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The adhesion dynamics of a membrane confined between two permeable walls is studied using a two-
dimensional hydrodynamic model. The membrane morphology decomposes into adhesion patches on the upper
and the lower walls and obeys a nonlinear evolution equation that resembles that of phase-separation dynamics,
which is known to lead to coarsening, i.e., to the endless growth of the adhesion patches. However, due to
the membrane bending rigidity, the system evolves toward a frozen state without coarsening. This frozen state
exhibits an order-disorder transition when increasing the permeability of the walls.
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I. INTRODUCTION

Two-state continuum models [1,2], such as the time-
dependent Ginzburg-Landau (TDGL) equation or the Cahn-
Hilliard (CH) equation, have been widely studied as a
paradigm of phase-transition dynamics in various systems,
such as magnetism, liquid-liquid phase separation, or wetting.
These models exhibit a phenomenology characterized by their
coarsening behavior, i.e., the perpetual increase of the typical
length scale of the homogeneous zones (where only one
phase is present). In this paper, we propose a one-dimensional
two-state continuum model inspired by adhesion of confined
membranes, which gives rise to a different phenomenology
without coarsening and with an order-disorder transition.

Our motivation is to investigate the adhesion dynamics of
lipid membranes in biological systems. Lipid membranes are
ubiquitous in living organisms. They are the main constituent
of the cell membrane [3], and they also appear in stacks, e.g.,
in the stratum corneum of the skin [4–6]. It is therefore crucial
to study their physical properties, and especially adhesion, in
order to understand their biological functions. Adhesion of
membranes on substrates [7–9] may include various physical
ingredients, such as, e.g., van der Waals attraction and hy-
dration forces [10], ligand-receptor pairs [11,12], interactions
with the cytoskeleton [13], osmotic pressures [14], or entropic
interactions [15–17]. In this paper, we do not describe these
specific ingredients, rather we consider an effective adhesion
potential, with a potential minimum corresponding to an
equilibrium adhesion state close to the substrate [10].

The main goal of our work is to study the consequences
of confinement on the nonlinear dynamics of membrane
adhesion. To mimic confinement within the simplest possi-
ble setting, we consider a membrane located between two
parallel flat walls. The membrane then experiences a total
potential that is the sum of the adhesion potentials of the
two substrates. When the distance between the walls is
wider than the equilibrium distance of a supported membrane
on a single wall, the membrane experiences a double-well
potential with a minimum near each wall, as shown in
Fig. 1. Such a double-well potential can be found in different
instances in biological systems. First, in cell adhesion, this
double-well potential could account for the possibility of
a membrane to attach to the cytoskeleton inside the cell

or to a substrate outside the cell. Moreover, in membrane
stacks [14,17], each membrane may adhere to its neighbors
within the stack. Furthermore, double-well potentials are also
found to arise in the presence of ligands of two different
lengths which enforce two different equilibrium distances in
cell-cell adhesion [18]. In addition, they are also observed
experimentally in the combined presence of ligands and van
der Waals attraction, which induce short-range and long-range
attractive potentials, respectively, and of glycocalyx and other
grafted polymers, which induce a soft repulsion at intermediate
scales [19,20].

As a consequence of the double well, the two walls compete
for the adhesion of the membrane, which is expected to adhere
partially on the upper wall and partially on the lower wall. At
first sight, such a decomposition into adhesion patches might
exhibit some similarity with phase-separation dynamics [1],
the membrane height h(x,t) playing the role of the order
parameter. However, in contrast to usual interfaces, which are
controlled by surface tension, membranes exhibits bending
rigidity [21,22]: the membrane energy density is proportional
to the mean curvature squared instead of being proportional to
the area. We shall see in the following that this feature leads to
a novel phenomenology with frozen states: adhesion patches
do not grow and coarsening is absent. From an analysis of
the nonlinear steady states, we argue that these frozen steady
states result from the locking of bending-induced membrane
oscillations into each other.

