sedimentary settings,
straight-chain alkyl lipids such as n-alkanes and n-alkanoic acids (fatty acids) represent valuable organic geo-
chemical tools for investigation and reconstruction of past environments. Their distributions and carbon and
hydrogen stable isotopic compositions are used as proxies for vascular plant inputs to sediments (e.g.,
Schwark et al., 2002; Street-Perrott et al., 2007), changes in higher plant community structure (Castañeda
et al., 2007; Huang et al., 2001), and precipitation (Makou et al., 2007; Schefuß et al., 2005; Tierney et al.,
2010), to name some of the most common paleoclimate applications. It is commonly assumed when using
these compound classes for paleoclimate reconstruction that the longest carbon chains (e.g., ≥ C26) are pre-
dominantly derived from terrestrial vascular plants (following source characterization by Eglinton & Hamilton,
1967), while shorter homologues (e.g., ≤ C21) are produced ubiquitously and thus primarily by aquatic organ-
isms in marine and lacustrine environments. While this assumption may be valid in some settings, caution is
warranted regarding its broad application because several studies have suggested the potential for bacterial
contributions to sedimentary long-chain n-alkanoic acids, at least up to C30 (Bovee & Pearson, 2014; Gong &
Hollander, 1997; Summons et al., 2013; Volkman et al., 1988), as well as production of long-chain n-alkanes
(e.g., C31 and C33) by phytoplankton (e.g., Freeman et al., 1994). Ultimately, such universality and the high pre-
servation potential (Hoefs et al., 2002) of n-alkanes and n-alkanoic acids pose two fundamental problems:
positive source attribution is difficult, and potentially long residence and transport times prior to definitive
deposition can cause temporal offsets between these compounds and their host sediments (e.g., Douglas
et al., 2014). Here we investigate the radiocarbon composition of these compounds in sediments from a mer-
omictic lake known to be rich in bacterial and archaeal life (Lehours et al., 2007) in order to specifically
address both of these concerns.

Compound-specific radiocarbon analysis (CSRA) can be used to resolve biomarker source and transport
uncertainties, provided that the 14C composition of assimilated carbon is known (Drenzek et al., 2007;
Pearson & Eglinton, 2000; Tao et al., 2015). This technique, as used here, consists of isolating and concentrat-
ing individual compounds occurring in a complex mixture of sedimentary organic carbon (OC) then measur-
ing their 14C abundance by accelerator mass spectrometry (AMS) (Eglinton et al., 1996, 1997). It has been used
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successfully to further our understanding of biomarker sources and
carbon cycling in marine and fluvial environments, most notably
showing that refractory compounds such as alkenones, n-alkanes,
and n-alkanoic acids can exhibit millennial-scale environmental resi-
dence and transport times prior to sedimentary deposition (Drenzek
et al., 2009; Feng et al., 2015; Galy & Eglinton, 2011; Mollenhauer et al.,
2003; Ohkouchi et al., 2002; Schefuß et al., 2016; Smittenberg et al.,
2006; Tao et al., 2015; Uchida et al., 2001). The resulting biomarker-
sediment age differences can complicate the spatiotemporal context
of paleoclimate records.

To date, comparatively few such radiocarbon investigations have been
performed in lake settings, despite the prevalent use of OC preserved
in lacustrine sediments for paleoclimate reconstruction (e.g., Huang
et al., 2001; Sachs et al., 2009; Shanahan et al., 2015; Tierney et al.,
2010). Thus far, the range of age offsets characteristic of different com-
pounds and lake settings remains poorly constrained. Several studies
based on CSRA have so far revealed complicated, site-specific patterns
of OC cycling and transport across terrestrial and lacustrine reservoirs.
Uchikawa et al. (2008) found reasonably good age agreement between
long-chain (C27-C33, odd-numbered chains) n-alkanes and higher plant
macrofossils in a sediment core from a Hawaiian karstic pond, suggest-
ing that these compounds could be suitable for independent age scale

generation. In contrast, Douglas et al. (2014) determined centennial- to millennial-scale age offsets between
long-chain (C26-C32, even-numbered chains) n-alkanoic acids and terrigenous macrofossils preserved in a
sediment core from Lake Chichancanab in Mexico, consistent with a source of aged OC from soil erosion.
In order to yield sufficient amounts of carbon for CSRA, both of these investigations generated 14C ages from
pooled biomarker samples of four compounds each, risking mixing of OC from different sources (i.e., terres-
trial and aquatic). The down-core study of Gierga et al. (2016) in Lake Soppensee (Switzerland), which fea-
tured radiocarbon analysis of some individual long-chain n-alkanes, further suggested that the extent of
terrestrial soil storage can change over time. In the present investigation, we were able to isolate a greater
number of individual homologues for radiocarbon analysis than in previous lacustrine studies, contributing
enhanced molecular-isotopic detail and allowing further inference of OC source and transport in a meromic-
tic lake setting.

