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We describe the dynamics of vapor nanobubbles in water, on the basis of simulations of a hydrodynamics

phase-field model. This situation is relevant to recent experiments, where a water nanobubble is generated around

a nanoparticle immersed in water, and heated by an intense laser pulse. We emphasize the importance of nanoscale

effects in the dynamics of the nanobubble. We first analyze the evolution of the temperature inside the bubble. We

show that the temperature drops by hundredths of kelvins in a few picoseconds, just after nanobubble formation.

This is the result of the huge drop of the thermal boundary conductance between the nanoparticle and the fluid

accompanying vaporization. Subsequently, the temperature inside the vapor is almost homogeneous and the

temperature gradient is concentrated in the liquid, whose thermodynamic state locally follows the saturation line.

We discuss also the evolution of the pressure inside the vapor nanobubble. We show that nanobubble generation

is accompanied by a pressure wave propagating in the liquid at a velocity close to the liquid speed of sound. The

internal pressure inside the vapor just after its formation largely exceeds Laplace pressure and quickly relaxes as a

result of the damping generated by the viscous forces. All these considerations shed light on the thermodynamics

of the nanobubbles generated experimentally.

DOI: 10.1103/PhysRevE.91.043007 PACS number(s): 47.55.dd, 47.55.dp, 66.25.+g, 05.70.Ln

I. INTRODUCTION

Although the behavior of equilibrium inhomogeneous fluid

systems has been rationalized within the framework of the

density functional theory, the description of out-of-equilibrium

situations as for instance created by an external temperature

gradient has been poorly explored [1]. This latter physical sit-

uation is relevant to experiment where a metallic nanoparticle

surrounded by liquid water is heated up by a laser source, thus

creating a very large local temperature gradient ∼1 K/nm

in the fluid. The possibility to generate such gradients open

the way to plethora of applications. Among others, we can

mention the design of self-propellers using colloids that move

in the temperature gradient they create [2,3], the possibility to

measure heat currents flowing across a molecule [4] or on a

more fundamental side the generalization of Einstein law for

the diffusion of a Brownian particle [5,6].

Another unique situation may be offered when the laser

heating is strong enough to drive liquid phase change in the

vicinity of the hot nanoparticle. The so-called boiling under

very large temperature gradient is commonly related to the

crossing of the spinodal line, which occurs at a temperature

just below the critical fluid temperature. After the crossing

of the relevant transition line, a thin vapor layer may be

allowed to form a “nanobubble” which further expands in

the liquid. The production of nanobubbles has been recently

evidenced experimentally, based on x-ray scattering [7] or

direct optical measurements [8,9], and it has been confirmed

by simulations [10,12]. Depending on the size of the bubbles

produced, different applications have been developed so far.

Gold nanoparticles exposed to short laser radiation allow for

the generation of short-lived nanobubbles of vapor which can

be used as a tool for diagnosis and treatment of tumors [13].

At the other extreme, continuous irradiation of nanoparticles

by focused solar light leads to the production of steam at

temperatures higher than the saturation temperature at ambient

pressure, which can be used for sterilization and solar energy

recovery among other interesting applications [8].

While the crossing of the liquid spinodal seems to be the

criterion driving nanobubble generation [7,10], the thermody-

namics of the nanobubble once formed remain elusive. In fact,

liquid phase change in a temperature gradient is a problem not

amenable to simple analytical treatment. Here the description

is still harder because of the strong curvature of the nanobub-

ble. This amounts to the following simple questions: What is

the temperature inside the bubble? The pressure? How can we

describe the thermodynamic state of the vapor bubble during

the growth and collapse? How does the nanobubble support

very large Laplace pressures? The different physical mecha-

nisms at play in the energy exchange between the hot nanopar-

ticle and the bubble have been sketched in Ref. [11], showing

the difficulty in building up a simple theoretical treatment.

In previous work [12] we analyzed theoretically the

nanobubble dynamics using hydrodynamics phase field sim-

ulations. We focused on the nanobubble radius and showed

that it can be well described by a “Rayleigh-Plesset” equation,

classically used to analyze cavitation phenomena. This analy-

sis allowed us to conclude that the growth of the nanobubble

is best described by an adiabatic evolution, while the collapse

is isothermal. This analysis was confirmed by a molecular

dynamics (MD) study in Ref. [10], and the good behavior of

the macroscopic Rayleigh-Plesset theory opens the question

of a thermodynamic macroscopic-like description of the

nanobubble. MD is a very valuable approach because it allows

a molecular-scale description of the phenomena with simple

assumptions on the molecular interactions. Unfortunately, due

to the transient nature of the bubbles, and the very low

density of the vapor phase, a quantitative analysis of the

thermodynamic states inside the bubble is very difficult. Our

thermodynamic approach is a good complement of MD in this

case, since we directly have information on the thermodynamic

states and the energy fluxes. Furthermore, the present analysis

is not restricted to nanometerscale systems, which is a key

point for any investigation of the propagation of the pressure

wave induced by the formation of the bubble. In this article we

focus on the temperature and the pressure in the nanobubble,
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after its formation. In particular, we show that the initial very

large temperature gradient under which the nanobubble is

formed quickly relaxes, as the energy flow from the nanopar-

ticle switches from conductive to ballistic. This enables a

“bulk”–like treatment of the vapor bubble thermodynamics.

Subsequently the temperature inside the vapor is found to be

homogeneous while any temperature gradient is localized in

the liquid in the vicinity of the nanobubble. This is the result of

the ballistic nature of the heat flux inside the vapor nanobubble,

owing to its submicronic thickness. We also discuss the evolu-

tion of the pressure inside the vapor nanobubble. We show that

a pressure wave is first emitted from the hot nanoparticle, and

then viscous forces relax the internal vapor pressure, which

reaches Laplace pressure when the nanobubble has stopped

growing.

