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In this paper we perform quasistatic shear simulations of model amorphous silicon bulk samples with

Stillinger-Weber-type potentials. Local plastic rearrangements identified based on local energy variations are

fitted through their displacement fields on collections of Eshelby spherical inclusions, allowing determination

of their transformation strain tensors. The latter are then used to quantitatively reproduce atomistic stress-strain

curves, in terms of both shear and pressure components. We demonstrate that our methodology is able to capture

the plastic behavior predicted by different Stillinger-Weber potentials, in particular, their different shear tension

coupling. These calculations justify the decomposition of plasticity into shear transformations used so far in

mesoscale models and provide atomic-scale parameters that can be used to limit the empiricism needed in such

models up to now.
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I. INTRODUCTION

The Eshelby inclusion [1] is the cornerstone of most meso-
scopic models of plasticity and rheology in amorphous mate-
rials [2–11]. Eshelby inclusions can be thought of as localized
plastic cores embedded in an elastic homogeneous surround-
ing. Their relevance to amorphous plasticity is rooted in the
early concept introduced by Argon [12] and Spaepen [13], who
proposed that elementary deformation units in sheared amor-
phous systems consist in local irreversible rearrangements
involving few tens of particles. The latter were initially related
to the free volume theory [13] and called shear transforma-
tions [12] but are now commonly called shear transformation
zones (STZs) after the work of Langer et al., who, among
others, extended the STZ concept to construct mean-field con-
stitutive models of the mechanics and rheology of amorphous
solids [14–16]. STZs have been evidenced experimentally
through confocal microscopy in colloidal glasses [17,18] and
their signature in displacement fields has been observed
for decades in atomistic simulations [11,15,19–22].
However, the respective roles of shear and densification
are still a matter of debate that should be solved to propose
a realistic, and, if necessary, material-dependent, model of
plasticity in amorphous materials.

From a continuum perspective, a strain transformation in a
localized volume embedded in a homogeneous solid leads to a
characteristic elastic response of the material, which depends
on the elastic constants, the volume and shape of the inclusion,
and the boundary conditions. Determining the strain and stress
fields is the so-called inclusion problem, first addressed by
Eshelby [1]. When the local transformation is a shear strain, the
material response has a quadrupolar symmetry, as commonly
reported in atomistic simulations [11,15,19–22]. Using the
analytic solution for the cylindrical inclusion problem in two
dimensions, it was shown that the energy minimum for a
collection of pure shear inclusions is obtained by a linear
arrangement that can be associated with the formation of
a shear band [8]. However, the nucleation of such shear
inclusions and the associated energy barriers are still open
questions [23].

Despite their ubiquitous nature, few attempts have been
made to extract the features of Eshelby inclusions from
molecular dynamics (MD) simulations in amorphous sys-
tems [21,22]. As a result, mesoscopic models have so far
relied on rough estimates of both the size and the strain
of the Eshelby inclusions [2,5–9,11,24,25]. Moreover, it has
never been verified from the atomistic scale if the stress-strain
curve of a sheared amorphous solid could be reproduced solely
from the knowledge of the underlying collection of Eshelby
inclusions. This question is far from trivial because amorphous
solids are known to be elastically heterogeneous [26] and it
is therefore not clear whether a homogeneous model, which
is only a first-order approximation, can faithfully reproduce
atomistic data. Such a connection would, however, be highly
beneficial to multiscale approaches of plasticity [3].

In this paper, we perform in three dimensions constant-
volume quasistatic shear atomistic simulations of model
amorphous silicon bulk samples described by two empirical
interatomic potentials that differ in the strength of their bond
directionality. Plastic rearrangements are identified following
a technique based on local energy differences [27]. The
corresponding atomistic displacement fields are then fitted to
a superposition of spherical Eshelby inclusions to determine
their transformation tensors. The latter are finally used to
predict the stress-strain relation, which is compared to the
atomistic result. The accuracies of different fitting schemes
are compared, emphasizing the respective role of local shear
and local densification on the macroscopic constitutive law.
Also, the comparison between different interatomic potentials
allows us to underline the consequences of specific chemical
bondings for local shear and densification.

II. MOLECULAR DYNAMICS SIMULATIONS

AND METHOD OF ANALYSIS

A. Preparation and deformation of the amorphous samples

Amorphous samples were obtained using a protocol similar
to that in Ref. [27]. Most of the samples contained N = 32 768
atoms in cubic periodic cells with a linear dimension of
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TABLE I. Structural and elastic properties of SW and SWM

initial amorphous samples compared to experimental data. Zav is

the average coordination number (cutoff, 2.85 Å); G is the shear

modulus, and ν Poisson’s ratio.

Density (g/cm3) Zav G (GPa) ν

SW 2.30 4.07 35 0.34

SWM 2.20 3.98 60 0.25

Expt. 2.22–2.28a 3.6–3.9a 33–49b 0.22–0.27b

aFrom Refs. [31] and [32].
bFrom Refs. [33] and [34].

about 8.7 nm. To test size effects, a few runs were performed
on samples with N = 262 144 atoms with linear dimensions
twice as large as the reference configuration. We started
from systems equilibrated in the liquid phase at 3500 K
with Tersoff potential [28]. The samples were quenched at
constant volume with a quench rate of 1011 K/s down to
about 100 K. The potential energy was then minimized using a
damped MD algorithm until all the atomic forces were below
10−3 eV/Å. Samples were further relaxed at 100 K during
20 ps using two parametrizations of the Stillinger-Weber
potential: the original parametrization of Stillinger and Weber
(SW) [29] and a modification of SW to model brittle fracture
(SWM) [30]. These two potentials display different plastic
behaviors in crystalline silicon: SW samples are more ductile,
while SWM samples are more brittle [30,42]. Practically, the
SWM parametrization shows a higher bond directionality, with
a three-body term twice as large as the original SW potential.

Before applying the deformation, we relaxed both the
atomic positions using the above force criterion and the cell
linear dimensions to obtain equilibrium configurations with a
pressure below 0.5 MPa in absolute value. This preparation
protocol leads to initial amorphous structures with properties
summarized in Table I, in fair agreement with experiments.

