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Recent theoretical models for the vibrations in glasses assume that the complex elastic modulus depends on
frequency but not on the wave vector, q. This assumption translates in a simple q dependence of the dynamic
structure factor, which can be experimentally tested. Following the suggestion of a recent paper [U. Buchenau,
Phys. Rev. E 90, 062319 (2014)], we present here a new analysis, performed in q space, of inelastic x-ray
scattering data of supercooled silica. The outcome of the analysis is compared to the more common approach
in the frequency domain and indicates that the mentioned theoretical assumption is consistent with the data
only below the boson peak frequency. At higher frequencies it gives rise to a breakdown of the classical second
moment sum rule. This violation arises from the underlying assumption of the presence of a single excitation in
the spectra. A comparison with the vibrational dynamics of α-cristobalite suggests, on the contrary, that in the
terahertz frequency domain the inelastic spectrum of the glass gains contributions from both acousticlike and
opticlike modes. A microscopic theory of the vibrations in glasses cannot neglect the medium range order in
their structure, which gives rise to dispersion curves within a pseudo-Brillouin zone.

DOI: 10.1103/PhysRevB.93.144204

I. INTRODUCTION

Glass-forming liquids remain frozen in an out of equilib-
rium state when rapidly cooled below their glass transition
temperature, Tg . The structural relaxation in the transition
region is characterized by strongly correlated motion and
by dynamical heterogeneities [1]. Neighboring atoms have
similar mobility, which can differ considerably from that of
more distant groups of atoms. When observed on a picosecond
time scale both a glass and a supercooled liquid appear
as vibrating around an average configuration, which is not
strongly affected by the glass transition process, since the
structural relaxation takes place on a time scale that is many
orders of magnitude slower. For this reason it is commonly
accepted that the terahertz vibrational dynamics of glasses
or supercooled liquids is not markedly influenced by the
structural relaxation, although some evidences of a direct
relationship between the slow and fast dynamics have been
reported in literature [2,3].

Recent numerical simulation studies have revealed that
the elasticity of glasses is heterogeneous on the nanometer
length scale [4–9], suggesting a possible relation with the
dynamical heterogeneities above Tg . In particular, a correlation
length of tens of interatomic distances has been revealed in
the nonaffine displacement field of various simulated glasses
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under an external perturbation [4,5]. Numerical simulations
of polymeric glasses [6,7] and of Lennard-Jones and soft-
sphere systems [8,9] indicate that the local elastic modulus is
heterogeneous and the width of its distribution increases as the
length scale over which it is computed is reduced, implying
that on the macroscopic scale these fluctuations are averaged
out. However, at present, the numerical works do not indicate a
length scale for the heterogeneities, although there have been
indications for a fractal-like distribution of the local elastic
modulus [7]. On the experimental side, evidences of elastic
heterogeneities are still scarce [10,11].

The terahertz vibrational dynamics of glasses is marked
by an excess of vibrational states over the Debye prediction,
called the boson peak (BP). Below the BP frequency the
mean-free path of the sound waves follows the Rayleigh
scattering law, being proportional to the inverse of the fourth
power of frequency [12–17]. Various theoretical models for
the vibrations in glasses are based on the idea of the presence
of elastic heterogeneities. The theory of Schirmacher and
coworkers [18,19] assumes a Gaussian distribution of the local
elastic modulus and predicts the frequency dependence of
the macroscopic modulus. This frequency dependence gives
rise to a BP feature in the density of vibrational states.
A different theory [20,21], based on the jamming scenario
and on an effective medium approximation, describes the
peculiar features of the vibrational dynamics of glasses as
arising from the proximity to an elastic instability. In both
theories the complex elastic modulus depends on frequency
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but not on the wave vector, q, giving rise to a simple q

dependence of the dynamic structure factor, which can be
tested on the experimental data, as suggested by Buchenau
[22]. Recent works have given experimental evidence of the
close correspondence between the BP in glasses and the
first Van Hove singularity in the crystalline forms of similar
mass density [23–25]. Such an interpretation of the origin of
the BP is radically different from the one advanced by the
above-mentioned theoretical approaches [18–21].

