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Abstract Seismological data acquired by dense receiver networks in Fennoscandia enable imaging of
Earth's upper mantle structure at unprecedented resolution and provide critical observations for resolving
the ongoing debate on the cause of enigmatic high topography in Norway. Proposed mechanisms for the
high topography include impact of a mantle plume, as supported by the observation of low seismic velocities
in the uppermost mantle in southern Norway in contrast to high velocities in Sweden. We image the
mantle transition zone (MTZ) in Fennoscandia by common conversion point stacking of 14,873 receiver
functions from 14 networks including the recently deployed ScanArray. We find bothMTZ discontinuities at
their expected depths of 410 and 660 km within an uncertainty of 5–15 km and the thickness of the MTZ
similar to the global average. These observations show that the high topography in western Scandinavia
cannot be caused by thermal influence from the deep mantle.

Plain Language Summary High mountains in Norway have long puzzled scientists because it is
challenging to explain their existence. Numerous explanations have been proposed including processes deep
inside the Earth. Our results show that these processes must be located above 410‐km depth. This
observation is critical for the ongoing debate on the cause of the enigmatic mountains in Scandinavia. New
data acquired between 2012 and 2017 by the collaborative ScanArray project between European institutions
allow mapping of the mantle transition zone—the deepest layer possibly involved in the mountain
support. We show that the mantle transition zone boundaries beneath Fennoscandia are close to reference
depths and the zone has a standard thickness. As the depths to these boundaries are sensitive to
temperatures, this indicates that the mantle transition zone in this area is unaffected by any ongoing deep
process. Therefore, the explanation for the high topography in Norway must be found above the mantle
transition zone. This study provides the first map of the mantle transition zone below Fennoscandia, which
will be valuable for any further global studies of the mantle transition zone.

1. Introduction

The Baltic Shield (Fennoscandia) is the tectonically quiet northwestern part of the East European Craton.
The opening of the North Atlantic Ocean in the Early Cenozoic was the last tectonic event that affected this
region by creating a wide passive margin offshore western Norway. Current topography of Norway is gener-
ally high with two domes higher than 1,500 m in the southern and northern parts and peak altitude up to
2,469 m (Figure 1a). This high topography remains enigmatic and is vividly debated (cf. Anell et al., 2009;
Japsen & Chalmers, 2000). The debate has centered on the role of the Caledonian orogeny (Gee et al., 2008;
Figure 1b), which affected Fennoscandia and terminated around 400 Ma, as well as the influence of acceler-
ated recent onshore erosion over the latest 5 Myr (Anell et al., 2010). One point of view (Nielsen et al., 2009;
Pedersen et al., 2016) explains the present high topography by the interplay between erosion and isostatic
rebound since Caledonian time, while the other point of view (Anell et al., 2012; Gabrielsen et al., 2010;
Japsen et al., 2012) implies that additional geodynamic processes are responsible for the recent uplift of
the Scandinavian mountains during the Cenozoic.

It has been hypothesized that effects of the Icelandic hotspot could explain the high elevations by creating
positive buoyancy of the upper mantle (UM) due to high temperature. A low‐velocity zone (LVZ) in the
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UM observed below Southern Norway in tomography images (Medhus et al., 2012; Rickers et al., 2013;
Wawerzinek et al., 2013) has been interpreted as a finger of the proposed Icelandic mantle plume
(Schoonman et al., 2017). However, due to poor resolution of seismic body wave tomographic images
(Foulger et al., 2013), the vertical extent of the LVZ is not completely resolved (Medhus et al., 2012;
Wawerzinek et al., 2013), and full‐waveform tomography models image it differently (Rickers et al., 2013;
Zhu et al., 2015). As such, there is currently no clear indication whether the LVZ extends tomantle transition
zone (MTZ) depths and temperature anomalies affect mineralogical phase changes.