The samples were then subjected to series of simple
shear deformations with an engineering shear strain increment
δγxy = 10−3. The strain increments are applied to the cell
vectors to ensure a homogeneous (xy) shear deformation in
the periodic box, leaving the cell vector along z unchanged. A
potential energy minimization using damped MD follows each
increment, with the same force criterion as above. The output
of the atomistic simulations is thus a succession of equilibrium
configurations at increasing strains, γi = iδγxy .

Figure 1 displays representative examples of stress-strain
curves obtained with both versions of the SW potential.
At small strains, the curves are close to linear, while an
increasing plastic activity is progressively evidenced by a
growing negative curvature at intermediate strains. At around
20% strain, the curves flatten into a plateau, which ends up
with a large stress drop that corresponds to the formation of
a shear band aligned with the direction of simple shear (y).
After this, the system enters the plastic flow regime.

B. Identification of plastic events

In order to identify plastic events, we computed after
each forward strain increment (i.e., with a positive δγxy) the
reverse step by applying a −δγxy deformation and relaxing
the system again. For each strain γi , we thus have a current
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FIG. 1. Stress-strain curves obtained at constant volume under

quasistatic simple shear. Black curve: SW potential. Red curve: SWM

potential.

configuration, {rrr}curr, and a “reversed” configuration, {rrr}rev,
obtained after an incremental strain cycle γi → γi+1 → γi . If
no plastic event occurs between γi and γi+1, {rrr}curr and {rrr}rev

are identical to within numerical accuracy, while if a plastic
event occurs, the difference between the two configurations
can be used to characterize the event. To do so, we follow
the approach described in Ref. [27], which can be briefly
summarized as follows. SW-like potentials contain only short-
range local energy terms. Hence a local energy measure can
be defined to quantify the changes between an initial and a
final configuration, in the present case, between {rrr}curr and
{rrr}rev. The energy variation around an atom ia is given by the
squares of the potential energy contributions in which the atom
is involved. For an SW potential, the sums run over the two-
and three-body terms involving the neighbors of atom ia:

PEat(ia) =

⎛

⎝

∑

ja

∣

∣V 2b
ia ,ja

({rrr}curr) − V 2b
ia ,ja

({rrr}rev)
∣

∣

2

+
∑

ja

∑

ka

∣

∣V 3b
ja ,ia ,ka

({rrr}curr) −V 3b
ja ,ia ,ka

({rrr}rev)
∣

∣

2

⎞

⎠

1/2

,

(1)

where V 2b
ia ,ja

is the two-body energy due to the interaction

between atom ia and atom ja , and V 3b
ja ,ia ,ka

the three-body
contribution from the triplet ja,ia,ka centered on ia .

With the initial and final configurations being related by
an incremental strain cycle, we associate PEat(ia) with an
atomic plastic activity. Indeed, PEat(ia) is 0 within numerical
accuracy if no irreversible rearrangement occurs between γi

and γi+1, and conversely, PEat(ia) is positive and peaked at the
rearrangement core if a plastic deformation occurs during the
strain cycle.

From PEat(ia), a continuous field PE(rrr) is obtained using
the coarse-graining procedure outlined in Ref. [35] with

PE(rrr) =
∑

ia

PEat(ia)

(

1

(πω2)3/2
exp −

|rrr − rrr ia |
2

ω2

)

, (2)
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FIG. 2. Size of the main plastic event at γ = 0.168 in an SW

sample. Black curve: radial distribution of plastic energy PE(r)

around the attractor. Red curve: exponential fit with a characteristic

size λ = 3.36 Å.

where ω is the Gaussian width, chosen close to the average
first-neighbor distance (ω = 2.6 Å). The field PE(rrr) is then
subjected to a topological analysis reminiscent of the Bader
charge analysis in quantum chemistry [36]. Practically, PE(rrr)
is written on a 3D grid (100×100×100) and its attractors are
found along with their associated basins. The attractors are the
local maxima of PE(rrr), while a basin is defined as a region
of space traversed by all the gradient paths that terminate at a
given attractor. Technical details concerning the determination
of the maxima and basins are given in Ref. [27].

The relative importance of the attractors can be evaluated by
integrating PE(rrr) in each basin. We later refer to this quantity
as the plastic intensity of an attractor. From this analysis, we
now identify the relevant plastic events with the attractors
bearing a significant plastic intensity. Even in the absence of
plastic events during a step increment, the initial and reversed
configurations will not be strictly equivalent because of the
finite numerical accuracy. This gives rise to thousands of very
small and insignificant attractors that have to be removed from
the analysis. To do so, we have applied two criteria discussed
and tested in Ref. [27]. The first depends on the heterogeneities
in the distribution of the attractor intensity and the second
selects additional attractors whenever they are close to atoms
that display a nonaffine displacement larger than 0.01 Å.

After this first selection the total number of events found
in the range 0 < γ < 0.3 is about 13 000 for an SW sample.
To obtain a computationally efficient method while keeping
the most relevant plastic events, we then order at each strain
increment the detected plastic events as a function of their
plastic intensity and keep only the largest events, with a plastic
intensity greater than 0.5 eV, until their sum represents more
than 90% of the total plastic intensity. In this way, the selected
plastic events carry more than 90% of the plastic intensity and
their number is typically about 3500 for an SW sample and
less (≃2500) for an SWM sample. With this technique the first
detected plastic events always appear before γ = 0.002.

A size can also be attributed to each plastic event by
integrating PE(rrr) over the angular coordinates to obtain
an average radial PE(r) function. As illustrated in Fig. 2,

PE(r) can be fitted using an exponential function, f (r) =

a + b exp (− r
λ

). This fit does not need to faithfully represent
the detailed structure of PE(r) since its sole purpose is to
estimate the size of the plastic event. On average, the plastic
event sizes found in the SW and SWM samples are λ = 4.7 and
4.1 Å, respectively. However, whenever a shear band forms,
PE(r) exhibits several large maxima that are described within
the present analysis as a collection of separated plastic events.
Within the shear band, larger plastic events are usually found,
with typical sizes of the order of λ ≃ 10–20 Å. More details
on the variation of the plastic event size as a function of the
strain can be found in Ref. [27]. These estimates of the plastic
event sizes are used as input for the Eshelby fits in Sec. IV.

