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A density functional theory (DFT) study of the 1/2〈111〉 screw dislocation was performed in the following
body-centered cubic transition metals: V, Nb, Ta, Cr, Mo, W, and Fe. The energies of the easy, hard, and split core
configurations, as well as the pathways between them, were investigated and used to generate the two-dimensional
(2D) Peierls potential, i.e. the energy landscape seen by the dislocation as a function of its position in the (111)
plane. In all investigated elements, the nondegenerate easy core is the minimum energy configuration, while the
split core configuration, centered in the immediate vicinity of a 〈111〉 atomic column, has a high energy near or
above that of the hard core. This unexpected result yields 2D Peierls potentials very different from the usually
assumed landscapes. The 2D Peierls potential in Fe differs from the other transition metals, with a monkey
saddle instead of a local maximum located at the hard core. An estimation of the Peierls stress from the shape
of the Peierls barrier is presented in all investigated metals. A strong group dependence of the core energy is
also evidenced, related to the position of the Fermi level with respect to the minimum of the pseudogap of the
electronic density of states.

DOI: 10.1103/PhysRevB.89.024104 PACS number(s): 61.72.Lk, 31.15.E−

I. INTRODUCTION

Body-centered cubic (bcc) transition metals are known
to display an unusual plastic behavior at low temperature,
which has long been attributed to the core properties of the
1/2〈111〉 screw dislocations [1,2]. One defining feature is
that plasticity in bcc metals is strongly thermally activated
at low temperatures [3]. The reason is that the motion of
screw dislocations is impeded by a high lattice friction, a
consequence of the depth of the dislocation Peierls potential,
i.e. the energy landscape seen by the dislocation while gliding
through the crystal. The Peierls potential, usually written as
a one-dimensional (1D) function of the dislocation position,
has been modeled using a variety of analytic functions [4,5].
One-dimensional Peierls potentials have also been determined
directly in atomistic models based on embedded atom method
(EAM) potentials [6–9], bond order potentials (BOP) [10],
as well as ab initio density function theory (DFT) calcula-
tions [11–14].

Another characteristic of plasticity in bcc metals is its
anisotropy, best known through deviations to the Schmid
law at the origin of a dependence of the critical resolved
shear stress on crystalline orientation [2,15]. To capture
this effect, the Peierls potential must be generalized to two
dimensions (2D), with the dislocation energy expressed as a
function of the dislocation position in the full (111) plane
perpendicular to the 1/2〈111〉 Burgers vector. This approach
was pioneered by Edagawa et al. [16,17], who showed that
combining a line tension model with a 2D Peierls potential
based on trigonometric functions that respect the threefold
symmetry of the bcc lattice allows one to reproduce both the
temperature dependence of the flow stress and the relation
between the average slip direction and the maximum resolved
shear stress in a number of bcc metals. The same methodology
was recently employed by Gröger and Vitek [18] to predict

temperature and strain rate effects on the flow stress from BOP
calculations.

In the (111) plane, several positions of high symmetry
are expected to be extrema of the 2D Peierls potential.
These positions are the centers of gravity of the upward
and downward triangles of the hexagonal lattice formed by
the projections of the [111] atomic columns in the (111)
plane. Depending on the sign of the Burgers vector, a screw
dislocation located at these positions results in either a local
minimum, the easy core, where the chirality of the three [111]
atomic columns around the core is reversed compared to the
bulk bcc structure, or a local maximum, the hard core, where
the three atomic columns around the core are at the same
altitude in the [111] direction [1]. Another position of high
symmetry is when the dislocation is centered on an atomic
column. This position is actually a singular point of the Peierls
potential but can be closely approached by the so-called split
core [19], which is centered in the immediate vicinity of the
atomic column and has three possible orientations [13].

To our knowledge, all published EAM potentials predict
the same hierarchy between easy, hard, and split cores: the
easy core is the global energy minimum of the 2D Peierls
potential, the hard core is the global maximum, and the split
core has an intermediate energy. With interatomic potentials
that predict a nondegenerate core structure, such as the well-
known potentials developed by Mendelev et al. [20,21], split
cores are local minima, through which the dislocation passes
when moving from one easy core position to the next, resulting
in 1D Peierls potentials with a camel-hump shape [19,11,6,7].
The only two exceptions that we are aware of are the EAM
potentials developed by Chamati et al. [22] and Marinica et
al. [23,24], which are single humped. This hierarchy between
easy, split, and hard cores was, however, recently put into
question by DFT calculations [12,13], which showed that, in
bcc Fe, the hard core energy is low, close, or even below that
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FIG. 1. (Color online) Simulation cell: (a) Schematic representation of the 135-atom simulation cell and periodicity vectors within the
quadrupolar arrangement of dislocation dipoles. Atomic positions are represented by three different colors depending on their (111) plane
before introduction of the dislocations. The dislocation dipole is visualized by its differential displacement map. (b) Schematic representation
of the two investigated pathways: pathway (1) between two neighboring easy core positions (denoted E), and pathway (2) between a hard
(denoted H) and a split core configuration (denoted S). The three [111] atomic columns surrounding the hard core are denoted α, β,
and γ .

of the saddle configuration between easy cores, while the split
core is the global energy maximum. Preliminary calculations in
W [13] showed that this inversion of energy between hard and
split cores may also be true for other bcc metals. To conclude,
a more systematic investigation in all bcc transition metals is
required.

In this paper, we perform a systematic study using DFT
of the 2D Peierls potential of the 1/2〈111〉 screw dislocation
in all bcc transition metals: group V vanadium, niobium, and
tantalum; group VI chromium, molybdenum, and tungsten;
and ferromagnetic iron. In all metals, we computed the energy
of the easy, hard, and split cores, as well as the energy pathways
between these configurations. Using two different methods to
locate the dislocation core along these paths, we generated 2D
Peierls potentials based on an interpolation that respects the
symmetries of the bcc lattice. The landscapes are compared
with the ones usually assumed and are used to extract the
Peierls stress.