The MTZ is characterized by abrupt increase of seismic velocity across its two boundaries located approxi-
mately at 410‐ and 660‐km depths. Mineral physics experiments indicate that the major contributors to these
boundaries are phase changes of olivine into wadsleyite at 410 km, and ringwoodite into perovskite + ferro-
periclase at 660‐km depth (Ringwood, 1969). These mineral phase changes are temperature and pressure
dependent, and the thickness of the MTZ may provide information on the temperature due to the opposite
sign of the Clapeyron slopes for the two reactions (Bina & Helffrich, 1994). Assuming homogeneous compo-
sition, we expect that the MTZ is thicker than normal at low temperature and thinner than normal at high
temperature. Measurement of the MTZ thickness therefore allows the detection of temperature anomalies
that originate deep in the mantle and thereby constrains possible underlying local geodynamical processes.
However, this ideal picture may be complicated by several effects. UM velocity anomalies may shift the

Figure 1. (a) Topography map of the study area outlining areas of high topography with contours at 500, 1,000, 1,500, and 2,000 m. High topography are generally
only found in Caledonian deformed areas as outlined by dashed dark blue line. (b) Generalized geological map (after Högdahl et al., 2004) of Fennoscandia.
Locations of the Sorgenfrei‐Tornquist zone and paleo subduction zones are after Korja and Heikkinen (2005). Political boundaries are shown with solid black lines
in (a) and (b) maps. (c) Map of seismic stations used and coverage by P‐to‐S piercing points at the mantle transition zone depth in Fennoscandia. Stations are
shown as diamond symbols with color according to number of receiver functions used to producemaps. Small dark gray circles correspond to piercing points at 535‐
km depth. Black lines indicate locations of two seismic profiles shown in Figure 2.
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apparent depths of discontinuities and introduce a positive correlation that is opposite to the temperature
effect (e.g., Tauzin & Ricard, 2014). Additionally, the presence of minerals other than olivine may change
the Clapeyron slopes of the phase changes (Irifune, 1987). Finally, the presence of volatile elements
potentially affects the MTZ by reducing seismic velocities, shifting the depth of phase transitions (Thio
et al., 2016), broadening the discontinuities (Frost, 2003; Wood, 1995), and triggering partial melting
(Bercovici & Karato, 2003).

Global studies (Lawrence & Shearer, 2006a; Tauzin et al., 2008) of the MTZ thickness have used data from
two stations in Fennoscandia located in the very north (KEV) and south (KONO). These and other regional‐
scale receiver functions (RFs) studies (Alinaghi et al., 2003; Bock et al., 2001; Kozlovskaya et al., 2008; Vinnik
et al., 2016) show that P‐to‐S conversion signals for the 410‐ and 660‐km discontinuities (“410” and “660” in
the following text) arrive up to 2 s earlier than the standard times in the IASP91 model in Finland
(Kozlovskaya et al., 2008) and Sweden (Olsson et al., 2007; Vinnik et al., 2016). This was explained by higher
velocities in the UM than in the IASP91 model.

Here we present new maps of the MTZ characteristics in terms of depths to the 410 and 660 and the MTZ
thickness. These maps are obtained from common conversion point (CCP) stacks of 14,873 teleseismic
RFs for 398 stations distributed across Fennoscandia. These data include the recent ScanArray experiment
(Thybo et al., 2012) conducted between 2012 and 2017 as a collaborative project between several
European institutions. The new data allow imaging the deep structure in Fennoscandia at unprecedentedly
high resolution (~200 km lateral, ~15 km vertical) to improve our understanding of the geodynamical pro-
cesses currently acting in the region.

2. Data and Methods
2.1. Seismic Networks

We use data acquired by broadband recorders deployed during multiple seismic experiments in
Fennoscandia (Figure 1c and Figure S1 in the supporting information). The core of our study is the newly
acquired data from the ScanArray experiment (Thybo et al., 2012). The primary motivation for the
ScanArray experiment is to enable the understanding of surface topography. In addition to ScanArray
stations, we use other local permanent and temporary deployments. The full list of the 398 stations and 14
networks is provided in the supporting information (Figure S1 and Table S1). The spacing between stations
is nominally 50 km, and it varies between 10 and 100 km.

2.2. Method

To map the depths to boundaries of the MTZ and its thickness, we use CCP stacking of P wave RFs (Dueker
& Sheehan, 1997; Tauzin et al., 2013; Zhu, 2000). The RF method detects sharp changes in seismic velocities
based on identification of P‐to‐S converted phases (Figure S1b). CCP stacking allows creation of depth‐
migrated images of the observed discontinuities. High data density is required to form robust images by
stacking as the amplitudes of converted signals rarely exceed 5% of the P wave amplitude and are often at
the level of the background noise.