The article is structured as follows: We first depict the

physical situation that we address theoretically in Sec. II.

In Sec. III we describe the hydrodynamic phase field model

used to probe the nanobubble dynamics. The relaxation of

the temperature gradient during boiling is first discussed

in Sec. IV, before concentrating on the internal pressure

relaxation inside the vapor bubble in Sec. V.

II. MOTIVATIONS: SKETCH OF THE SYSTEM STUDIED

We briefly depict in this section the physical situation that

we will address theoretically. A nanoparticle having a radius

Rnp > 2 nm is surrounded by liquid water, and the whole

system is initially at thermal equilibrium at room temperature.

We break this equilibrium by heating up the particle during a

very short time at a temperature Tp through the interaction

with a laser pulse of short duration. The article aims at

describing the state of the fluid, subsequent to the heating

of the particle as represented in Fig. 1. A quantity of prime

importance at the nanoscale is the thermal boundary resistance

between the particle and the fluid, the latter being defined from

the thermal flux flowing across the solid-water interface and

the temperature jump:

R =
Tp − Ts

j
, (1)

where Tp is the nanoparticle temperature, Ts is the fluid

temperature at the nanoparticle surface, and j is the heat flux

density. For a gold-water interface, the interfacial conductance

1/R is typically between 50 and 150 MW/m2/K, depending

on the presence of a self-assembled monolayer of surfactants

between gold and water [14–17].

The three points that we aim at investigating in this article

are the following: (1) How does the nanobubble grow in

the steep temperature gradient? (2) What is the temperature

inside the bubble? The pressure? (3) How does the nanobubble

formed accomodate the very large Laplace pressures induced

by its strong curvature?

III. MODEL

Modeling the nucleation and growth of transient vapor bub-

bles around GNPs is a formidable challenge for a theoretician,

because of the highly out-of-equilibrium nature of the problem,

the large capillary effects present at the nanoscale, and the

occurrence of phase change under very large temperature

gradients. In addition, energy transport inside the bubble

is no longer diffusive but ballistic, because the dimensions

of the nanobubbles are smaller than the vapor molecules’

mean free path. Molecular dynamics simulations, although

offering the flexibility to model the relevant situations, become

prohibitive to simulate the dynamics of the nanobubbles,

because of the long-range effects involved [10,18].

Alternatively, a hydrodynamic model based on a free energy

density has been successfully applied to address interfacial

heat transport and boiling at nanoscale [19,20]. We have

extended basically this model to account for a finite thermal

boundary resistance between the GNPs and the surrounding

fluid, and also the possibility of ballistic energy transport inside

the bubble. Since the model was already presented in Ref. [12],

we shall not give all the details, but focus on the main physical

ingredients concerning the fluid dynamics and the different

energy fluxes.

A. Fluid model

We solve the hydrodynamic equations to describe the

dynamics of the fluid around the nanoparticle:

∂ρ

∂t
+ ∇ · (ρv) = 0,

mρ

(

∂v

∂t
+ v · ∇v

)

= −∇ · (P − D) , (2)

mρcv

(

∂T

∂t
+ v · ∇T

)

= −l∇ · v + ∇ · (λ∇T ) + D : ∇v,

FIG. 1. (Color online) Sketch of the system considered: a gold nanoparticle in water, initially heated by a strong laser pulse of short

duration, as represented by the green line in the left panel. The transient radial temperature profile across the particle is shown with blue lines

in the left panel, emphasizing the effect of a finite thermal resistance at the interface. The GNP/laser interaction may result in the formation of

a vapor nanobubble surrounding the GNP, as illustrated in the right panel.
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TABLE I. Thermophysical parameters in the liquid (top row) and

in the vapor (bottom row) at 297 K in SI units unless specified.

Densitya Cv
b λ η l γ

997× 10 4.13 0.606 8.98 × 10−4 5.4 ×108 72.0 ×10−3

2.22 ×10−2 1.44 0.019 9.9 × 10−6 6881

akg/m3.
bkJ/kgK.

where ρ, v, T stand, respectively, for the number density, the

velocity field, and the temperature field; m is the mass of a

fluid molecule. cv , l, λ, are the fluid specific heat, Clapeyron

coefficient l = T ( ∂P
∂T

)ρ , and thermal conductivity. D and P

stand for the dissipative stress tensor and pressure tensor. The

symbol “:” represents a dyadic product.

The dissipative stress tensor writes

Dαβ = η
(

∂αvβ + ∂βvα − 2
3

∇ · v δαβ

)

+ μ ∇ · v δαβ . (3)

The bulk viscosity μ is related to the shear viscosity η through

μ ≃ 5η/3, a reasonable approximation for hard spheres liquids

[21]. The thermophysical and transport coefficients of liquid

water and vapor at 297 K and atmospheric pressure are sum-

marized in Table I, together with the water surface tension γ .

Since the density ρ in (2) is a field with large spatial variations,

we need to account for the variation of the thermophysical and

transport coefficients with the local density. We choose a linear

relationship between those parameters and the density. As an

example, the local shear viscosity is given by

η(r) = ηvap +
ρ(r) − ρvap

ρliq − ρvap

(ηliq − ηvap), (4)

where the subscripts vap and liq refer to the bulk values from

Table I at 297 K.