Our results could have some relevance in a recent debate
about the formation and stability of finite-size adhesion
domains in cell adhesion. Different studies have suggested the
crucial role of the clustering of ligand-receptor pairs [23–25],
of the disorder of the environment [13], of the trapping
of ligands in membrane partitions [26], or of the active
remodeling of the cytoskeleton [27]. We wish to stress that
our model, in which adhesion is driven by a simple distance-
dependent free-energy potential, does not account for the
full complexity of specific adhesion in cells, which involves,
e.g., the attachment-detachment, diffusion, and interactions
of ligand-receptor pairs, and other ingredients mentioned
above. However, our results indicate a reduced set of physical
ingredients that allows one to obtain finite adhesion patches:
bending rigidity and confinement.
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FIG. 1. (Color online) Schematics of a membrane confined be-
tween two permeable walls.

Furthermore, in order to account for the porous character
of biological substrates on which the membrane may adhere,
such as the cytoskeleton, collagen, or endothelial tissues, we
consider walls with arbitrary permeabilities. Such a tunable
permeability is also an important feature of membrane stacks
in the stratum corneum [4–6]. Our modeling suggests that the
spatial organization of the frozen states is controlled by the
permeability of the walls. Indeed, the membrane profile ex-
hibits a periodic ordered structure for impermeable walls, and
it becomes disordered when the wall permeability is increased.
This difference can be traced back to the consequences of the
permeability on the initial linear instability.

In the following, we start in Sec. II with a presentation of
the hydrodynamic model, and we derive a general evolution
equation for a membrane between two walls in the lubrication
limit. Then, in Sec. III, we consider the limits of small and large
wall permeabilities. The numerical solution of these limits is
discussed in Sec. IV. These results are discussed in light of
a linear stability analysis in Sec. V, and of an analysis of the
nonlinear steady states in Sec. VI. Finally, we summarize our
results in the last section.

II. THE HYDRODYNAMIC MODEL AND THE
LUBRICATION REGIME

We consider a membrane in a liquid confined between two
parallel walls located in z = ±h0 (see Fig. 1). We focus on
the limit of small Reynolds numbers, and the liquid obeys the
Stokes equation:

∇p± − μ�v± = 0, (1)

where the subscript ± indicates the fluid above (+) or below
(−) the membrane at z = h(x,t), p±(x,z) is the pressure, μ

is the dynamic viscosity, and v± = (vx±,vz±) is the liquid
velocity.

Next, we need to define the boundary conditions at the
walls and at the membrane, which separates the upper and
lower fluids. At the walls, the tangential component of the
velocity vanishes because we assume no-slip conditions, while
the normal component depends on wall permeability ν:

vx±|z=±h0 = 0, (2)

vz±|z=±h0 = ±ν(p± − pext), (3)

where pext is a constant pressure outside the walls.
Boundary conditions at the membrane are more involved.

First, following molecular-dynamics simulations on lipid

membranes [28,29], we also assume no-slip at the membrane,

v+|z=h(x,t) = v−|z=h(x,t). (4)

Then, mechanical equilibrium at the membrane imposes

(�+ − �−) · n = f, (5)

where �ij = μ(∂ivj + ∂jvi) − pδij is the stress tensor in the
fluid, n is the membrane normal, and f = −δE/δr is the force
exerted by the membrane. This force derives from the energy

E =
∫

ds

[
κ

2
C2 + U(h)

]
, (6)

where s is the arc length along the membrane, C =
−∂xxh/[1 + (∂xh)2]3/2 is the local membrane curvature, κ is
the bending rigidity, and U(h) is the double-well adhesion
potential, as shown in the schematic in Fig. 1.

Finally, in order to focus on dynamics within a large contact
area and to discard boundary effects, we impose periodic
boundary conditions along x in a large system of total length L.

