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Nodal angle-resolved photoemission spectra taken on overdoped La1.77Sr0.23CuO4 are presented and analyzed.
It is proven that the low-energy excitations are true Landau Fermi-liquid quasiparticles. We show that momentum
and energy distribution curves can be analyzed self-consistently without quantitative knowledge of the bare band
dispersion. Finally, by imposing Kramers-Kronig consistency on the self-energy �, insight into the quasiparticle
residue is gained. We conclude by comparing our results to quasiparticle properties extracted from thermody-
namic, magnetoresistance, and high-field quantum oscillation experiments on overdoped Tl2Ba2CuO6+δ .
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I. INTRODUCTION

The extent to which Landau Fermi-liquid theory, and its
concept of quasiparticles [1], applies to the normal state of
cuprates is still under debate [2,3]. Evidence for Landau
Fermi-liquid quasiparticles has been reported by resistivity
experiments on highly overdoped La2−xSrxCuO4 (LSCO) [4].
More recently, unambiguous proof has been given by high-
field quantum oscillation experiments [5–9] on both overdoped
and underdoped cuprates. It is, however, puzzling that no
evidence of Landau Fermi-liquid quasiparticle excitations has
been found from angle-resolved photoemission spectroscopy
(ARPES), which is a direct probe of the Green’s function:
−(1/π )ImG(k,ω) [10]. Although the “quasiparticles” termi-
nology is widely used to describe the excitations of the photo-
emission spectra, it has never been proven by ARPES that the
low-energy excitations in the cuprates are indeed true Landau
Fermi-liquid quasiparticles. A direct spectroscopic proof of
true Landau Fermi-liquid quasiparticles in the cuprates is
therefore important.

This paper has two main objectives. The first is to prove
that the nodal excitations observed in overdoped LSCO by
ARPES are genuine Landau Fermi-liquid quasiparticles. The
second is to discuss the nodal bare band velocity, vb, and the
nodal quasiparticle residue Z ≡ (1 − ∂�′/∂ω)−1, where � is
the self-energy. Perhaps the most compelling spectroscopic
proof of Landau quasiparticles is the demonstration of a low-
energy self-energy that has (1) the form �′′ ∝ iω2 [11] and
(2) −Z�′′ < |ω| [12,13]. Proving this requires full knowledge
about � and insight into the bare band εb, which is not
straightforward to derive from an APRES spectrum [14]. Here,
we however present an experimental case where Z�′′ can be
evaluated without quantitative knowledge of εb. In this specific
case, it is therefore possible to prove the existence of true
Landau Fermi-liquid quasiparticle excitations.

II. METHODS

Nodal ARPES spectra of overdoped La1.77Sr0.23CuO4

(Tc = 25 K) [15,16] were recorded at the surface and interface

spectroscopy (SIS) beamline [17] of the Swiss Light Source
(SLS) at the Paul Scherrer Institute, Switzerland. High-quality
nodal spectra were obtained after cleaving [18] at T = 15 K
under ultrahigh vacuum conditions (p ∼10−11 mbar). Using
55 eV circular polarized photons and a SCIENTA 2002 elec-
tron analyzer, angular and energy resolutions corresponding to
0.15◦ (FWHM) and σ = 9 meV (standard Gaussian deviation)
were achieved. A detailed description of the experimental
conditions can be found in Ref. [19].

III. RESULTS

Figure 1(a) shows a color map—I vs (k,ω)—of ARPES
spectra recorded close to the nodal direction of overdoped
La1.77Sr0.23CuO4. A selection of corresponding momentum
distribution curves (MDCs) and energy distribution curves
(EDCs) are displayed in Figs. 1(b) and 1(c). We start by
discussing the MDCs. As this paper focuses entirely on the
low-energy excitations, MDCs are only shown up to the
energy scale (80 meV) of the nodal kink shown in the inset
of Fig. 1(c). In this energy interval, the MDC line shapes
are symmetric peaks on a constant background. Therefore,
data at constant ω were analyzed using a Lorentzian function
I0	/[(ω − εk)2 + 	2], where 	 is the linewidth [Fig. 2(a)], εk