II. METHODOLOGY

A. DFT technicalities

The present ab initio calculations were performed within
the DFT framework using the plane wave code PWSCF [25].
The pseudopotentials are ultrasoft with semicore electrons for
V, Nb, Ta, Cr, Mo, and W and without semicore electrons for

Fe [26]. The calculations in Fe are spin-polarized (ferromag-
netic Fe). Cr is treated in the paramagnetic approximation;
the results for this metal are therefore given to illustrate the
group and series tendencies but should not be considered
as accounting for the behavior of real Cr with its complex
magnetic structure [27]. For all investigated elements, the
exchange-correlation energy was evaluated using the Perdew-
Burke-Ernzerhof generalized gradient approximation, with a
wavefunction cutoff of 40 Ry. The Hermite-Gauss scheme was
employed with a smearing of 0.3 eV to broaden the electronic
density of states. Residual forces after relaxation are smaller
than 0.01 eV/Å.

The dislocation calculations were performed using a peri-
odic array of dislocation dipoles with a quadrupolar arrange-
ment, which is the most appropriate to extract dislocation
properties [28,29]. As illustrated in Fig. 1(a), the simula-
tion supercell contains 135 atoms with triperiodic boundary
conditions. The cell vector length along the dislocation line
was set to one Burgers vector, b = √

3/2a0, where a0 is the
equilibrium lattice parameter (see Table I). The dislocations
are separated in the 〈211〉 glide direction by a distance of
7.5

√
2/3a0, i.e. �17–19 Å depending on the element. The

cell vectors ( �C1, �C2, �C3) are defined from the unit vectors �a1 =
1/3[1̄1̄2], �a2 = 1/2[11̄0], and �a3 = 1/2[111]. They are chosen
to accommodate the plastic strain induced by the dislocation
dipole, so as to minimize the elastic energy contained in the

TABLE I. Bulk properties of the investigated elements compared to experimental values (in italics) [38–43]. The lattice parameter a0 is in
ångström, the bulk modulus B and elastic constants C ′ and C44 in GPa, and the cohesive energy Ecoh in eV/atom. Here, A is the anisotropy
ratio, defined as C44/C ′. The results in Cr are given both for nonmagnetic (NM) and antiferromagnetic (AFM) calculations.

a0 B C ′ C44 A Ecoh

V 3.00 (3.03) 156 (157) 65 (55.0) 24 (43.2) 0.36 (0.78) 5.11 (5.31)
Nb 3.31 (3.29) 167 (170) 56 (56.8) 9.5 (28.4) 0.17 (0.5) 6.81 (7.57)
Ta 3.32 (3.30) 192 (191) 56.5 (53.0) 74 (82.6) 1.30 (1.56) 8.26 (8.10)
Cr (NM) 2.85 253 168 96.8 0.58 3.41
Cr (AFM) 2.93 (2.88) 146 (191) 158.2 (150.7) 96.5 (103.2) 0.61 (0.68) 3.54 (4.10)
Mo 3.16 (3.14) 261 (265) 145 (145) 97 (111) 0.67 (0.77) 6.14 (6.82)
W 3.19 (3.16) 304 (308) 144 (157) 137 (157) 0.95 (1) 8.18 (8.90)
Fe 2.85 (2.87) 168 (168) 48.2 (49) 101.9 (116) 2.14 (2.38) 5.09 (4.28)
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simulation cell. Their expressions are:

�C1 = n�a1 − q�a3,

�C2 = n

2
�a1 + m�a2 +

(
1

2
− q

2

)
�a3, (1)

�C3 = �a3,

with (n,m) = (15,9) for the 135 atom supercell, and q =
1/3m for the easy core configuration, q = −1/3m for the
hard core configuration, and q = 1/m for the split core
configuration [13]. The −q and −q/2 components along
�a3 of �C1 and �C2 come from the

√
2/6a0 shift along the

[11̄0] direction between the centers of gravity of upward
and downward triangles in the (111) plane. The calculations
were performed at constant volume, with a 1 × 2 × 16 shifted
k-point grid, which yields Peierls barrier energies converged
to within 1 meV/b [13].

In agreement with previous DFT calculations [11,14,30–
33], the nondegenerate easy core configuration is the stable
minimum-energy configuration for the screw dislocation in
all investigated elements. With the above crystallography, the
easy core, denoted E, is centered on an upward triangle when
�b = −1/2[111], as illustrated in Fig. 1(b). In the following,
the easy core is used as reference for both the cell shape [by
taking q = 1/3m in Eq. (1)], and the energy (given relatively
to the easy core configuration). In Fig. 1(b), the hard core
position, denoted H, is centered on a downward triangle. The
three surrounding [111] atomic columns are noted α, β, and
γ . With this notation, the split core configuration, denoted S,
is centered in the immediate vicinity of the atomic column γ .

B. Reaction coordinates

We computed energy profiles between easy core con-
figurations and between hard and split core configurations.
These pathways are respectively denoted (1) and (2) in
Fig. 1(b). Calculations along pathway (1) were performed
by displacing simultaneously the two dislocations so that
their elastic interaction energy remains constant at least for
a straight trajectory of the dislocation (see the Appendix).
The minimum energy path was obtained using the reaction
coordinate method [34], whereby the path is discretized in 11
replicas linearly interpolated between the initial configuration
�XI and the final configuration �XF , and the energy of each
image is minimized in the hyperplane perpendicular to the
initial path using the following reaction coordinate:

ξ1 = ( �X − �XCM).( �XF − �XI )

|| �XF − �XI ||2
. (2)

The position of the center of mass �XCM is subtracted to avoid
a global translation of the system. The reaction coordinate
along this path should not to be mistaken with the dislocation
position, see below. This saddle-point search method was
shown in Ref. [13] well adapted to identify minimum energy
paths for the simple trajectories considered here. In the case of
Cr, this procedure failed because the two dislocations did not
move simultaneously (for a reason which is not clear at this
point). We therefore used a final configuration, where only one

dislocation has moved, and corrected the energies to account
for the variation of the elastic energy.