We apply this technique to seismic records of 43,684 teleseismic events with magnitudes larger than 5.5 in
the epicentral distance range 30–95° (Figure S1a). P wave RFs (e.g., Langston, 1979; Vinnik, 1977) were
calculated for each event by deconvolving the radial by the vertical component seismogram filtered with a
0.5‐ to 20‐s band pass. We applied iterative time domain deconvolution (Ligorría & Ammon, 1999) with a
low‐pass filter with Gaussian width a = 1.0. Subsequently, we calculated the piercing point locations at
535‐km depth for each RF (Figure 1c) and the corresponding raypath using the IASP91 model. The absolute
shear wave velocity value from a velocity model was attributed to each of the points along the raypaths for
the migration and depth conversion. In this study we used the IASP91 1‐D velocity model (Kennett &
Engdahl, 1991) and the 3‐D velocity model by Zhu et al. (2015, hereafter called ZHU15). The latter model
has good coverage of Fennoscandia by use of more than 20 stations in Fennoscandia. The RFs were
moveout‐corrected according to ray parameter and velocity model in the spatial domain and projected onto
profiles to form resulting 2‐D CCP stacked images (Figures 2 and S2). Similar to Tauzin et al. (2013),
Gaussian smoothing along the horizontal axis is applied to the images with a standard deviation of 50 km.
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We used stacks of RFs by networks to assess if the corresponding data have a reasonable signal‐to‐noise ratio
(Figure S3).

Red signals in our images (Figures 2 and S2) correspond to positive amplitude and can be related to sharp
downward increasing gradients of shear wave velocity. The maximum expected thickness for these gradients
is less than λP/2 ≈ 50 km (Bostock, 1999), where λP is the P wavelength at the dominant period (~10 s).
Amplitudes in blue mark negative amplitudes associated with velocity decreases. Given the band pass of
the RF data, the vertical resolution is ~15 km (given by the width of the Gaussian pulse in the depth domain
at half the maximum amplitude).

Our CCP stacked profiles correspond to the projection of RFs with piercing points at 535‐km depth and
within 100 km from the profile. Thus, the obtained images have a lateral resolution of ~200 km. They are

Figure 2. Common conversion point stacks of receiver functions, using the ZHU15 velocity model, along profiles located
(a) 62°N and (b) 21°E; cf. Figure 1. Red color corresponds to converted signals from discontinuities with a downward
positive gradient of shear velocities, and blue color corresponds to a decrease of velocity. Black solid horizontal lines at
410‐ and 660‐km depths indicate reference depths for the mantle transition zone discontinuities. The upper panel of
each profile shows topography (yellow = crust; blue = water) with station locations projected onto it (black dots). Right‐
hand diagrams show stacks of all the receiver functions (RFs) in the profiles.
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valid for interpreting only the structure between 350‐ and 700‐km depths because the rest of the images
consists of parts of the RFs that sample areas further than 100 km away from the profiles and are
contaminated by crustal multiples (Text S2). Most of the profiles includes more than 1,500 RFs (from
10°E to 26°E every 1° and from 59°N to 69°N every 0.5°), which ensures high data density, necessary for effi-
cient stacking to suppress noise and reveal coherent signals associated with the structure.

To obtain maps of the depth to interfaces and estimate the uncertainty, the chosen set of the RFs was
bootstrap resampled with replacement (Efron & Tibshirani, 1991). We subsequently applied automatic pick-
ing of the maximum amplitude in target depth windows (±50 km) around the 410 and 660 (Hier‐Majumder
& Tauzin, 2017). By this procedure, we obtain depth distributions with uncertainty estimates taken as one
standard deviation of the distribution. To reconstruct the three‐dimensional depth variations of the 410
and 660, we used an average depth value from four adjacent profiles to each 55 × 55‐km cell in the grid to
build the resulting maps (Tauzin et al., 2013).

