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We report on the transition from two-dimensional to one-dimensional (1D) behavior observed in submonolayer
deposition on a tubular substrate. Using kinetic Monte Carlo simulations we show that the island density increases
when the tube diameter decreases, approaching the 1D behavior. This increase is confirmed by experiments of FePt
nanoparticle deposition on carbon nanotubes. Kinetic Monte Carlo simulations also indicate that the consequences
of confinement sharply disappear when the perimeter of the tube is slightly larger than the distance between
islands.
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I. INTRODUCTION

Many nonequilibrium systems exhibit a critical behavior,
usually belonging to a given universality class characterized by
exponents [1]. However, critical behaviors depends strongly
on dimensionality [1], and the transition between different
dimensionalities is still poorly explored, except for a few
examples such as domain walls in ferromagnetic nanowires
[2]. In this paper we propose a system; namely, submonolayer
deposition on a tube, where this transition can be investigated.
Submonolayer growth is a prototypical nonequilibrium system
exhibiting critical behavior, which has been studied exten-
sively both experimentally [3–6] and theoretically [7–13].
In this process, particles deposited on a substrate diffuse
and aggregate to form islands. Standard scaling predictions
describe the dependence of island-size distribution and the
island density as a function of the coverage and the deposition
rate. Much effort was also recently devoted to modeling
the island-size distribution and the capture-zone distribution
[13–16]. Theories and experiments of submonolayer growth
are available both for two-dimensional (2D) and one-
dimensional (1D) systems. The majority of experiments has
been performed on atomically flat crystal facets, corresponding
to the 2D case [9,11]. Experiments have also been performed
in the 1D case, a prominent example being adsorption on
linear defects, such as atoms or fullerenes on atomic-step
edges [4,17–21], or nanoparticles on graphite pleats [22,23].
In addition, some models have discussed the interplay between
2D and 1D effects in submonolayer growth due to the presence
of atomic steps on facetted substrates [24].

Here we discuss the transition from 1D to 2D behavior
in submonolayer growth with tubular substrate geometries. In
a large 2D periodic system of size Lx × Ly , the transition
to 1D can be obtained by reducing the size Lx down to
the particle size (keeping a large Ly). Experimentally, such
a variation of Lx corresponds to performing growth on the
surface of tubes with different diameters. The length Lx

then corresponds to the tube perimeter. In the following, we
present kinetic Monte Carlo (KMC) simulations with various
values of Lx . We focus on the limit of small coverages
which corresponds to experiments, and where coalescence
of different islands and island percolation in the direction y

along the tube are not observed. However, coalescence of each
island with itself around the perimeter of the tube in the x

direction can be observed for small Lx . We find an increase

of the island density when reducing the tube diameter. This
result is confirmed by experiments with deposition of FePt
nanoparticles on carbon nanotubes with diameters ranging
from 5 to 10 nm. Furthermore, a detailed analysis of the KMC
results indicates a transition from a 2D to a 1D behavior. We
find that the consequences of the confinement vanish sharply
for distances larger than the typical distance between islands.
In the following, we first present the KMC simulation results.
Then we discuss the experiments.

II. KINETIC MONTE CARLO MODEL

We have performed KMC simulations to model the diffu-
sion of nanoparticles and the subsequent formation of islands.
Particles diffuse on a hexagonal lattice. The hopping rate of
atoms with n in-plane nearest neighbors is

νn = νe−nJ/kBT , (1)

where ν is the hopping rate of particles without nearest
neighbor, J is the bond energy between nearest neighbors,
kB is the Boltzmann constant, and T is the temperature. In
addition, we deposit particles at the rate F . In order to do
so, a site is chosen randomly. If the site is free, we deposit a
particle. When a particle is deposited on a site which is already
occupied, we move it to a neighboring site which is free. If
there is no free site in the nearest neighbors, we do not deposit
the particle. The dynamics depends only on two dimensionless
parameters: R = ν/F and J/kBT .

We use periodic boundary conditions with Lx × Ly lattice
sites. In order to study the influence of the confinement pro-
duced by a finite nanotube diameter, we perform simulations
with various values of Lx . In the simulations, we keep a fixed
total area Lx × Ly = 1502.