The main approximation allowing to obtain the evolution
equation for the membrane profile is the small slope approxi-
mation ∂xh(x,t) � 1, while the height itself can be finite, i.e.,
of the order of h0. The main lines of the derivation are reported
in Appendix. Using the standard lubrication expansion [30],
we obtain

∂th = ∂x

[
− h3

0

24μ

(
1 − h2

h2
0

)3

∂xfz + 3

4
j

h

h0

(
h2

3h2
0

− 1

)]

+ ν

2
fz, (7)

where the membrane force is

fz = −κ∂4
xh − U ′(h), (8)

and the total liquid flow rate j along x,

j =
∫ h

−h0

dz ux− +
∫ +h0

h

dz ux+, (9)

obeys the differential equation

− h3
0

3μν
∂xxj + j = 1

2

h3
0

μ

h

h0

(
1 − h2

3h2
0

)
∂xfz. (10)

Two remarks are in order on the above equation. First, the
equation is nonlocal in space. This nonlocality is seen from the
fact that j obeys a time-independent differential equation (10).
This constraint comes from the incompressibility of the liquid.
Second, the dynamics is variational, i.e., ∂tE � 0, where the
energy E is given by Eq. (6). In the small slope approximation,
the curvature is simply C = −∂xxh and

E =
∫

dx

[
κ

2
(∂xxh)2 + U(h)

]
. (11)

III. CONSERVED AND NONCONSERVED LIMITS

We are now going to consider two important limiting cases
of Eqs. (7)–(10), which are better defined using the reduced
wall permeability,

ν̄ = 12μκ1/2ν

h2
0U

1/2
0

, (12)
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where the energy scale U0 is such that U(h) = U0U (H ), where
U (H ) is of order 1. In the limit of large permeabilities, ν̄ → ∞,
we obtain

∂T H = −∂4
XH − U ′(H ), (TDGL4), (13)

where H = h/h0, X = [U0/(κh2
0)]1/4x, and T = tνU0/(2h2

0).
In this limit, the nonlocality induced by incompressibility van-
ishes and the resulting equation has a manifest nonconserved
character. More precisely, Eq. (13) bears a strong resemblance
to the standard time-dependent Ginzburg-Landau (TDGL)
equation, ∂T H = ∂2

XH − U ′(H ), which describes phase sep-
aration for a nonconserved order parameter [1]. However, in
Eq. (13) the linear stabilizing term is fourth-order instead of
being a second-order derivative, because it physically derives
from bending rigidity rather than from surface tension. For this
reason, we denote Eq. (13) as “TDGL4.”

In the opposite limit of impermeable walls, ν̄ = 0, we obtain

∂T H = ∂X

{
(1 − H 2)3∂X

[
∂4
XH + U ′(H )

]

+ JH

(
H 2

3
− 1

)}
, (nonlocal CH4), (14)

J = − 9

L

∫ L

0
dX H

(
1 − H 2

3

)
∂X

[
∂4
XH + U ′(H )

]
, (15)

where the time variable now exhibits a different normaliza-
tion T = U3/2

0 t/(24μκ1/2) and J = 18jμκ1/4/(h3/2
0 U5/4

0 ). For
vanishing permeabilities, the resulting equation is conserved,
because the (incompressible) fluid remains confined between
the walls. As a consequence, the membrane evolution equation
shares similarities with the Cahn-Hilliard (CH) equation
∂T H = ∂XX[∂2

XH − U ′(H )], which describes phase separa-
tion for a conserved order parameter [1,2]. However, there
are several differences: (i) The fourth-order derivative in the
stabilizing term. This difference was expected, in line with the
nonconserved case. (ii) The membrane mobility ∼(1 − H 2)3

vanishes as H → ±1 due to the well-known divergence
of viscous dissipation when the membrane approaches the
walls [30,31]. (iii) The nonlocal effects related to J . The
nonlocality is now manifest in the expression of J as an integral
over the whole system in Eq. (15). In the following, we denote
Eq. (14) as the “nonlocal CH4” equation.