The pressure tensor and the Clapeyron coefficient are

related to the local thermodynamic pressure, and the density

gradient according to

Pαβ =
[

PVdW − wρ△ρ +
w

2
(∇ρ)2

]

δαβ + w∂αρ∂βρ,

l = T

(

∂PVdW

∂T

)

ρ

. (5)

These latter expressions are dependent on the local state of

the fluid, through a free energy density f consisting of a

bulk van der Waals free energy density fVdW and a capillary

term. This free energy density fVdW and the corresponding

thermodynamic pressure write

f = fVdW +
w

2
|∇ρ|2, (6)

fVdW = ρkBT

[

ln

(

ρ
3

1 − ρb

)

− 1

]

− aρ2, (7)

PVdW =
ρkBT

1 − ρb
− aρ2. (8)

The parameters a, b, and the De Broglie wavelength 
 in

Eqs. (7) and (8) are set so as to represent the density of

liquid water at 297 K and atmospheric pressure and its critical

parameters. The relation between the parameters in Eq. (7) and

the critical parameters are given by

Pc =
a

27b2
= 22 MPa,

ρc =
1

3b
= 322 kg/m3, (9)

Tc =
8a

27bkB

= 647.3 K.

The parameter w appearing in the square gradient term in

the pressure tensor P quantifies the strength of the surface

tension forces in the fluid since it prevents the fluid from

developing steep gradients. Its magnitude was set so as to

match the surface tension γ of water at T = 297 K:

γ =
√

2w

∫ ρliq

ρvap

√

fVdW(ρ) − μeq(T )ρ + Peq(T ) dρ, (10)

where ρvap and ρliq are the coexistence vapor and liquid

densities on each side of a liquid-vapor interface at temperature

T . μeq(T ) and Peq(T ) are the chemical potential and pressure

of both the liquid and vapor bulk phases at equilibrium at

temperature T , as given by the van der Waals equation of

state.

The treatment of the Clapeyron coefficient l was done

separately, and for this coefficient we considered a dependence

in temperature in addition to the dependence in density. Indeed,

unlike the other parameters, l displays important variations

with the temperature:

l(ρ,T ) = lvap(T ) +
ρ(r) − ρvap

ρliq − ρvap

[lliq(T ) − lvap(T )], (11)

where lliq(T ) and lvap(T ) are the temperature-dependent values

of the Clapeyron coefficient at a given temperature T , as

depicted in Fig. 2. The values of lvap(T ) and lliq(T ) have

been extracted from the experimental data as provided by the

200 300 400 500 600

T (K)

4000

8000

12000

l 
(P

a)

4000

8000

12000
l 

(1
0

5
 P

a)

Liquid at density ρ
liq

Vapor at density ρ
vap

FIG. 2. (Color online) Evolution of the Clapeyron coefficient

with temperature in a liquid of density ρliq (blue solid line) and in

a vapor of density ρvap (red dashed line). The coefficients have been

obtained from experimental data [22].
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NIST [22]. The reference ρliq and ρvap have been taken to be

the saturation density at room temperature.

B. Nanoparticle

We now discuss the interaction of the fluid with the

nanoparticle. We account for the wettability of the fluid, the

interface resistance for thermal conduction, the continuity of

pressure, and the no-slip conditions. This gives the following

boundary conditions at the fluid-GNP interface:

(∇ρ)r=Rnp
=

�

w
, (12)

(∇T )r=Rnp
= −

G

λ
(Tnp − Ts), (13)

v(r = Rnp) = 0, (14)

[∇ · P(r = Rnp)] · n = 0. (15)

The potential � in (12) quantifies the wetting of the fluid

[19,23]. It can be directly related to the contact angle of the

fluid with a given solid, as expressed by Eq. (16), and illustrated

in Fig. 3. In all the following, we choose the value for �

corresponding to a contact angle of 50◦ at 297 K:

cos θ = 1 −
1

γ

∫ ρs
l

ρs
v

[
√

2w(fVdW(ρ) − μcoexρ + Pcoex) + φ]dρ.

(16)

The interface conductance G in (13) will be discussed

later in the description of the nanoparticle temperature.

Equation (15) stands for the continuity of pressure at the

particle surface, n being the unit vector perpendicular to the

GNP surface pointing outwards.

For the metal nanoparticle, the temperature Tnp is assumed

to be uniform, a reasonable hypothesis owing to the large

conductivity of the metal. This assumption was confirmed

in a simulation work for quasi-instantaneous heating of the

nanoparticle, and for continuous illumination in the limit of

-0.02 -0.015 -0.01 -0.005 0

φ (eV nm)

0

20

40
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80
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n
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n
g
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 θ
 (

d
eg
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)

FIG. 3. Equilibrium contact angle as a function of the solid-wall

parameter � appearing in Eq. (12).

small GNP radii Rnp < 50 nm, by Ref. [24]. The temporal

evolution of the nanoparticle temperature is described by

VnpCnp

dTnp

dt
= Fσnp

�(t/tp)

tp
− Snp φ, (17)

φ = φc + φb, φc = G(Tnp − Ts), (18)

φb = αρs

√

2k3
B

m

(

T 3/2
np − T

3/2

G

)

, (19)

where Snp, Vnp are the nanoparticle surface and volume,

respectively, and Cnp = 2500 kJ/m3K is the gold specific heat.

The laser interaction is described by the size-dependent GNP

absorption cross section σnp as given in Ref. [7], the fluence

of the laser pulse F , and the gate function �(t/tp) = 1 if

0 < t < tp and 0 otherwise, where tp stands for the duration

of the GNP heating.

The parameter tp = 7 ps used here is larger than the pulse

duration. Since we consider femtosecond pulses, the relevant

time for our study is the electron-phonon coupling time as de-

scribed by Ref. [25], which determines the GNP phonon equi-

libration time: for t � tp, the GNP lattice has received all the

energy initially provided to its electron gas by the laser pulse.