III. EXTRACTING THE PLASTIC ENERGY

The incremental strain cycles allow us to identify the plastic
contribution to the mechanical energy of the systems. While
a forward step may induce a plastic event, we assume that
the reverse steps are always elastic. Therefore, if no plastic
event occurs between γi and γi+1, the energies of the current
(Ecurr

i ) and reversed (Erev
i ) configurations are the same to

within numerical accuracy, while if a plastic event occurs,
the energies are different and their difference corresponds to
the plastic energy dissipated during the strain cycle. We may
thus define an incremental plastic energy,

δE
pl
i→i+1 = Ecurr

i − Erev
i , (3)

with the total plastic energy at strain γi defined as E
pl
i =

∑i−1
j=0 δE

pl
i→i+1.

Similarly, the total mechanical work given to the system is

Wmech
i =

∫ γi

0

σxy(γ )dγ ≃

i−1
∑

j=0

σxy(γj )δγxy, (4)

where σxy(γj ) is the Irving-Kirkwood stress [37] in the current
configuration calculated independently from the reverse step.

From the above definitions, one can reconstruct the po-
tential energy of the system at the strain γi as the amount
of mechanical work brought by the imposed macroscopic

deformation up to the strain γi minus the energy E
pl
i dissipated

through plasticity. These two components are plotted in Fig. 3
and their difference (dashed orange curve) reproduces the
atomistic potential energy in output of the MD simulation
(black curve) with a very good precision. This result validates
our practical definition of the plastic energy increment through
the difference between the current and the reverse energies in
Eq. (3). Importantly, it also confirms the elastic nature of the
reverse step.

Thanks to the latter property, the shear modulus can be
estimated as G(γi) = Gi = (σxy(γi) − σ rev

xy (γi−1))/δγxy . We
checked that this technique is equivalent within ≃5% to the
more precise method where the shear modulus is calculated
from small elastic strain increments (δγxy = 10−4) around
the configurations with a linear interpolation between stress
and strain. Unless otherwise mentioned, the shear modulus is
calculated using the small-strain-increment technique. Simi-
larly, the bulk modulus and Poisson’s ratio are calculated using
the same small-increment technique. In the next section, we

053002-3



T. ALBARET, A. TANGUY, F. BOIOLI, AND D. RODNEY PHYSICAL REVIEW E 93, 053002 (2016)

0 0.1 0.2 0.3
γ

0

1000

2000

3000

4000

E
ne

rg
y 

(e
V

)

MD potential energy
Total mechanical work (1)
Cumulated plastic energy (2)
Difference: (1) - (2)
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further develop the idea of localized plastic event analysis
and extract the distribution of Eshelby inclusions from the
atomistic simulations.

IV. FITTING ESHELBY INCLUSIONS FROM

ATOMISTIC CONFIGURATIONS

A. Fitting displacements

In order to keep the fitting procedure as practical as pos-
sible, we used the simplest displacement expressions, which
correspond to the spherical Eshelby inclusion in an infinite
isotropic elastic solid. Using such expressions implies several
approximations in building the continuum representation of
the MD results. First, the model uses homogeneous elastic
constants, i.e., equal values inside and outside the inclusions,
although amorphous solids are known to be elastically hetero-
geneous at mesoscopic length scales [26]. Second, the shape
of the inclusions is assumed to be spherical, which may be an
oversimplification. However, we show in the following that this
procedure reproduces with fidelity the mechanical behavior of
the amorphous solids under shear.

The fitting procedure relies on the displacement field due

to a stress-free strain transformation defined by the tensor ǫT

inside a spherical inclusion of radius a embedded in an infinite
body with a shear modulus G and Poisson’s ratio ν. We first
define the stress transformation tensor p (implicit Einstein
summation applies over repeated indices in Eqs. (5)–(9):

pij = 2G

{

ǫT
ij + νδij

ǫT
kk

(1 − 2ν)

}

. (5)

The displacement and stress fields reproduced from
Ref. [38] outside of the inclusion are

ui =
a3

4(1 − ν)G

{

(2pikxk + pkkxi)

15R5
(3a2 − 5R2)

+
pjkxjxkxi

R7
(R2 − a2) +

4(1 − ν)pikxk

3R3

}

, (6)

σ out
ij =

a3

2(1 − ν)R3

{

pij

15

(

10(1 − 2ν) + 6
a2

R2

)

+
pikxkxj + pjkxkxi

R2

(

2ν − 2
a2

R2

)

+
δijpkk

15

(

3
a2

R2
− 5(1 − 2ν)

)

+
δijpklxkxl

R2

(

(1 − 2ν) −
a2

R2

)

−
xixjpklxkxl

R4

×

(

5 − 7
a2

R2

)

+
xixjpkk

R2

(

1 −
a2

R2

)}

. (7)

Inside the inclusion, the solution for the strain is homoge-
neous and accounts for the relaxation of the transformation
strain ǫT

kl in the presence of the surrounding elastic matrix,

ǫin
ij = Sijklǫ

T
kl, (8)

where S is the Eshelby tensor for the spherical inclusion,
which depends only on Poisson’s ratio. The stress field inside
the inclusion is also homogeneous and accounts for the
fact that the local stress-free reference has changed to the
transformation strain:

σ in
ij = Cijklǫ

in
kl − pij = Cijkl

(

ǫin
kl − ǫT

kl

)

. (9)

Inside an inclusion, the atomistic displacements due to
the plastic rearrangements involve atomic bond disruption
and/or formation and depend strongly on the local atomic
structure. The atomic displacements inside the inclusions are
consequently excluded from the fit. Only the displacements
outside the inclusions are adjusted using Eq. (6) as a fitting
function.

For the fit, at a given strain γi , we use the energy analysis
presented in Sec. II B to identify the location and size of the
relevant plastic events, counted by e from 1 to Nsel, the total
number of selected events at this strain. We also identify the
center of these events, identified by ic(e), the index of the
atom closest to the center of the plastic event e. The atomic
displacements di,ia of atoms ia in direction i are then computed
between the current and the reversed configurations, di,ia =

r rev
i,ia

− rcurr
i,ia

, and an objective function f is defined as

f =

Nout
∑

ia=1

∑

i

1

2

∣

∣

∣

∣

∣

di,ia −

Nsel
∑

e=1

ui

(

rrrcurr
ia

− rrrcurr
ic(e),ǫ

T (e)
)

∣

∣

∣

∣

∣

2

, (10)

where ia runs over the Nout atoms outside the inclusions
(|rrrcurr

ia
− rrrcurr

ic(e)| > a(e)). The size of event e, a(e), from Eqs. (6)
and (7), is not fitted but taken as the characteristic size λ(e)
presented in Sec. II B. The shear modulus and Poisson’s ratio
are determined for each strain from the small-strain technique
mentioned above. The objective function, f , is then minimized

with respect to {ǫT (e),e = 1,Nsel} using damped MD. The
symmetry ǫT

ij = ǫT
ji is imposed in the fit, leading to six variable

parameters per selected plastic inclusion. Also, to account for
the periodic boundary conditions, we used the minimum image
convention for the displacements ui . A more detailed analysis
of the fit convergence as a function of the number of periodic
images used for ui is presented in the Appendix.
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FIG. 4. Plastic event extracted at γ = 0.02 in an SWM sample.

