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We investigate the dewetting dynamics of ultrathin solid metal films. In these films, quantum confinement of
electrons is known to produce a complex wetting potential, leading to “magic thicknesses” which are strongly
favored energetically. We introduce a kinetic Monte Carlo model which accounts for a magic thickness. When
the driving forces are small enough, the dewetting proceeds from the edges of the films and we find two regimes:
(i) Regime I: for stronger driving forces, no dewetting rim is formed along the edge of the film, and magic-height
fingers perpendicular to the film edge invade the film. (ii) Regime II: for smaller driving forces, magic-height
fingers form parallel to the edge of the film. In this regime, a magic-height dewetting rim forms, and subsequently
breaks up due to the emergence of two instabilities: rim closure failing, and layer-by-layer nucleation of holes
in the film behind the rim. In both regimes, the dewetting velocity and the typical wavelength observed in the
simulations are found to be in good agreement with a maximum velocity principle based on a simple model
accounting for diffusion limited dynamics. Finally, the labyrinthine morphology resulting from the dewetting
process and its typical length scales are found to be consistent with experimental observations. For stronger
driving forces, we observe homogeneous nucleation. Depending on the relative values of the magic height and
the film height, the dewetting process starts with the formation of holes or with the formation of magic-height
islands.
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I. INTRODUCTION

In the past 15 years, solid-state dewetting has been the
subject of many experiments [1–16] and models. While
early theories were based on macroscopic continuum descrip-
tions [17–19], recent models accounting for the atomistic
structure of crystalline films have pointed out the crucial
role of anisotropy (including singular facets and the related
dynamics of atomic steps) on the dewetting dynamics of thin
films [20–22]. The downsizing of film thicknesses up to the
nanoscale raises the question of the dewetting dynamics of
films consisting of a few atomic layers.

Here, we wish to focus on a phenomenon which appears for
nanometrically thin metallic films: the quantum confinement
of the conduction electrons in a thin metallic film, which
induces thickness dependent properties such as oscillations
in the work function [23] or in the film surface energy [24].
The complex wetting potential produced by the combination
of these quantum size effects and the atomic discreteness of the
film thickness lead to the so-called magic thicknesses, which
are strongly favored energetically. This phenomena is known
to have a strong impact on the morphology of islands and films
formed during growth, as discussed in theory [23,25,26] and
experiments [27–32] for various metals.

Here, we aim to describe the effects of magic thicknesses
on the dewetting dynamics of thin films. In experiment, such
as, e.g., for Ag/Si(111) [2,29], growth and annealing are not
necessarily well separated, and their respective influences on
the final morphology are often mixed. Even if flat films can
be grown at low enough temperatures when the morphology
is controlled by kinetics, these films may destabilize under
annealing to gain energy via a specific dewetting process.
Here, we wish to describe the main features of this dewetting
process using a simplified wetting potential which keeps
the main physical ingredient: the existence of a magic

thickness. Since the growth of thin films in the presence of
magic film thicknesses was called “electronic growth” in the
literature [25], we denote the related dewetting process as
“electronic dewetting.” We find some specific features of the
electronic dewetting process which can help experimentalists
to distinguish it from usual dewetting. These features include
not only the expected flat-top islands with a magic thickness,
but also the absence of stable dewetting rims, the possibility
of forming fingers parallel or perpendicular to the dewetting
front when dewetting is initiated at the edge of a film, and the
possibility of forming magic islands first or holes first during
homogeneous nucleation far from the film edges. We also
provide a quantitative expression for the width of the fingers,
which can be compared to experiments.

In Sec. II, we present our kinetic Monte Carlo (KMC) model
with wetting properties and a magic film thickness. In Sec. III,
we present the results of the simulations for the dewetting
process starting from an initially straight film edge. We focus
on the cases of small or moderate driving forces, when homo-
geneous nucleation is absent, and find two distinct regimes. In
Regime I, for strong enough driving forces, no rim is formed
along the dewetting front, and magic-height fingers appear
from the first stages of the dewetting process. In Regime II,
for weaker driving forces, a dewetting rim is formed along the
edge of the film. However, as opposed to the case where no
magic thickness is present [21], the dewetting rim is always
unstable. We observe two pathways for the destabilization of
the dewetting rim in regime II. The first one is layer-by-layer
nucleation of holes behind the dewetting rim. The second one
is the incomplete closure of the magic-height rim, leading
to gaps through which dewetting proceeds. The different
dynamics of regime I and regime II leads to very different
morphologies at least in the initial stages of dewetting, with
fingers roughly perpendicular or parallel to the dewetting front,
respectively.
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For both regime I and II, the length scale of the resulting
magic-height finger structures and the speed of the dewetting
fronts are found to be in good agreement with a model based
on a simple maximum velocity principle. In Sec. IV, we
focus on homogeneous nucleation away from the film edge.
We point out the crucial role of the relative values of the
initial film thickness and of the magic thickness in order to
observe homogeneous nucleation, and to observe percolating
or nonpercolating networks for magic-height islands. During
homogeneous dewetting the denuded substrate area increases
as t3, a behavior which is similar to that of monolayer
dewetting [33], and different from the approximate scaling
of multilayer ultrathin films ∼t2 in the absence of a magic
height [20,34].