In the present paper we address the validity of the
hypothesis of a q-independent elastic modulus, in order to
determine the frequency range where such an approximation
can be considered appropriate. To this aim we describe a
normalization procedure that allows one to determine the q

dependence of the spectra at fixed frequency from a set of fixed
q frequency scans. The procedure relies only on measured
quantities, without making use of any sum rule. We apply the
method to inelastic x-ray scattering (IXS) data of silica in the
supercooled state (T = 1620 K) and we obtain the following
result: a single excitation model violates the classical second
moment sum rule above the BP frequency. In order to explain
this observation we compare the single excitation model with
a previously published analysis with two excitations and with
recent data for the vibrational dynamics of α-cristobalite,
the crystalline polymorph with the closest mass density to
the one of vitreous silica. Details on the IXS experiment on
supercooled silica can be found in a previous paper [15], where
those data have been partially published. We have chosen this
data set because of the high signal-to-noise ratio of the spectra
and because they were measured on a fine grid in q.

The paper is organized as follows. In Sec. II we describe
the normalization procedure and we model the spectra with the
dynamic structure factor that one obtains under the hypothesis
of a q-independent elastic modulus. Section III is devoted to a
comparison of this analysis to the more common approach in
the frequency domain, where the IXS spectra are described in
terms of a damped harmonic oscillator model (DHO). To this
aim we have extended the previously published analysis to the
high-q range. Moreover, the normalization procedure allows
us to obtain new information, namely the DHO intensity in
absolute units. We will show that both approaches are unable
to properly describe the measured spectra at frequencies larger
than the BP one. Finally, in Sec. IV, we compare the analysis
of the spectra in terms of a single- and a double-excitations
model and we discuss the relationship between the dynamics
of the glass and that of the α-cristobalite single crystal. This
analysis shows the inadequacy of models that do not take into
account the modes dispersion induced by the structural order
on the medium range.

II. DATA ANALYSIS

A. Normalization procedure

The observable quantity in an IXS experiment is the
intensity, I (q,ω), scattered by the sample at an exchanged
wave vector q and frequency ω, where ω = 0 corresponds to
elastic scattering. The measured intensity can be written in
terms of the dynamic structure factor, S(q,ω), as:

I (q,ω) = I0(q)
∫ ∞

−∞
dω′S(q,ω′)R(ω − ω′) + y0, (1)

where R(ω) is the instrumental resolution function in angular
frequency, I0(q) is a wave-vector-dependent normalization
function and y0 is the background. This equation is strictly
valid only for monatomic systems, because the contributions
of the different atoms of a polyatomic sample are weighted by
their atomic form factors. In the following we will make the
approximation that this expression is valid also for polyatomic
systems.

IXS beam lines are normally operated to measure the
scattered intensity as a function of frequency at a fixed
exchanged wave vector, since the frequency scan is rou-
tinely performed by varying the temperature of the main
monochromator. In principle, it is possible [26] to perform the
measurement at a fixed frequency as a function of q, but this
procedure encounters the technical difficulty of maintaining
the temperature stability of the monochromator and of the
analyzers during the time requested to acquire a spectrum.

Different approaches can be used to determine the function
I0(q) of Eq. (1) in order to obtain the q dependence from a
set of fixed-q spectra. A first possibility is to use a reference
scatterer, a sample for which the relation between I (q,ω) and
S(q,ω) is well known. In the case of IXS, however, such a
reference sample is not well established. A second class of
approaches makes use of the sum rules to determine I0(q).
The simplest method is to use the zeroth-order moment and to
normalize the spectra to the static structure factor, S(q), which
can be derived by integration of Eq. (1), assuming that R(ω)
is normalized to unity:∫ ∞

−∞
dω[I (q,ω) − y0] = I0(q)S(q). (2)

This approach is not straightforward because it requires S(q)
to be known with good accuracy in the same q range of
the experiment. Moreover, S(q) can vary between different
samples with different thermal histories and should thus be
measured on the same sample. Another possibility is the use
of the first moment sum rule, which, however, is helpful only
if the temperature is sufficiently low that the intensities of the
Stokes and anti-Stokes peaks differ significantly [27].

In principle, a good way to normalize the spectra also at
high temperatures is given by the classical second moment sum
rule [22,28–30], but the use of this normalization procedure
on the experimental data is of difficult implementation for
two main reasons. One relates to the fact that the spectrum
is the convolution of the dynamic structure factor with the
resolution function, which has Lorentzian-like tails and thus
its second moment is, strictly speaking, undefined. The second
big difficulty arises because the spectra are collected in a
limited frequency window, while a proper determination of
the second moment would require precise measurements at
high frequencies, where this is difficult.

