
HAL Id: hal-02307277
https://univ-lyon1.hal.science/hal-02307277

Submitted on 3 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dynamical backaction cooling with free electrons
A. Nigues, A. Siria, Pierre Verlot

To cite this version:
A. Nigues, A. Siria, Pierre Verlot. Dynamical backaction cooling with free electrons. Nature Commu-
nications, 2015, 6, pp.8104. �10.1038/ncomms9104�. �hal-02307277�

https://univ-lyon1.hal.science/hal-02307277
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ARTICLE

Received 15 Nov 2014 | Accepted 19 Jul 2015 | Published 18 Sep 2015

Dynamical backaction cooling with free electrons
A. Niguès1, A. Siria1 & P. Verlot2

The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees

of freedom down to the quantum ground state has generated considerable progress and

perspectives in fundamental and technological science. These major advances have been

essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of

freedom in what is generally known as laser cooling. Here, we experimentally demonstrate

the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic

resonance. Using a focused electron beam, we report a 50-fold reduction of the motional

temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of

the electron beam and generalizes to any delayed and spatially confined interaction, with

important consequences for near-field microscopy and fundamental nanoscale dissipation

mechanisms.
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C
oherent manipulation of mechanical motion is one of the
great challenges of Modern Physics1: driven by such
outstanding goals as reaching the zero-point motion

fluctuations of single quantum objects2,3, observing the
quantum behaviour of large atomic ensembles4–6, or
engineering systems for quantum information processing7, a
number of efficient schemes have been proposed and
implemented8–11, establishing laser control as a paradigm for
cooling and trapping matter at the microscopic scale12. In recent
years, the field of cavity optomechanics has demonstrated that
this paradigm extends remarkably well to the macroscopic
level13,14, with demonstrations of radiation-pressure-induced
cooling15,16 down to the quantum ground state17,18.

Despite a considerable variability both in concepts and
experimental realizations, all the above cited experiments relied
on the fundamental interactions between a mechanical degree of
freedom and an electromagnetic resonance (for example, atomic
transitions19, Fabry–Perot resonance20, two-level systems21–23)
that collects the mechanical energy.

In this work, we report the first dynamical backaction cooling
experiment that is not mediated by an electromagnetic resonance.
We demonstrate that under the illumination of a continuous
focused electron beam, a nanowire can spontaneously reach an
equilibrium with drastically reduced motional temperature. We
develop a simple and general model and attribute this behaviour
to the presence of dissipative force gradients generated by the
electron-nanowire interaction. From a general perspective, our
results point out the potential of spatial confinement to provide
the same functions as optical confinement in laser cooling, with
important consequences for interpreting and controlling near-
field dynamics at the nanoscale24–27. Moreover, the dramatic
spatial dependence of the effectively measured mechanical
damping rate emphasizes the prominent importance of taking
into account the spatial environment for explaining dissipation
mechanisms at the nanoscale, whose fundamental limits remain
an opened question28–32. In a more specific scope, our work
shows that electron microscopy is perfectly suited to ultra-
sensitive, perturbation-free dynamical studies at the nanoscale,
with performances comparable to laser sensing33,34, however with
a 100 times higher confinement. This represents a very attractive
perspective for sensitive investigation of mono-dimensional
structures dynamics such as carbon nanotubes35 and
graphene36. Last, on a more technical side, our results show

that electron microscopy intrinsically holds the ability to suppress
the unavoidable thermal vibrations of nano-structures, yielding to
a significant improvement of the image resolution.