2. Study Site and Sampling

Lake Pavin is a meromictic crater lake, or maar, located in southern central France on the Massif Central
(Figure 1). A depth of 92 m, small surface area, and the presence of steep crater walls limit wind-drivenmixing
to about the upper 60 m, below which the waters are permanently anoxic (Albéric et al., 2013). Small streams
draining the neighboring Puy de Montchal slopes flow into the south end of the lake and surface waters out-
flow into a channel at the north end. Magmatic gases (Aeschbach-Hertig et al., 1999) and groundwater
(Schettler et al., 2007) likely discharge directly into the lake waters, contributing CO2, nutrients, and other che-
mical species. The crater walls, which rise steeply (> 45° in some places) to ~ 50 m above the lake and are
forested with deciduous trees (notably beech) and conifers, define a small topographic catchment
(0.36 km2) (Chassiot et al., 2016) and thus a limited source of terrestrial OC through mechanical soil erosion
and surface runoff. Abundant rock falls and tree throw attest to intense mechanical erosion of the thin crater
wall soils. Sedimentary pollen assemblages from Lake Pavin are consistent with strong local OC contributions,
especially from within the crater, along with distal aeolian inputs from Mediterranean habitats (Stebich et al.,
2005). Aquatic macrophytes are not well represented in the modern Pavin ecosystem.

We performed compound-specific radiocarbon and stable carbon isotopic (δ13C) measurements on a near-
surface sediment sample (10–30 cm) collected from the lake depocenter at 92 m water depth. An updated
Lake Pavin sedimentary chronology, developed from radiocarbon dating of a recently collected core and
comparison with that of Schettler et al. (2007), suggests an age range of 1930–1985 A.D. for the 10–30 cm
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Figure 1. Lake Pavin (45°300N, 2°530E) geographical setting including surface
water inflow and outflow. The crater walls are shaded in light gray.
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interval (Chassiot et al., 2016), meaning that the upper portion of the
sample was deposited during or after the period of nuclear weapons
testing. However, age scale uncertainties present the possibility,
although unlikely, that the entire sediment interval was deposited prior
to the bomb test era. We also collected a surface soil sample (0–5 cm)
from the thin layer covering the eastern crater wall and a suspended
particulate organic carbon (POCsusp) sample (31 L of lake water pumped
through a precombusted Whatman 142 mm GF/F filter) from 4 m water
depth, both of which were analyzed for bulk OC 14C. Compound-specific
radiocarbon (and δ13C) measurements were performed for n-alkanes in
the surface soil sample in order to constrain potential catchment resi-
dence times prior to erosion and transport to the lake.

Compound isolation and CSRA were based on the approaches of
Eglinton et al. (1996) and Tao et al. (2015). The analyzed compounds
and results are presented in Table 1, and details concerning sample pre-
paration, analysis, and data treatment (Christl et al., 2013; Shah & Pearson,
2007) are provided as supporting information (Text S1). Individual homo-
logues were combined in cases where compound abundances were too
low for reliable AMSmeasurement (i.e., about 5 μg C or less), with care to
pool homologues only of similar chain lengths. All data are expressed in
14C years rather than calendar age because biological source is expected
to exert the dominant influence on OC radiocarbon composition in Lake
Pavin sediments. Conventional correction methods using the oxalic acid
reference material define a “modern” 14C age (0 year) as 1950 A.D.