is the peak position [Fig. 2(b)], and I0 is an amplitude (Fig. 3).
The observed nodal excitations disperse with a Fermi velocity
vF = 1.62(2) eV Å [Fig. 2(b)], consistently with previous
reports on LSCO [21,22]. The half-width half-maximum,
	, is plotted as a function of excitation energy squared ω2

in Fig. 2(a). We find that for ω < ωc = 0.18 ± 0.2 eV, the
linewidth is well described by 	 = 	(0) + ηω2 with η =
3.14(4) eV−2 Å−1, and 	(0) = 0.0117(1) Å−1. The elastic
scattering 	(0) is lower than what is usually reported for
LSCO [22,23]. As impurity scattering is one source of elastic
scattering [24], low values of 	(0) may be an indication of
high sample quality.

To reveal the intrinsic physical line shape, a background
has been subtracted from the EDCs shown in Fig. 1(c).
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FIG. 1. (Color online) (a) Nodal ARPES spectra recorded from overdoped LSCO (x = 0.23), at T = 15 K with 55 eV photon. The intensity,
displayed versus momentum k − kF (horizontal) and excitation energy ω (vertical), has a false color scale with white as the most intense as
indicated by the color bar. (b) Momentum distribution curves (MDCs) of the spectra shown in (a), for fixed energies as indicated. Solid lines
are Lorentzian fits to the data. (c) Energy distribution curves (EDCs) recorded at momenta as indicated. A ω-dependent background defined by
the EDC at k − kF = 0.089 Å−1 [indicated by the vertical white dashed line in (a)] has been subtracted. Solid lines display the ω dependence
of Eq. (3), multiplied with the Fermi-Dirac distribution and convoluted with the instrumental resolution [20]. For the sake of visibility, data in
(b) and (c) are arbitrarily shifted in the vertical direction. The inset of (c) displays the excitation dispersion derived from MDC analysis of the
spectra in (a).

The energy-dependent background was extracted from the
spectra using an energy distribution curve on the unoccupied
side of the dispersion [indicated by a vertical dashed line in
Fig. 1(a)]. This is a common procedure [25] and an example of
a raw background spectrum can be found in the supplemental
information of Ref. [19]. In this fashion, EDCs recorded
at a momentum |k| larger than the Fermi momentum |kF |
[displayed with open circles in Fig. 1(c)] are featureless,
demonstrating the successful background subtraction. On the
other hand, EDCs with k < kF (full circles) reveal the intrinsic
line shape of the excitations.

IV. DISCUSSION

The measured ARPES intensities I (k,ω) can be modeled by
a product of the spectral function A(k,ω) = −(1/π )ImG(k,ω),
a matrix element M(k,ω), and the Fermi distribution f (ω) [10].
Matrix elements typically vary weakly as a function of (k,ω).
Notice that the excitations shown in Fig. 1(b) disperse over less

than 10% of the Brillouin zone. It is therefore not unreasonable
to ignore matrix element effects. In that case, the ARPES
intensity becomes a direct measure of the occupied part of the
spectral function. It is common practice to separate the spectral
function into coherent and incoherent parts; i.e., A(k,ω) =
Acoh(k,ω) + Ainc(k,ω) [10]. The coherent part can be written
as

Acoh(k,ω) = −1

π

�′′(k,ω)

[ω − �′(k,ω) − εb]2 + �′′(k,ω)2
, (1)

where εb is the a priori unknown bare band, and the self-energy
must obey |�′| � |�′′| [26]. Experimentally, one would
associate sharp dispersing features to the coherent part of the
spectral function and featureless weight to the incoherent part.
Here we focus on the low-energy part of the spectra, where the
coherent spectral weight is dominating.

To make progress, two justified assumptions are made.
First, it is assumed that the experimentally unknown bare
band can be linearized [εb � vb(k − kF )] near the Fermi level.
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FIG. 2. (Color online) (a) Linewidth 	 of the momentum distri-
bution curves plotted versus excitation energies squared (ω2), for
the two cuts shown in the inset of (b). Inset of (a) shows 	 vs ω.
The deviation from ω2 dependence defines the energy scale ωc [19],
indicated by the arrow. (b) Nodal dispersions extracted from MDC
analysis for the two cuts shown in the inset. The dashed line indicates
the bare band extracted by assuming Kramers-Kronig consistency
of the self-energy �; see text. The inset shows the Fermi surface
of LSCO x = 0.23 and the two cuts along which the spectra were
recorded.
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FIG. 3. (Color online) Amplitude I0, in arbitrary units, versus
excitation energy ω for the two cuts in the inset of Fig. 2(b). Correction
by the Fermi-Dirac distribution only influences the data points near
the Fermi level.