Results
Detecting nanoscale dynamics with a SEM. The nano object of
interest in this work consists of a cylindrical Silicon Carbide (SiC)
nanowire with length L¼ 150mm and diameter d¼ 250 nm. The
nanowire is glued at the edge of a Tungsten micro-tip sitting on
an Aluminium sample holder. The ensemble is mounted in
vacuum onto the (grounded) three-dimensional-positioning stage
hosted in a commercial scanning electron microscope (SEM;
NOVA NANOSEM, FEI), see Fig. 1a. Scanning electron microscopy
provides an image of the surface of a given sample through its
response to a focused beam of electrons. The collisions between
the incident electrons and the sample yield to a variety of inter-
action products, including light, X-rays and electrons, which can
be further detected and used for imaging purposes37. In this
study, we will focus our interest on the so-called secondary
electrons (SEs), which are ejected from the sample owing to
strongly inelastic collisions between the primary electron beam
and the surface of the target. These electrons are guided to a
dedicated detector (Everhart–Thornley Detector), which includes
a strongly biased grid and a high bandwidth scintillator.
Importantly, secondary emission is an absorption sensitive
mechanism and therefore captures both relief and composition,
making SE response the most used imaging mode in SEM.

Here we turn secondary emission from its conventional use
and show that it intrinsically holds additional capabilities for
sensitive dynamical studies38. The idea is depicted in Fig. 1b:
scanning an individual nano object in a given direction x, its
presence is revealed under the form of a sharp peak. Its
nanomechanical displacements dx around its rest position x0
will therefore result in large variations of the SE emission rate
dISEðtÞ ’ ð@ISE=@xÞx0�dx tð Þ, with ISE(x) denoting the average
SE emission rate as a function of position x. The efficiency of such
a scheme is primarily determined by the SE response contrast,
which is typically high for a wide class of nano-objects and
materials39.

We have used this principle for sensitive motion detection and
characterization of the SiC nanowire introduced above. All the
measurements presented hereafter have been obtained with an
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Figure 1 | Detecting nanoscale dynamics with a SEM. (a) Schematic of the experimental set-up. The nanowire is mounted onto the three-dimensional-

positioning platform of a commercial SEM, which includes an electron gun delivering a stable collimated flux of electrons, and a SEs detector (Everhart–

Thornley Detector (ETD)), whose output is used for both imaging the nanowire and measuring its dynamical motion around its equilibrium position.

(b) Using Secondary Emission for nanomechanical motion detection. The very high contrast of SEM imaging (illustrated here with a 20 nm gold nanowire,

scale bar, 200nm) results in a highly peaked evolution of the SE rate as a function of the transverse displacement. The nanomechanical motion dx around
its equilibrium position x0 is therefore transduced into large variation of the SE emission rate.
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incident electron beam current Iin¼ 140 pA and an accelerating
voltage V¼ 5 kV, corresponding to an incident power
Pin¼ 0.7 mW. Figure 2a shows two SEM images (with magnifica-
tion coefficients of � 1,500 and � 250,000, respectively). A very
high contrast can be observed, suggesting a very efficient
motional transduction into the SE emission rate. To further
verify this assertion, we turn the SEM into ‘spot mode’ operation.
We set the primary electron beam at position (x0¼ � 100 nm,
y0¼ 10 mm) (x and y denote the transverse and longitudinal
coordinates with respective origins taken on the axis of the
nanowire and at its clamping point, see Fig. 2a). The SE emission
rate is collected via the real-time detector output of the SEM and
further sent to a spectrum analyser. Two peaks are found around
a frequency O/2pC20 kHz (see Fig. 2b), in agreement
with the theoretically expected fundamental resonance
frequency O0; th=2p ’ 0:28=L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ed2=4r

p
’ 18 kHz (SiC density

rC3,000 kgm� 3, and Young’s modulus EC400GPa). We
verified the presence of a pair of resonances around O/2pC120
kHz (Fig. 2c), corresponding to approximately six times the
fundamental resonance frequency, and thereby completing the
series of eigenmodes associated with a free-standing cantilever
beam. We have also calibrated the measured spectrum into an
equivalent transverse displacement (Fig. 2b). This is accom-
plished by dividing the measured fluctuations by the static
transduction factor, that is, the slope ð@ISE=@xÞx0;y0 inferred from
the line scan (inset, Fig. 2b). This calibration yields a displace-
ment variance Dx2¼ (68 pm)2. It is worth to compare this value
to the thermal variance expected for such nanowire,
Dx2th ¼ kBT=Meff ðy0ÞO2