(a) Amplitude of the atomic displacement field in an (x, y)

plane containing the center of the event (white arrows show the

main directions of displacement). (b) Amplitude of the continuum

displacement field fitted from Eq. (6) using a(e) = λ(e) = 2.65 Å.

(c) Atomic shear stress field σxy . (d) Continuum shear stress from

Eq. (7). Atoms with values out of the color maps are shown with

saturated colors. (e) Black line: angular average of the atomistic

displacement amplitude as a function of the distance from the event

center. Red line: 1/r2 function, for comparison. The transformation

strain tensor associated with the plastic event is shown at the lower

right.

We give an illustrative example of the atomic displacements
due to a selected plastic event together with the result of the fit
in Fig. 4. To isolate a single event, we first identified a high-
plastic-intensity event, found at γ = 2% in an SWM sample.
To make sure that the displacement field was due only to this
event, we started from the atomic coordinates in the current
configuration and added the displacements di,ia = r rev

i,ia
− rcurr

i,ia
only to the atoms inside the spherical inclusion. These atoms
were then held fixed, while all others were relaxed with
damped MD. As shown in Fig. 4(a), this artificial procedure
triggered only the selected event. The cross-shaped atomistic
displacement field is typical of the quadrupolar symmetry
of a local shear transformation. The atomistic displacement
amplitude [Fig. 4(e)] shows a 1

r2 radial dependence, which
matches the Eshelby displacement field in Eq. (6). The
structural features are also well reproduced by the continuum
fit shown in Fig. 4(b). Comparison between Figs. 4(c) and 4(d)
also evidences a good agreement between the atomistic and
the continuum stress fields. Generally, larger local fluctuations
appear in the atomistic plots, while the continuum fit slightly
underestimates the amplitude of the atomic stress field. The

optimized transformation strain tensor ǫT is given at the lower
right in Fig. 4 and shows the dominant shear character of
this event. At the atomic scale, amorphous samples are not
homogeneous or isotropic, which explains that the symmetry
of the shear components in this event may differ from the pure
shear (xy) symmetry of the imposed deformation.

B. Quality of the fit and relevant physical parameters

1. Transformation strain tensors

The outcome of the fits are the six independent components

of the transformation strain tensor ǫT (e) for all the selected
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FIG. 5. Distributions of (a) ǫdm and (b) trace components of the

fitted transformation strain tensors. Black curve: SW sample with

a variable inclusion radius [a(e) = λ(e)]. Red curve: same in an

SWM sample. Blue curve: SW sample with a fixed inclusion radius

[a(e) = 5 Å]. (c, d) Distributions of ǫdmVesh and Tr[ǫT]Vesh.

events in the range 0 < γ < 0.3. To synthesize these results,
we rewrite each tensor as the sum of a hydrostatic tensor

ǫ
T ,h
i,j (e) = δij

∑

k ǫT
kk(e)

3
plus a deviatoric part, ǫT ,d (e) = ǫT (e) −

ǫT ,h(e). In Fig. 5(a), we show the distribution of ǫdm(e), the
maximum shear component of the strain tensor, equal to

the largest difference between the eigenvalues of ǫT ,d (e). In
Fig. 5(b) we also give the distribution of the hydrostatic traces.
These raw transformation strain tensors depend on the size of
each event λ(e), which is estimated after an exponential fit of
the local plastic activity outlined in Sec. II B. Indeed the results
shown in Figs. 5(a) and 5(b) for the same SW sample but for
different input sizes lead to different distributions of the trans-
formation strain components. This point prompts some caution
in the interpretation of the fit output, but as suggested from
Eq. (6), the bare strain transformation tensor only partially
defines the displacement field due to an inclusion. A physically
more relevant local quantity should be built from the product
of the strain tensor with the inclusion volume Vesh, which
also appears in the stress drops associated with the plastic
events [see Eq. (7) and Sec. V A]. When the factor Vesh(e)
is taken into account, we can check in Figs. 5(c) and 5(d)
that the distributions using different size parameters collapse
into a single curve. This indicates that the relevant quantity to

characterize an Eshelby inclusion is the product ǫT Vesh rather
than the bare transformation strain tensor. At this point, several
observations can be extracted from these distributions. First,
the average amplitude of the traces times the Eshelby inclusion
volumes in Fig. 5(d) are all of the order of ≃2 Å3, but they
are positive for the SWM sample and negative for the SW
sample. This suggests an average compression in the Eshelby’s
center upon plastic rearrangement in the SW samples, while
an average dilatation occurs in the SWM samples. The ǫdmVesh

distributions in Fig. 5(c) can approximately be represented
by an exponential function with an average value of about
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45 Å3, larger than the average hydrostatic components,
consistent with the predominantly shear nature of the plastic
events. The similitude of the ǫdmVesh distributions between
SW and SWM samples and the larger values of ǫdm in
Fig. 5(a) imply that, on average, the plastic rearrangements
in SWM samples have smaller plastic cores with larger shear

components. An analysis of the eigenvectors of ǫT (e) reveals
that, after a few hundred plastic events (γ � 0.1), their average
eigendirections match the eigendirections expected from pure
shear events in the (xy) plane. However, as illustrated in Fig. 4,
large fluctuations may locally occur in specific events.

2. Precision of the fit

Several sources may contribute to the error in the fit, mainly
the local fluctuations due to the discrete atomic structure, the
choice of a restricted list of plastic events with spherical shapes,
the use of the minimum image convention, and the assump-
tion of homogeneous elastic constants. Also, the boundary
conditions may contribute since the latter are expected to
result additional fields, which vary slowly compared to the
infinite medium solution in Eq. (6) and cannot be represented
by Eshelby solutions.