We compare our results to experimental observations
in Sec. V and show that our results are consistent with
the morphologies and with the finger widths observed in
experiments. Finally, we summarize our results in Sec. VI.

II. KMC MODEL WITH A MAGIC THICKNESS

Our solid-on-solid KMC model (Fig. 1) accounts simul-
taneously for wetting properties and for a magic thickness.
We use a square lattice with periodic boundary conditions. On
each site of the lattice, the surface height has an integer value
z � 0. The substrate is flat and frozen: substrate atoms at z = 0
cannot move. Atoms at the surface of the film with z � 1 can
hop to nearest neighbor sites with rates

z �= 1 and z �= h∗ νn = ν e−(nJ+J0)/T , (1)

z = 1 rn = ν e−(nJ+J0−ES )/T , (2)

z = h∗ r∗
n = ν e−(nJ+J0−E∗)/T , (3)

where n is the number of neighbors in the same plane, T is
the temperature in units of kB = 1, h∗ > 1 is the magic height,
and J , ES , E∗ are energy parameters.

The rates given above can be related to a simple underlying
energetic picture. Atoms in the film with z � 2 and z �= h∗
interact with first neighbors in the same horizontal plane
via bonds of energy J , and with the neighbor just below
via vertical bonds of energy J0. The energy cost to remove
a surface atom with z � 2 and z �= h∗ is therefore �E =
nJ + J0. If the neighbor just below the atom belongs to the
substrate, i.e., z = 1, the energy cost for removing an atom
is �E = nJ + J0 − ES . Note that ES not only accounts for
the change of the vertical bond under a film atom when it is
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FIG. 1. (Color online) Schematics of the solid-on-solid kinetic
Monte Carlo (KMC) model, with hopping rates νn, rn, and r∗

n in the
case h∗ = 4.

in contact with the substrate, but also for the formation of a
broken substrate bond. Following this line and within a low
temperature approximation [35], ES can be shown to be equal
to minus the spreading coefficient [36] used in the context
of wetting of liquids. Similarly, the cost for removing an
atom at z = h∗ is �E = nJ + J0 − E∗. The energy landscape
experienced by a solid film can be summarized in the wetting
potential W (z). The wetting potential W (z) of our model can
be defined as the difference between the free energy of the film
surface at thickness z and the free energy of the film surface for
large film thicknesses. Once again within a low temperature
picture, where the surface free energies are essentially equal to
surface energies, we have W (z � 1) = ESδz,1 + E∗δz,h∗ . As a
remark, in order to account for a magic height at z = h∗, the
energy parameter E∗ will always be negative in the following.

Using a physical picture where atoms break all bonds
in order to diffuse, the hopping rates are then defined as
ν exp[−�E/T ], where ν is an attempt frequency. In order
to simplify the notations, we define ν0 = ν exp[−J0/T ]. In
the following, we use reduced units: We choose a, ν0, and
J as the length, time, and energy units, respectively. This is
formally equivalent to setting a = 1, ν0 = 1, and J = 1.

III. DEWETTING FROM A STRAIGHT FILM EDGE

A. KMC results

We start with the analysis of the case of a film which has
initially a uniform thickness z = h, except for a straight trench
along the (100) axis, where the substrate is denuded, i.e.,
z = 0. From this initial condition, with ES > 0 and E∗ < 0, we
observe two dewetting fronts moving in opposite directions.
However, if the driving forces ES and |E∗| are too large,
homogeneous nucleation of holes is seen in the film far from
the film edge. Here, we postpone the discussion of nucleation
to Sec. IV, and we focus on the case of small enough driving
forces when no homogeneous nucleation is observed.

In the absence of a magic height, i.e., for E∗ = 0, straight
dewetting fronts along the (100) orientation are stable in the
sense that they exhibit a straight and continuous dewetting
rim along the dewetting front, as discussed in Refs. [20,21].
However, in the presence of a magic height, i.e., for E∗ �= 0,
we observe that the dewetting process starting from (100) film
edges is always unstable: The final state is composed of fingers
with the magic thickness h∗.

Let us describe the simulation results in more details.
The dewetting process starts with the nucleation of two-
dimensional islands on the top of the film in the vicinity of
the film edge. When the driving forces ES and |E∗| are small,
these islands merge before the nucleation of another layer
above them. In the opposite limit of strong driving forces,
magic islands are nucleated before the islands merge. Hence,
separated magic islands are formed along the dewetting front.
This leads to the two main regimes observed in the simulations,
as shown in Fig. 2.