0, with kB Boltzmann’s constant, T¼ 300
K the ambient temperature, and Meff ðy0Þ ¼ 0:23M u2ðLÞ

u2ðy0Þ the
effective mass40 (u being the mode shape function associated with
the fundamental flexural mode of the nanowire and M the
physical mass of the nanowire, M¼r� pd2L/4). For y0¼ 10mm,
we find Dx2th ¼ ð50 pmÞ2, in very good agreement with the above
calibrated value. We will henceforth assume the nanowire to be in
contact with an external thermal bath with constant temperature
T¼ 300K. Last, we have also measured spectra at various tilt
angles (not shown), resulting in an effective rotation of the
nanowire vibrational axis with respect to the horizontal plane. We
have thus verified that the relative heights of both peaks seen in
Fig. 2b could be changed and even inverted, which we have used
to match both the scanning and vibrational planes. In the

following, we concentrate on the dynamical evolution of the
in-plane vibration and will neglect the contribution of the out-of-
plane mode to the measured nanomechanical spectrum.

Dynamics in retarded force gradients. The above reported
thermal noise spectrum has been obtained within unfavourable
measurement conditions, since the primary electron beam was
coupled to the nanowire close to its anchor point, where its
effective mass is very large (here Meff (y0¼ 10 mm)¼ 130 ng). In a
next step, we have therefore moved the electron probe towards
the edge of the nanowire, expecting a rapid increase of the signal-
to-noise ratio as a function of the longitudinal displacement y.
Surprisingly, this is not what we observed: instead, the signal-to-
noise ratio remained rather constant, whereas the spectral width
of the transverse mode was dramatically increased (see Fig. 3b).

The displacements of the nanowire are governed by the general
dynamical equation:

Meff ðLÞ
@2x
@t2

¼� kxðtÞ�Meff ðLÞGM
@x
@t

þ FthðtÞ

þ ðR � FextðxpÞÞðtÞ:
ð1Þ

Here x denotes the transverse displacement of the nanowire,
k its lateral spring constant, GM its intrinsic damping rate, Fth(t)
the thermal Langevin force (with spectral density
SthF ½O� ¼ 2Meff ðLÞGMkBT), Fext the static external force field in
which the nanowire is moving and xp the time-dependent point
of application of the force. The last term in equation (1) takes into
account the external force changes O resulting from the
nanomechanical motion34, including some possible retardation
effects through a time response R(t). Keeping only the time-
varying component of the displacements dx and dxp and
assuming that they remain small compared with the spatial
variations of the external force, it is straightforward to expand
equation (1) in Fourier space to obtain:

w� 1½O�dx½O� ¼ Fth½O� þR½O� @Fext
@x

j xp; eq dxp½O�; ð2Þ

where O is the Fourier frequency, w½O� ¼ 1=Meff ðLÞ
ðO2

0 �O2 � iGMOÞ is the mechanical susceptibility associated
with the fundamental transverse vibration and xp,eq the static
displacement of the nanowire at the point of application. In our
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Figure 2 | Brownian motion detection of a SiC nanowire in a SEM. (a) SEM static images of the nanowire used in the present study. The magnification

coefficients are � 1,500 (left, scale bar, 20mm) and � 250,000 (right, scale bar, 100 nm). The nanowire is mounted into the horizontal plane (x,y), with

respective origins on the nanowire axis (right) and at the apex of the Tungsten micro-tip (left). (b) Calibrated ETD noise spectrum Sx½O� ¼ SISE ½O�=G2

acquired in spot mode, with the electron probe being set at y0¼ 10mm. Inset shows a line scan taken at the same longitudinal distance, and which served

for determining the local slope G ¼ ð@ISE=@xÞxp; eq ; y0 . The dark dot indicates the transverse position at which the spectrum was acquired. (c) Brownian