The electron interaction with the pulse prior to that coupling

is not accounted for, as its characteristic time is much smaller

than tp. Other phenomena such as particle melting are not mod-

eled in (17), but we discussed their importance in Ref. [12].

The last term in (17) describes the energy flux flowing away

from the nanoparticle. It is decomposed here, in a conductive

term φc and a ballistic heat flux φb which is nonvanishing

when the fluid locally vaporizes. The conductive flux is φ =
φc = G(Tnp − Ts) [14,18,26–28] where the thermal boundary

conductance G characterizing the gold-fluid interface writes

G = G0[1 + cos(θ )] and depends on the contact angle θ

[15,16]. The constant G0 has been taken to depend on the fluid

surface density ρs , so as to account for the drop of the conduc-

tance when the fluid locally vaporizes. We have considered

G0 = 1
2
{(GL − GV) tanh[(ρs − ρc)/δρ] + GL + GV}, where

GL and Gv denote the conductance when the fluid is in the

liquid state and vapor state. respectively, δρ = 0.025/b allows

us to describe the sharp transition between the two limiting

behaviors: liquid or vapor. The value of GL = 90 MW m2 K−1

has been extracted from available experimental and simulation

results for a gold-water interface. As for the value of GV, we

have assumed GV = 3
2
ρv

√

2k3
B

m
T∞, a form which is inspired by

the kinetic theory of gas, and which yields a value in agree-

ment with available experimental and simulation data [29].

Importantly, this value is typically 20 times lower than GL.

The ballistic heat flux φb takes nonnegligible values when

the fluid locally vaporizes. The conductive heat flux from

the nanoparticle to the fluid is small, and the GNP energy is

transferred to the fluid through ballistic transport in the vapor

nanobubble. This energy flux depends on the temperature

of the particle and that of the fluid at the position of the

liquid-vapor interface. The expression of the ballistic flux is

given in Eq. (19), where α is a dimensionless accommodation

coefficient here set to 0.1 [29,30], ρs is the fluid density at the

particle surface, and TG is the temperature of the fluid at the
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Gibbs position of the liquid-vapor interface. The expression

of the ballistic flux in (19) is inspired by the theory of energy

transport in a Knudsen layer [30]. This ballistic transport is

relevant only for bubbles thickness eb small enough so that

the vapor can be considered as a Knudsen gas. This criterion

is obeyed for Knudsen number Kn = λmfp/eb < 1, where

λmfp ≃ 100 nm [31] is the mean free path of water molecules

inside the bubble.

We choose to define the radius of the bubble Rb as the

location of the Gibbs surface where the average density lies:

ρ(Rb) = (ρmin + ρmax)/2. ρmin and ρmax stand, respectively,

for the minimum and maximum densities in the fluid. It

should be finally mentioned that when a bubble appears,

energy conservation is ensured through the addition of a flux

φ′
b = φbR

2
np/R

2
b localized at the liquid-vapor interface, and

which represents the amount of energy per unit of time that is

received by the liquid stemming from the ballistic flux φb.

C. Boundary conditions

In our simulations we implemented damping conditions at

the boundaries to avoid any reflection of the pressure wave

that may induce a premature collapse of the bubble. The

method we use is inspired by the perfectly match layers (PML)

[32,33] used in finite element methods. To do so, we artificially

damped the gradient of any field so that the boundaries do not

generate reflected waves that may perturb the dynamics in the

simulation cell. As an example, for the density gradient, we

used

∇ρ(r) =
1

1 + ǫ(r)

∂ρ

∂r
, (20)

where ǫ(r) is a function linearly increasing with the radius

if r > rPML and ǫ(r) = 0 otherwise. As will be discussed

later, the generation of nanobubbles implies the emission of a

pressure wave to relax the excess pressure at the nanoparticle

surface. This pressure wave flows away from the particle,

and we need to ensure that the system boundaries will not

artificially reflect them toward the GNP. After several tests,

we chose a slope 0.1 for the evolution of ǫ(r) versus radius

so ǫ(r) = 0.1(r − rPML). A smaller value of this slope leads

to waves flowing through the damping region and creates a

depletion zone after the passage of the wave. A higher value

blocks the pressure wave and locally creates an area of excess

pressure at the PMLs that act as a solid wall and reflects the

wave towards the nanoparticle.

We study particles of radii varying from 2 to 50 nm. We

consider a spherical symmetry that allows us to focus only on

the radial component of the fields. All the spatial derivatives

appearing in the conservation equations (2) and the boundary

conditions (12)–(15) are calculated using spherical geometry.

The size of the simulation cell, centered at the position of the

GNP center, is L = 260 nm for Rnp < 50 nm and L = 390 nm

for Rnp = 50 nm. The size of the damping area L− Rnp − rPML

is 65 nm. With these values, the region where the fluid

dynamics is undamped has a spatial extension L − Rnp, which

is more than 140 nm large. We use a time step of 0.2 fs and

a lattice step of 0.07 nm. The velocity field is calculated on a

staggered grid, shifted from the main grid by half a lattice step.

16 18
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ρ
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∞
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T
/T

c

Density
Temperature

ρ
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T
spin

Temperature drop
at the GNP surface

x
spin

ΔT=T
np

-T
s

FIG. 4. (Color online) Density and temperature profiles in the

fluid surrounding a nanoparticle when a bubble forms. Here the

particle radius is Rnp = 15 nm and the laser fluence F = 101.25 J/m2.

The dotted lines show, from top to bottom, the position of the spinodal

temperature Tspin, the average density, and the critical density ρc.

The red dashed arrow on the left emphasizes the temperature drop

at the surface of the nanoparticle. On this figure we indicate the

instantaneous position of the spinodal crossing, at a distance xspin from

the GNP surface. This corresponds to the crossing of the spinodal line,

at the temperature Tspin.