The first regime, hereafter denoted as regime I, and shown
in Figs. 2(a) and 2(b), corresponds to the case of strong driving
forces. In this regime, no rim is formed along the edge of the
film. Magic-height fingers appear, and are left behind the front
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FIG. 2. (Color online) KMC simulations of dewetting in regimes
I and II. The blue-yellow (dark-light) scale indicates the local height
z. Dewetting initiated at a straight film edge in the 800 × 800 system
with T = 0.4, h = 3, and h∗ = 7. Upper panels: initial film edge
along (100). Lower panels: initial film edge along (110). (a),(b)
Regime I for stronger driving forces with ES = 0.7 and E∗ = −1.0.
(c),(d) Regime II for smaller driving forces with ES = 0.5 and
E∗ = −0.5.

as a result of the dewetting process. These fingers are mainly
oriented perpendicularly to the dewetting front.

The second regime, denoted as regime II and shown in
Figs. 2(c) and 2(d), is obtained for small driving forces. In this
regime, after the initial formation of a continuous rim of height
smaller than h∗ along the film edge, magic-height islands form
on the top of the rim. These magic-height islands expand,
invading the dewetting rim. But when two magic-height zones
meet, they do not always merge, and often leave a gap. Then,
the dewetting proceeds beyond the rim through this gap. Such
an incomplete closure of the rims was not observed in the
absence of a magic thickness [20].

FIG. 3. (Color online) Morphology diagram in the (E∗/J,ES/J )
plane. Dewetting started from straight (100) fronts in systems of size
800 × 800 with T = 0.4, h = 3, and h∗ = 7. The images show the
morphology of the film after the dewetting process, when there are
only magical height islands left on the substrate. They are centered
on the corresponding values of (ES,E∗): for regime I, (ES,E∗) =
(0.7,−1.0) and (ES,E∗) = (1.0,−1.0) and for regime II, (ES,E∗) =
(0.3,−0.5) and (ES,E∗) = (0.5,−0.5).

In regime II, we also observe the formation of holes behind
the magic-height rims. A similar formation of holes behind
the magic-height islands is observed in regime I, but is less
frequent, maybe because there is no extended rim. In regime II,
these holes grow along the magic-height rims, often leading
to the total detachment of the rim from the film. This process
may occur periodically leading to magic-height islands mainly
oriented parallel to the original front, as seen in Figs. 2(c)
and 2(d). This regime could be a transient and the structure
of the magic fingers in regime II could be disordered at long
times. The limited size of our simulations does not allow us to
reach a definitive conclusion on this point.

In a previous paper [21], it was pointed out that the stability
of dewetting fronts depends on the front orientation in the
absence of a magic height. Indeed, while (100) fronts where
found to be stable, (110) fronts are unstable and spontaneously
break up into an array of fingers. We find that the situation is
very different in the presence of a magic height. Simulations
starting from a diagonal trench along the (110) direction
actually show the same behavior as those starting along the
(100) direction. Indeed, simulations in the lower panel of Fig. 2
show that regime I or regime II is recovered for parameters
similar to those found when starting for (100) fronts. These
results suggest that, within the regime of parameters studied
here, the instability triggered by the presence of a magic height
is faster than the instability identified previously for (110)
dewetting fronts. The parameter regions in which regimes I
and II are observed, are reported in Fig. 3.

B. Layer by layer hole formation behind the rim

One specific feature that we have observed in KMC
simulations when E∗ �= 0 is the nucleation of holes behind

195408-3



ANNA CHAME AND OLIVIER PIERRE-LOUIS PHYSICAL REVIEW B 90, 195408 (2014)

the rim. This observation can be explained by the enhanced
formation of shallow holes of depth h0 < h behind the rim,
which play the role of precursors for the formation of a
complete hole of depth h (with denuded substrate at its
bottom). Indeed, consider the formation of a shallow circular
hole with radius R0 and depth h0 < h. The atoms withdrawn
to form the hole are transferred to a neighboring magic height
rim. The related Gibbs free energy variation reads:

�E = 2γ0πR0 + A∗E∗, (4)

where γ0 is the free energy of an edge of height h0, and A∗ is
the additional area of the magic-height rim. We then use mass
conservation

A∗(h∗ − h) = πR2
0h0, (5)

and find a critical radius R0c and nucleation barrier E0c as

R0c = γ0

h0

h∗ − h

−E∗
, (6)

E0c = π

(
γ0

h0

)2
h0(h∗ − h)

−E∗
. (7)

Let us now consider the direct formation of a full hole
of depth h in a film of thickness h. Once again, the mass is
transferred to a rim of height h∗. The free energy now reads:

�E = 2γπR + A∗(E∗ − ES), (8)

where γ is the free energy of a film of thickness h. Using
again the mass conservation relation (5), we now find a critical
radius Rc and the associated nucleation barrier Ec as