IV. NUMERICAL STUDY OF MEMBRANE DYNAMICS

As a preamble, before studying the dynamics of Eqs. (13)
and (14) in extended systems, we shall recall the well-known
dynamics arising from the standard TDGL and CH equations:
the profile H (X,T ) ≡ 0 is unstable and it develops flat regions
where H is approximately equal to the values of one or the
other minimum of the double-well potential U (H ). In the
language of our paper, the regions where the membrane lies
in a minimum of the potential correspond to adhesion patches.
The zones separating two flat regions are called kinks. Within
the TDGL or CH models, pairs of kinks collide and annihilate,
thereby leading to the decrease of the number of adhesion
patches. The typical size λ of these patches, therefore, exhibits
endless increases in time. This process is called coarsening.

FIG. 2. (Color online) Arrested dynamics and order-disorder
transition. (a) Nonpermeable case. Frozen ordered patterns ob-
tained from the numerical solution of the CH4 equation, Eq. (14).
(b) Permeable case. Frozen disordered patterns obtained from the
numerical solution of the TDGL4 equation, Eq. (13). In (a) and (b),
the vertical scale is increased by a factor ∼10 for a better visibility of
the membrane morphology. (c) Saturation of the spatially averaged
wavelength 〈λ〉 as a function of time. The black solid line and the
red dotted line correspond to TDGL4 Eq. (13) and CH4 Eq. (14),
respectively.

In contrast, the numerical solution of TDGL4 and nonlocal
CH4 does not exhibit any coarsening. To support this statement
with numerical simulations of the evolution equations, we need
to use an explicit form of the two-well potential U . However,
in all other sections above and below, the profile of U is kept
arbitrary. We have chosen the standard quartic potential

U4(h) = −H 2
m

H 2

2
+ H 4

4
, (16)

which exhibits minima at H = ±Hm, with Hm < 1. In the
simulations, we use Hm = 0.9.

Starting from small random initial conditions, we find that
after a short transient, the membrane forms a frozen pattern, as
shown in Figs. 2(a) and 2(b). To gain quantitative insights into
the evolution of the system, we define the average wavelength
〈λ〉 as the average distance between two consecutive points
obeying h = 0 and ∂xh > 0. The plot of 〈λ〉 as a function
of time in Fig. 2(c) shows a clear saturation after a time of
the order of 10 to 30 in reduced units. Furthermore, while
the frozen pattern is ordered and periodic in the presence
of impermeable walls, it is clearly disordered for permeable
walls. We stress that we have observed no difference between
the numerical solution of nonlocal CH4 and Eq. (14) with
J = 0, simply denoted as CH4 in the following.

As a first remark on the numerical results, we indicate that
simulations with other forms of the double-well potential U

have shown no qualitative difference in the results. However,
quantitative changes can be observed. As an important exam-
ple, when Hm → 1, the conserved dynamics [Eq. (14)] slows
down considerably in the late stages because the mobility term
(1 − H 2)3 is small in the plateaus between the kinks where H
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(a)

(b)

(c)

FIG. 3. Snapshots of hydrodynamics flows and membrane profile
during the dynamics in the conserved case [Eq. (14)]. Horizontal
arrows represent the hydrodynamic flow. (a) The initial membrane
profile is a single period of a sinusoid. (b) Intermediate times. (c) The
final membrane profile exhibits plateaus separated by kinks.

is close to Hm. In contrast, there is no similar effect in the
nonconserved case [Eq. (13)].

Secondly, we showed that the final ordered state obtained
in Fig. 2(a) for CH4 does not evolve further if used as an
initial configuration for TDGL4. And vice versa, the final
disordered state of TDGL4 in Fig. 2(b) does not evolve
under CH4 dynamics: this is exactly what we observe from
the numerical solution of the equations. This leads to two
important conclusions: (i) the conserved and nonconserved
equations seem to share the same stable steady states; (ii)
even though distinct ordered and disordered states are robustly
observed with random initial conditions, the final state may
also depend on peculiar initial conditions.

Thirdly, once we have the dynamical profile of the mem-
brane, we also have access to the full hydrodynamic flow
during the evolution of the membrane using Eq. (A1). As
an example, we show the flow around an initially sinusoidal
membrane profile in the conserved dynamics in Fig. 3.