motion spectrum associated with the second harmonic vibration around O/2pC122.5 kHz.
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case, the dominant external force being applied to the nanowire
is generated by the primary electron beam, with point of
application (xp,eq, yp) (see notations in Fig. 3a). The
displacement at the point of application are related to the
displacement dx through the mode shape function u,
dxp ¼ uðypÞ

uðLÞ dx, such that the equation of motion writes in
Fourier space dx[O]¼ weff [O]Fth [O], with weff given by:

w� 1
eff ½O� ¼ w� 1½O� � uðypÞ

uðLÞ R½O�
@Fext
@x

����
xp; eq

: ð3Þ

Assuming that the spectral variations of R are negligible around
frequency O0, equation (3) shows that our system is indeed
expected to respond similarly to cavity optomechanical systems13,
whose effective mechanical response is changed in presence of
cavity-delayed optical force gradients. Such delays result in an
additional imaginary contribution to the effective susceptibility
(the cold damping term41, that would be equivalent to the
imaginary part of R), which manifests as a change of the effective
damping rate, and yields to the ability to control the dynamical
state of the mechanical resonator.

As already noted above, we observe a very large increase of the
effective dissipation when moving the probe towards the
extremity of the nanowire, as shown in Fig. 3b. This suggests
that important delays are involved into the dynamical interaction
between the primary electron beam and the nanomechanical
oscillator. This led us to identify the nature of this interaction as
being of a thermal origin42: when the electron beam hits the
sample, a fraction of its energy is released into heat, as a
consequence of inelastic mechanisms. To excite the acoustic
phonon associated with the fundamental transverse vibrational
mode, the produced heat needs to propagate over the entire
length26,43. Here we have assumed a first order low-pass model

RðtÞ ¼ YðtÞ
tth

e�
t

tth , with Y the Heaviside step function, tth¼ L2rcp/
k the heat diffusion time (cp the specific heat capacity and k the
thermal conductivity). For SiC nanowires, typical values are on
the order of cpC750 JK� 1 kg� 1 and kC10WK� 1m� 1, the
latter being a factor of 10 lower than the bulk value, typically44.
Hence, we have for the product O0tthC640c1, which places our
system into a situation equivalent to the resolved sideband regime
for the electro-thermal backaction15,45. This means that we can

retain the dissipative contribution of the backaction force only,
and write the last term of equation (3) as purely imaginary,
i(u(yp)/u(yL))�Meff(L)OGe(xp,eq). Finally, our theoretical analysis
predicts the evolution of the effective mechanical damping rate

Geff and temperature Teff ¼ Meff ðLÞO2
0ðDxÞ

2

kB
as a function of the probe

longitudinal position:

Geff ðypÞ ¼ GM þ uðypÞ
uðyLÞ

Geðxp; eqÞ;

Teff ðypÞ ¼
GM

Geff ðypÞ
�T:

ð4Þ

Note that in equation (4), Ge, which represents the maximum
dissipative coupling strength (when the probe hits the edge of the
nanowire), has been assumed to only vary with the transverse
degree of freedom xp (and not yp). This is justified because of the
very homogeneous SE response of the nanowire (see Fig. 2a),
which implies that the electron absorption rate (and hence the
resulting thermal force) weakly depends on the longitudinal
coordinate. In the low effective damping limit (GeffooO0)
and assuming a long heat diffusion time (O0tthc1), it can be
shown that Geðxp; eqÞ ¼ 1

tth
� 1

k
@Fext
@x

� �
xp; eq

. We also emphasize the

peculiar longitudinal dependence of the effective damping
uðyPÞ=uðyLÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Meff ðLÞ=Meff ðyPÞ

p
, proportional to the inverse

square root of the effective mass. This is a signature of the local
character of the dynamical backaction, which produces its
ponderomotive effects exactly at the point of application, as
demonstrated here for the first time.