III. KINETIC MONTE CARLO RESULTS:
ISLAND-SIZE DISTRIBUTIONS

Submonolayer growth is known to exhibit universal scaling
of the island-size distribution [7]. There are several regimes
depending on the coverage θ [25]. Increasing θ , one first finds
a nucleation regime at low θ where new islands are nucleated.
Then, at intermediate θ , one finds the so-called aggregation
regime where islands grow via sticking of new particles. In
this regime islands do not coalesce with other islands, but for
small tube perimeters Lx islands can coalesce with themselves
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FIG. 1. (Color online) Kinetic Monte Carlo simulations of sub-
monolayer deposition on tubes of various perimeters Lx = 48,12,6
(the length Ly is larger than the images). The tubes are unrolled for
clarity. For each Lx , the upper panel corresponds to irreversible DLA-
like aggregation at J = 100 eV, and the lower panel corresponds
to the attachment-detachment regime, with J = 0.1 eV. The two
graphs show the data collapse for the island-size distribution in
the attachment-detachment and irreversible aggregation regimes with
R = 105. Symbols: �,•,� for θ = 0.1, 0.2, 0.3, respectively.

around the tube as seen in Fig. 1 for Lx = 6. Finally, at larger
θ , islands start to coalesce with other islands.

We focus on the aggregation regime [25], which describes
the system behavior at intermediate θ (typically between 5%
and 30%). We have verified the usual scaling of the density Ns

of islands of size s:

Ns = θ

S2
f

(
s

S

)
, (2)

where f is a universal scaling function, and S is the average
island size. We have checked that this scaling law is observed in
our simulations: for a given value of J/kBT , the scaled island
distribution NsS

2/θ is independent of the normalized flux R

and the coverage θ . The data collapse reported in the graphs of
Fig. 1 shows that the only observable effect of confinement is a
small increase of f for small s/S when Lx = 2 and J = 0.1 eV
(due to the periodic boundary conditions on the hexagonal
lattice, the minimum possible value of Lx is Lx = 2). As a
conclusion we observe that the universal scaling function f is

relatively insensitive to Lx , and these small variations would
therefore not be easily measured in experiments.

IV. KINETIC MONTE CARLO RESULTS:
ISLAND DENSITY

However, as shown in Fig. 2(a), the total island density N =∑∞
s=2 Ns exhibits a strong dependence on the tube diameter.

As expected, the island density N is independent of Lx for
large Lx , but increases by a factor varying from 2 to 8 for
small Lx . This increase is observed both for small and large
J/kBT . Note that, since the average island size S is related
to N via the relation S = θ/N , this also means that S varies
with Lx . A higher island density in 1D was already observed,
e.g., in Fig. 2(a) of Ref. [7]. Here, we study the transition
between the two limits. The origin of the higher island density
in one dimension can actually be traced back to a relatively
lower number of sites visited by diffusing nanoparticles in 1D
[7]. Nanoparticles in 1D are therefore less efficient in finding
islands to aggregate to, leading to an increased nucleation rate
by collision with other nanoparticles.

Further inspection of Fig. 2(a) reveals that at large Lx for
all θ the island densities N converge to the same value denoted
as N2D independent of θ . However, the island densities split
in the crossover regime. Such a result can be explained within
the standard theory for submonolayer deposition, where one
expects that

N ∼ θ1−zR−χ . (3)

It is known that z = z2D = 1 in 2D [25] but decreases to z =
z1D = 3/4 in 1D [10,26]. As a consequence, N should be
independent of θ in 2D but depends on θ in 1D, in agreement
with our results.

In order to gain more insight about the transition from
2D to 1D, we calculated the exponent z from a fit of the
observed variation of the density N as a function of θ in the
range 0.05 < θ < 0.3 for different values of Lx . Figure 2(b)
shows that the variation of z is continuous within the crossover.
There are actually two dimensionless numbers describing the
confinement: Lx and LxN

1/2
2D , which respectively quantify

confinement in terms of particle size or in terms of the typical
distance between islands. The exponents z seem to exhibit a
better collapse when plotted as a function of Lx , suggesting
that the behavior at small tube diameters is rather controlled
by the particle size. However, we see in Fig. 2(c) that z reaches
1 sharply for Lx > L2D , with

L2DN
1/2
2D = 1.4 ± 0.2. (4)

This relation is valid both for large and small J/kBT . Hence,
we observe a purely 2D behavior when the tube perimeter
is slightly larger than the distance between islands. Such a
result is a consequence of the lack of correlation between
islands beyond the first neighbors, as already suggested by the
identity between capture zones and island sizes observed in
Ref. [15]. At this point we notice that the interpretation of a
varying z is greatly simplified by the fact that the transition
point at Lx = L2D ∼ N