For the aforementioned reasons we followed a different
approach to determine I0(q). This quantity can be written as
(see the supplemental material of Ref. [24] for more details):

I0(q) = Ī0η(q)σ (q)(ε̂i · ε̂f )2 1

N

∣∣∣∣∣
N∑

l=1

Fl(q)

∣∣∣∣∣
2

, (3)

where Ī0 is a multiplicative constant, η(q) accounts for the
analyzer reflectivity and for the efficiency of the detector, σ (q)
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is a term accounting for absorption effects and is a function
of the absorption coefficient, μ, and of the sample geometry,
ε̂i and ε̂f are the polarization vectors of the incoming and
outgoing x-ray beams, N is the number of atoms per molecule,
and Fl(q) is the atomic form factor of atom l in the molecule.
The quantity σ (q) for a flat sample of thickness L is

σ (q) = e
μL

(
1− 1

cos θ

)
− 1

μL
(
1 − 1

cos θ

) , (4)

where θ is the scattering angle. It is worth noting that the effi-
ciency, η, of a single analyzer-detector couple is independent
of q. The ID16 beam line being equipped with a nine-analyzer
chamber, which allowed us to measure nine spectra at different
scattering angles at the same time, it is necessary to measure the
relative efficiency of the analyzer-detector couples with respect
to a reference one (more details on the experimental setup can
be found in Ref. [15]). We performed this task by measuring
the elastic line of a plexiglass sample at q = 10 nm−1 using
each analyzer.

The followed approach allows us to determine I0(q) up
to a multiplicative constant Ī0, which can be obtained by
comparing the static structure factor from Eq. (2) with the
S(q) from the literature, as shown in Fig. 1(a). Note that the
value of Ī0 affects only the intensity of the spectra but not their
q dependence. The figure allows one to appreciate the good
agreement between the S(q) determined from the IXS data
and that obtained from diffraction, proving the reliability of
the normalization procedure.

B. Model

The normalization procedure outlined in the previous
section allows us to obtain, in absolute units, a quantity equal
to the convolution of the dynamic structure factor with the
instrumental resolution function, plus an almost negligible
background arising from the detectors noise.

The S(q,ω) in one phonon approximation can be written in
terms of its classical counterpart as [16,32]:

S(q,ω) = �ω/kBT

1 − e−�ω/kBT
Scl(q,ω), (5)

where kB is the Boltzmann constant and T the temperature,
and

Scl(q,ω) = S(q)f (q)δ(ω) + kBT q2

πmω
Im{GL(q,ω)}. (6)

The first term to the right-hand side of the expression,
proportional to a Dirac δ function, δ(ω), accounts for the
density fluctuations that are frozen below the glass transition
temperature and contribute only to the elastic scattering. Their
weight is proportional to the nonergodicity parameter f (q),
defined as the ratio of the elastic to the total intensity. The
second term contains the imaginary part of the longitudinal
Green’s function GL, while m is the average atomic mass.

The Green’s function can be expressed in terms of a
self-energy 
 = 
(q,ω), with the tacit assumption that the
spectrum has a single inelastic peak [16]:

GL(q,ω) = 1

ω2 − q2
(q,ω)
. (7)

FIG. 1. (a) Diffraction intensity from reference [31] (continuous
line) compared to the integrated intensity of the IXS spectra
normalized in absolute units (black circles) and to the total intensity of
the DHO model fitted to the spectra (red squares). The plotted quantity
is: 1

N
| ∑l Fl(q)|2S(q), in the notation of Eq. (3). (b) Nonergodicity

parameter, f (q), determined from the elastic line intensity in Eq. (6)
as explained in the text (black circles) and from the fit of the entire
spectrum to the DHO model (red squares). The horizontal line is set
at f = 1, its maximum value.