Rc = γ

h

h∗ − h

ES − E∗
, (9)

Ec = π

(
γ

h

)2
h(h∗ − h)

ES − E∗
. (10)

We shall now use Eqs. (6), (7), (9), and (10) to discuss
quantitatively the hole nucleation process. We have previously
shown [33] that γstep ≈ 0.42 for our SOS model at T = 0.4.
We may use this result to evaluate the nucleation barriers
in a scenario where the hole is formed by means of the
successive nucleation of monolayer holes. In the following, we
shall denote this process as layer-by-layer hole formation. We
use typical parameter values used in the simulations: h = 3,
h∗ = 7, ES = 0.5, E∗ = −0.5, and T = 0.4. For the formation
of a monolayer hole behind the rim, we find from Eqs. (6)
and (7): R0c ≈ 3.4 and E0c ≈ 4.5, leading to an activation
probability exp[−E0c/T ] ∼ 10−5. Once this monolayer hole
is formed, this hole can expand laterally leaving a film of
height h = 2 adjacent to the magic-height dewetting rim. On
this thinner film inside the monolayer hole, another monolayer
hole can be formed. Using the same parameters as above
except for h = 2, we now find R0c ≈ 4.5 and E0c ≈ 5.5, and an
activation probability exp[−E0c/T ] ∼ 10−6. The monolayer
hole again expands, leaving a monolayer-thick film near the
magic-height dewetting rim. The rate of nucleation of a hole
in the last monolayer is then increased by the term ES , and
we obtain from Eqs. (9) and (10) R0c ≈ 2.5 and E0c ≈ 3.3,
with an activation probability exp[−E0c/T ] ∼ 2 × 10−4. The

whole process is therefore limited by the lowest activation
probability ∼10−6.

In order to provide a quantitative account of the direct
nucleation of a hole with edges higher than one atomic step,
we need to evaluate the quantity γ /h or γ0/h0 which enters in
the expressions of the nucleation radii and nucleation barriers.
Assuming that the free energy of an edge is simply proportional
to its height, we obtain γ0/h0 = γ /h = γ1. If we assume
that the edges are bunches of atomic steps, then γ1 should
be the sum of the free energy of an atomic step γstep, and
the free energy γint of step-step interactions per atomic step,
which is here of entropic origin.1 Using standard results of the
literature [37], we have γint = (πkT )2/(6γstep�

2) where � is the
distance between steps. Assuming a tight bunch of steps with
� ≈ 1, we find γint ≈ 0.6. Summing the two contributions,
we obtain γ1 ≈ γstep + γint ≈ 1. In contrast, if the distance
between steps is large enough, the interaction term is negligible
and we obtain γ1 ≈ γstep ≈ 0.4.

We may now consider the direct formation of a full hole of
depth h = 3 using Eqs. (9) and (10). In the most favorable case
γ1 = 0.42, we find Rc = 1.7, Ec = 6.6, and exp[−Ec/T ] ∼
6 × 10−8. In the least favorable case γ1 = 1, we obtain Rc = 4,
Ec = 38, and exp[−Ec/T ] ∼ 6 × 10−41. We may therefore
conclude that this nucleation process is slower than the layer-
by-layer scenario described above. Therefore, the formation
of holes behind the rim must proceed via a layer-by-layer
pealing process. In the simulations, we indeed observe the
layer-by-layer formation process of the hole behind the rim,
as shown in Fig. 4(b).

In the case where no magic height is present E∗ = 0, the
layer-by-layer nucleation process is impossible because there
is no energy gain to withdraw an atom from the film surface.
This is consistent with the observation in Ref. [20] that no
hole forms behind the rims in the absence of magic-height
thickness.

C. Incomplete rim closure

In regime II for small ES and E∗, we observed that a rim of
height h1, with h < h1 < h∗ first forms along the film edge.
This rim is continuous and extends everywhere along the film
edge. Then, on the top of the rim of height h1, magic height
islands nucleate. These magic-height islands invade the whole
rim by means of a zipping mechanism. This process shares
similarities with the layer-by-layer increase of the rim height
discussed in Ref. [20] in the absence of a magic thickness.
In this latter process, a monolayer island of height h1 + 1
invades the rim top facet of height h1. However an important
difference is seen between the spreading of a monolayer and
the spreading of magic height islands.