Finally, we observed that the normalized slopes remain
finite in all simulations, i.e., max |∂XH | ∼ 1 at all times. As a
consequence, the small slope approximation ∂xh � 1 is self-
consistent: if this assumption is true initially, it remains true
for all times.

In the next sections, we propose some analytical results that
confirm the scenario proposed by the numerical solution of the
membrane dynamics.

V. LINEAR STABILITY ANALYSIS OF FLAT MEMBRANES

As a summary of the results so far, Fig. 2 highlights two
important features: (i) an absence of coarsening and (ii) a

(a)

(b)

FIG. 4. (Color online) (a) Linear dispersion relation. (b) His-
togram of the distances between kinks. The solid line represents the
value of minus the total curvature energy in one steady-state period
Lλ = − ∫ λ

0 [∂XXHλ(X)]2, obtained numerically from the periodic
double-kink solution shown in Fig. 5. As discussed in Sec. VI, Lλ

controls the stability of the steady states. The dashed line corresponds
to the approximate expression of Eq. (26) with L0 = −0.432 25.

frozen state that is disordered for ν̄ = ∞ (TDGL4) and ordered
for ν̄ = 0 (nonlocal CH4 or CH4). The latter feature can be
traced back to the different behaviors of the two equations
with respect to small perturbations around the average height
H̄ . Inserting H (X,T ) = H̄ + δHeiωT +iqX with δH � 1 in
Eq. (13), we obtain to linear order the dispersion relation for
TDGL4,

iω = −U ′′(H̄ ) − q4 (TDGL4). (17)

We remark that in the limit of permeable walls and when
U ′(H̄ ) 
= 0, the average height H̄ depends on time. Hence,
strictly speaking, the dynamical evolution of the Fourier
modes is not exponential. However, the dispersion relation still
provides a qualitative description of the unstable modes at short
times for H̄ 
= 0. In addition, the linear stability analysis also
provides a strictly valid description for the case H̄ = 0 studied
in the numerical simulations above, because H̄ is constant in
this case.

In contrast, H̄ is always constant in the conserved equations,
and the exponential time dependence of the perturbation
amplitude is strictly valid in this case. The linear dispersion
relation for nonlocal CH4 or CH4 (i.e., with or without the J

term) provides the same dispersion relation,

iω = (1 − H̄ 2)3q2[−U ′′(H̄ ) − q4] (CH4). (18)

Both for permeable and impermeable walls, an instability,
indicated by iω > 0, appears at long wavelength when
U ′′(H̄ ) < 0. As seen in Fig. 4(a), while TDGL4 destabilizes
all long-wavelength modes with the same growth rate iω ∼
−U ′′(H̄ ) at q → 0, CH4 exhibits a special mode at qu =
[−U ′′(H̄ )/3]1/4 for which the growth rate is maximum. Hence,
we expect initially a disordered pattern with many wavelengths
in the limit of permeable walls, and an ordered pattern with a
single wavelength λu = 2π/qu in the limit of impermeable
walls. In Fig. 4(b), we have plotted the histogram of λ,
the double of the distances between the zeros of H in the
frozen state when starting from random initial conditions.
The quantity λ is a measure of the local wavelength. For
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nonlocal (and local) CH4, the linear instability produces an
initial periodic pattern with a single wavelength λu ≈ 2π/qu,
while for TDGL4, we indeed obtain a wide distribution of
distances.

VI. STABILITY OF PERIODIC STEADY STATES

Although linear analysis indicates when we should expect
order or disorder, it does not provide insights about why the
dynamics should freeze, as observed in the simulations. To
gain insights on this subject, we study the stability of fully
nonlinear periodic steady states. The steady states of the TDGL
and CH equations, solutions of ∂2

XH − U ′(H ) = 0, are known
to be periodic with a single maximum in each period. For each
wavelength λ, there is a unique steady state. For Eq. (7), and all
its special limits TDGL4, CH4, and nonlocal CH4, the steady
states obey

∂4
XH + U ′(H ) = 0. (19)

It is actually known that Eq. (19) exhibits not only periodic
solutions with several maxima per period, but also an infinite
number of nonperiodic solutions (chaotic along x) [32].
However, we shall show in the following that the study of
periodic steady states provides a reasonable description of the
nonlinear dynamics.