The hard core energy was evaluated by forcing the positions
along �b of the atoms in the three [111] columns surrounding
the dislocation core [columns α, β, and γ in Fig. 1(b)] to
be fixed, while relaxing all other degrees of freedom. The
split core configuration was generated from the hard core
configuration by adding relative displacements along �b of b/6
to column α and −b/6 to column β and relaxing again all
degrees of freedom other than the height of the α, β, and γ

atomic columns. The split core energy has been shown to be
a good approximation of the dislocation energy close to the
atomic column position γ [19,13]. In order to investigate the
pathway going from the hard to the split core configurations
[denoted pathway (2) in Fig. 1(b)], the path was discretized
in six configurations interpolating between the hard and split
cores. We should note that, in this case, the two dislocations
of the dipole move in opposite [11̄0] directions, such that their
separation distance varies along the path, implying not only a
variation of their elastic interaction, but also a variation of the
stress in the simulation cell because of the fixed periodicity
vectors. The energy relaxations were performed fixing the
position of columns α, β, and γ along �b and relaxing all other
degrees of freedom. Along this path, the reaction coordinate
is defined as:

ξ2 = z(α) − z(β)
b
3

, (3)

where z(α) [respectively, z(β)] is the coordinate of column
α [respectively, β] along the [111] direction. This reaction
coordinate varies between 0 and 1 between the hard and split
core configurations since, for the hard core, the three columns
α, β, and γ are at the same altitude, so that ξ2 = 0, while for
the split core, the relative displacement between columns α

and β is b/3, so that ξ2 = 1.
As will be seen below, within DFT, energy profiles along

pathway (1) have a single maximum (saddle) located halfway
between the initial and final easy core configurations. At
this location, pathway (1) crosses pathway (2), allowing the
reaction coordinate in Eq. (3) to be computed for the saddle
configuration. In the following, we call this quantity ξ saddle

2 ,
the split coefficient of the saddle configuration, which we use
as a measure of the distance of the saddle configuration to the
split core.

C. Elastic correction

The energy profiles along pathways (1) and (2) were
computed with a fixed cell shape between initial and final
configurations, adjusted in all cases on the easy core con-
figuration, i.e. with q = 1/3m in Eq. (1). Because the cell
shape should depend on the dislocation positions in the cell,
the displacement of the dislocations in a fixed cell induces an
additional energy of elastic nature. A second elastic energy
term is induced when the dipole extension (i.e. the distance
between dislocations) varies along the path and modifies the
elastic interaction. Both terms should be corrected in order to
obtain accurate energy paths.

The above elastic energy terms were computed within
anisotropic elasticity. Details are given in the Appendix and
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FIG. 2. (Color online) Energy profile along pathway (2) in Fe: (a) elastic energy correction (see the Appendix for details) and (b) energy
variation with (solid line) and without (dashed line) the elastic correction.

Refs. [29] and [35]. In brief, along pathway (2) we corrected
the DFT energy difference between the current and easy core
configurations �EDFT(ξ2) by the anisotropic elastic energy
difference between these configurations �Eel

tot(ξ2), that is:

�Ecorr(ξ2) = �EDFT(ξ2) − �Eel
tot(ξ2). (4)

As an example, the elastic correction �Eel
tot(ξ2) along pathway

(2) in Fe is shown in Fig. 2(a), where it is seen that the
correction increases near both the hard and split cores. As
shown in the Appendix, the correction decreases in larger
simulation cells but can be as large as 5 meV/b in the 135 atom
cell used here. In the Appendix, we also compare the present
hard core configuration energies computed in the easy cell [i.e.
with q = 1/3m in Eq. (1)] with and without elastic correction
to that computed in the hard cell [i.e. with q = −1/3m in
Eq. (1)], showing that the elastic correction accounts for most
of the cell shape effect. A similar correction arises along
pathway (1) from the fact that the dislocation position deviates
from a straight trajectory, but the correction is lower than
1 meV/b and will be neglected here.

As shown in Fig. 2(b), the elastic correction induces a
significant decrease of the energy near the hard core, so that
after correction, the hard core in Fe has an energy slightly
lower than the saddle found along pathway (1). The energy
difference is, however, close to the precision of the present
calculations, which confirms the marked flatness of the energy
profile between hard and saddle configurations in Fe discussed
in Ref. [13]. As a consequence, the hard core appears to be
a monkey saddle for the screw dislocation in Fe. We will see
below, however, that this feature is specific to Fe.

D. 2D energy landscape

In order to deduce the Peierls stress and the 2D energy
landscape of the dislocation from the DFT energy profiles,
the dislocation position in the (111) plane was determined
using the two methods presented in Ref. [13]: the cost function
and disregistry methods. The cost function method consists in
comparing the relative displacements of the five most displaced
〈111〉 atomic columns [8] to that predicted by anisotropic
elasticity. The resulting cost function is minimized with respect
to the dislocation core position in the (111) plane. The second
method consists in comparing the disregistry that corresponds
to the difference of displacement between the two {110}

atomic planes directly above and below the glide plane of
the dislocation, to solutions of an elastic model similar to the
Peierls-Nabarro model.