Dynamical backaction cooling with a focused electron beam.
Figure 3b shows the spectral evolution of the transverse funda-
mental vibration when moving the probe from the anchor to the
edge of the nanowire. The whole set of data were acquired for a
value of xp, eq¼ � 100 nm. The spectra were normalized to the
same effective mass, to better represent the dramatic reduction of
the effective temperature (proportional to the spectrum area).
One can also remark a slight shift of the mechanical resonance
frequency at very high gains, characteristic of a residual in-phase
contribution (similar to the ‘optical spring’) in the dynamical
backaction. The experimental data are fitted to a Lorentzian
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Figure 3 | Dynamical backaction cooling with electrons. (a) Schematic introducing the notations used in the text. The electron probe (blue spot) is at the

average position (xp,eq, yp). The dynamical displacement dxp around the position of the probe and the tip displacement dx are related via the mode shape

function u of the nanowire. (b) Dynamical backaction cooling using an electron beam. The longitudinal position of the electron spot is scanned across the

entire nanowire length (left), with the transverse coordinate xp,eq being fixed. For each point, the corresponding fluctuation spectrum is recorded

(acquisition time C2min). The presented data are normalized to the same effective mass, to better visualize the drastic decrease of the effective

temperature. Straight lines are a double Lorentzian adjustment of the experimental data. We attribute the observed amplification of the out-of-plane mode

(left most peak) to the presence of orthogonal gradients. (c) Effective temperature (green squares) and effective damping rate (black dots) as functions of

the effective mass. The straight lines correspond to plots of our theoretical model (equation 4), yielding Ge(xp,eq)/2p¼ 604Hz.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9104

4 NATURE COMMUNICATIONS | 6:8104 | DOI: 10.1038/ncomms9104 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


model. The fitting parameters enable to quantitatively determine
the longitudinal evolution of both the effective damping rate
Geff(yp) and effective temperature Teff(yp), shown in Fig. 3c (black
dots and green squares, respectively). Here we chose to report
their evolution as functions of the effective mass at the probe
location Meff(yp), which is a physically more representative
parameter. The obtained results are in very good agreement with
our theoretical description, as shown by the fitting curves
(straight lines, derived from equation (4), with GM/2p¼ 4Hz
and T¼ 300K inferred from the reference thermal
measurement shown in Fig. 2b) that adjust very well to our
experimental data.

To further complete our study, we have also investigated the
dynamical backaction effects when moving the equilibrium
position of the probe in the transverse direction, for a fixed
longitudinal coordinate yp¼ 40 mm. The corresponding line scan
is shown in Fig. 4a (dashed line). As already noted above, SE
response reflects the primary electrons absorption rate, which is
itself proportional to the force exerted by the electron beam. As a
consequence, the strength of the dynamical backaction is
expected to be proportional to the gradient of the SE emission
rate, (@Fext/@x)p(@ISE/@x). Figure 4a shows the theoretically
expected backaction rate (straight, red line), obtained by
normalizing the line scan derivative to the maximum backaction
rate GbaðypÞ ¼ uðypÞ

uðLÞ Geðxp; eq ¼ � 100 nmÞ inferred from the
measurement presented in Fig. 3c. The right panel of Fig. 4
shows the results obtained at four illustrative transverse positions
xp, eq, labelled from (b–e). The resulting spectra show several
interesting features that confirm our theoretical interpretation.
Figure 4b,d are both obtained on regions of positive gradient, and
are showing motion sensitivities and cooling rates that are
proportional to the local slope, in very good agreement with the
theoretically expected backaction rates. Figure 4c is obtained with
the probe being set on a gradient-free spot, resulting in the total
absence of electro-mechanical transduction. Finally, Fig. 4e
corresponds to a negative slope, which conversely induces an
important amplification of the Brownian motion (beyond the
instability threshold, where the dynamical backaction rate cancels
the intrinsic damping GM). Importantly, the reversed behaviours
observed in Fig. 4b,e reveal the asymmetry of the backaction force

with respect to the axis of the nanowire (see the cooling and
heating domains in Fig. 4a). This asymmetry reflects that of the
force exerted by the electron beam and is a signature of thermally
induced bending at the nanoscale46,47.