To estimate the precision of the fit, we define the rerr ratio,
which measures the relative error by dividing the value of the
objective function after the fitting procedure, fmin, by f0 =
∑Nout

ia=1

∑

i
1
2
|di,ia |

2, the value of the objective function in the
absence of inclusions:

rerr =
fmin

f0

. (11)

The best fit quality is obtained for rerr = 0 when the dis-
placement field is fully represented by Eshelby inclusions,
while, on the other hand, rerr = 1 indicates that the selected
Eshelby inclusions do not participate in the displacement
field. Therefore, the rerr ratio also provides a measure of the
contribution of the Eshelby inclusions to the total displacement
field. In Fig. 6 the main curve defining the gray region
shows a histogram of the fit error rerr calculated in the range
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FIG. 7. r sym ratio from Eq. (12) as a function of shear strain for

an SW sample (black curve) and an SWM sample (red curve).

0 < γ < 0.3 for an SW sample. The average value is around
0.47 but the error distribution is widely spread. Splitting the
histogram into three pieces, corresponding to configurations
with low, average, and high plastic energies, shows that the
fit gives a better representation when the plastic energy is
high, the reason being that, in this case, atomic displacements
are dominated by the Eshelby inclusions. On the contrary,
when only a few and/or weak plastic events occur, the main
displacements originate from the local fluctuations due to the
discrete atomic structure, which cannot be represented by
the continuum expressions. The same observations hold for
SWM samples, with, however, a smaller average rerr value,
around 0.4.

We conclude therefore that the significant plastic events
can be satisfactorily represented by a continuum fit based on
Eshelby inclusions, while the long-wavelength displacement
fields due to the boundary conditions and the fluctuations due
to the local atomic environments are filtered out.

3. Symmetry of plastic events

To gauge the relative importance of the shear and hydro-
static components in the displacement field due to the Eshelby
inclusions we construct the ratio rsym. rsym is calculated for
each strain γi as the sum of the displacements squared due

to the hydrostatic components ǫT ,h divided by the sum of
the displacements squared originating from the deviatoric part

ǫT ,d :

rsym =

∑Nout

ia=1

∑

i

∣

∣

∑Nsel

e=1 ui

(

rrr ini
ia

− rrr ini
ic(e),ǫ

T ,h(e)
)
∣

∣

2

∑Nout

ia=1

∑

i

∣

∣

∑Nsel

e=1 ui

(

rrr ini
ia

− rrr ini
ic(e),ǫ

T ,d (e)
)
∣

∣

2
. (12)

The symmetry ratio rsym is shown in Fig. 7 for both an
SW and an SWM sample. The amplitude of rsym is always
lower than 0.2, indicating that plasticity is dominated by events
bearing a strong shear character. Interestingly, we note that
larger rsym values are found in the SWM sample, meaning
that the relative hydrostatic contributions in the displacements
are stronger with this potential. This can be qualitatively
understood assuming that the energy cost for local volume
and shear deformations follows the same trends as the bulk
and shear moduli, respectively. At γ = 0, the SW and SWM
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samples have roughly the same bulk modulus (B ≃ 100 GPa)
but their shear moduli differ by a factor of close to 2 (GSW ≃

35 GPa and GSWM ≃ 60 GPa). The energy difference between
shear and volume deformations is therefore lower in the SWM
samples, leading to a larger proportion of volume variation
upon plastic rearrangements, in agreement with Fig. 7. At
this point, we have shown that the relevant features of plastic
displacements in sheared bulk amorphous models can be
consistently represented by a simple Eshelby inclusion model
where the plastic events show a dominant shear character.
However, the contribution of hydrostatic displacements may
depend on the loading condition, for instance, under pressure
confinements of particular interest for silica [39–41]. In the
next section, we examine to what extent the superposition
of these inclusions can reproduce the stress-strain curves
predicted by the atomistic calculations.

V. STRAIN-STRESS CURVES FROM

ESHELBY INCLUSIONS

A. Shear stress

Starting from a general elastoplastic approach, the measur-
able strain variation δiǫxy between two successive steps γi and
γi+1 is decomposed into an elastic and a plastic part:

δiǫxy = δiǫ
el
xy + δiǫ

pl
xy . (13)

The associated shear stress variation is

δiσxy = 2G(γi)δiǫ
el
xy, (14)

which leads to the stress decomposition

δiσxy = 2G(γi)δiǫxy − 2G(γi)δiǫ
pl
xy = δiσ

∗
xy − δiσ

pl
xy . (15)

In our calculations, δiǫxy = δγxy/2 and δiσxy are directly
calculated from the atomistic simulations as the difference
in strain and shear stress between the current configurations at
γi and γi+1. δiσ

∗
xy is the stress variation that would be obtained

in the absence of plasticity. In the following, we call it the
elastically extrapolated shear stress. δiσ

∗
xy can be estimated

in two equivalent ways, by using either the elastic constant
δiσ

∗
xy = G(γi)δγxy , or the stress variation during the reverse
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curve: elastically extrapolated shear stress σ ∗
xy . Inset: Shear modulus

G and Poisson’s ratio ν as a function of the imposed strain.

step δiσ
∗
xy = σxy(γi) − σ rev

xy (γi−1). These two methods lead to

numerically indistinguishable stresses, σ ∗
xy(γi) =

∑i−1
j=0 δjσ

∗
xy ,

shown in Fig. 8 (blue curve) for an SW sample, together

with the total shear stress σxy(γi) =
∑i−1

j=0 δjσxy directly
computed from the atomistic simulation. The plastic stress is

then deduced from the difference σ
pl
xy(γi) = σ ∗

xy(γi) − σxy(γi),
which can be compared to the plastic shear stress due to the
Eshelby inclusions. Taking into account the sign in Eq. (15),

the contribution of a single inclusion −δσ
pl,esh
xy (e) is given by

the average of the stress field obtained outside [Eq. (7)] and
inside [Eq. (9)] the Eshelby inclusion. The angular sum over
the terms of σ out

ij in Eq. (7) vanishes, while σ in
ij is constant

inside the inclusion sphere, leading to

δσ pl,esh
xy (e) = −

Vesh(e)

Vcell

σ in
xy(e)

=
2G(γi)Vesh(e)

Vcell

(

ǫT
xy(e) − ǫin

xy(e)
)

, (16)

where Vesh(e) is the volume of the spherical inclusion e and
Vcell the volume of the simulation cell.