Applying these methods along the 1D profile of pathway
(1), we obtain the Peierls potential, i.e. the dislocation energy
as a function of its position in the glide direction x, from which
we can estimate the Peierls stress:

σP = max

(
1

b

∂E(x)

∂x

)
. (5)

Here, we neglect any dependence of the Peierls potential
on the applied stress [6,11]. Along pathway (2), the dislo-
cation position obtained with both the disregistry and cost
function methods coincides with that given by the reaction
coordinate ξ2.

The 2D energy landscape is obtained by interpolation
of the dislocation energy along pathways (1) and (2) using
the following numerical fit, which takes into account the
periodicity and threefold symmetry of the bcc lattice.

Smooth surfaces are efficiently represented by a Fourier
decomposition:

E(�r) =
∑
n,m

F (�kn,m) exp(2πi�kn,m.�r), (6)

where �kn,m = n�b1 + m�b2 are wave vectors in reciprocal space,
and the reciprocal vectors �bi are defined from the periodicity
vector �ai of the Peierls potential through the canonical relation
�ai.�bj = δij . If one considers a limited set of wave vectors, the
amplitudes F (�kn,m) can be easily determined by a least square
minimization. It is, however, delicate to choose the number and
location of the wave vectors, a too-rich representation leading
to spurious modes, whereas missing frequencies dramatically
increase the error between data and interpolation. To avoid this
problem, we minimize the sum of the least square error and
the square of the Laplacian (computed in the reciprocal space)
over a large domain of frequencies:

ε(λ) =
∑
G

[E(�rG) − EG]2 + λ

∫
S

dS[�E(�r)]2
, (7)

where �rG is the coordinate of the Gth interpolation point (of
energy EG), and λ is a weight factor. Increasing λ favors
a smooth interpolation at the expense of the quality of the
interpolation. In this study, the weight λ was automatically
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adjusted so that the maximum distance maxG ‖E(�rG) − EG‖
was less than a prescribed value, e.g. 1% of the maximum
amplitude of E. The resulting interpolation is thus the
smoothest with a prescribed maximum error.

III. RESULTS

A. Bulk properties

As a preliminary work, the bulk properties of all in-
vestigated elements were calculated using DFT. The bcc
elastic constants C ′ and C44 were calculated by applying,
respectively, tetragonal and trigonal distortions of ±2%. The
results are displayed and compared to experimental data in
Table I. The DFT results are in good agreement with the
experimental data in all investigated elements, except for group
V vanadium and niobium, for which the elastic constants C ′
and C44 are underestimated, as reported by other authors in the
literature [32,14,36,37]. Results for vanadium and niobium are
therefore presented as the first available calculations, without
claiming to be fully predictive.

B. Dislocation core properties

To study the properties of the easy core configuration,
we computed its core energy and formation volume in
all investigated metals. Core energies were extracted us-
ing the methodology proposed in Ref. [29]. Formation
volumes per unit length of dislocation, both perpendicu-
lar (V⊥) and parallel (V‖) to the dislocation line, were
defined from the strains deduced from the stresses com-
puted in the DFT simulations with the help of the elastic
compliances [29]:

V⊥ = ε11 + ε22

2
S, V‖ = ε33

2
S, (8)

where S is the cell surface perpendicular to the [111] direction.
The results are given in Table II. We can see that inserting a

screw dislocation is systematically associated with a positive
formation volume V⊥, i.e. a dilatation in the (111) plane
perpendicular to the dislocation line. The dilatation is large,
close to 0.5 b2, in Mo, W, and Fe. This effect has already been
reported for Fe within DFT in Refs. [29,44] but is in general
not observed with empirical potentials. The fact that this large
dilatation is not specific to Fe shows that this effect is not

TABLE II. Easy core properties: formation volumes per unit
length of dislocation, perpendicular V⊥ and parallel V‖ to the
dislocation line expressed in units of b2. Easy core energies Ecore

are also given in meV/b.

V⊥ V‖
V⊥
V‖ −C′

33
C′

13
Ecore

V 0.34 −0.27 −1.29 −1.30 103
Nb 1.21 −0.81 −1.48 −1.13 201
Ta 0.19 −0.05 −4.12 −2.07 143
Mo 0.45 −0.27 −1.66 −2.08 423
W 0.40 −0.22 −1.81 −2.37 523
Fe 0.47 −0.11 −4.14 −3.16 192

Ta W

FIG. 3. Edge displacement maps of the easy core configuration
as obtained from DFT calculations after subtraction of the Volterra
elastic field, for Ta and W. Vectors correspond to the (111) in-plane
displacement, magnified by a factor 50. Displacements smaller than
0.01 Å are omitted for clarity.

due to magnetism. Nb displays the largest dilatation volume in
the (111) plane, while Ta has the smallest dilatation volume.
These differences can be better understood by visualizing the
displacements of the atoms in the (111) plane, as illustrated
for Ta and W in Fig. 3. In Ta, the displacements are limited to
the first two shells of atoms near the dislocation core while in
W, the displacements are much longer ranged, resulting in a
larger formation volume.

Dilatations in the (111) plane are associated with
contractions in the direction parallel to the dislocation
line, i.e. negative V‖, as expected from Poisson’s ef-
fect. The ratio between V⊥ and V‖, however, does not
necessarily follow quantitatively linear elasticity, which
predicts [29]:

V⊥
V‖

= −C ′
33

C ′
13

, (9)

where C ′
ij are the elastic constants in the dislocation coordinate

system. This prediction is compared with the DFT calculations
in Table II, where we can see that, while the ratios are quite
close in V and Nb, they can be up to a factor 2 different in
other elements, in particular Ta.