IV. THERMODYNAMIC ANALYSIS

In this section we aim at providing a thermodynamic

description of the vapor nanobubble, after its formation. In

all the following, we consider that a bubble is formed if

there is at least one point in the fluid where the density

is below the water critical density ρc = 322 kg/m3. We
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2

F=108 J/m
2

F=97 J/m
2

F=92 J/m
2
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FIG. 5. (Color online) Temporal evolution of the nanobubble

radius Rb around a 10 nm GNP for different pulse fluences (the

higher fluence giving the larger bubbles). A secondary bubble is

observed for strong pulses. The arrows indicate the appearance

time for each simulation. The inset displays the nanobubble radius

observed experimentally around a 9 nm diameter nanoparticle [7].

The solid line is a guide to the eye.
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FIG. 6. (Color online) Temperature of the particle (Tnp) and the fluid at the surface (Ts), 1 nm from the surface, and 2 nm from the surface

as a function of time. Here Rnp = 10 nm, F = 92 J/m2 (top left), F = 108 J/m2 (top right), F = 162 J/m2 (bottom left), and F = 271 J/m2

(bottom right).

already showed [12] that nanobubble formation coincides with

spinodal crossing in the fluid, at a distance xspin between 1 and

2 nm from the GNP surface, in liquid water. This occurs at a

temperature Tspin ≃ 0.9Tc ≃ 550 K for liquid water. Spinodal

crossing corresponds to a fluence-energy per unit of GNP

cross section, larger than a size-dependent threshold, and we

assume that we are working under these condition. Here we

are mostly interested in the dynamics of the nanobubble after

the vaporization process.

Figure 4 displays an example of density profile, at the

moment when a bubble forms. In this figure, the gradient

of density at the particle surface is due to the wettability

of the fluid as described by (12). The red dashed arrow on

the left emphasizes the temperature drop at the surface of

the nanoparticle due to the interfacial thermal resistance that

delays the energy transfer from the GNP to the fluid.

Figure 5 displays the temporal evolution of the bubble

radius, for different fluences beyond the threshold. This figure

is quite similar to Fig. 2 in our previous article [12]. The radius

of the nanobubble is determined based on the instantaneous

location of the Gibbs dividing surface.

For fluences just above the threshold (F = 92 J/m2 in

Fig. 5), we do observe a short-lived thin vapor layer. On

increasing the laser fluence, mature bubbles are generated

which first expand in the liquid and reach a maximal size

before collapsing. A second bubble may be produced, if

the fluence is high enough (F � 162 J/m2 in Fig. 5).

The production of this second nanobubble is explained by

the compression of the vapor bubble at the ultimate stage of

the collapse, leading to nanoparticle heating. For strong pulses

the dynamics of the nanobubble is found to be asymmetrical,

the growth being faster than the collapse. This asymmetry is

also observed experimentally (and numerically in Ref. [10])

as evidenced by the inset of Fig. 5, and it was explained in

Ref. [12] by the adiabatic nature of the bubble expansion,

followed by the isothermal bubble collapse. We will revisit

this scenario in this article on the basis of the thermodynamic

analysis.

We analyze now the temperature of the nanoparticle before

and after boiling, as represented in Fig. 6. On these figures,

we have also displayed the temperature of the fluid at different

distances from the GNP. We choose to focus on distances

1 nm and 2 nm from the nanoparticle, which for a 10 nm GNP

corresponds to the typical value of the characteristic distance

xspin where the spinodal line is locally crossed. Figure 6 shows

that the nanoparticle is rapidly heated by the pulse, while due

to the interface resistance there is a delay in the heat transfer to

the fluid. This results in an important temperature jump at the
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FIG. 7. (Color online) Radial temperature �T/Tc=(T −T∞)/Tc

(left panels) and density profiles ρ/ρc (right panels), taken at different

times during the growth or collapse of the bubble. Here Rnp = 10 nm

and F = 271 J/m2. From top to bottom, the corresponding times

are t = 17.5 ps (bubble formation), t = 64 ps (growth), t = 134

ps (maximal radius), and t = 322 ps (collapse). The corresponding

evolution of the radius is given in the bottom panel, where the

black squares indicate the different times when the temperature and

density profiles have been calculated. On the temperature profiles: the

vertical solid lines show the instantaneous position of the liquid-vapor

interface. On the density profiles: the black dashed lines show the

local temperature-dependent values of the saturation limits. The

dashed-dotted black lines show the local temperature-dependent

values of the spinodal limits. On the top of the figure we also identified

the thermodynamic domains delimited by these curves: on the left,

close to the GNP, the temperature of the fluid is higher than the

critical temperature and the fluid is supercritical (5). For r � 1.17 nm

the temperature in water is below Tc, and the saturation and spinodal

curves delimit the stable liquid region (1) on the top, the metastable

liquid region (2), the unstable region at the center, and the metastable

(3) and stable (4) vapor regions.

GNP surface, represented by a dashed arrow on the left figure

of Fig. 6.

Before vaporization, we observe a temperature decrease

that can be described by an exponential evolution Tnp − T∞ ∼
e−t/τ where τ = RCnp/3G = 60 ps for a 10 nm particle. In

this regime, the nanoparticle cooling is controlled entirely by

the interface thermal conductance G. Note that for the lowest

fluence analyzed, this exponential regime persists all over the

time window, as only a short-lived thin vapor layer is produced

and the density at the nanoparticle surface stays above the

critical value due to the wettability of the fluid; see the top left

panel of Fig. 6.