In order to discuss this difference, let us evaluate the local
chemical potentials which enter into play at different edges,

1A better approximation would be to assume that γ = hγstep +
(h − 1)γint, which correctly accounts for the case h = 1 where there
is no interaction term. An even better description of a bunch of steps
would also account for the full step density profile. However, our
quantitative analysis being very rough, these refinements are beyond
the scope of the present paper.
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FIG. 4. (Color online) Details of the rim dynamics observed in
KMC in regime II (small ES and E∗). Parameters: size 800 × 800,
T = 0.4, h = 3, ES = 0.4, h∗ = 7 E∗ = −0.5. (a) First, a rim of
height h1 forms, with h < h1 < h∗ (in green), with a process similar
to that described in Ref. [20]. Then, a magic-height rim (orange)
is nucleated and extends along the dewetting front by means of a
zipping mechanism. As a consequence of mass conservation, the
width of the magic-height rim is smaller than that of the initial rim.
(b) Another magic-height zone is nucleated along the rim. In addition,
the layer-by-layer nucleation of a hole behind the rim is observed on
the right side. (c) In the center of the image, we observe that the
expanding magic-height rims do not merge when they approach each
other: This is the incomplete rim closure process discussed in the text.
On the right side, the layer-by-layer nucleation of a hole proceeds and
has reached the substrate. In (d) and (e), we present a schematic top
view to discuss the incomplete rim closure mechanism. (d) and (e)
represent, respectively, the cases without and with a magic height.

such as the film edge, the edge of a monolayer, or the edge of
a magic island. We postpone the discussion of the influence
of edge curvature effects to Sec. III D. As shown in Ref. [35],
the chemical potential at an edge of height �z is then simply
�E/�z, where �E is the energy cost per unit area when
moving this edge.

We start with the case of dewetting without a magic height,
during the spreading of a monolayer on the rim facet, as shown

in Fig. 4(d). At the dewetting front between z = 0 and z = h1,
we have μ0|h1 = ES/h1, and at the dewetting front between
z = 0 and z = h1 + 1, we have μ0|h1+1 = ES/(h1 + 1). In
addition, at the edge of the monolayer on the rim facet
μh1|h1+1 ≈ 0, and similarly at the frontier between the edge of
the rim facet and the film μh1|h ≈ 0. Thus, the driving forces
for the mass fluxes toward the edge of the monolayer are
μ0|h1 − μh1|h1+1 = ES/h1 from the lower side and μ0|h1+1 −
μh1|h1+1 = ES/(h1 + 1) from the upper side. These driving
forces are not very different, and as a consequence the related
mass fluxes are of the same order of magnitude and the atomic
step on the top facet is therefore fed from both sides rather
symmetrically.

In contrast, for the spreading of a magic-height rim on the
rim facet shown in the schematics of Fig. 4(e), the chemical po-
tentials are μ0|h1 = ES/h1, μ0|h∗ = (ES + E∗)/h∗, μh∗|h1 =
E∗/(h∗ − h1), and μh1|h ≈ 0. As a consequence, the mass
fluxes toward the edge of the magic island on the rim facet are
now proportional to μ0|h1 − μh∗|h1 = ES/h1 − E∗/(h∗ − h1)
from the lower side and to μ0|h∗ − μh∗|h1 = (ES + E∗)/h∗ −
E∗/(h∗ − h1) from the upper side. Since h1 < h∗ and ES >

ES + E∗, one has μ0|h1 − μh∗|h1 > μ0|h∗ − μh∗|h1 . As a con-
sequence, the mass flux from the edge of the film of height h1

is now significantly larger than the mass flux coming from the
edge of height h∗.

As a summary, we have seen that the mass fluxes toward
the edge of a monolayer spreading on a facet are essentially
symmetric, while the edge of a magic island is essentially fed
from the lower side. As a consequence, when two monolayer
islands spread toward each other as in Fig. 4(d), they are
both still fed from the upper side when getting close to each
other. Hence, they are not significantly slowed down when the
distance between them gets smaller, and they finally collide and
merge. However, when two magic-height islands spread and
get close to each other as shown in Fig. 4(e), they are mainly fed
by the rim-substrate edge between them. As shown in Fig. 4(e),
this leads to an increased motion of this part of the rim-
substrate edge. But since h1 < h∗, from mass conservation the
two magic islands simply cannot meet if they are fed only by
the rim of height h1. Hence, the rim-substrate edge between the
magic islands moves beyond the magic islands leaving a gap.

Ultimately, the dewetting proceeds through this gap toward
the film behind the rim. However, due to statistical fluctuations
the dynamics is not deterministic and magic height rims may
still merge from time to time, as seen in Fig. 4.

D. Maximum velocity principle

We now propose a model to predict the typical wavelength
and dewetting velocity of a dewetting front. We assume that
this dewetting front is composed by an alternation of fingers
of height h∗ and width λ∗, and void-fingers of height h = 0
and width λ0. By construction, the wavelength λ of the front
pattern is λ = λ0 + λ∗. In addition, from mass conservation
hλ = h∗λ∗. As a consequence

λ∗ = h

h∗
λ (11)

λ0 = h∗ − h

h∗
λ. (12)
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We now aim to describe the driving force by which atoms in
the film form fingers. The chemical potential at the fronts is
expected to be [35]

μ0

T
= ES

hT
+ 	κ0 (13)

μ∗
T

= E∗
(h∗ − h)T

+ 	∗κ∗, (14)

where κ0 and κ∗ are the edge curvatures. We have also defined
	 = γ /(hT ) and 	∗ = γ∗/(h∗T ), where γ and γ∗ are the free
energies of the edge of a film of height h or h∗ respectively.