The expression in Eq. (16), however, assumes an Eshelby
inclusion in an infinite medium, while the simulations are
performed at a fixed and finite volume with periodic boundary
conditions. During a plastic event, the total shear strain
increment calculated from the Eshelby solution over the cell

is ǫesh,tot
xy =

∑Nsel

e=1
Vesh(e)
Vcell

ǫin
xy(e). However, the fixed cell calcula-

tion imposes a zero total strain. This requires a homogeneous
correction, −ǫesh,tot

xy , to recover a strain variation compatible
with the boundary conditions. The shear stress drop from a
single inclusion accounting for the boundary conditions is thus

δσ pl,esh+bc
xy (e) = δσ pl,esh

xy (e) + 2G(γi)ǫ
esh,tot
xy

=
2G(γi)Vesh(e)

Vcell

(

ǫT
xy(e) − ǫin

xy(e) + ǫin
xy(e)

)

=
2G(γi)Vesh(e)

Vcell

ǫT
xy(e). (17)

This correction cannot be neglected because the ratio be-
tween the corrected and the infinite-body expressions is high.
One can easily show that this ratio equals (1 −

∑

kl Sxykl)
−1 =

( 7−5ν
15(1−ν)

)−1, which is 1.86 with ν = 0.34 at γ = 0 for the SW

sample.
To test the quantitative accuracy of the plastic contribution

estimated from the present continuum model, we write a model
shear stress from the Eshelby inclusion fit as the difference
between the elastically extrapolated stress and the plastic
contribution from the Eshelby inclusions, taking into account
the fixed cell condition:

σ mod
xy (γi) =

i−1
∑

j=0

δjσ
∗
xy −

i−1
∑

j=0

δjσ
pl,es+bc
xy . (18)

In the following we present the results of the model as
described above and comment on the influence of the main
parameters: the elastic constants, the inclusion size, and the

structure of the strain transformation tensor ǫT .
In Fig. 10, we show the results for an SW sample.

The red curve was obtained with the original model, i.e.,
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curve: regular model with fixed ν(γ = 0). Orange curve: regular

model with fixed G (γ = 0).

strain-dependent elastic constants and variable inclusion radii
estimated from exponential fits of the radial plastic activities.
This case has been considered in Fig. 8. The overall accuracy
of σ mod

xy is very good, with a maximum error of about 4% at
γ = 0.198 just before the large stress drop associated with the
formation of a persistent shear band. The dashed blue curve in
Fig. 9 was obtained fixing Poisson’s ratio to its value at γ = 0
while keeping a varying shear modulus. The calculated shear
stress is almost indistinguishable from the original model with
variable ν. The last curve (orange curve in Fig. 9) was obtained
fixing the shear modulus at its value at γ = 0 in both the
elastic and the plastic contributions to σ mod

xy . The discrepancy
with respect to the atomistic reference is larger in this case,
with a maximum error of ≃18%, showing that the nontrivial
dependence of the shear modulus on the deformation is an
important ingredient for a quantitative description.

Figure 10 displays shear stress plots for an SWM sample.
The result for the original model (red curve) reproduces very
satisfactorily the MD results, with a maximum error of the
same order as for the SW potential (+6% at γ = 0.298). The
blue curve shows that a similar accuracy is reached when
the size of the inclusions is fixed. As suggested by the strain
distributions presented in Sec. III, this result confirms the
relevant role of the quantity ǫT

xyVesh. The shear stress curve
obtained setting the diagonal elements of the transformation
strain matrix to 0 is represented by the dashed orange curve
in Fig. 10. A good agreement is again found, which confirms
the central role of quadrupolar shear events in the plasticity of
amorphous systems. These results validate the procedure used
in the present inclusion model and confirm that modifications
due to the shape of the inclusions and elastic heterogeneities
are higher-order corrections that can be neglected. A deeper
analysis of our results also provides some insight into the
precision of the model. First, the model shear stress slightly
overestimates the MD stress at low strain below the yield
point. This probably comes from removing the smallest events
from the selection list, which induces an underestimation
of the plastic contribution. However, this effect is partially
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inclusion model compared to atomistic results. Black curve: atom-

istic shear stress. Red curve: regular model, i.e., strain-dependent

elastic constants and variable inclusion sizes [a(e) = λ(e)]. Blue

curve: strain-dependent elastic constants but a fixed inclusion radius

[a(e) = 5 Å]. Dashed orange curve: ǫT diagonal elements set to

0, strain-dependent elastic constants, and a fixed inclusion radius
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compensated by the overestimation of the stress drops due to
the minimum image convention (see the Appendix), leading
to the quantitative prediction of the MD shear stress in
Figs. 9 and 10. In larger systems as shown in Fig. 11
(N = 262 144 atoms, linear cell dimension ≈17 nm), the stress
drop overestimation due to the minimum image convention is
reduced. The error is then dominated by the removal of the
smallest events, leading to an overestimation of the stress.
Since only 90% of the plastic activity is accounted for in the
model, a correction can be proposed by including a scaling

factor α to all shear stress drops δjσ
pl,es+bc
xy in Eq. (18), with

1 � α � 1.1. Using this correction, an excellent quantitative
agreement with the MD shear stress is achieved, as shown in
Fig. 11, with α = 1.05 and 1.06 for the SW and SWM samples,
respectively.
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FIG. 11. Shear stress in large samples (262 144 atoms) from

the Eshelby inclusion model compared to atomistic results: (a) SW

sample; (b) SWM sample. Black curve: atomistic shear stress. Red

curve: model with strain-dependent elastic constants and a fixed

inclusion radius [a(e) = 5 Å]. Dashed orange curve: same as the

red curve, with a scaling factor α applied to all plastic shear stress

drops in Eq. (18). α = 1.05 for the SW sample in (a) and α = 1.06

for the SWM sample in (b).
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B. Pressure effects through the fit procedure

Following the same technique as for the shear stress,
we consider now the pressure variations due to plastic
rearrangements. This task is more delicate than for shear
stresses because, due to the present simple shear loading, no
pressure variation is expected from linear elasticity. The latter
is therefore a purely atomistic effect, which, however, displays
a quadratic character as shown in Fig. 12. This variation is
therefore probably due to nonzero third-order elastic constants.