Discussion
Importantly, the ability to cool the motion fluctuations crucially
relies on the ultra-low level of fluctuations associated with the
cooling pump41. For the electron beam, these noises result from
the electron shot noise dIin(t), characterized by the white spectral
density SinI ½O� ¼ 2eIin (e the positron charge). These fluctuations
generate force noises that eventually limit the cooling
efficiency45,48–50. In general, the force noise associated with any
given electron beam-mediated interaction Fk can be written

SkF ½O�¼F2
k½V ;O�

SinI ½O�
e2 , with Fk[V, O] denoting the interaction

strength per electron per second. Our study gives a quantitative
access to this latter quantity in the case of the electro-thermal
interaction: From the above given expression of Ge, it is straight
to obtain Fet½V ;O� ’ Ge

O � kDxr
ðIin=eÞ (Dxr the typical electro-thermal

gradient range), where the 1/O dependence results from high-
frequency filtering of electro-thermal fluctuations. Taking
Dxr¼ 10 nm, k¼ 7.9� 10� 5Nm� 1, and Ge/2p¼ 604Hz
(as extracted from the fits of the data shown in Fig. 3c),
we find Fet[V, O]C2.7� 10� 23 N(e� )� 1 s� 1, and an
associated force noise SetF ½O� ’ ð1:1 aNHz�

1
2Þ2. On the

other hand, the thermal noise evaluates on the order of
SthF ½O� ¼ 2Meff ðLÞGMkBT ’ ð31 aNHz�

1
2Þ2: the force noise asso-

ciated with the electro-thermal backaction is negligible compared
with the thermal noise, which defines a cold damping mechanism
and justifies that we have neglected it in equation (1).

It is also worth to consider the force noise associated with the
‘electronic pressure’ force, resulting from the momentum
exchange between the incident electrons and the nanomechanical
device. The corresponding interaction strength per electron
per second identifies to the average lateral momentum loss per
incident electron, Fp[V, O]¼ dp||(V). Accurate evaluation of dp||
is a complex problem a priori, requiring advanced simulations of
electron transport inside the nanomechanical device51. Here we
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region13, where the dynamical backaction cancels the intrinsic mechanical damping rate. Dots with abscissa (b–e) emphasize the values taken by ISE and
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derive a rough estimate by assuming that the single-electron
incident lateral momentum noise dpkðVÞ ¼ ‘ffiffi

2
p

w0
is integrally

transferred to the nanowire (w0C1 nm the waist of the electron
beam), yielding to Fp[V, O] t7� 10� 26 N(e� )� 1 s� 1, and
SpF ½O�tð3�10� 21 NHz�

1
2Þ2. Therefore, the ‘electronic pressure’

noise is negligible, the measurement being largely dominated by
the quantum electro-thermal noise. This enables to subsequently
quantify the quality of the measurement through evaluating the
uncertainty products

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Srx½O�SetF ½O�

p
’ 1:6�105 ‘

2 (ref. 22), where

we have taken Srx½O� ’ ð7�10� 12 mHz�
1
2Þ2 the measurement

imprecision inferred from Fig. 2b. Therefore, our measurement
scheme operates far above the Heisenberg limit, which is
somehow not so surprising, since the measurement and
backaction noises are referring to two electronic fields of
distinct nature (that is, primary and secondary, respectively).
Nevertheless, we note that significant improvement of this limit
may be expected by measuring nanomechanical motion via the
transmitted electron fluctuations, using for example, a scanning
transmission electron microscopy detector.