Assuming fixed contact angles at the triple points between
the film-substrate, film-magic-island, and substrate-magic-
island edge

κ0 = −2α

λ0
, (15)

κ∗ = 2α∗
λ∗

, (16)

where α and α∗ are numbers accounting for the edge geometry.
We now write the velocity of the void-fingers as resulting from
diffusion limited dynamics

V = G
1

h

Dceq

λ
(eμ0/T − eμ∗/T ), (17)

where G is a dimensionless number, which accounts for
geometric effects. We assume that 	,	∗ � λ. We also assume
that the free energy of a film edge is proportional to its
height, γ /h = γ∗/h = γ1. This last assumption suggests that,
following the Young contact angle relation, tangential match-
ing should be observed between the film-substrate and the
film-magic-island edges at the triple point. As a consequence,
we expect α ≈ α∗ ≈ 1. Then we obtain

V = G
1

h

Dceq

λ

(
�e − 2	

λ
�e

)
, (18)

where we have defined

�e = exp

[
ES

T h

]
− exp

[
E∗

T (h∗ − h)

]
,

(19)

�e = h∗
h∗ − h

exp

[
ES

T h

]
+ h∗

h
exp

[
E∗

T (h ∗ −h)

]
.

Maximizing Eq. (18) with respect to λ, one finds

λ

	
= 4�e

�e
. (20)

V = G
1

h

Dceq

	

(�e)2

8�e
. (21)

Following the same lines, the velocity V∗ of the magic height
fingers is found to obey a similar law

V∗ = G∗
1

h∗ − h

Dceq

	

(�e)2

8�e
. (22)

Since V = V∗, we must require

G∗
h∗ − h

= G

h
= g, (23)

where the constant g is expected to be a symmetric function
of h and h∗ − h.

We now compare the model results with KMC simulations.
From Eqs. (20) and (23), we expect that

λ
�e

�e
= 4	 (24)

V
�e

(�e)2
= g

Dceq

8	
(25)

are constant.
In order to check the results of the model, we have measured

the size λ and velocity V in the KMC simulations. The
measured velocity V is the global velocity of the dewetting
front, which is expected to be the same as the finger velocity
in regime I when the fingers are orthogonal to the front, but
not in regime II, where the fingers evolve in a more complex
fashion. However, as shown in Fig. 5(a), KMC simulations
provide reasonable data collapse for V , and a good one for λ.
The value of λ is almost constant for ES � 0.5, but increases

0 0.5 1 1.5
ES

0

20

40

60

80

100

120
λ

(a)

0 0.5 1 1.5
ES

0.0

5.0×10-5

1.0×10-4

1.5×10-4

V

(b)

FIG. 5. (Color online) Maximum velocity principle. (a) Wave-
length λ of the final pattern composed only by magical height islands
and (b) dewetting front velocity V . Nonconnected full symbols are
results from simulations. Open symbols connected by solid lines
correspond to the expressions λ�e/�e and V �e/(�e)2 appearing
in Eqs. (24) and (25). The maximum velocity principle discussed
inn Sec. III D predicts that these quantities are constant. Parameters:
system size 800 × 800, h = 3, T = 0.4, h∗ = 7. Symbols: black
circles: E∗ = −0.5, red squares E∗ = −1, and blue diamonds
E∗ = −2.
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slightly for small ES . From the KMC results, we obtain

λ
�e

�e
= 12.5 ± 2.5 (26)

V
�e

(�e)2
= (1.3 ± 0.1) × 10−4 (27)

leading to

	 = 3.1 ± 0.6. (28)

Such a value of 	 is in reasonable agreement with the results
of Sec. III B. Indeed, since 	 = 	∗ = γ1/T , using the value
of 	 ≈ 3 obtained above, we find γ1 = T 	 ≈ 1.2 in good
agreement with the theoretical value γ1 ≈ 1 proposed in
Sec. III B.

Finally, our results also allow one to evaluate the geomet-
rical parameter g. In order to do so, we first need to determine
D and ceq . Using the results of Ref. [33], we have D = 1/4,
and ceq = e−2/T , leading to

g = 1.9 ± 0.5. (29)

Such an order of magnitude of g seems reasonable, because it
is of the order of one, as expected for a geometrical prefactor.