Already the observed normalized band (extracted from
the MDC analysis) can, to a very good approximation,
be described by εk = vF (k − kF ), with vF = 1.62 eV Å
[Fig. 2(b)]. The bare band is expected to have an even
larger band velocity—LDA calculations suggest for example
vb � 3.5 eV Å [27]. For the excitation energies discussed here,
curvature effects of the bare band are therefore expected to be
negligibly small. Second, we assume that the self-energy, �,
is locally momentum independent. Globally this assumption is
not correct—the self-energy varies strongly as one approaches
the antinodal region [19]. However, locally, in close vicinity
to the nodal region, this is a good approximation. As shown
in Fig. 2, both the band velocity and MDC linewidth are
essentially identical for the two different nodal cuts. Another
indication that � is momentum independent stems from the
symmetric MDC lineshape shown in Fig. 1(b). A k dependence
of � along the cut direction would lead to an asymmetric line
shape. As this is not observed, it is concluded that � is locally
independent of momentum both along and perpendicular to
the cut direction.

It is thus possible to rewrite the coherent part of the spectral
function as

Acoh(k,ω) = −1

π

�′′(ω)

[ω − �′(ω) − vb(k − kF )]2 + �′′(ω)2
. (2)

Notice that this is nothing else than a Lorentzian function in
momentum space, with half-width half-maximum 	 given by
	(ω) = −�′′(ω)/vb. Experimentally, it is found that 	 ∝ ω2

(see Fig. 2). Therefore, consistently with true Fermi-liquid
quasiparticle excitations, we conclude that �′′ ∝ ω2.

A Kramers-Kronig consistent self-energy with �′′ ∝ ω2

has �′ � −γω in the low-energy limit. The unknown constant
γ is sometimes referred to as the quasiparticle renormalization
factor [28]. If consistency between MDC and EDC poles
(dispersions) is enforced, then 1/(1 + γ ) = vF /vb = Z. The
coherent spectral function can consequently be rewritten as

Acoh(k,ω) = Z

π

vF 	

[ω − vF (k − kF )]2 + (vF 	)2
, (3)

where both vF and 	 are known from the MDC analysis.
The only unknown parameter, vb or Z, is a prefactor. It
is therefore possible to model the EDC line shape without
quantitative knowledge of the bare band εb, and with the
peak amplitude as the only free parameter—see solid lines
in Fig. 1(c). In the displayed energy interval, a consistent
description of both EDCs and MDCs was obtained from
Acoh(k,ω).

Because Z = vF /vb and �′′ = −ηvbω
2, the product

Z�′′ = −vF ηω2 can be evaluated without quantitative knowl-
edge of the bare band velocity. The condition for coherent
quasiparticle excitations is −Z�′′ < |ω| [12,13]. Using the
experimental values of vF and η, we find that Landau
quasiparticles are coherent for ω < 1/vF η ∼ 0.19 eV. This
energy scale is comparable to ωc—the energy scale below
which �′′ ∝ ω2—and hence reenforces the interpretation of
ωc as an energy scale related to the break down of Landau
Fermi-liquid quasiparticle excitations [19].
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Finally, we discuss the Kramers-Kronig relation between
�′ and �′′:

�′ = P
π

∫ ωc

−ωc

�′′(ω′)
ω′ − ω

dω′ ± P
π

∫ ±W

±ωc

�′′(ω′)
ω′ − ω

dω′

= �′
qp + �′

nqp, (4)

where P is the principal value and W is the bandwidth. To
first order, the quasiparticle part yields �′

qp � −γqpω where
γqp = 2vbηωc/π . To gain insight into �′

nqp, we recall that
Z(ω)−1 = 1 − ∂[�′

qp(ω) + �′
nqp(ω)]/∂ω. As Z(ω) ∼ I0(ω)

varies weakly with excitation energies (see Fig. 3), we infer
that �′

nqp(ω) � −γnqpω and Z = 1/(1 + γqp + γnqp). As long
as the detailed high-energy part of �′′(ω) is unknown, it is not
possible to directly extract �′

nqp = −γnqpω. This is known
as the “tail” problem [14]. The linear ω dependence at high
energies, shown in the inset of Fig. 2, yields γnqp ∼ ln(C/ωc),
where C is an unknown constant. Hence γnqp diverges only
logarithmically in the limit ωc → 0 [19]. On the other hand,
for large ωc the role of γnqp will be less important. As
ωc = 0.18 eV is a large energy scale, corresponding to a
temperature scale of the order 1000 K, we hypothesize that
γnqp 
 1. In that case, Z � 1/(1 + γqp) = vF /vb and hence
vb = πvF /(π − 2ηωcvF ) = 3.8 eV Å. This is consistent with
the nodal LDA Fermi velocity vLDA = 3.5 eV Å [27] calculated
for LSCO and with values of vb derived from a numeric
self-consistent method [14]. The consistent values of vb further
support the conjecture that γnqp 
 1.

The quasiparticle mass is given by mb/m∗ = ZẐ, where mb

is the bare mass and Ẑ = 1 + (mb/�
2kF )∂�′(k,0)/∂k [26,29].

Since the self-energy is locally independent of momentum, the
nodal quasiparticle mass is given by m∗ = mb/Z � 2.4mb.
This is comparable to the momentum-averaged values m∗ �
3mb extracted from quantum oscillation [6,29] and electronic
specific heat experiments on overdoped Tl2Ba2CuO6+δ

(Tl2201) [30]. Remarkably, a Fermi liquid cutoff energy
scale ωc ∼ 0.2 eV was extracted [31,32] consistently from
angle-dependent magnetoresistance [33], specific heat [30],
and quantum oscillation [6,29] experiments on overdoped
Tl2201. This is also in good agreement with nodal ARPES

spectra recorded on LSCO x = 0.23 [19]. On LSCO, no
quantum oscillation or angle-dependent magnetoresistance
experiments exist. Insight into the average quasiparticle
mass of overdoped LSCO stems, therefore, alone from
specific heat measurements [34]. Compared to Tl2201 [30],
a somewhat larger Sommerfeld constant γel � 12 mJ/(mole
K2) is found for overdoped LSCO x � 0.23 [34], suggesting
a larger average quasiparticle mass. This is not necessarily
inconsistent with the ARPES data. The Fermi-liquid cutoff
energy scale, ωc, softens rapidly as a function of Fermi surface
angle, and the quasiparticle scattering is globally dependent
on momentum [19]. This implies (1) that the contribution
from non-Fermi-liquid excitations will become increasingly
important and (2) that Ẑ < 1 on certain portions of the Fermi
surface. Both effects would lead to larger average quasiparticle
masses.

V. CONCLUSIONS

In summary, we have proven that the nodal single-particle
excitations observed by ARPES in overdoped LSCO are in-
deed true Landau Fermi-liquid quasiparticle excitations. This
result, together with consistent MDC and EDC analysis, was
obtained without knowing the exact bare band. From Kramers-
Kronig consistency of the quasiparticle self-energy �, insight
into the bare band εb and the real part of the self-energy �′
were obtained. An estimate of the nodal quasiparticle residue
Z = 0.42(7) allowed comparison to quasiparticle masses ob-
tained from thermodynamic and high-field quantum oscillation
experiments on overdoped Tl2Ba2CuO6+δ compounds [6].
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Holmes, L. Maechler, S. Strässle, R. Gilardi, S. Gerber et al.,
Phys. Rev. B 85, 134520 (2012).

[17] L. P. U. Flechsig and T. Schmidt, AIP Conf. Proc. 705, 316
(2004).

[18] M. Månsson, T. Claesson, U. O. Karlsson, O. Tjernberg, S.
Pailhés, J. Chang, J. Mesot, M. Shi, L. Patthey, N. Momono
et al., Rev. Sci. Instrum. 78, 076103 (2007).
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