We estimate the increment of the elastically extrapo-
lated pressure by the difference δP ∗(γi) = P (γi) − P rev(γi−1),
where P (γi) is the atomistic pressure in the current configura-
tion at strain γi and P rev(γi−1) is the pressure calculated after
the reverse step at strain γi−1. The total elastically extrap-

olated pressure at strain γi is then P ∗(γi) =
∑i−1

j=1 δP ∗(γj ).

The plastic contribution is obtained as before as P pl(γi) =

P ∗(γi) − P (γi). The pressure given by the Eshelby inclusion
model is calculated using Eq. (17) rewritten for the pressure.

The pressure in the SW sample in Fig. 12(a) follows
the atomistic curve qualitatively well. In the SWM case
in Fig. 12(b), the agreement remains satisfactory but large
discrepancies are observed in a few configurations, which all
coincide with the formation of a shear band. A detailed analysis
shows that these large discrepancies arise because in a shear
band the events are localized in a narrow region where a large
number of atomic displacements are excluded from the fit
since most atoms in this region are found inside the inclusion
spheres. In this situation, large ǫyy and ǫzz can develop without
inducing significant displacements in the fitted region outside
the band. However, it is still possible to obtain a distribution
of Eshelby inclusions that matches simultaneously the shear
stress and the pressure by adding in the objective function
of the fit an extra cost related to the plastic variation of the
pressure δP pl = P pl(γi+1) − P pl(γi),

f P = f +
wP

G2(γi)

[

δP pl −

Nsel
∑

e=1

δP pl,es+bc(ic(e),ǫT (e))

]2

,

(19)

where wP is a weight that balances the displacement and
pressure terms in the objective function. We chose wP =

1.5Nout × 104 Å2 to keep fmin of the same order as in the
previous section with wP = 0 and to reach an accuracy better

0 0.05 0.1 0.15 0.2 0.25
γ

-2

-1.5

-1

-0.5

0

P
(G

P
a)

0 0.05 0.1 0.15 0.2 0.25
-2

-1.5

-1

-0.5

0

MD
Model

0 0.05 0.1 0.15 0.2 0.25
γ

0

1

2

3

4

5

σ
xy

 (
G

P
a)

0 0.05 0.1 0.15 0.2 0.25
γ

0

0.5

1

1.5

2

P
(G

P
a)

0 0.05 0.1 0.15 0.2 0.25
γ

0

2

4

6

8

10

σ
xy

 (
G

P
a)

SW (a) SW (b)

SWM (c) SWM (d)

FIG. 13. Model results (red curves) including variable inclusion

radius, strain-dependent elastic constants, and pressure variations in

the objective function of Eq. (19), compared to MD (black curves).

(a) Pressure (SW sample); (b) σxy (SW sample); (c) pressure (SWM

sample); (d) σxy (SWM sample).

than 0.1 MPa in the plastic pressure variations. As shown
in Fig. 13, the fitting procedure then leads to a remarkable
agreement between the model and the atomistic results. The
fact that the model pressure depends on the choice of objective
function, while the model shear stress does not, highlights
the second-order nature of the displacements responsible for
the hydrostatic part of the Eshelby tensors.

We see in Fig. 12 that the pressure decreases with the SW
potential during plastic events, while it increases with the
SWM potential. This is especially clear in the first part of
the stress-strain curves, before the first shear band forms, a
section well reproduced by the model, independently of the
fitting technique. This observation can be linked to the typical
atomistic rearrangements observed in the core of the plastic
events with both potentials. As shown by the representative
examples in Fig. 14, the negative volume variation with the
SW potential is mainly associated with the formation of atomic
bonds, leading to an increase in the atomic coordination
number upon plasticity. In the SWM samples, the positive
local volume variation is associated with bond disruption and
formation of undercoordinated defects close to the center of
the plastic events. This behavior can be rationalized by the
different nature of the atomic interactions modeled by these
potentials. The relatively low amplitude of the three-body
parameter in the original SW potential leads to a moderate
energy penalty for structures with angles that depart from the
tetraheron angle of 109.47◦, allowing for the formation of
fivefold coordinated atoms upon plastic rearrangements. On
the other hand, the large three-body parameter in the SWM
potential gives a higher energetic penalty for angles away from
109.47◦, making bond breaking competitive. These combined
variations of volume and coordination number during plastic
rearrangements are also consistent with the the ductile versus
fragile behaviors observed with these potentials [30,42].

Our results show that the pressure variations are determined
by the specificities of the interatomic potential, leading to an
average local contraction or dilatation with the SW and SWM
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b()a( )

(c)(d)

FIG. 14. Typical plastic events in an SW (a, b) and an SWM

(c, d) sample. (a) SW sample: local current configuration before

rearrangement; red atoms are fivefold coordinated and arrows indicate

the main displacements. (b) SW sample: reversed configuration after

rearrangement; new bonds are formed and the number of fivefold

coordinated atoms has increased. (c, d) Same for an SWM sample,

where the number of threefold coordinated atoms (green spheres)

increases.

potentials, respectively. These results can be put into perspec-
tive with STZ mesoscopic models [16,43], which explicitly
use a dilatancy parameter, which measures the amount of
free volume generated during plastic rearrangements. In most
cases, dilatancy is taken positive with reference to experiments
on colloids or metallic glasses. However, this result is not
general since other systems such as silica are known to exhibit
permanent densification upon plasticity [39–41]. Our results
indeed suggest that volume variations upon plasticity depend
on the detailed interactions between particles.

VI. CONCLUSIONS

In this paper we have presented an automated technique
to extract Eshelby inclusions associated with continuum me-
chanics from series of atomistic configurations. A systematic
analysis of the plastic energy and displacement fields allows
us to efficiently select the relevant inclusions, from which the
main stress-strain relations can be reproduced with fidelity.
Our results confirm the central role of these inclusions in the
mechanical properties of amorphous systems and therefore
fully support the mesoscopic models that use them as the
elementary bricks of plasticity. From a practical point of
view, we have identified the main parameters that should
be considered to reach a quantitative description of athermal
plasticity in amorphous systems. In particular, we have shown
that in silicon, the mechanical response does not depend on
the volume Vesh and transformation strain ǫT

xy of the Eshelby
inclusions independently but, rather, depends on the product
ǫT
xyVesh. We have also shown that accounting for the complex

variation of the shear modulus with deformation instead of

using a constant shear modulus is important in order to
reproduce the stress-strain curve. Finally, we have shown that
the pressure variations are more difficult to capture and depend
significantly on the details of the interatomic potential.