A common approximation to the self-energy is the one leading
to the damped harmonic oscillator model (DHO) [16]:


DHO(q,ω) = �2(q)

q2
+ i

ω�(q)

q2
. (8)

In this expression � is the peak position in the current
correlation function and � is a parameter related to the width
of the peak (it is the full width at half maximum of the peak in
the limit �/� → 0). The self-energy for the DHO has a trivial
frequency dependence so that it is commonly used to analyze
inelastic spectra measured at a fixed q. It is worth noting that
the DHO has a nonzero value at ω = 0, so that a determination
of the parameter f (q) in Eq. (6) requires a fit to the entire
spectrum, including the elastic and the inelastic components.
The fourth parameter of the DHO model is S(q).

The IXS data of vitreous silica that we discuss in the present
manuscript were analyzed in Ref. [15] by making use of a
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FIG. 2. Selection of inelastic spectra as a function of q at the indicated frequencies. The continuous lines (red) are the best fitting curves
obtained with the model based on a q-independent self-energy and a free parameter A as defined in Eq. (10). The dashed (black) curves
correspond to the fit with the constraint of A = 1.

single DHO function for the inelastic peaks. In that work we
focused our attention to the low-q range (q < 4 nm−1), a region
where a single-excitation model provides a reliable description
of the spectra. In the following we will present a comparison
between the analysis of the spectra at fixed ω with the one at
fixed q and to this aim we will also extend the DHO analysis to
the entire range of measured wave vectors (the dots in Fig. 1).

The common hypothesis made in the theories mentioned in
the introduction [18–21] is to drop the q dependence of the
self-energy, assuming:


 = 
(ω) = 
′(ω) + i
′′(ω), (9)

where 
′ and 
′′ denote, respectively, its real and imaginary
part. It is worth noting that M = ρ
(ω), with ρ the mass
density, is the frequency-dependent macroscopic longitudinal
modulus, which is a complex quantity.

We begin by noting that the second term in Eq. (6), under the
assumption of a q-independent self-energy, is purely inelastic
for a harmonic glass, because at low frequency the damping
is dominated by Rayleigh scattering and 
′′ ∼ ω3. We can
thus obtain the inelastic spectra by subtracting an elastic
line proportional to the instrumental resolution function. The
proportionality factor is determined by a χ2 minimization
routine including only a small range, ±0.4 meV, around ω = 0.
This procedure allows also to determine the nonergodicity pa-
rameter f (q), which follows the behavior of the S(q), as shown
in the bottom panel of Fig. 1. The parameter f reaches the value
of one, within its uncertainty, for the highest qs measured
below the structure factor peak, meaning that the inelastic
intensity in this range is very small compared to the elastic

one. The squares (red) in the figure correspond to the parameter
f (q) determined from the analysis with a single DHO model
and show a similar trend, although these points remain always
below one because the DHO has the tendency to overestimate
the inelastic intensity at the center of the spectrum [15].

A selection of inelastic spectra at fixed frequencies is
reported in Fig. 2. These spectra are obtained by averaging
the Stokes and anti-Stokes sides and performing an average on
neighboring frequency points to improve the signal-to-noise
ratio. Equation (9) together with the previous equations gives
the following expression for the classical inelastic dynamic
structure factor:

Scl
inel(q,ω) = A(ω)

kBT

πmω

q4
′′(ω)

[ω2 − q2
′(ω)]2 + [q2
′′(ω)]2
,

(10)

where we added a multiplicative constant A as a free parameter,
in line with what is suggested in Ref. [22]. Consequently the
model has four free parameters: f (q), A(ω), 
′(ω), and 
′′(ω),
the same number of parameters as the DHO model. It is in
fact similar to a DHO, being the structure factor of a damped
longitudinal phonon in q space [22].

The best fitting curves, obtained by minimizing the χ2 of the
data and the model, are shown in Fig. 2 as continuous red lines.
The function used to analyze the inelastic spectra is the one
of Eq. (10) convoluted with a square function approximating
the instrumental resolution in q space, with a width �q ∼
0.32 nm−1, a quantity almost negligible given the q range
in Fig. 2.
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III. RESULTS

As shown in Fig. 2, the curves well describe the spectra at
low frequencies, apart from the high q points (q > 10 nm−1).
At higher frequencies also the low q range (q < 2 nm−1) is not
well reproduced. However, the reasonable agreement between
the model and the data requires A to be greater than one in
the entire explored frequency range. Such a value of A is of
difficult interpretation within the theoretical models discussed
in the introduction. We will propose an explanation for the
behavior of the parameter A in the discussion section.