3. Results and Discussion
3.1. Sedimentary Lipid Ages and Lake OC Cycling

The n-alkane and n-alkanoic acid distributions observed in the Lake
Pavin near-surface sediments (Figure 2) are typical of those preserved
in many lacustrine or marine settings, with a broad carbon chain length
distribution suggestive of both terrestrial vascular plant and aquatic
organismal sources. Among the n-alkanoic acids, a predominance of
C16 and C22, as well as the robust presence of several monounsaturated

homologues (C16:1, C18:1, C24:1, and C26:1), suggests substantial sedimentary inputs of aquatic microbial OC.
Nearly all of the homologues in both compound classes exhibit old radiocarbon ages, ranging from 7.5 to
2.6 ka (ka = 103 years) for the n-alkanoic acids and from 9.2 to 0.3 ka for the n-alkanes. Ages generally
decrease with increasing carbon chain length, most clearly for the n-alkanes (Table 1 and Figure 2). The
n-alkanoic acid ages are more uniform than those of the n-alkanes, with comparatively older values at higher
chain lengths that never approach a modern value. Bulk sediment OC has an age of 6.2 ka, suggesting a mix-
ture of material spanning the age range measured for both compound classes.

Broadly defined potential sources of OC to Lake Pavin sediments include the following: vascular plant matter
(Stebich et al., 2005) delivered either directly or after soil storage, phytoplankton and zooplankton in near-
surface waters, and a rich bacterial and archaeal community inhabiting the water column and sediments
(Lehours et al., 2007). Because of characteristic 14C values to be expected based on the metabolism and eco-
logical setting specific to these different organismal groups, we are able to infer the predominant sources for
each of the dated lipids. The robust negative ages determined for the crater wall soil bulk OC and C27
n-alkane (Table 1) confirm the presence of bomb-derived (post-1950) radiocarbon in the Lake Pavin catch-
ment, likely associated with higher plant photosynthesis. A source of postbomb carbon to the lake surface
is also demonstrated by a dissolved inorganic carbon (DIC) 14C age of �400 years for the southern surface
inflow waters (Albéric et al., 2013). A measured age of 1.6 ka for POCsusp at 4 m depth in the lake suggests
the value expected for phytoplankton-derived biomarkers, although Albéric et al. (2013) determined an older
plankton (0–10 m) age of 3.6 ka. These old POCsusp and plankton values, along with upper-water column

Table 1
14C and 13C Analytical Results

Sample Age (14C years) 14C error (± years) δ13C (‰)a

Bulk analyses
Soil �970 80 –
Lake POCsusp (4 m) 1580 80 –
Sediment (10–30 cm) 6220 220 –

Water column datab

DIC (inflow) �400 – –
DOC (5 m) 1900 60 –
DIC (10 m) 6630 40 –
DIC (70–90 m avg.) 9250 40 –

Sediment n-alkanoic acids
C14 + C18 7280 220 �29.1
C16 7230 140 �30.1
C22 7530 170 �31.2
C24 6560 100 �26.1
C26:1 7460 150 �12.6
C26 6020 110 �26.0
C28 4290 110 �30.9
C30 2610 160 �31.4

Sediment n-alkanes
C21 9160 160 �37.2
C23 + C25 6570 160 �29.9
C27 3080 200 �31.0
C29 740 610 �32.2
C31 + C33 300 430 �34.1
Even chain lengths 4830 350 –

Soil n-alkanes
C21 + C23 + C25 140 110 �33.3
C27 �920 60 �31.7
C29 + C31 + C33 920 230 �34.4

aErrors ranging from 0.0 to ±0.8‰. bFrom Albéric et al. (2013).
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dissolved organic (DOC, 5 m) and inorganic (DIC, 10 m) carbon measurements of 1.9 and 6.6 ka (Albéric et al.,
2013), respectively, suggest that the modern inflow waters are well diluted near the surface by aged carbon
fromwithin themixolimnion (0–60m). Due to the lake’s permanent stratification and potential magmatic and
groundwater carbon sources, the deeper microbial communities have access to DIC that is strongly 14C
depleted, with a corresponding average 14C age of 9.3 ka between 70 and 90 m (Albéric et al., 2013).
These disparate 14C end-members within the lake and its catchment (Figure 2) suggest that the metabolic
carbon source used by each biological precursor group will be the primary influence on biomarker
apparent age within a given sediment horizon.