−1/2
2D ∼ θ (z2D−1)/2Rχ2D/2 is independent

of θ because z2D = 1. Thus, varying θ at fixed R and fixed Lx

to measure z, we actually never cross the transition point at
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FIG. 2. (Color online) KMC simulation results. Red (gray) and
black symbols correspond to the attachment-detachment regime with
J = 0.1 eV and the the irreversible aggregation regime with J =
100 eV, respectively. (a) The island density N increases when the
tube perimeter Lx decreases. Symbols: +, •, �, �, �, �, for θ =
0.025, 0.05, 0.1, 0.15, 0.2, 0.25. z exponent as a function of (b) Lx

and of (c) LxN
1/2
2D . Symbols: •, �, �, for R = 105, 105.5, and 106,

respectively. The z exponent exhibits a transition from z1D = 3/4
in 1D to z2D = 1 in 2D. The transition to a purely 2D behavior is
indicated by a dotted line at LxN

1/2
2D ≈ 1.4 ± 0.2. (d) χ exponent

as a function of Lx . For irreversible aggregation J = 100 eV, we
find a transition from χ1D = 1/4 in 1D to χ2D = 1/3 in 2D. In the
attachment-detachment regime, however, there is no universal limit
for z in 2D.

Lx = L2D because L2D is constant. We may therefore claim
that the measured exponent z characterizes either the confined
regime when Lx < L2D , or the 2D regime when Lx > L2D .

The second exponent χ is known to exhibit a universal
behavior in the limit of irreversible aggregation, i.e., for large
J/kBT . We expect χ = χ2D = 1/3 in 2D, and χ = χ1D =
1/4 [26] in 1D. We have extracted χ from the dependence
of N on R in KMC simulations at various Lx . Figure 2(d)
clearly shows the transition for 2D to 1D at J = 100 eV. The
transition of χ to its 2D limiting value is still observed for Lx ∼
L2D with L2D obtained from the variation of the z exponent.
However, the transition is blurred here because we extract
χ from the R dependence of N , and L2D ∼ N

−1/2
2D ∼ Rχ2D/2

depends on R. Hence, for a given Lx and close to the transition,
we probe the 2D behavior with Lx > L2D for small R and
the confined behavior with Lx < L2D for large R. Due to
limitations in our simulations, we cannot greatly extend the
number of simulation runs and the range of R to measure
accurately and separately two values of χ for Lx < L2D and
for L > L2D . Hence, we cannot conclude about the precise
behavior of χ close to the threshold. However, the existence
of two plateaus with fixed values of χ = χ1D for small Lx

and χ = χ2D for large Lx can be observed for any value of
θ and could be consistent with a discontinuous variation of
χ . Further investigations are necessary in order to conclude
about the continuity or the discontinuity of the χ exponent
at the transition, and we hope to report along this line in the
future.

As discussed by Ratsch et al. [8], the behavior of χ is less
universal in the presence of detachment, i.e., for small J/kBT .
As a consequence, χ does not converge to 1/3, but tends to
a higher value in the 2D limit in Fig. 2(d). However, χ still
converges to χ1D = 1/4 for small Lx in this case.

V. FePt NANOPARTICLE DEPOSITION
ON CARBON NANOTUBES

In order to check the predictions of the KMC simulations,
we have deposited size-selected FePt nanoparticles on multi-
walled carbon nanotubes (CNTs). The CNTs were obtained by
chemical vapor deposition (CVD) synthesis and dispersed on
a holey carbon transmission electron microscope (TEM) grid.
The FePt particles, around 4 nm in diameter, are produced by
laser vaporization and soft landed on the CNTs under ultrahigh
vacuum conditions and at room temperature [27,28].

As shown in TEM images on Fig. 3(a), the incident
clusters which are randomly deposited, diffuse on the tubes,
and form islands [29]. Some events of a partial coalescence
between neighboring particles are also observed [29]. Such
a behavior is similar to that of nanoparticles deposited on
graphite [see Fig. 3(b)] [30,31]. The islands exhibit a ramified
shape, suggesting that the growth occurs in the irreversible
aggregation regime (J/kBT � 1; see Fig. 1).