Now we show the results of the fitting procedure with
the constraint: A = 1. The corresponding curves are plotted
as dashed lines in Fig. 2. Apart from the lower-frequency
spectra, which are well reproduced, the model systematically
underestimates the spectra at all other frequencies. Having
analyzed the experimental spectra both at a fixed q as a function
of frequency, by means of a single DHO, and as a function of
the wave vector at a fixed ω, by means of the model of Eq. (10),
we can now compare the results from the two approaches.

The peak position gives the apparent sound velocity v =√

′(ω), a quantity similar to the one determined from the

DHO model: vDHO = �(q)/q. In order to compare the two
quantities we have to translate the DHO parameters (�,�,f,S)
to the frequency domain, by assuming ωDHO = �(q). In Fig. 3
we plot the DHO parameters corresponding to q < 5 nm−1,
because in this range the dispersion curve is monotonic, at
variance with the higher-q behavior that will be discussed in
the next section. As shown in the top panel of the figure,
the sound velocity is marked by a softening close to the
frequency of the BP (around 6 meV at this temperature),
already reported in Ref. [15], followed by a positive dispersion
at higher frequencies. No noticeable difference is observed
between the results of the model of Eq. (10) with free A (dots)
and with A = 1 (triangles). Also vDHO is close to v in the entire
range and shows a similar trend.

The bottom panel of Fig. 3 shows the comparison between
the quantity 
′′(ω)/ω and �(q)/q2 of the DHO [see Eq. (8)].
More precisely, the plotted quantity for the 
 = 
(ω) model
is 
′′/ω − �RES


′/ω2, where ��RES ∼ 1.5 meV is the full
width at half maximum of the instrumental resolution function
R(ω). Below the BP frequency the plotted quantity follows
the Rayleigh scattering law and is thus proportional to the
square of the frequency. In this regime the three models give
similar results. Above the BP frequency this quantity becomes
essentially frequency independent, although some quantitative
differences are observed between the three approaches. Specif-
ically, the DHO and the q-space model with free A give similar
results at almost all frequencies, with differences in the width
only in an intermediate range, while the model with A = 1 has
values a factor of two smaller at high ω, a difference already
discernible from the spectra in Fig. 2.

Finally, we compare the parameter A(ω) with the corre-
sponding quantity for the DHO model. The inelastic part of
the dynamic structure factor for the DHO can be written as:

Scl
inel,DHO(q,ω)

= S(q)[1 − f (q)]
1

π

�2(q)�(q)

[ω2 − �2(q)]2 + ω2�2(q)
. (11)

FIG. 3. (a) Sound velocity as a function of frequency for the
model with q-independent self-energy with free A (black circles) and
with A = 1 (blue triangles) and for the DHO model (red squares). The
continuous (green) line is the value of the macroscopic longitudinal
sound velocity at the temperature of the experiment. (b) Sound
attenuation divided by q2 as a function of frequency. Same symbols
as in (a).

In this expression the frequency normalization is explicit,
since S(q)[1 − f (q)] is the frequency integral of Scl

inel,DHO.
Comparing Eq. (11) with expressions (6), (7), and (8), we
find that the DHO model can be expressed in terms of the
set of parameters (�,�,f,ADHO), instead of the parameters
(�,�,f,S), by defining ADHO as the zeroth moment of the
classical current correlation function in units of the square of
the thermal velocity1:

ADHO = m

kBT

∫ ∞

−∞
dω

ω2

q2
Scl

DHO(q,ω)

= m

kBT
S(q)[1 − f (q)]

�2(q)

q2
. (12)

Note that a value of A different from 1 implies a violation
of the classical second moment sum rule. Such a violation is
indeed found for both the DHO model and the model with
a q-independent self energy, as shown in Fig. 4. Here, as in
Fig. 3, the parameter of the DHO is plotted as a function of

1We assume, as in Eq. (6), that the elastic part of the dynamic
structure factor is proportional to δ(ω).
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FIG. 4. Parameter A = A(ω) for the model with q-independent
self-energy (black circles) and for the DHO model (red squares). The
line is set at A = 1.

��(q), whose uncertainty is evidenced in the horizontal error
bars. Only the first few points of the DHO model, those below
the BP frequency, are consistent with a value of A close to one.