The applied methodology implies that all the obtained values of depths to the 410 and 660 should be inter-
preted relative to the velocity model used for time‐to‐depth migration (1‐D IASP91 and 3‐D ZHU15 in our
case). The velocity structure of the UM above the MTZ influences the observed depth to each discontinuity
(Chevrot et al., 1999). It is possible to subtract this influence by building maps of MTZ thickness variations
that are only affected by the pressure/temperature dependence of phase changes and velocity variations
within the MTZ. Maps of the 410 and 660 were built for the same set of RFs based on piercing points loca-
tions at 535‐km depth in the middle of the MTZ (Kosarev et al., 2018). We consequently subtracted the two
410 and 660 maps to obtain the thickness of the MTZ. The uncertainty on the transition zone thickness is
calculated as the square root of the sum of the squared uncertainty values for the 410 and 660. Only the
results within the low uncertainty area (1s < 15 km) are discussed. We provide an extended Method section
in the supporting information.

3. Results

The converted signals for both the 410 and 660 discontinuities are clearly visible on all the network stacks
(Figure S3), which indicate that the data recorded by each individual network contain reliable information
about the MTZ (Figure S3). Using these data, we obtain CCP stacks over a region between 4–34°E and
55–73°N with profiles arranged as a mesh of ~55 by 55 km (Figure 2) and two sets of MTZ maps using
the IASP91 and ZHU15 models for migration. Each set of maps includes the depth to the 410 and 660
and the thickness of the MTZ, with uncertainties (Figures 3, S4, and S5). We discuss these observations
with respect to the reference values of 410‐ and 660‐km depths and 250‐km MTZ thickness, from the
IASP91 model.

The obtained CCP stacked profiles include pronounced converted signals at depths around 410 and 660 km
(Figures 2 and S2). The amplitude of the conversion at the 660 is slightly smaller than at the 410, on average
0.48% against 0.59%, especially on the profiles west of 10°E, east of 26°E, south of 59°N, and north of 69°N
with lower data density (Figures 1c and S6). The best quality CCP stacks are obtained between 10–26°E and
59–69°N, which is the area with the highest data density that ensures the smallest uncertainties (<15 km) for
the maps (Figures S4 and S5).

Our maps (Figures 3a–3c) calculated from time‐to‐depth migration in IASP91 show that the depths to the
410 and 660 are positively correlated (+0.53 Pearson correlation coefficient for depth estimates with uncer-
tainty <15 km; Figure S7e) and elevated above standard values (Figures 3a and 3b). The observed 410 and
660 appear to be up to 15 and 20 km, respectively, shallower than standard (Figures 3a and 3b). The mean
depths are 403.5 and 648 km with standard deviations ±14 and ±11 km in the study region respectively
(Figure S7). Both discontinuities are imaged relatively deep in western Fennoscandia, beneath Norway, with
depths reaching reference values (410 and 660 km; Figures 3a–3c). In the central part of Fennoscandia,
approximately beneath Sweden, the discontinuities are up to 15 and 20 km shallower than standard values.
To the east in southern Finland, both the 410 and 660 are deeper with standard values for the 410 and 10 km
shallower than standard depth for the 660. The MTZ is generally slightly thinner than standard with a mean
around 244 km and standard deviation ±9 km over the region (Figure 3c) and overall variations between 220
and 265 km.
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Corrected for the UM structure with the ZHU15 velocity model (Figures 3d–3f), the depths to the 410 and
660 are close to reference values (Figures S7a–S7c) and the Pearson correlation coefficient for depth
estimates is only +0.08 (Figure S7d). However, the general relief remains—both the 410 and 660 are slightly
deeper in the west and east than in the central part. The depth to the 410 is close to reference (413 km with
±13 km standard deviation over the region; Figures 3d and S7a). The 660 is shallower with an average value
of 656 km with standard deviation ±13 km over the region, but the difference can locally reach 15 km. The
thickness of the MTZ generally varies from 235 to 255 km and is overall thinner than the 250‐km reference
by 5–10 km. The mean value for the MTZ thickness is 242 km with a spatial variation of 12 km (Figures 3f
and S7c).

The MTZ appears slightly thinner than normal (8–15 km) in the central part of the study area (Figure 3f).
MTZ has standard thickness in Southern Norway along 62°N, in the north at 68°N and 14°E and in
Finland 63°N, 24°E and 67°N, 27°E. The latter two locations are close to the high uncertainty area in
Figure 3. Areas with high uncertainty are characterized by short‐wavelength variation in thickness
(Figure S5c): the area in southern Norway with thickness of 230 km is adjacent to an area with standard
thickness; in Finland several small areas with thickness of 255 km are surrounded by an area with average
245‐km thickness. Patchy anomalies in Finland spatially correlate with the Archaean part and its transition
to the Proterozoic part of the Baltic Shield. Here the MTZ locally reaches 265 km in thickness with high
observational uncertainties, as indicated by the mask in gray (Figure 3f).