This model system allows us to compare the theoretical pre-
dictions with experimental measurements. The island density
has been determined directly from TEM images, for several
different CNTs with a diameter ranging from 5 to 10 nm. Our
main result, shown in Fig. 4, is the increase of the island density
with decreasing nanotube diameter. This density varies by a

035425-3



R. DELAGRANGE et al. PHYSICAL REVIEW B 89, 035425 (2014)

FIG. 3. Typical TEM image of 4 nm diameter FePt nanoparticles
deposited on (a) CNTs and (b) graphite, allowing the experimental
determination of island densities.
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FIG. 4. Experimental nanoparticle island density as a function
of CNT perimeter. The error bar on the density corresponds to the
statistical uncertainty (i.e.,

√
n for an observation of n islands).

factor ∼3 or 4, in quantitative agreement with the theoretical
simulations.

We did not observe the saturation of the island density for
large tube diameters suggested by Fig. 2(a). Note, however,
that, in contrast to our KMC simulations with homogeneous
deposition on the tube, nanoparticles were experimentally de-
posited from a beam, and therefore always landed on the same
side of the nanotube. This asymmetry should be irrelevant for
small tubes and low deposition rates, when the nanoparticles
have enough time to diffuse to the opposite side of the tube
before meeting other nanoparticles. Instead of exploring the
deposition on tubes with very large diameters where the
consequences of the deposition inhomogeneity would be exac-
erbated, we probe the 2D limit with the help of a comparison to
deposition on flat highly ordered pyrolytic graphite (HOPG). If
the deposition were homogeneous as in the KMC simulations,
the island density on a large tube N2D would obey Eq. (3),
and we therefore expect N2D/NHOPG = (RHOPG/R2D)χ , where
NHOPG is the island density on HOPG, RHOPG is the deposition
rate on HOPG, and R2D would be the homogeneous deposition
flux on the tube (we have used the fact that z = 1 for large Lx).
The deposition on HOPG is performed at the same temperature
as on the tubes, and with deposition rate two times lower. In
addition we checked that nanoparticles have a sticking coeffi-
cient equal to one on nanotubes. Hence, since the ratio of the
projected areas of the tube and the flat HOPG is π and assum-
ing that the diffusion constant of nanoparticles is the same on
HOPG and on the tubes, we find N2D = NHOPG(2/π )1/3. Using
this relation and the observed value NHOPG ≈ 372 μm−2, we
find N2D ≈ 320 μm−2. This result is plotted in Fig. 4 and is
lower than the experimentally observed values of N for finite
diameters, consistent with KMC simulations in Fig. 2(a).

Using the KMC simulation results (4), the transition to 2D
behavior is expected for a tube perimeter L2D = 1.4N

−1/2
2D ≈

90 nm, larger than the perimeter of the tubes observed
experimentally. This confirms that experiments are performed
in the transition region where a variation of the island density
is expected. Note that the transition regime would be much
more difficult to reach using epitaxy of atoms, for which
atomic-scale tubes would be necessary. In contrast, larger
clusters would not diffuse and would therefore not lead to
the formation of islands. Therefore, FePt nanoscale-cluster
deposition on nanotubes appears as a relevant system for the
study of the 2D-to-1D transition.

VI. CONCLUSION

To conclude, we explored the transition from 2D to 1D in
submonolayer growth by using simulations and experiments
on tubular substrates. We have presented clear evidence of
an increase of the island density during submonolayer growth
when the tube diameter is decreased. KMC simulations and
experiments of cluster deposition on nanotubes both exhibit
this effect. A detailed investigation of the simulations shows
that the scaling exponents z and χ indicate a transition from
2D to 1D when confinement is increased and allows us to
identify the critical diameter L2D below which the system is
affected by confinement. Other substrates, such as top facets
of graphite pleats where Ag clusters are confined, could also
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be good candidates for the observation of the dimensionality
transition in submonolayer growth [22,23].

Our work opens several perspectives. First, growth on
single-wall nanotubes (SWNT) could also be performed. Due
to their softness, SWNTs lead to stronger elastic interactions
between nanoparticles, and may therefore trigger complex
periodic organizations of nanoparticles, as recently discussed
in Ref. [32]. In addition, the existence of a dimensionality tran-
sition on tubular substrates open novel questions for the studies
of island size and capture zone distributions in submonolayer

growth [13–16]. Finally, our studies help to understand the
morphology of cluster-CNT hybrid structures, which could
be technologically relevant, e.g., for biosensors [33], drug
delivery [34], or magnetic force microscopy (MFM) [35].
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