When the fluence is larger, and after vaporization occurs

the nanoparticle cools down very slowly, as seen in Fig. 6.

In this regime the energy transfer between the nanoparticle

and the fluid switches from conductive to ballistic, and the

nanoparticle cooling is controlled by the ballistic flux φb of

Eq. (19). The transition between conductive and ballistic is

accompanied by an enhanced temperature drop. This drop

is explained by the large increase of the interface thermal

resistance when vaporization occurs. As a result, the fluid in

the vicinity of the nanoparticle cools down sharply and sees

its temperature decreasing by hundredths of kelvins in a few

picoseconds. After this drop, the temperature and density in

the fluid close to the particle reach a steady value during more

than 200 ps, as visible in the bottom panels of Fig. 6. Also

importantly, the temperature in the vapor seems to become

rapidly homogeneous, and the temperature gradient initially

present before vaporization has relaxed significantly. The

temperature gradient relaxation is best visualized in Fig. 7,

which present the simultaneous evolutions of the tempera-

ture and density profiles across the vapor bubble and the

liquid.

When a nanobubble forms, the temperature gradient is first

very large on the order of several kelvins per angstroms as

evidenced in the top panels of Fig. 7. At this moment, there

is a region of limited spatial extension where the density

is below ρc and the liquid-vapor interface is diffuse. Just

after the nanobubble generation, the temperature gradient has

relaxed and the liquid-vapor interface becomes sharp. The

relaxation of the temperature gradient is clearly seen in Fig. 8

for different laser fluences. Here we plotted the maximal

temperature gradient in the fluid. The corresponding position
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FIG. 8. (Color online) Relaxation of the maximal temperature

gradient in the fluid for the different fluences considered in Fig. 6.

Here Rnp = 10 nm.
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FIG. 9. (Color online) Position where the maximal temperature

gradient occurs; see Fig. 8. The dashed lines show the instantaneous

position of the nanobubbles for the different fluences analyzed.

where the maximum occurs is shown in Fig. 9. For the three

highest fluences, the maximal temperature gradient is shown

to relax quickly in a few picoseconds. This fast relaxation is

explained by the huge drop of the thermal resistance from

1/GL to 1/Gv, when the bubble appears. This relaxation is

accompanied by rapid cooling of the vapor in the bubble as

testified by Fig. 7. Note that the temperature in the nanobubble

is almost homogeneous. Some spatial variations may be seen

during the early growth, which are certainly attributed to

sound waves propagating in the vapor. The uniformity of the

temperature in the vapor is due to the drop of the thermal

boundary conductance from GL to Gv subsequent to the switch

from conductive to ballistic heat transfer in the vicinity of

the nanoparticle. This fast drop yields an almost vanishing

temperature gradient in the vapor, according to the boundary

condition [Eq. (13)]. On the other hand, because the liquid

collects the ballistic heat flux φb the local temperature gradient

in the liquid ∂T
∂r

≃ −φ′
b/λliq may take appreciable values as

shown in Fig. 7.

The localization of the temperature gradient is clearly

confirmed by Fig. 9, which shows that the position where

the maximal gradient occurs remains in the vicinity of the

nanobubble interface. From a thermodynamic point of view,

Fig. 7 shows that the liquid in the vicinity of the nanobubble

follows the saturation line. Hence, we can conclude that

just after the temperature relaxation step, the thermodynamic

state of the liquid corresponds to saturation conditions. Also,

importantly, we conclude from the inspection of the profiles

that beyond a distance x ≃ 2 nm from the GNP surface the

density and temperature in the vapor are almost homogeneous.

Hence, determining the thermodynamic path followed by the

fluid at a fixed distance x ≃ 2 nm from the GNP surface should

provide information regarding the thermodynamic evolution of

the vapor nanobubble.

We have performed such an analysis in Fig. 10, which

represents the local thermodynamic state of the fluid at a given

time, in a temperature-density diagram.

0.1 1

ρ/ρ
c

1T
/T

c

18 ps

64 ps

134 ps

322 ps

FIG. 10. (Color online) Local thermodynamic state of the fluid

on a T -ρ diagram, taken at different times. The corresponding times

are the same as Fig. 7: t = 17.5 ps (bubble formation), t = 64 ps

(growth), t = 134 ps (maximal radius), and t = 322 ps (collapse).

The fluence is here F = 271 J/m2 and Rnp = 10 nm. The solid red

line stands for the saturation curve, which delimits the stable and

metastable phases for the vapor (on the left) and for the liquid (on

the right). The dashed-dotted blue line stands for the spinodal curve,

which represents the limit between the metastable phases and the

unstable liquid-vapor zone (at the center).

The generation of the nanobubble leads to an important

elevation of the temperature and pressure close to the particle,

which generates a local supercritical region of small spatial

extension. This sudden pressure increase induces a pressure

wave, as we will analyze in Sec. V. This wave moves into

the liquid and propagates quickly towards the boundaries

of the system and does not interfere with the thermodynamics

of the vapor nanobubble, which we discuss now.

Figure 10 confirms that the temperature inside the vapor

nanobubble is almost homogeneous. Also, it is clear that

the temperature gradient is localized in the liquid whose

thermodynamic state follows the saturation line. The relative

homogeneity of the temperature inside the bubble allows us

to probe the thermodynamics of the vapor during the growth

and collapse. To this end, we have plotted the evolution of the

thermodynamic state of the fluid after the bubble formation

in Fig. 11. We focused on two distances, at contact and at a

distance x = 2 nm from the particle surface.