For this purpose, consider a family of periodic steady
states Hλ parametrized by the wavelength λ. We wish to
study the stability of a uniform periodic steady state under
long-wavelength variations of λ. Defining a macroscopic
variable X̃ at scales much larger than λ, the total energy may
be approximated as the integral on the slow variable X̃ of the
energy density in one period,

E =
∫

dX̃

λ(X̃)

∫ λ(X̃)

0
dX eλ(X̃)(X), (20)

where

eλ(X̃)(X) = [∂XXHλ(X̃)(X)]2/2 + U [Hλ(X̃)(X)] (21)

is the local energy density. We then consider a small per-
turbation around the average wavelength λ(X̃) = λ̄ + δλ(X̃).
Since δλ(X̃) is small, the total number N = ∫

dX̃/λ(X̃) of
steady-state periods in the system is constant, i.e., δN = 0,
leading to the relation

λ

∫
dX̃ δλ(X̃) ≈

∫
dX̃ δλ(X̃)2 + O[δλ(X̃)3]. (22)

Using this relation and Eq. (19), one may then calculate the
variation of total energy,

δE = ∂λ̄Lλ̄

λ̄2

∫
dX̃[δλ(X̃)]2 + O([δλ(X̃)]3), (23)

where

Lλ = −
∫ λ

0
[∂XXHλ(X)]2. (24)

Since we know that the dynamics always decreases E ,
i.e., ∂tE � 0, the perturbation amplitude

∫
dX̃[δλ(X̃)]2 must

decrease if ∂λLλ > 0, and it must increase if ∂λLλ < 0. Hence,
the periodic steady state of wavelength λ̄ is stable if ∂λLλ > 0
and unstable if ∂λLλ < 0. This criterion shows that the stability

FIG. 5. (Color online) Periodic double-kink steady-state profile.
The insets show a zoom on an oscillatory kink tail, and the oscillations
of (H − Hm)2 in log scale away from a kink. The transient dynamics
leading to this periodic steady state is shown in Fig. 3.

depends only on the energy E , and is independent of the
precise kinetics. This criterion based on the energy is valid
for the general Eq. (7) and its various specific limits (TDGL4,
nonlocal CH4, or CH4).

We use a branch of steady-state solutions that provide the
double-kink solution shown in Fig. 5 at long wavelengths to
calculate Lλ. Hereafter, we define a kink as a localized region
of the membrane profile going from ∓Hm for x → −∞ to
±Hm for x → +∞. This branch can be obtained, for example,
from the relaxation with TDGL4 of an initial condition
composed of a double kink with tanh profiles. In Fig. 4(b),
we have plotted Lλ from this steady-state branch. We see
that ∂λLλ > 0 for the most unstable wavelength of the CH4 or
nonlocal CH4 equations, λ = λu. Hence, our stability criterion
explains that the periodic steady state reached by the dynamics
via the linear instability of CH4 or nonlocal CH4 is frozen.

The case of the TDGL4 equation is more delicate to analyze
because we start with a disordered state as discussed earlier.
However, we see peaks in the histogram of Fig. 4(b) in the
stable regions with ∂λLλ > 0, and valleys when ∂λLλ < 0.
This is in agreement with a scenario in which pairs of
zeros separated by a distance corresponding to ∂λLλ < 0
are unstable, and the whole system finally recombines into
a configuration where the distance between the zeros is in
the stable regions. However, it should be noted that for large
distances, no reorganization is obtained within the simulation
time.