IV. HOMOGENEOUS NUCLEATION FOR
A CONTINUOUS FILM

In order to discuss the homogeneous nucleation of holes
in this section, we focus on the dynamics of an initially
continuous film (with no edge). In experimental systems,
the dewetting process of continuous films is often nucleated
at defects [4,11]. These defects can be pre-existing holes,
impurities, grain boundaries, or film edges. However, in very
thin films with several layers only, homogeneous nucleation
of holes can be triggered by thermal fluctuations [20]. An
example of homogeneous nucleation may have been identified
during the dewetting of very thin Si(111) films with thicknesses
smaller than 4 nm on SiO2 substrates [7]. For extremely
thin metallic films, we therefore also expect homogeneous
nucleation to be relevant, with a possibly nontrivial coupling
to magic thicknesses.

In order to study these effects, we perform simulations
starting from a continuous film of thickness h = 3. We have
performed two sets of simulations: (i) with h∗ = 7 and (ii) with
h∗ = 5.

Several observations are in order. First, we notice that
islands organize in starlike structures centered around the
nucleation centers in case (ii), while the finger structure is
less organized in case (i), as seen from Figs. 6 and 7.

A second striking difference between cases (i) and (ii)
is that islands form a percolating network in case (ii) with
h∗ = 5, while they do not percolate in case (i) with h∗ = 7.
This can be traced back to the final coverage θ∗ fixed by mass
conservation θ∗ = h/h∗, which is equal to θ∗ = 0.6 in case
(i) and to θ∗ = 0.43 in case (ii). A percolation transition is
roughly expected for θ∗ ≈ 1/2, although the precise value of
the transition depends on the details of the spatial organization
of the islands.

Third, the nucleation pathway is different in cases (i) and
(ii). The nucleation process starts with the formation of small

FIG. 6. (Color online) Homogeneous nucleation. We started with
a continuous film of thickness h = 3, in a system of size 800 × 800,
with T = 0.4. (a) h∗ = 7, ES = 2, and E∗ = −2; (b) h∗ = 5, ES = 1,
and E∗ = −0.5. (c) Uncoverage θ during homogeneous dewetting as
a function of time. Solid lines are guides to the eye ∼t3. Symbols
represent KMC simulation results with T = 0.4, h = 3, and (ES ,
E∗, h∗): © (0.3, − 2.0,7); � (0.5, − 2.0,7); � (1.0, − 1.0,5); �
(2.0, − 2.0,7); 	 (0.7, − 0.5,7); � (1.0, − 0.5,5); � correspond to
the parameters of (a) and � correspond to the parameters of (b).

holes in case (i) with h∗ = 7. Subsequently, magic-height
islands form around the holes. In contrast, the nucleation
process starts with magic-height islands on the surface of the
film in case (ii) with h∗ = 5. Then, holes form in the vicinity of
these magic islands with a process similar to the layer-by-layer
nucleation scenario described in Sec. III B.

It is tempting to speculate that the differences for island
percolation and for the nucleation process could be observed
in general as a function of the relative values of h∗ and
h: nonpercolating islands and initial hole formation for
h∗ − h > h, and percolating islands and initial magic-island
formation for h∗ − h < h.

Finally, the substrate area uncovered by the dewetting
process grows as t3, as shown in Fig. 6(c). This is similar
to the behavior observed in the dewetting of monolayer
films [33], but different from homogeneous nucleation in
(multilayer) ultrathin films without magic height, where the
approximate scaling ∼t2 [20,34] was observed. As discussed
in Ref. [20], the t2 behavior is a consequence of the thickening
of the dewetting rim, which slows down the opening of holes
leading to a front velocity with the approximate scaling t−1/2.
In contrast, the dewetting front velocity is constant in the
absence of a stable dewetting rim, as observed for monolayer
islands [33], or for thin films with a magic height, leading
to t3.
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FIG. 7. (Color online) Dewetting process during homogeneous
dewetting with an initial film thickness h = 3, and T = 0.4 in
a 800 × 800 system. (a)–(c) correspond to h∗ = 7, ES = 2, and
E∗ = −2. Holes are nucleated initially before magic-height islands
in (a). The final state is a nonpercolating network of islands. (d)–(f)
correspond to h∗ = 5, ES = 0.7, and E∗ = −0.5. Magic-height
islands are formed before holes in the initial stages (d). The final
state exhibits a percolating network of magic-size islands.

V. COMPARISON WITH EXPERIMENTS

While our simplified model does not provide a complete
description of a given experimental system in all its details, we
claim that it can help identify the specific features of electronic
dewetting in experiments and that it provides quantitative
predictions that are consistent with some experimental results.
When h = 3 and h∗ = 5, the magic-height flat top islands
resulting from the dewetting process form a network [see
Fig. 7(f)], similar to the observations of Thürmer et al. [2]
and Gavioli et al. [29] for Ag/Si. In Ref. [2] Ag is deposited at
room temperature where Ag is mobile at the surface, so that the
experimental conditions mix growth and dewetting. However
in Ref. [29], deposition is performed at low temperatures,
and the film is annealed at room temperature after the
deposition process. In both cases, the experiments lead to
similar wormlike structures with a lateral length scale ∼20 nm.
Note that the average film thickness is 2.2 ML in Ref. [29] and
∼3 ML in Ref. [2].