Interestingly, the efficiency of electron beam cooling scales
favourably at higher mechanical resonance frequency. Indeed,
the backaction strength can be expressed as a function of the
aspect ratio of the nanowire a¼ L/d, Ge ’ 1

tth
� xs

Dxr
/ a=d2, with

xs ¼ ~aðL2=dÞDT the static nanomechanical displacement46

~a the coefficient of thermal expansion, DT¼babs Rth Pin the
temperature elevation inside the nanowire, babs its energy
absorption coefficient52 and Rth¼ 4L/pd2k its thermal
resistance. Concurrently, the mechanical resonance frequency
scales as O0p1/a2d: decreasing the diameter d while keeping the
same aspect ratio therefore yields to both higher frequency and
dynamical backaction effects. This perspective is particularly
interesting in the context of coherent manipulation of ultra-low
phonon number states, since the initial phonon occupancy scales
as the inverse of the mechanical resonance frequency n0¼ kBT/
:O0. Hence, our scheme may provide backaction rates as high as
Ge/2pC2MHz for 1-mm long, high aspect ratio nano-structures
(a\100), opening the perspective to cool these objects down to
their quantum ground state53.

In conclusion, we have shown that free electrons establish
as an ultra-sensitive, non-invasive probe for measuring and
manipulating nanomechanical motion at room temperature.
Using a commercial SEM, we have demonstrated that beyond
its exquisite static resolution, in the nm range, electron
microscopy enables ultra-high, sub-atomic (5 pm range) dyna-
mical sensitivity. We have shown that the SEM appears as an
active device that can be used for manipulating the dynamics of a
pg-scale nanomechanical device, via an ubiquitous electro-
thermal mechanism that creates strong force gradients in the
object, while weakly perturbing its static thermodynamic
state. In particular, we have used this effect and reported a 50-
fold suppression of the transverse vibrational mode thermal
energy, representing the first self-induced cooling mechanism
that is not mediated by an electromagnetic resonance, but
entirely relies on the local force field spatial confinement. Our
result therefore appears as a novel, quantitative tool for ultra-
sensitive study of electron matter interaction phenomena at
nanoscale.

Methods
Determination of the effective temperature. For each value of the longitudinal
coordinate yp, the spectrum of the SE emission rate fluctuations SISE ½O; yp� is recorded
together with the local slope ð@ISE=@xÞxp; eq ; yp , with the transverse coordinate xp,eq¼
� 100nm being fixed. Note that as a consequence of the translational invariance of
the SE response of the nanowire along the longitudinal direction, the local slope is
found to be independent of yp, 8yp; ð@ISE=@xÞxp; eq ; yp ’ ð@ISE=@xÞxp; eq; y0 ¼ G. Each

spectrum is subsequently multiplied by the local effective mass Meff (yp), yielding a

series of spectra ST[O, yp] (see Fig. 3b) given by:

ST ½O; yp�¼Meff ðypÞG2Sx ½O; yp�

¼ G2� 2Geff ðypÞkBTeff ðypÞ
ðO2

0 �O2Þ2 þG2
eff ðypÞO2 :

ð5Þ

The local effective mass is independently measured from a piezo-driven vibrational
profile (see Fig. 5), fitting the theoretically expected mode shape u(x) (straight,
white line) given by:

2
uðxÞ
uðLÞ ¼cosh b1x� cos b1x

þ ðcosb1Lþ cosh b1LÞðsin b1x� sinh b1xÞ
sinh b1Lþ sin b1L

;

ð6Þ

with b1L¼ 1.875 and L¼ 150mm.
The spectra as defined by equation (5) are integrated over the Fourier

frequency, yielding in the high-Q limit (GeffooO0) to a series of quantities
proportional to the effective temperature:

Zþ1

�1

dO
2p

ST ½O; yp� ¼
G2kB
OM

�Teff ðypÞ: ð7Þ

Dividing equation (7) by the area of the reference spectrum ST[O, y0] subsequently
yields to the cooling rate and equivalently the effective temperature Teff(yp),R þ1

�1
dO
2p ST ½O; yp�R þ1

�1
dO
2p ST ½O; y0�

¼ Teff ðypÞ
T

: ð8Þ
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