A striking feature of the stability criterion in Fig. 4(b)
is its oscillatory character. These oscillations originate in
the fourth-order derivative in Eq. (19), which induces an
oscillatory membrane profile in the vicinity of the kinks, as
shown in Fig. 5. Expanding Eq. (19) in the vicinity of the
minima of potential wells at H = Hm for X > Xk , where Xk

is the position of the kink, we find an explicit expression for
the kink tails H (X) = Hm + R(X − Xk), with

R(�) = A cos

(
�U ′′

m
1/4

21/2
+ α

)
exp

[
−�U ′′

m
1/4

21/2

]
. (25)
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Here U ′′
m = U ′′(Hm), and A > 0 and α are constants depending

on the details of the potential profile. Since we do not have an
analytical expression for the full kink profile, the exact values
of A and α are unknown and depend on the precise profile of U .
However, a simple argument provides an approximate value.
Indeed, assuming that the profile H (X) = Hm + R(X − Xk)
with R given in Eq. (25) extends beyond its domain of validity
up to the center of the kink where X → Xk , we request the
continuity of H at X = Xk up to the third derivative, leading
to H (Xk) = 0, and ∂XXH (Xk) = 0. As a consequence of these
assumptions, one finds A = Hm, and α = π . For the specific
case of the quartic potential U(H ) = U4(H ) with Hm = 0.9,
these constants can be determined numerically by fitting the
profile of the tail of an isolated kink with Eq. (25), as shown
in the inset of Fig. 5. We then find values that are close to the
approximate predictions: A = 0.87 and α = 2.72.

For large distances between the kinks λ  1, the behavior
ofLλ is actually dominated by the asymptotic tails of the kinks,
and substituting Eq. (25) into Eq. (24), we find to leading order,

Lλ ≈ L0 + A2U ′′
mλ cos

(
λU ′′

m
1/4

23/2
+ 2α

)

× exp

[
−λU ′′

m
1/4

23/2

]
, (26)

where L0 is an unknown constant. This expression is in good
agreement with the value of L obtained from the numerical
profile of the steady-state branch, as shown in Fig. 4(b). As
discussed above, the stability criterion is related to the sign of

∂λLλ ≈ −1

2
A2U ′′

m

5/4
λ cos

(
λU ′′

m
1/4

23/2
+ 2α − π

4

)

× exp

[
−λU ′′

m
1/4

23/2

]
. (27)

This expression shows explicitly the oscillatory character of
the stability as a function of the distance between kinks.

VII. FINAL CONSIDERATIONS

In summary, we have derived a nonlinear and nonlocal
dynamical equation [see Eq. (7)] from a hydrodynamic model
for a membrane separating two incompressible fluids and
confined between two rigid walls; see Fig. 1. This equation
has been studied numerically and analytically in the limit of
large wall permeability (ν̄ → ∞), leading to the nonconserved
Eq. (13), and in the limit of vanishing wall permeability
(ν̄ → 0), leading to the conserved Eq. (14).

The bending rigidity of the membrane induces a novel class
of behavior. Indeed both for small and large ν̄, the system
evolves toward a frozen state, the details of which depend on
the initial state. Generic, random initial configurations lead
to a disordered state for large ν̄ (conserved case) and to an
ordered periodic state for vanishing ν̄ (nonconserved case).
The nonlocal character of the dynamics appears to be either
vanishing (ν̄ → ∞) or irrelevant (ν̄ → 0).

The orders of magnitude of the length scales and time scales
of the patterns discussed in this paper should be observable

experimentally. Indeed, following Ref. [10], we consider as
an example an attractive van der Waals interaction and the
hydration repulsion between a membrane and a substrate.
Using a gap 2h0 = 20 nm with h̄ = 0, the most unstable
wavelength in the case of impermeable walls (nonlocal CH4)
is λu = 2π/qu ≈ 350 nm and tu ≈ 1 × 10−2 s.