Using the surface free energy [38] of Ag(111) is σ =
76 meV Å−2, Thürmer et al. estimated a dewetting energy ES

to be of the order of meV to tens of meV/Å
−2

. We here assume
ES ∼ 50 meV Å−2. Using Fig. 2 of Z. Zhang et al. [25],
we find for Ag: E∗ ∼ 0.02 meV Å−2. In addition, the magic
thickness of Ag/Si was observed experimentally [28,32]. For
this system, Hirayama [32] proposed h∗ ≈ 6 monolayers. A
simple estimate of the free energy of the film edge is based on

the surface energy of the top facet of the film σ = 76 meV Å
−2

.
With these assumptions and using Eq. (26), we obtain λ ≈
30 nm in reasonable agreement with the experiments. For
Ag/Si elastic effects could also play an important role [28],
but our analysis based solely on electronic effects seems to
catch the correct order of magnitude of λ.

Another feature which appears in experimental systems,
but which is not accounted for in our model, is the presence
of multiple magic heights [25]. We have used a model based
on experimental observations, where the most relevant and
striking feature of the film morphology, i.e., the wormlike
structure, is a consequence of the smallest magic height. This
is rooted in two facts.

First, the energy gain related to magic heights usually
decreases rapidly with the film thickness [25], so that the
consequences of larger magic heights tend to be weaker and
are much more difficult to observe. Second, the experiments
discussed here report on the deposition of a small amount of
mass, leading to an average film thickness smaller than the first
magic height. Our model applies to such cases, at least in the
first stages of the dynamics, where only the first magic height is
reached. However, in the case of Ag/Si(111) beyond the initial
stages of the dewetting process, the film is further destabilized
during annealing and slowly reaches larger magic heights, as
reported in Ref. [2]. Since the magic height energies decrease
rapidly with increasing film thicknesses, three-dimensional
islands form in the final stages. This full process cannot be
described within our model with a single magic height.

In addition, our results could provide some insights about
the initial dewetting behavior of thicker films in the presence of
multiple magic heights. Indeed, let us consider a system with
an ensemble of magic heights h∗n, with energies E∗n, where
n = 1,2, . . . . We then start with a film of height hnew such that
h∗m < hnew < h∗m+1, this film will decompose into parts of
height h∗m, and parts with height h∗m+1 to gain energy. Such a
process is actually similar to the case discussed in our model,
and the results discussed in Sec. IV apply with the following
substitutions: h → hnew − h∗m, h∗ → h∗m+1 − h∗m, ES →
−E∗m, and E∗ → E∗m+1. However, once again, late stages
of the dewetting process, where other magic thicknesses may
come into play, cannot be accounted for within our model.

VI. CONCLUSIONS

We have analyzed the dewetting of a thin solid film,
with initial thickness h, when a magic thickness h∗ is
energetically favored. We considered the case where h∗ is
of the same order of magnitude as h, which corresponds to the
experimental observations in ultrathin metallic films. Using
KMC simulations, the dewetting dynamics is observed until a
pattern composed only by magic-height islands appears.

In the case where the driving forces for dewetting are small
enough for dewetting to proceed from the edges of the film, we
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find two regimes. In regime I, for large enough driving forces,
magic-height fingers are perpendicular to the dewetting front.
In regime II, for lower driving forces, magic height fingers
are globally parallel to the dewetting front. The morphology
with magic-height fingers parallel to the front in regime II
shares similarities with that resulting from the periodic mass
shedding scenario proposed by Wong et al. [18]. However, the
origin of this geometry is different, and can be traced back to
the induced layer-by-layer nucleation of holes behind the rim.
Furthermore, magic-height dewetting rims exhibits an other
kind of instability: incomplete rim closure.

In both regimes, the size of the islands and velocity of the
front observed in simulations are in agreement with a simple
analytical model based on a maximum velocity principle.
For large enough driving forces, homogeneous nucleation
of holes is observed in a continuous film. Two regimes are
identified depending on the relative values of h and h∗. For
small values of h∗ (corresponding typically to h∗ − h < h), the
dewetting process is initiated by the formation of magic-height

islands, and leads to the formation of a percolating network
of islands. In contrast, for large values of h∗ (i.e., h∗ − h >

h), the dewetting process is initiated by the nucleation of
holes, and leads to a nonpercolating network of magic-height
islands.

The morphology and the order of magnitude of the
magic-height finger width are in agreement with experimental
observations, suggesting that we have caught the relevant
physical ingredients of these systems. However, much yet
remains to be done in order to reach a complete and quan-
titative understanding of the complex dynamics of electronic
dewetting.
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