At the highest frequencies both models give similar values
for the parameter A, while the discrepancy in the range
between 5 meV and 15 meV is related to the fact that
the comparison is done in different regions of the (q,ω)
space. Specifically, the 
 = 
(ω) model is fitted to the entire
measured q range (between 1 and 12 nm−1), while the DHO
parameters in this frequency interval correspond to q between
1 and 4 nm−1. It will be clear from the discussion in the next
section that the high-q tail of the 
 = 
(ω) model (see Fig. 2)
is picking up intensity from vibrational modes that appear in
the DHO analysis as peaked at ∼10 meV for q > 5 nm−1. This
additional intensity gives rise to an increase of the parameter
A over the one of the DHO, as shown in Fig. 4, and induces
an additional broadening of the peak, as observed in Fig. 3(b).

IV. DISCUSSION

We come to the conclusion that both models, the one based
on the assumption of a q-independent self-energy and the
DHO, violate the classical second moment sum rule above the
frequency of the BP. In the case of SiO2 this is also the upper
frequency where the damping follows the Rayleigh scattering
law, as shown in Fig. 3(b). Based on a previous work where we
compared the vibrational dynamics of a permanently densified
SiO2 sample with that of an α-quartz polycrystal [24], we
are led to believe that this is the upper frequency where a
description of the dynamics in terms of a single excitation
is still appropriate, as also found for other glasses [33]. The
use of a single-excitation model is probably the reason for the
violation of the classical second moment sum rule.

Consequently, the sum rule has to be used with care if one
wants to exploit its validity to determine the q dependence of
the spectra. For instance, we expect the procedure followed
by Buchenau [22] to fail at high frequencies, above the BP,
since he applies the classical second moment sum rule to
a single DHO model. Buchenau also suggests that at high

qs a part of the inelastic intensity is due to diffuse umklapp
scattering. In the case of our measurements this contribution
is probably relevant only for the points above 20 nm−1, see
Fig. 1, and possibly also for the highest q points of Fig. 2.
The inelastic intensity at such high qs closely resembles the
density of vibrational states and is dominated by the transverse
acousticlike branch at the zone boundary [24].

To clarify the origin of the deviation of the parameter A

from unity, it is useful to look at the q dependence of the
parameters of the DHO model and to compare the single peak
analysis with previous studies [32,34] where the spectra were
fitted with a double-excitation model. The dispersion curve and
the apparent sound velocity obtained from these two analyses
and the parameter ADHO are plotted in Fig. 5. The first panel
of the figure shows that the peak of the single DHO follows
the higher-frequency mode of the double excitation model up
to 5 nm−1. At higher qs the single DHO is peaked on the
lower-frequency excitation. This transition is quite abrupt and
is related to the increase in intensity of the lower-frequency
peak, which overcomes that of the higher-frequency one in
this wave-vector range, as found in Ref. [32]. The shift of the
single DHO from one peak to the other is probably accelerated
by the limited energy interval, ±40 meV, where the 1620 K
data have been measured.

This change of behavior of the single DHO model for
q ∼ 5 nm−1 is reflected also in the q dependence of the
parameter ADHO, which increases almost linearly with q in
the range where the apparent sound velocity is approximately
constant, while it drops rapidly towards zero at higher qs.
The initial increase of the parameter ADHO can be ascribed
to the slow decay of the tails of the single DHO model. The
shape of the function leads to overestimate the area of the
current correlation function in the frequency range outside of
the measured one. The subsequent rapid decrease of ADHO is
due to the fact that, for q > 5 nm−1, the single DHO describes
only a portion of the spectrum. This part of the spectrum,
despite being predominant in the S(q,ω), has a negligible
intensity in the current correlation function with respect to
higher-frequency components.

It is interesting to note that the single DHO model is
always peaked in a frequency range mainly populated by
acousticlike excitations, as can be seen by comparing our
analysis of amorphous silica with that of the corresponding
crystal, α-cristobalite. In a recent experimental and numerical
work, Weingher et al. [35] have determined with high accuracy
the dispersion curves of a single crystal of α-cristobalite, which
belongs to the tetragonal lattice system. The curves are plotted
along a few high symmetry directions in Fig. 6. The red squares
in the figure are the frequencies of the single DHO model for
supercooled silica at the q values which equal the modulus
of the wave vector in the given crystallographic direction.
Note that in this representation some data of amorphous silica
are reported more than once, since different wave vectors in
the chosen directions of the first Brillouin zone have the same
modulus.