Easy core energies, calculated for a cutoff radius equal
to b, are reported in Table II and shown in Fig. 4(a) after
normalization by Ecoh/b, where Ecoh is the cohesive energy,
in order to evidence the effect of electronic band filling.
Strikingly, group VI elements (Mo, W) have normalized
core energies approximately three times larger than group V
elements (V, Nb, Ta). This can be explained by investigating
the local density of states (LDOS) of the atoms surrounding
the dislocation core, as illustrated in Nb and Mo in Fig. 5. The
bulk DOS is similar in all bcc transition metals with a marked
pseudogap responsible for the stability of the bcc structure
close to half-band filling. In the LDOS of the atoms in the
dislocation core, the pseudogap is partially filled as shown in
Fig. 5. In group VI Mo (and likewise W), the Fermi level EF

is close to the minimum of the pseudogap, leading to a large
increase of the band-energy contribution to the total energy
compared to the bulk (since bonding states far from EF are
replaced by states closer to EF , i.e. with a larger band energy).
The effect is weaker, or even possibly reversed, in group V
elements as Nb where the Fermi level is shifted from the
LDOS minimum. This situation is the same as for the vacancy
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FIG. 4. (Color online) Group dependence of the normalized energy for (a) easy core energy and (b) Peierls energy.

formation energy, with values normalized to Ecoh larger in
group VI than in group V [45].

C. 1D energy profiles

1. Peierls barriers—pathway (1)

The energy profiles along pathway (1) between two
successive easy core configurations are shown in Fig. 6.
Both relaxed and unrelaxed profiles are shown because they
exhibit a pronounced group dependence, with relaxations more
important for group V elements than for group VI. This group
dependence of the relaxation around a defect is again similar
to what occurs for vacancies [45–47]. The weak relaxation
in group VI is attributed to angular forces, which are not
accounted for in EAM potentials for instance.

All energy profiles have a single maximum, in agreement
with Refs. [11–14], located halfway between the initial
and final easy core configurations. The saddle configuration
between easy cores is thus systematically at the intersection
with pathway (2) between the hard and split cores. In contrast
with Ref. [14], however, while some profiles are close to
sinusoidal (Fe, Ta, and W), others are clearly not sinusoidal
(V, Cr, Nb, and Mo). The nonsymmetric profile obtained for
Cr arises from the different methodology used for this element
where it was not possible to have both dislocations moving
simultaneously (Sec. IIB): the obtained profile should be

considered as approximate—for this reason and also because
we use the paramagnetic approximation.

The energies of the saddle configurations, i.e. the Peierls
energies, are given in Table III and shown in Fig. 4(b)
normalized by Ecoh/b. We see again a dependence on band
filling: the normalized Peierls energy in group VI elements
is more than twice that of group V elements. It should be
noted that the normalized core energy is about five times
larger than the normalized Peierls energy. We checked that
this is because the density of states varies much less when
the dislocation moves from one easy core to another one than
when a dislocation is introduced in the perfect crystal.

To further characterize the saddle configurations, we report
in Table III their split coefficients, computed from Eq. (3). We
see again a group tendency: V and Nb (group V) have a large
split coefficient (ξ saddle

2 > 0.6), while Cr, Mo, and W (group
VI) have an intermediate split coefficient (0.5 < ξ saddle

2 < 0.6).
Fe and Ta have atypical behaviors since Ta, although from
group V, has a small split coefficient, and Fe has a very
small split coefficient, below 0.5. We also note that elements
with a large split coefficient (V and Nb) tend to have a flat
Peierls potential near the saddle. In the extreme case when the
split configuration is a local minimum, as with the Mendelev
EAM potentials [20,21], the configuration halfway across the
path becomes the split core (i.e. ξ saddle

2 = 1) and the curvature
of the Peierls potential, which adopts a camel-hump shape,
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FIG. 5. (Color online) Local density of states for atoms α, β, and γ of Fig. 1(b) around the dislocation core compared to the bulk (black;
all three atoms share the same LDOS) in Nb and Mo. Energies are given with respect to the Fermi energy (color).
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FIG. 6. (Color online) Peierls barrier of the 1/2〈111〉 screw dislocation in bcc transition metals before (black) and after relaxation (color).

changes sign. There is thus a strong correlation between the
curvature of the Peierls potential at the saddle configuration
and its proximity to the split core, which in turn is related to
the deviation of the dislocation path in the (111) plane from a
straight trajectory between easy cores to a bent path that passes
through the split core.

2. Hard to split core energy profiles—pathway (2)

The hard and split core energies are listed in Table III, and
the energy profiles between these two cores along pathway (2)
are shown in Fig. 7 as a function of the reaction coordinate in
Eq. (3). These energies include elastic corrections as explained

TABLE III. Energy of the following configurations: split core ES ,
hard core EH , and saddle point EP —i.e. the Peierls energy—relative
to the easy core in all bcc transition metals, expressed in meV/b.
The elastic correction (described in Sec. IIC and the Appendix) is
included in the hard core and split core energies. The last column
displays the split coefficient of the saddle configuration ξ saddle

2 [see
Eq. (3)].

ES EH EP ξ saddle
2

V 51.3 52.5 25.7 0.63
Nb 81.8 76.3 35.2 0.68
Ta 67.0 44.0 36.6 0.51
Cr 154.6 102.2 62.7 0.58
Mo 147.6 88.2 50.5 0.57
W 208.5 128.6 81.8 0.55
Fe 87.9 33.2 34.9 0.47

in Sec. IIC. In Fig. 7, all energies are normalized by the hard
core energy to allow for easier comparison between elements.