Even for the fluences considered, which are far from the

generation threshold, the density at the GNP surface stays

at best in the unstable region. The global behavior that is

highlighted by Fig. 11 is the following: the liquid at 2 nm

from the GNP surface is first heated and follows the saturation

line. Then cooling proceeds and is accompanied by local

vaporization and subsequent dilation of the vapor. Cooling

stops when the nanobubble reaches its maximal radius, and

the further thermodynamic evolution of the vapor is clearly

isothermal, as seen in Fig. 11. It is immediately visible on

Fig. 11 that the temperature during the collapse is constant and

slightly above T∞. Any temperature gradient is then localized

in the liquid.
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FIG. 11. (Color online) Temporal evolution of the system on a T -ρ diagram from the beginning of the pulse to the collapse of the first

bubble, at the GNP surface (black circles) and 2 nm from the GNP surface (purple triangles). Here Rnp = 10 nm, F = 162 J/m2 (left), and

F = 271 J/m2 (right). The solid red line stands for the saturation curve, which delimits the stable and metastable phases for the vapor (on

the left) and for the liquid (on the right). The dashed-dotted blue line stands for the spinodal curve, which represents the limit between the

metastable phases and the unstable liquid-vapor zone (at the center). The black square on the right indicates the thermodynamic state of the

system prior to heating (ρ∞,T∞).

In conclusion, we saw that the thermodynamic evolution of

the vapor phase may be described by a bulklike treatment, at

least as soon as locally the fluid has cooled down below the

critical temperature Tc. This is mostly related to the change of

the nature of the energy flux at the GNP surface when the fluid

vaporizes, which concentrates the temperature gradient in the

liquid, which locally follows the saturation line consistent with

this gradient. These considerations shed light on the evolution

of the pressure inside the nanobubble, which we analyze in the

next section.

V. PRESSURE

As we briefly mentioned, the pressure in the fluid first

increases drastically when a first vapor layer surrounds the

GNP.

A. Pressure wave

This sudden increase is accompanied by the propagation

of a pressure wave, as best seen in Fig. 12. Here we plot the

thermodynamic pressure PVdW profiles in the fluid for different

times after vaporization sets in. Remarkably the pressure in

the liquid close to the particle can reach very large values,

well above the critical pressure. This is reasonable since

the formation and further growth of a nanobubble requires

a typical pressure on the order of the Laplace pressure

�PLaplace = 2γ /Rnp ≃ 10 MPa for a nanoparticle of radius

Rnp = 15 nm. This value compares well with our simulation

results when a bubble is generated: in the inset of Fig. 12 the

pressure in the fluid close to the particle at 21.75 ps is more

than 40 MPa, which is well above the Laplace pressure.

While the bubble forms, a part of the excess pressure is

released through a pressure wave that flows away from the

particle. It is important to remark that the generation of a

pressure wave is due to the sudden dilation of the liquid, and it

is emitted before the nanobubble appears. In the case depicted

in Fig. 12, the nanobubble forms at 50 ps, and the pressure wave

has already moved over approximately 70 nm. The pressure

wave moves into the liquid, with a velocity which is found

to be close to the speed of sound in the unheated liquid. The

mean value of the wave velocity has been determined based

on the distance traveled by the maximum of the wave, as

schematically represented in Fig. 12. The generation of this

pressure wave is of great interest and is considered as one

of the phenomena that lead to cell destruction in medical

applications [13]. Our simulations confirm that though it is

generated locally at the nanoparticle surface it moves over large
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FIG. 12. (Color online) Pressure wave PVdW profiles in the fluid

surrounding a nanoparticle at different times. Here Rnp = 15 nm and

F = 101.25 J/m2. The dashed lines stand for the pressure P∞ far from

the GNP. The inset is a closer view of the GNP surface. The arrows

on the main figure indicate the relative displacement of the pressure

maximum between two times used to calculate the corresponding

average velocity of the pressure wave.
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FIG. 13. (Color online) Evolution of the local pressure P in the

vapor bubble as a function of the nanobubble instantaneous volume

Vb. The pressure is estimated at a distance 1 and 2 nm from the

GNP surface. The dashed lines show the behavior P ∼ V γ , with

γ = −2.6, −5/3, and −0.4. The inset shows the evolution of the

internal pressure with time. Here Rnp=10 nm and F = 271 J/m2.

distances and could therefore interact with the cell components

far from the particle [34,35].

After the bubble generation (total time elapsed t � 50 ps

in the case presented in Fig. 12) the pressure within the

vapor becomes rapidly homogeneous and decreases during

the bubble growth. On the inset of Fig. 12 we see that in the

liquid close to the vapor (r � 17 nm) the pressure is negative,

consistent with the local metastable nature of the liquid state.

B. Internal nanobubble pressure

To further elucidate the thermodynamic nature of the

growth of the bubble, we plotted the evolution of the pressure

inside the vapor as a function of the instantaneous bubble

volume Vb in Fig. 13. The simulation results are compared

to power law behaviors: P ∼ V
−γ

b . γ = 1 classically corre-

sponds to an isothermal evolution, and γ = 5/3 refers to an

adiabatic evolution.

Based on Fig. 13 we conclude that indeed neither behavior

is observed. The growth of the nanobubble is rather consistent

with an exponent γ = 2.6, while the collapse corresponds

to γ = 0.4. Indeed, these discrepancies may be explained,

given the evolution of the number of vapor molecules during

the lifetime of the nanobubble, as represented in Fig. 14.

Clearly, the number of vapor molecules inside the nanobubble

is not constant and is decreasing during both the bubble

growth and collapse. Hence, condensation becomes operative

as soon as a nanobubble is formed. This conclusion enables

us to appraise the different sources of energy exchange in the

nanobubble. Figure 15 summarizes the different contributions

to the energy rate in the nanobubble and in the liquid. During

the growth, dilation of the vapor occurs and is concomitant with

condensation as evidenced by the strong local compression

of the interface. Also, thermal conduction turns out to be

negligible in the vapor bubble, while it is significant in the
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FIG. 14. (Color online) Evolution of the number of vapor

molecules in the bubble, for different fluences (empty symbols). The

corresponding volume bubbles are displayed with filled symbols.