The 14C age offsets between n-alkanes and n-alkanoic acids of similar carbon chain length are striking,
especially considering that the higher chain length homologues in both compound classes are thought
to be derived from plant leaf waxes. At the shortest carbon chain lengths, they both exhibit ages
approaching the deepwater DIC end-member (Figure 2), suggesting a primarily microbial origin. This is
consistent with the microbially rich and diverse Lake Pavin ecosystem and common short-chain lipid
source attribution (e.g., Gong & Hollander, 1997). However, n-alkanoic acid ages do not decrease as sharply
with increasing chain length as those of the n-alkanes (Figure 2); the C30 n-alkanoic acid is 2.3 ka older
than the n-alkanes of comparable carbon chain length (C31 + C33). This discrepancy is in sharp contrast
to similar studies in the literature (Kusch et al., 2010; Pearson et al., 2001; Tao et al., 2015), in which sedi-
mentary n-alkanes are older than co-occurring n-alkanoic acids due to fossil OC inputs. Likewise, long-
chain n-alkanes can be considered as the more refractory (slower turnover times) of the two compound
classes (e.g., Galy & Eglinton, 2011; Smittenberg et al., 2006). Here the data suggest that the longest-chain
n-alkanes (C29-C33) and n-alkanoic acids (C28-C30) are derived primarily from different sources; the former
are representative of predominantly higher plant wax inputs with relatively recent 14C ages, while the lat-
ter also incorporate extensive aquatic (microbial) inputs characterized by older radiocarbon ages due to a
hard water effect.

We hypothesize that the microbial community in Lake Pavin dominates inputs of sedimentary n-alkanoic
acids up to about C26 and including C26:1 and also synthesizes homologues at least as long as C30. In this
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respect, our CSRA results are consistent with previous studies of n-alkanoic acid abundance and stable carbon
isotopic composition that suggest microbial derivation of long-chain homologues (Bovee & Pearson, 2014;
Gong & Hollander, 1997; Summons et al., 2013; Volkman et al., 1988). Compound-specific δ13C measurements
of the Lake Pavin sedimentary n-alkanoic acids lend support to this interpretation, as the values obtained for
C28 and C30 are similar to those of the shortest (C14-C22) homologues (Table 1). Here changes in the relative
contributions of aquatic and terrestrial sources to each homologue are better interpreted from the CSRA
data, which suggest increasing—but never predominant—leaf wax-derived contributions to the C28 and
C30 n-alkanoic acids.

Unlike the n-alkanoic acids, the longest-chain n-alkanes approach modern radiocarbon ages (defined as
1950 A.D. or later by conventional datingmethods), and their age profile (Figure 2) suggests a robust increase
in higher plant influence with increasing carbon chain length. No submerged macrophytes were observed
around the lake, and thus, they are not likely contributors to the middle chain length (C23 and C25) n-alkanes
(Ficken et al., 2000). There is essentially no evidence of a bomb 14C signal in any of the sedimentary com-
pounds we analyzed, including the C31 and C33 n-alkanes (300 ± 430 years), which are likely derived from vas-
cular plant waxes in the catchment. Possible explanations for the lack of a clear bomb spike in these
“terrestrial” biomarkers include the following: intermediate storage of higher plant-derived OC in the Lake
Pavin crater soils, a mixed 14C signal arising from microbial production of these compounds within the lake,
sediment age scale errors, and contamination by fossil OC (i.e., organic matter derived from petroleum or
ancient sediments). We measured the age of the pooled even chain length n-alkanes (C22-C32), which are
characteristic of petroleum or kerogen sources when observed in relative abundance (with respect to the
odd chain length homologues), to test for such contamination. An anomalously old age would indicate deri-
vation from fossil OC (e.g., Tao et al., 2015) as ancient organic matter contains no remaining radiocarbon.
However, the 14C age of 4.8 ka determined for the pooled even carbon number chains is intermediate
between the other measured n-alkane ages (Table 1), arguing against significant contributions of fossil OC,
including petroleum contaminants. This apparent lack of fossil input is in contrast to other studies frommore
open environments such as rivers and continental shelves, where ancient sediments can be an important OC
source (Drenzek et al., 2007; Tao et al., 2015). The other possible explanations for the centennial-scale C31 and
C33 n-alkane age are addressed below.