For all investigated metals, the split core is an energy
maximum with a nonzero first derivative because of the
singularity associated with this point. With the limitation that
the shear modulus in V and Nb is underestimated compared to
the experiments, our calculations show that group V elements,
V and Nb, have a split core energy close to that of the hard
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FIG. 7. (Color online) Energy variation between the hard and
split cores [pathway (2)]. The energies are normalized by the hard core
energy. The black symbols correspond to the saddle configurations
obtained along pathway (1). The blue dashed lines correspond to
group V elements, the green solid lines correspond to group VI
elements, and the red solid line corresponds to Fe.
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FIG. 8. (Color online) Dislocation trajectory using (a) the cost function method and (b) the disregistry method. The differential displacement
maps correspond to the saddle configuration for each element.

core. For group VI elements, together with Ta and Fe, the
split core has an energy more than 1.5 times higher than
the hard core. This result, already reported for Fe and W
in Ref. [13], is highly unexpected because it contradicts all
interatomic potentials published so far, which systematically
predict that the hard core is the configuration of maximum
energy. Moreover, most interatomic potentials that predict a
stable nondegenerate easy core structure also predict that the
split core is a local minimum [19,48]. In contrast, we see here
that DFT calculations systematically predict that the split core
is a maximum, with an energy close or higher than the hard
core.

For group V and VI elements, the energy variation between
the hard and split core configurations evidences a minimum
between ξ2 = 0.5 and 0.7, which should correspond to the
saddle configuration of pathway (1) if the calculations along
pathways (1) and (2) are consistent. We checked this point by
adding to Fig. 7 the energies of the saddle configurations found
on pathway (1) as a function of their split coefficient. Except
for Fe, the position of the saddle along pathway (1) is indeed
close to the minimum of the energy profile along pathway (2).
The discrepancy in Fe can be explained by the fact that the
saddle point along pathway (1) corresponds to the minimum
along pathway (2) before applying the elastic correction. In
Fe, this elastic correction shifts the minimum energy along
pathway (2) from a split coefficient ξ2 ∼ 0.5 to the hard core
where ξ2 = 0 (Fig. 2). The effect associated with this elastic
correction is less pronounced in other transition metals as the
energy profile close to the saddle point is not as flat as in Fe, and
the saddle point is located at a place where the elastic correction
is less important than in Fe. In order to obtain a more accurate
path, it would be necessary to include the elastic correction
to the DFT energy during the minimization process. However,
this option is technically difficult because of the uncertainty
associated with the definition of the dislocation position.

Also, it has to be noted that the split coefficient at the saddle
is related to the energy difference between hard and split cores.
As the ratio between the split and hard energies decreases,
the split coefficient at the saddle increases, which means that
the saddle configuration is closer to the split configuration in
metals where the energy difference between hard and split
cores is smaller.

D. Dislocation trajectory in the (111) plane

As introduced in Sec. IID, the position of the dislocation
was evaluated using two methods, the cost function and
disregistry methods. The resulting dislocation trajectories in
the (111) plane along pathway (1) are displayed in Fig. 8. The
trajectories predicted by both methods are quite similar. The
trajectories pass close to the γ atomic column, i.e. the split
configuration, when the split coefficient at the saddle is high,
as e.g. in V and Nb, compared to Mo and W. On the other
hand, the dislocation trajectory is closer to linear in Fe and Ta,
for which the split coefficient at the saddle is near 0.5. Along
pathway (2), we recall that the trajectory is straight between
hard and split cores by construction and the position of the
dislocation obtained from the cost function method is exactly
that given by the reaction coordinate ξ2.

The energy as a function of the dislocation position is
plotted in Fig. 9 for both the cost function and disregistry
methods. The departure of these profiles from sinusoidal
curves is more marked than when the energy is plotted as a
function of the reaction coordinate (Fig. 6). For V, Ta, and
Fe, the disregistry and cost function methods give similar
results, while in Nb, Mo, and W, a discrepancy is evidenced, in
particular close to the reduced core position 0.3. Further tests
with the cost function method were performed adjusting the
elastic solution on either three or four 〈111〉 atomic columns
instead of five as in Ref. [13], but the results are identical.
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for Fe and (b) for nonmagnetic bcc transition metals. The paths are
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direction determined using the cost function (solid colored lines) and
the disregistry (dashed black lines) methods.

Peierls stresses for all investigated metals were evaluated
using the maximum derivative of the energy as a function of
the dislocation position [Eq. (5)]. They are listed in Table IV.
From the difference obtained between the two methods to
locate the dislocation, we estimate that the Peierls stress is
evaluated with an error on the order of 20%. Peierls stresses

TABLE IV. Peierls stresses in MPa deduced from the maximum
slopes of the 1D Peierls potentials plotted using either the cost
function method or the disregistry method. The experimental data
come from Refs. [49–54].

Cost function Disregistry Experimental

V 1000 1200 360
Nb 650 860 450
Ta 810 920 350
Mo / / 870
W / 1800 900
Fe 1090 1220 420
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FIG. 10. (Color online) Projections of the 2D Peierls potentials
in the (111) plane for (a) Fe and (b) nonmagnetic transition metals.
Colors scale with energy going from the minimum (dark) to the
maximum energy (light), which depends on the element considered.
The dislocation trajectory from the cost function method along
pathway (1) is shown in green (same as in Fig. 9).

were not computed in Mo and only with the disregistry method
in W because of the nonsmooth shape of the corresponding
1D Peierls potentials (see Fig. 9). The results evidence the
well-known discrepancy between calculated and experimental
Peierls stresses, with the former being two to three times
larger than the latter. Proville et al. [23] recently showed
that the discrepancy arises from quantum corrections, but
the simulation cell required to evaluate such correction
(approximately 105 atoms) is too large to be considered with
DFT for now.