Besides the need for generalization of our approach to
two-dimensional membranes, one important perspective of
our work is to test the robustness of the frozen states
with respect to various additional physical ingredients. As
an example, a membrane tension σ can be added to the
model, leading to an additional stabilizing term σ∂xxh in
the expression of the membrane force [Eq. (8)]. For large
enough tensions, the oscillations in the kink tails disappear.
As expected, the dynamics for large tensions is similar to
that of TDGL or CH, with logarithmic coarsening. From a
simple dimensional analysis, this behavior is expected for
tensions larger than σc ∼ (U0κ)1/2/h0, with a prefactor of the
order of 1. A detailed account of this transition confirms this
prediction, and will be provided elsewhere [33]. Using once
again numbers from Ref. [10], we find σc ∼ 10−2 J m−2.
Values for the tension of supported membranes extracted
from experiments are in the range σ ≈ 10−5–10−3 J from
Refs. [10,34]. As a consequence, the tensions observed in
supported membranes are much smaller than σc, and their
effects should be negligible. However, the area increase (or
decrease) in the kinks during the formation (or annihilation)
of adhesion patches could also lead to additional tension
effects.

Other ingredients, such as potential asymmetry and noise,
could also destabilize the frozen states reported here. We plan
to report along these lines in the near future.
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APPENDIX: LUBRICATION LIMIT

Here we provide the main lines of the derivation of
an evolution equation for the membrane in the lubrication
limit. We start with a slightly more general description as
compared to the one discussed in the main text. Indeed,
we describe the hydrodynamics with the full Navier-Stokes
equations, including inertial effects. Consider a fluid in two
dimensions, x,z:

ρ(∂tvx + vx∂xvx + vz∂zvx) = −∂xp + μ∇2vx,

ρ(∂tvz + vx∂xvz + vz∂zvz) = −∂zp + μ∇2vz,

where ρ is the density of the fluid, and the other notations are
defined in the main text.

We define a small parameter ε = h0/� � 1, where � is
the typical extent of the adhesion patches along x. We may
then define dimensionless variables X = εx/h0, Z = z/h0.
Following the usual procedure for the lubrication expan-
sion [30], we also use normalized velocities VX = vx/v0 and
VZ = vz/(εv0), and pressure P = εh0/(μv0), where v0 is the
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typical fluid velocity. With these new variables, we obtain

ε Re(∂T VX + VX∂XVX + VZ∂ZVX)

= −∂XP + ∂2
ZVX + ε2∂2

XVX,

ε3 Re(∂T VZ + VX∂XVZ + VZ∂ZVZ)

= −∂ZP + ε2
(
∂2
ZVZ + ε2∂2

XVZ

)
,

where Re = ρv0h0/μ is the Reynolds number. Assuming that
Re is at most of order 1, and in the lubrication approximation
ε → 0, we obtain to leading order −∂XP + ∂2

ZVX = 0 and
−∂ZP = 0. As a consequence, P depends only on X, and VX

exhibits a simple quadratic form

VX = Z2

2
∂XP + AZ + B, (A1)

where P , A, and B are three unknown functions of X that
do not depend on Z. Since the fluid may have different
velocity profiles above and below the membrane, we obtain
six unknown functions of X. It is convenient to define the total
flow rate J obeying

J =
∫ 1

−1
dZ VX (A2)

as a seventh unknown function of X.
These seven unknown functions of X are obtained using

the boundary conditions at the wall and at the membrane. The
no-slip conditions at the walls and at the membrane, Eqs. (2)
and (4), provide three equations. Then, mechanical equilibrium

at the membrane, Eq. (5), leads to two additional equations.
Hence, we have five equations:

VX+|Z=1 = 0, (A3)

VX−|Z=−1 = 0, (A4)

VX+|Z=H = VX−|Z=H , (A5)

P+ − P− = FZ, (A6)

∂ZVX+|Z=H = ∂ZVX−|Z=H . (A7)

Mass conservation and the wall permeability condition,
Eq. (3), provide two other equations:

∂XJ = −ν̃(P+ + P− − 2Pext), (A8)

∂T H = −1

2
∂X(J− − J+) + ν̃

2
(P+ − P−), (A9)

where ν̃ = νμ�2h−3
0 , and the upper and lower liquid flow rates

are defined as

J− =
∫ H

−1
dZ VX, (A10)

J+ =
∫ 1

H

dZ VX. (A11)

Using the seven equations (A2)–(A8) provides the seven
unknowns. Inserting these expressions in Eq. (A9) and going
back to physical variables leads to the evolution equation of
the membrane, Eq. (7).
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