3.2. Soil n-Alkane Ages

CSRA of n-alkanes in the soil sample allows us to directly investigate soil OC storage and infer plant wax
transport dynamics in the catchment. The results suggest the presence of a complex mixture of modern
(postbomb) and aged OC that can be delivered to lake sediments through erosion. The C27 homologue
dominates the soil n-alkane profile, which exhibits relatively minor contributions of other odd chain length
homologues (supporting information Figure S1). This distribution is typical of beech tree leaves and the soils
underlying them (Marseille et al., 1999) and is consistent with a dominant presence of beech trees in the
Lake Pavin catchment (Stebich et al., 2005). While gymnosperm trees are also abundant on the crater walls,
these typically produce very low abundances of n-alkanes (Diefendorf et al., 2011). We thus conclude that
plant wax n-alkanes in catchment soils are principally derived from angiosperm (e.g., beech) trees. An indi-
vidual apparent 14C age of �920 years (postbomb) was obtained for the dominant C27 homologue, the
grouped shorter-chain (C21, C23, and C25) n-alkanes had an age of 140 14C years, and the grouped longer-
chain (C29, C31, and C33) n-alkanes exhibited a much older 14C age of 920 years (Table 1). The recent 14C
age observed for C27 implies abundant direct input of fresh beech leaf waxes to surface soils. However,
beech leaves produce relatively minor amounts of n-alkanes longer than C27 (Marseille et al., 1999), and
thus, the presence of these homologues in Lake Pavin soils can be attributed primarily to other sources.
This inference is supported by a 1–3‰ δ13C offset between C27 and the longer-chain soil n-alkanes
(Table 1). The date obtained for the long-chain homologues instead suggests the presence of a separate soil
OC pool aged about 1,000 years, which likely includes a mixture of inputs such as aged plant waxes from
mixed vegetation, fungi, and other soil microorganisms (Nguyen Tu et al., 2011). van der Voort et al.
(2016) noted enhanced spatial OC 14C variability in soils occurring on steep slopes, attributable to soil mix-
ing through increased physical erosion, and tree throw in particular. We suggest that the same processes,
operating on the steep Lake Pavin crater slopes, produced a complex soil n-alkane mixture bookended by
fresh leaf waxes and 1,000 or more year old OC.
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3.3. Sources of n-Alkanes in Lake Pavin Sediments

The centennial-scale age (300 ± 430 years) observed for the Lake Pavin sediment C31 and C33 n-alkanes and
the lack of a predominant bomb spike are most readily explained by erosion of catchment soils and trans-
fer to the lake. Sediment varves attest to the annual deposition of higher plant OC (Schettler et al., 2007),
and a sediment pollen record also suggests rapid delivery of local terrestrial inputs (Stebich et al., 2005).
Thus, there is a continuous transfer of soil OC to the lake and a direct comparison can be made between
the n-alkanes occurring in each setting. The soil n-alkane radiocarbon analyses define two distinct pools of
OC that are subject to erosion: a fresh leaf wax component as evidenced by the beech tree inputs (C27) and
OC sequestered in soils with an age of about 1,000 years, as defined by the longest homologues. It is
important to bear in mind that the 14C age determined for the long-chain soil homologues is itself a mean
value, likely representing a broad distribution of both recent and even older OC. Compound-specific δ13C
measurements support the interpretation of a soil erosion source for the longest-chain lake sediment n-
alkanes, with similar values observed for each setting (�34.4 and �34.1‰, respectively). The sediment
C31 and C33 n-alkane age of 300 years represents a mixture of the fresh (postbomb) and old (920 years)
OC components in catchment soils. Error bars allow for a range of mixing proportions, but the lack of a
strong bomb spike in the sediment sample necessarily invokes the presence of a pre-aged (centennial-
to millennial-scale) OC component.

The interpretation of a predominant soil source for the C31 and C33 n-alkanes in Lake Pavin could be biased by
potential aquatic microbial production of these compounds. It is possible that a purely terrestrial homologue
is not present in Lake Pavin sediments and that there are minor microbial contributions to even the longest
chains, as is inferred to a greater extent for the n-alkanoic acids. Abundant long hydrocarbon chains (e.g., ≥
C27) have been observed in freshwater algae (Gelpi et al., 1970; Liu & Liu, 2016), and Freeman et al. (1994)
proposed a possible phytoplankton source for marine C31 and C33 n-alkanes based on stable carbon isotopic
evidence. Although the rich, microbially dominated Lake Pavin ecosystem may similarly provide a source of
long-chain n-alkanes, compound-specific δ13C measurements do not support such a conclusion. A δ13C value
of�34.1‰ for C31 and C33, which is nearly the same as that of the long-chain n-alkanes in the catchment soils
(Table 1), is not matched in the putatively aquatic short-chain homologues. The C21 n-alkane, which exhibits a
14C age close to that of the deepwater DIC (Figure 2) and is thus likely derived from aquatic microorganisms
living in the anoxic part of the water column (70–92 m) and/or within the sediments, has a substantially lower
δ13C value of�37.2‰. The C23 and C25 homologues, which also have a radiocarbon age consistent with pre-
dominantly aquatic sources, have a significantly higher δ13C value of �29.9‰. These δ13C results suggest a
different suite of aquatic microbial sources for C21 and the other short-chain n-alkanes, and the overall differ-
ences between C31+33 and the shorter-chain homologues in both isotopic systems render an aquatic contri-
bution of long-chain homologues unlikely. The paired compound-specific radiocarbon and stable carbon
isotopic results presented here demonstrate how such methods are highly complementary for biomarker
source identification.