We should note that these features were extracted in the
case of a simple shear deformation. Applying a compressive
or a tensile deformation may affect the relative roles played
by the shear and pressure terms of the transformation strain
tensor.

The main perspective of this work is to use the atomic-scale
parameters obtained here to inform a mesocopic model of
amorphous plasticity. This will contribute to reducing the
empirical assumptions present in this type of model to achieve
a better quantitative description. In this paper, only quasistatic
simulations have been performed. They correspond to the very
low strain rate limit of overdamped systems [25] and show that
in this case plastic deformation and constitutive laws can be
described as a succession of localized rearrangements that can
be considered elementary bricks for plastic flow. The temporal
succession of such rearrangement has not been discussed here:
neither the effect of possibly competing relaxation times [44]
nor the role of inertia on shear band formation [45]. Such
effects are related to the nucleation and damping of the
elementary rearrangements as a function of the strain rate
and become important only for complex systems submitted to
sufficiently high strain rates. Our work consolidates the low-
temperature and low-strain-rate limit on which larger-scale
models should be based. Applications of interest will include
shear localization and indentation or mechanical properties of
nanosystems like nanowires.
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APPENDIX: CONVERGENCE WITH PERIODIC

BOUNDARY CONDITIONS

The fits presented throughout this paper have been done
using the minimum image convention to calculate the dis-
placements ui from Eq. (6). However, a correct expression
should incorporate the contribution from the periodic images
of the plastic events to the displacement field. We check
here the accuracy of the minimum image convention by
adding up to 1331 periodic images corresponding to five
cell translations in each direction. Interestingly, in the test
case in Fig. 4, the fit including the images gave the same
transformation strain tensor as the fit using the minimum image
convention. Going beyond this simple test we considered
two practical configurations from an SWM sample at γ =

0.238 and γ = 0.286 with, respectively, 8 and 77 selected
plastic events. The first test is representative of the average
configuration found in our calculation, while the second is
associated with a more difficult situation where many plastic
events localize along a shear band. In each case we performed
Eshelby fits with a maximum number of n cell translations
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FIG. 15. (a) Convergence of the fit results with respect to the

number of periodic images of the unit cell included to calculate

the displacement field. n is the maximum number of unit cell

translations in each direction; n = 0 corresponds to the minimum

image convention. rd1(n) (squares) and rt(n) (asterisks) are char-

acteristic ratios extracted from the deviatoric and hydrostatic parts

of the average transformation strain matrix ǫav(n) (see text). Black

curves: from displacement fits on an SWM configuration at γ = 0.238

with eight plastic events. Red curves: from displacement fits on an

SWM configuration at γ = 0.286 with 77 plastic events. (b) Atomic

displacements between the reversed and the initial configurations in

the SWM configuration at γ = 0.286. The color code refers to the

modulus of the displacement, in Å (atoms with larger displacements

are not shown); the arrows show the displacements; and the plastic

event centers are represented by the large spheres. (c) Displacement

fit using 77 Eshelby inclusions and 1331 images of the unit cell

(n = 5). (d) Same as (c), but using the minimum image convention

approximation.

in a given direction, leading to (2n + 1)3 images for each
n value between 1 � n � 5. In the output of the fit we
analyze the average transformation strain tensor calculated as

ǫT av(n) =
∑Nsel

e=1
Vesh(e)

V
ǫT (e,n). In Fig. 15(a) we plot rd1(n),

the ratio of the lowest eigenvalue of the deviatoric part of

ǫT av(n) with respect to the same eigenvalue calculated for the
better-converged reference at n = 5, and the rt(n) ratio, which

is built similarly using the trace of ǫT av. We first observe

that these ratios converge quickly as a function of n. In all
cases, only small differences are found between n = 4 and
n = 5. As we have found in the previous simple test, the
average Eshelby strain tensors is only weakly affected by the
number of periodic images in the configuration with 8 plastic
events (black curves, γ = 0.236); notably, the minimum image
convention fit matches the best converged result better than the
27-image case with n = 1. For the difficult test (γ = 0.286;
red curves in Fig. 15) convergence is slower as a function of n

and a discrepancy of about +20% in the deviatoric component
is found between the minimum image convention and the
best converged result at n = 5. This can be understood by
considering that, close to the band, many events participate
in each atomic displacement, and within the minimum image
convention this number of contributing events is limited by the
size of the cell. Consequently, fewer events in the minimum
image convention induce larger strain tensor components,
consistent with the above-mentioned overestimation. This
error represents a good estimate of the maximum error in the
shear components found in few difficult configurations over

the whole strain range. We also note that the trace of ǫT av

converges more slowly than the deviatoric part, while large
variations are seen as a function of n in the difficult test at
γ = 0.286.

Figures 15(b)–15(d) give a qualitative picture of the difficult
test at γ = 0.286. Despite some variations in the Eshelby strain
tensors, the displacement fields produced by the minimum
image convention [Fig. 15(d)] and the fit including 1331
images [Fig. 15(c)] are very similar, with almost the same
values of rerr and rsym. Their common differences from the
atomistic field represented in Fig. 15(b) are located in the
neighborhood of the inclusions where the displacements can
still carry a strong plastic character.

These tests show that the minimum image convention
applied to systems with a linear dimension of ≃8.7 nm
provides an excellent approximation of the displacement field
in periodic bulk systems for most of the configurations.
This approximation is expected to be less accurate when
a high density of intense plastic events appears during the
formation or the activation of a shear band, which represents
roughly 10 difficult configurations per sample in the interval
0 < γ < 0.3. In these few difficult cases, the minimum image
configuration tends to overestimate the shear components
of the transformation strain tensor. Independently of the
configuration, the minimum image convention approximation
will systematically be more accurate upon increasing the
system size. Given its formal simplicity and its rather good
accuracy we have used the minimum image convention to
calculate the displacements throughout this paper.
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