It is worth noting that the acoustic modes of the single
crystal are restricted to energies below 18 meV. Comparing the
dispersion curves of the crystal with those for the glass, we see
that the lower-frequency peak of the double-excitation model
of Fig. 5 is not the transverse acoustic mode, apart possibly
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FIG. 5. Wave-vector dependence of the parameters of the single
DHO model (red squares) and comparison with a previous experiment
[32] at a similar temperature (1570 K) analyzed with a two excitations
model (open blue diamonds for the higher-frequency mode and open
blue stars for the lower-frequency one). The lines correspond to the
macroscopic longitudinal (continuous green) and transverse (dashed
green) sound velocity. (a) Dispersion curve; (b) apparent sound
velocity; (c) parameter A for the single DHO model.

from the first few points, but rather a peak with contributions
from all the three acoustic branches and also from the first
optic branch. Similarly, the high-frequency peak of the two
excitations model for the glass is not the high-q counterpart of

FIG. 6. Dispersion curves of α-cristobalite along a few high
symmetry directions (black lines) from Ref. [35], compared to the
dispersion of the single DHO model for supercooled silica (red
squares) as described in the text. For reference, the lengths of
the plotted directions in the Brillouin zone are: �M ∼ 9.0 nm−1,
�A ∼ 10.1 nm−1, and �Z ∼ 4.6 nm−1.

the longitudinal acoustic mode but, above 5 nm−1, that peak
is probably dominated by opticlike excitations.

V. CONCLUSIONS

We have presented an analysis of IXS data of vitreous silica
in the supercooled liquid state (T = 1620 K) performed in
wave-vector space. We have applied a careful normalization
procedure to convert the experimental spectra, measured at
fixed q as a function of frequency, to a set of q-dependent
spectra at fixed ω. The resulting data have been modeled in
terms of a q-independent complex self-energy, 
 = 
(ω), in
order to test the validity of recent theories for the vibrations
in glasses [18–21]. The analysis has revealed that such an
approach can be used only at the price of including a frequency-
dependent constant, A(ω), to multiply the inelastic intensity.
The comparison with the experimental data shows that this
parameter is different from one in the entire explored frequency
range, leading to a violation of the classical second moment
sum rule. The agreement between the model and the spectra
is far less satisfying if one imposes A = 1, apart from the first
few points at low frequencies, close and below the frequency
of the BP (�ωBP ∼ 6 meV in supercooled silica).

The knowledge of both the ω and q dependence of the
experimental dynamic structure factor allowed us to determine
the inelastic intensity of a single DHO model in absolute units.
To this aim we extended the previously published analysis [15],
that was limited to q < 4 nm−1, to the entire measured q range.
The comparison between the single DHO model and the model
with a q-independent self-energy shows that both give similar
parameters and in both cases the classical second moment sum
rule is violated above the frequency of the BP. The reason for
this failure lies in the fact that a single-excitation model cannot
appropriately describe the spectra at high frequencies, where
the overlap of many vibrational modes gives rise to a complex
spectral shape.

The comparison of the single DHO model with the
dynamics of α-cristobalite single crystal indicates that the
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structure of the glass on the medium range cannot be neglected
in a proper description of its vibrational dynamics. The theories
based on a q-independent self-energy are, instead, assuming an
almost linear dispersion with a q-independent sound velocity,
thus neglecting the effect of the finite size of the Brillouin zone
[33,36].

To conclude, single-excitation models with a q-independent
self-energy are able to describe the experimental data only
below the BP frequency. In the case of vitreous silica, this
is also the upper frequency where Rayleigh scattering is

observed. The Rayleigh scattering can be modeled quanti-
tatively by assuming the elastic constants to be correlated on
a length scale comparable to the extent of the medium range
order of the glass [17,24]. We suggest that these scattering
centers can be identified with the elastic heterogeneities
observed in the numerical simulation studies [4–9]. At higher
frequencies the vibrational dynamics of the glass closely
resembles that of the corresponding polycrystal and the BP
lies close to the first Van Hove singularity of the crystal
[23–25,35].
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