3.4. Broader Implications

The Lake Pavin CSRA results are in agreement with those of Douglas et al. (2014), where a 350–1200 year age
difference between codeposited plant waxes and lake sediments was observed and attributed to mobiliza-
tion of old OC from catchment soils. Thus, the finding of Uchikawa et al. (2008) that lacustrine sedimentary
n-alkanes can provide an unbiased age scale appears valid for their specific study site but cannot be applied
universally. For Lake Pavin, we suggest a centennial-scale temporal offset that in fact arises from themixing of
recent and refractory (millennial-scale) pools of soil OC. As noted above, sediment core age scale errors could
affect our interpretations regarding the C31 and C33 n-alkanes, as they allow for the unlikely possibility that
the 10–30 cm sediment interval was deposited before the era of prominent nuclear weapons testing. In this
case, the bomb spike would not be expected in our sample and we may have overestimated soil OC resi-
dence time. However, unexpected errors in the Chassiot et al. (2016) age scale are uncalled for; the lack of
a clear bomb spike in the sediment is more readily explained by dilution resulting from delivery of the
approximately 1,000 year old soil n-alkanes.

The compound-specific 14C results presented here have important implications for the use of n-alkanes and
n-alkanoic acids in paleoenvironmental and paleoclimate investigations, such as for generating leaf wax
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records, at least for meromictic lakes such as Lake Pavin. We propose that the two compound classes cannot
be used interchangeably as markers of vascular plant OC. The longest chain homologues of each class clearly
derive from different OC sources, and the proximity of the n-alkanoic acids to the deepwater DIC 14C end-
member (Figure 2) suggests that they are dominated by aquatic microbial inputs. No n-alkanoic acid homo-
logue in Lake Pavin sediments appears suitable as a plant wax biomarker. While the C31 and C33 n-alkanes
appear to be primarily derived from the catchment vegetation and would be the clear choice for generating
plant wax-based paleoclimate records, these compounds present potential temporal biases. Centennial- to
millennial-scale soil residence times may bias age interpretations and thus limit the effectiveness of increas-
ing sampling resolution to interpret abrupt climate variability.

4. Conclusions

The present investigation employs 14C primarily as a biological source indicator, shedding new light on the
origin of individual n-alkanes and n-alkanoic acids in Lake Pavin. Lake ecosystems are diverse, and the same
biomarker approach may not work in different settings, as evidenced by previous lacustrine CSRA investiga-
tions (Douglas et al., 2014; Uchikawa et al., 2008). Here we add detailed constraints on carbon cycling in a
meromictic lake to better understand the dynamics pertinent to an ultraproductive, stratified lacustrine eco-
system. We propose that in this type of setting, sedimentary n-alkanoic acids may derive predominantly from
aquatic microbial productivity, which produces homologues at least as long as C30. We further hypothesize
that n-alkane homologues ≤ C27 are at least partly derived from microorganisms, with an increase in the
terrestrial/aquatic ratio over increasing chain lengths. Surface soils even in this steep-walled, small catchment
contain approximately 1,000 year old OC, which after remobilization through erosion can produce
centennial-scale temporal lags between the purely terrestrial biomarkers (C31 and C33 n-alkanes) and the lake
sediments they are preserved in.

No perfect terrestrial biomarker was found thus far in Lake Pavin sediments, as none of the investigated com-
pounds represent purely vascular plant-derived OC that was also rapidly delivered to the sediment. We argue
that for such settings, specific n-alkane and n-alkanoic acid homologues should never be chosen a priori as
source-specific biomarkers and that their origin should first be verified, for example, through isotopic
analyses. Likewise, indices based on these compounds and used for source apportionment, such as Paq
(Ficken et al., 2000), should be employed with care. While our findings present real and problematic biases
for paleoclimate reconstruction using molecular biomarkers, they also pertain to a rare and extremely pro-
ductive setting. Further research, specifically 13C and 14C measurement of individual sedimentary biomarkers
and establishment of their OC source end-member isotopic compositions, will help to constrain the possibi-
lities within a greater diversity of lake settings.
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