E. 2D Peierls potential

The 2D Peierls potentials were obtained using the numerical
interpolation presented in Sec. IID from the energy profiles
along pathways (1) and (2) as a function of the dislocation
position obtained with the cost function method. It should be
recalled that the positions in the (111) plane corresponding
to atomic columns are singular points. We identify here these
positions with the split core, which is itself ill-defined since this
core can take three different configurations depending on the
easy core it is connected to. All three variants are located in the
immediate vicinity of the atomic column and have the same
energy. We thus associate this energy to the atomic column
position. Also, even though the method to locate the dislocation
influences the energy profiles as seen in Fig. 9, these profiles
can be used to display the general tendency and shape of the
2D Peierls potentials. The resulting potentials are shown in
projection in Fig. 10 and in perspective in Fig. 11.

The 2D Peierls potentials display the same tendencies as
observed on the 1D plots: for all investigated elements, the split
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energy scale. The color scale is the same as in Fig. 10.

core is the maximum energy configuration, and in group V and
VI elements, the hard core configuration is a local maximum.
Fe has an atypical behavior with a very flat potential around
the hard core position. In Fig. 12, the 2D Peierls potential for
Fe obtained with DFT is compared to the simple analytical
potential proposed by Edagawa et al. [16] and often used in
the literature (see, for instance, Ref. [18]). This potential,
written as a product of sinusoidal functions, is a Fourier
expansion as in Eq. (6) limited to a single harmonic (−1 �
n,m � 1) with purely imaginary coefficients. We also added
the potentials obtained with the present fitting methodology
when representing atomic bonding by two different EAM
potentials, Mendelev [20] and Marinica [23] potentials. The
2D Peierls potential proposed by Edagawa and those fitted on
EAM data are qualitatively similar, with a global maximum at
the hard core position, although the height of this maximum
depends on the potential: not strongly marked on Edagawa’s
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FIG. 12. (Color online) Peierls potentials in Fe adjusted from the
present DFT calculations, from the analytical fit of Ref. [16], and
from Mendelev [20] and Marinica potentials [23].

potential, very high with Mendelev potential, and intermediate
with Marinica potential. The split core on the other hand is of
different nature: a monkey saddle on Edagawa’s potential, a
local minimum with Mendelev potential, and a local maximum
with Marinica potential, however weakly marked. These
features are very different from the present DFT calculations,
which show that the split core is the true maximum and that
the hard core is a monkey saddle. Such a 2D potential is
incompatible with the simple expression proposed by Edagawa
in Ref. [16]. However, Edagawa generalized the expression
of the 2D Peierls potential by introducing a nonzero phase
in the sinusoidal functions of the first harmonic [17]. This
is equivalent to consider Fourier coefficients with both real
and imaginary parts. This allows us to reproduce, at least
qualitatively, the DFT potential for Fe and the other transition
metals considered here. A more in-depth analysis of the
properties of these potentials will be the subject of a future
publication.

IV. SUMMARY AND CONCLUSIONS

In this paper, the core structure and 2D energy landscape
of 1/2〈111〉 screw dislocations were investigated in all bcc
transition metals V, Nb, Ta, Cr, Mo, W, and Fe using DFT
calculations. The stable configuration was found to be the
nondegenerate easy core configuration, in good agreement
with previous DFT calculations.

The normalized dislocation core energy displays unex-
pected group tendencies, as it depends on the position of the
Fermi level with respect to the minimum of the pseudogap of
the electronic density of states. Group VI elements, for which
the Fermi level is close to the minimum of the pseudogap,
display core energies around three times higher than group V
elements. The 2D Peierls potential was investigated using two
1D cross-sections: the Peierls barriers and the pathway joining
the hard to the split core configurations. The Peierls barriers
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were shown to be single-humped in all investigated elements.
Their relaxations exhibit pronounced group dependence, with
weaker relaxation in group VI than in group V. Again, a
dependence on band filling was evidenced on the normalized
Peierls energy amplitudes.

The splittings of the dislocation core were evaluated
halfway through the Peierls barriers, and the dislocation
trajectories in the (111) plane were evaluated using the
disregistry and the cost function methods. These calculations
evidenced a strong correlation between the curvature of the
Peierls barrier near the saddle configuration, the proximity of
the saddle to the split core, the ratio between the split and hard
core energies, and deviations from a straight path between easy
core configurations. The usual ordering between hard core and
split core energies is thus revisited and is shown to influence
the shape of the transition path. In a nutshell, in elements
where the split core has an energy close to the hard core (V
and Nb), the curvature of the 1D Peierls potential is low, the
saddle is close to the split core, and the path is curved, while
it is the opposite in Fe or Ta, where the split core has a high
energy.

The resulting 2D Peierls potentials are notably different
from the usual picture, which is, however, mostly based on
empirical potentials. The main and most striking difference is
that, in all investigated elements, the split core is the marked
maximum with an energy close or above that of the hard
core.

Finally, we note that Fe has an atypical behavior for three
reasons: (1) it is the only element which does not show a
minimum between the hard and split cores, (2) the energy
profile is very flat between the hard core and the saddle
configuration around the hard core, in the split core direction,
and (3) the split core in Fe has a particularly high energy, more
than twice that of the hard core.
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APPENDIX

1. Elastic correction on pathways (1) and (2)

An elastic correction needs to be applied on the energy
barriers on pathways (1) and (2) so as to withdraw the variation
of the elastic energy on these pathways. The elastic energy
does not remain constant because the distance between the
two dislocations composing the dipoles varies. On pathway
(1), between two easy core configurations, dislocations follow
a trajectory not too far from a horizontal straight line (Sec. III
D). As a consequence, the distance between them does not vary
too much, leading to a variation of the elastic energy less than
1 meV/b. As this corresponds to the estimated accuracy of
the DFT calculations, the elastic correction is neglected along
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FIG. 13. (Color online) Total elastic correction �Eel
tot(ξ2) and its

decomposition calculated in Fe using anisotropic elasticity along
pathway (2).

pathway (1). On the other hand, variations along pathway (2)
are more important and need to be accounted for (Fig. 2).