Here Rnp = 10 nm.

liquid due to the finite temperature gradient. Viscous heating

is small as compared with the other sources of heating, in

the vapor and in the liquid as well. The behavior of the vapor

phase is thus compatible with an adiabatic expansion since very

little heat is exchanged, but the number of molecules in the

vapor phase is not constant. During the collapse, compression

in the vapor competes with thermal conduction to maintain

the vapor temperature constant. Again, condensation sets in

as represented by the peak of the compression term at the

interface. Viscous heating contributes only slightly to heat the

interface. However, if viscosity has little effect on thermal

transport, we shall see below that it still plays an important

role in momentum transport.

Alternately, the role of the viscous forces may be inferred

from a mechanical analysis. We already showed that the

evolution of the nanobubble radius may be described in terms

of the Rayleigh-Plesset equation, which is classically used to

describe cavitation dynamics [12]:

mρliq

(

RbR̈b +
3

2
Ṙb

2

)

= Pi(t) − Pe(t) − 2
γ

Rb

− 4η
Ṙb

Rb

,

(21)

Pi(t) = P max
i

[

Vb,max

Vb(t)

]ζ

, (22)

where Rb is the bubble radius, Pi and Pe are the internal

and external pressures, Vb(t) and Vb,max are the nanobubble

volumes at time t and when the bubble radius is maximal, and

γ is the fluid surface tension. mρliq is the mass density of the

liquid far from the nanoparticle given in Table I. The viscosity

η used here is the shear viscosity of water [36].

We have compared in Fig. 16 the relative contribution

of the different mechanical driving forces contained in the

Rayleigh-Plesset equation (21). Of particular interest here is

the relaxation of the internal pressure, which turns out to be

very large during the bubble growth. At the early stage of

the growth, the difference in pressure between the internal
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FIG. 15. (Color online) Spatial profiles of energy rates (per unit of volume) during bubble growth (left) and collapse (right) (compression

−l∇ · v; conduction −∇ · Jth with Jth = −λ∇T ; and viscous heating). The inset shows the corresponding density and temperature profiles.

Here Rnp = 10 nm, the fluence is 271 J/m2, and the ballistic flux is set at zero.

and the external pressure overcomes the Laplace pressure.

The mechanical analysis allows us to understand how the

nanobubble may accommodate very large internal pressures.

We can evaluate the relative importance of the different

terms through the computation of the associated energy during

the growth. The results are given in Table II. When the

bubble reaches its maximum radius, the energy provided by the

difference in pressure between the vapor and the surrounding

liquid is balanced by the work of the Laplace pressure. More

importantly, the viscous forces dissipate energy in a more

important way than any other contribution. This importance of

the viscosity can be appreciated by the estimation of the

Reynolds number during the bubble growth:

Re =
mρliqvgrowth(Rmax − Rnp)

η

=
mρliq(Rmax − Rnp)2

η�tgrowth

, (23)
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FIG. 16. (Color online) Temporal evolution of the terms driving

the bubble dynamics in the Rayleigh-Plesset equation (21). vb stands

for the liquid-vapor interface velocity.

where vgrowth is the average velocity of the bubble during

its growth. An evaluation of this Reynolds number gives

0.15 for the case F = 162 J/m2 and 0.2 for F = 271 J/m2,

which confirms the importance of the viscous processes.

The same calculation for the collapse gives 0.07 and 0.1,

respectively, which highlights the effect of viscosity on

momentum transport.

VI. CONCLUSION

In summary, we presented a thermodynamic analysis of the

dynamics of vapor nanobubbles in water, based on a phase-

field hydrodynamics model. This situation is relevant to recent

experiments, where the vapor nanobubbles have been gener-

ated by metallic nanoparticles heated by a strong laser pulse.

We emphasize that the nanobubble is generated under a

very large temperature gradient, and locally exceeding the

spinodal temperature. In a few picoseconds after its generation

however, the temperature inside the bubble sharply drops off by

hundredths of kelvins. This fast relaxation is attributed to the

sudden increase of the interfacial thermal resistance, present

at the nanoparticle-water interface. After its generation, the

temperature inside the bubble becomes homogeneous, while a

finite temperature gradient is maintained in the liquid due to the

ballistic heat flux flowing across the bubble. The description of

the nanobubble as a quasihomogeneous medium allows us to

unambiguously identify the thermodynamic path followed by

the vapor. The thermodynamics analysis confirms our previous

finding [12]: the bubble expansion is found to be adiabatic,

although the number of molecules in the vapor phase is not

constant and corresponds to fast vapor cooling, while the

TABLE II. Energy (10−2 fJ) associated with the different terms

driving the bubble growth in Eq. (21) for F = 271 J/m2.

Vapor pressure External pressure Pressure jump Laplace Viscosity

Pi Pe Pi-Pe 2γ /Rb 4ηṘb/Rb

5.25 −2.81 8.06 −8.29 −9.68
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bubble collapse is rather found to be isothermal. This relative

asymmetry also found experimentally is interpreted by the

role played by viscous forces in the nanobubble dynamics. At

the early stage, the pressure inside the bubble is larger than

the Laplace pressure, which is huge at the scale considered.

The excess pressure is relaxed by the viscous stress developed

by the liquid until the bubble becomes mature and collapse

proceeds.

In the future, we plan to study how the nanobubble maximal

size may be optimized.
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