As the easy core configuration is used as the reference
for the energy variation, we define the total elastic correction
�Eel

tot(ξ2) as the difference between the elastic energy of the
dislocation dipole at the reaction coordinate ξ2, Eel

tot(ξ2), and
the elastic energy of the easy core configuration Eel

tot(easy).
The total elastic energy stored in the simulation cell is
calculated using anisotropic elasticity [55,56], taking into
account the periodic boundary conditions [57]. The variation
of the elastic energy along pathway (2), calculated in Fe, is
shown in Fig. 13. The obtained variation is asymmetric, with
the elastic correction being more important for the hard core
than for the split core. To better understand this asymmetry, it
is worth decomposing the variation of the elastic energy into
two contributions.

The first contribution �Eel
PBC(ξ2) corresponds to the elastic

interaction between the two dislocations composing the dipole,
as well as their interaction with all image dislocations
introduced by periodic boundary conditions. This contribution
is minimal when the dislocation periodic array corresponds
exactly to a quadrupolar arrangement. This happens for
ξ2 = 0.25 as can be seen in Fig. 14. The position ξ2 = 0.5
leads to the same dislocation periodic array as the one
used for the easy core configuration. As a consequence,
�Eel

PBC(ξ2 = 0.5) = 0. We also have �Eel
PBC(ξ2 = 0) = 0,

in the hard core configuration, because of the combined

H
H

S

S

ξ2=0.25 (Q)
ξ2=0.5 (E)
ξ2

[111]

[110]

[112]

FIG. 14. (Color online) Schematic representation of three dis-
location dipole configurations along pathway (2). The blue line
represents a general configuration with a reaction coordinate ξ2.
The green line represents the dislocation dipole for ξ2 = 0.5, which
corresponds to the cut vector of the easy core configuration. The
dashed black line represents the quadrupolar arrangement line, which
corresponds to ξ2 = 0.25.
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TABLE V. Hard core energy calculated using DFT with two
different periodicity vectors: hard EH,hard and easy EH,easy. The energy
calculated in the easy core reference frame is shown with and without
elastic correction. They are given in meV/b.

EH,hard EH,easy Ecorr
H,easy

V 49.4 56.4 52.5
b 74.9 80.5 76.3
Ta 49.0 51.6 45.1
Mo 95.8 101.4 89.7
W 127.5 141.9 128.6
Fe 30.7 37.6 33.2

symmetry of the dislocation periodic array and of the bcc
lattice leading to the same elastic energy for both the easy and
the hard core configurations. Finally, the split core (ξ2 = 1)
leads to the highest contribution as this position is the
furthest away from the plane corresponding to the quadrupolar
arrangement (Fig. 14).

The second contribution �Eel
ε (ξ2) to the variation of the

elastic energy arises from the use of fixed cell shape along
the pathway. The total strain ε of the simulation cell is thus
imposed, whereas the plastic strain contained in the cell varies
when the distance between the two dislocations are moving.
The elastic energy associated to this imposed strain ε is given
by [29]:

Eel
ε = h

(
1
2SCijklεij εkl + CijklbiAjεkl

)
, (A1)

where S is the area of the simulation cell perpendicular to
the dislocation lines, h the corresponding height, Cijkl the
elastic constants, and �A the dipole cut vector. The latter is
the only term that varies in Eq. (A1) when the dislocations
move from one configuration to another on a given pathway,
so that the variations of �Eel

ε are linear along the hard to
split pathway. As the hard core and the split core positions are
equally separated from the easy core position, we can see in
Fig. 13 that |�Eel

ε (ξ2 = 0)| = |�Eel
ε (ξ2 = 1)|.

Taking into account these two contributions, there is a
partial compensation for the split core leading to a small total
elastic correction �Eel

tot(ξ2 = 1), whereas the elastic correction
for the hard core is only due to the fixed cell shape and is thus
more important.

2. Validation on DFT calculation of the hard core energy

The hard core energy was calculated with two different
methods for all transition metals: the first method is the
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FIG. 15. (Color online) Energy profile along pathway (2) calcu-
lated in Fe with Marinica EAM potential [23] for two cell sizes,
135 and 1215 atoms. The dashed lines are the energy profiles before
elastic correction and the full lines are the corrected profiles.

one used for the energy pathway (2), i.e. the hard core
energy is calculated using the easy core periodicity vectors,
corresponding to q = 1/3m in Eq. (1) (denoted EH,easy) and
corrected using anisotropy elasticity (denoted Ecorr

H,easy). In the
second method, the hard core energy is directly computed
with the periodicity vectors adapted to this configuration, i.e.
with q = −1/3m in Eq. (1) (denoted EH,hard). The results are
reported in Table V. One can see that EH,easy is systematically
larger than EH,hard and is lowered by applying the elastic
correction. The latter decreases the energy difference between
EH,hard and EH,easy in all elements except in Ta and Mo where
the energy difference remains constant, but goes from being
positive (EH,hard < EH,easy) to negative (EH,hard > Ecorr

H,easy).

3. Validation on EAM calculation for two cell sizes

A validation for the calculation of the elastic correction was
also performed on the energy profile along pathway (2) in Fe,
using the EAM potential developed by Marinica et al. [23].
The calculations were performed using the same dislocation
dipole configuration as presented in Sec. IIA, but using two
different cell sizes, 135 and 1215 atoms/b. One can see in
Fig. 15 that the elastic correction decreases when the size of
the cell increases. The correction is nonnegligible for the 135
atom cell and brings the energy profile close to that obtained
in the 1215 atom cell, where the correction is negligible.
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