Faint neutral‐to‐positive amplitude signals in themid‐MTZ on CCP stack images could indicate the presence
of the 520‐km discontinuity (Figures 2 and S2). This interface is often attributed to the wadsleyite‐to‐
ringwoodite mineral transition (Shearer, 1996). Although the idea of the existence of the 520‐km discontinu-
ity was challenged by Bock (1994), there is now a large consensus on its existence (e.g., Lawrence & Shearer,

Figure 3. Maps of the depth to the 410‐ (a, d), 660‐km (b, e) discontinuities and the thickness of the mantle transition zone (c, f) obtained using the IASP91 velocity
model (Kennett & Engdahl, 1991) in the upper row and the ZHU15 velocity model (Zhu et al., 2015) in the lower row. The regional ZHU15 model provides a
more realistic estimate of velocities, therefore the results in the bottom row are considered more reliable than in the upper row. The figure thus demonstrates the
bias that may be introduced in studies using the general IASP91model for time to depthmigration. The light gray transparent shading covers areas with uncertainty
larger than 15 km for (a, b), and 20 km for (c). White color covers areas without data.
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2006b). The increase in seismic velocities across the discontinuity at 520‐km depth is usually weak,
potentially explaining the poor imaging with RFs.

Other peculiar features observed in the CCP images are localized negative amplitudes (Figure 2 and S2)
gathered above the 410 in the northern part of our maps (within the area 16–25°E 67–68°N, centered around
23°E 67°N). It may indicate the presence of a LVZ below ~350‐km depth (Revenaugh & Sipkin, 1994; Tauzin
et al., 2010; Thybo et al., 2003; Vinnik & Farra, 2007). We also observe negative amplitudes within the MTZ,
right above the 660 in the area of Gulf of Bothnia (16–21°E 61–62°N), which might be an indication of the
presence of a 590‐km discontinuity (Figures 2 and S2; Shen et al., 2014; Tauzin et al., 2013).

4. Discussion
4.1. Effect of Shallow UM Velocities on Depth Maps

Our results support the conclusion of previous studies revealing high seismic velocities in the
Fennoscandian UM compared to IASP91 (Alinaghi et al., 2003; Bock et al., 2001; Kozlovskaya et al., 2008;
Olsson et al., 2007; Vinnik et al., 2016). Both the 410 and 660 are uplifted by up to 15 km for the 410 and
20 km for the 660 relative to standard values for time‐to‐depth migration with the IASP91 model
(Figures 3a–3c, S2, and S7). Such depth differences could in principle be explained by thermal variation, with
reversed cold and hot temperatures in the vicinity of the 410 and 660, respectively. However, several lines of
evidence suggest that these are not related to thermal variations around the MTZ but instead to higher
velocity in the UM in Scandinavia than in IASP91:

(i) Shallow UM velocity heterogeneities affect the 410 and 660 in the same way; that is, both interfaces
appear deeper than expected in case of a slow UM and shallower than expected in the case of a fast
UM. Here, the topography of the 410 and 660 are positively correlated (Figures S7d and S7e). In
particular, both interfaces are deep in the western Fennoscandia (Figures 3a and 3b). A slightly similar
pattern remains after correction using the ZHU15 model (Figures 3d and 3e).

(ii) Ideally, if the UM effects are correctly removed by use of a reliable 3‐D velocity model (ZHU15), the
points on the correlation plot of the 410 and 660 topography would concentrate around standard
values. This occurs when we correct for the 3‐D structure using the ZHU15 model (Figures S7d and
S7e): The points form a tighter cloud near standard values for the 410 and 660 depths, and the
Pearson correlation coefficient between topographies decreases from +0.53 to +0.08, indicating at least
partial removal of the UM effects.

(iii) Further, (1) the depth distribution for the 410 interface becomes narrower, (2) the uncertainties are
reduced (Figures S4, S5, and S7), (3) stacked amplitudes increase, and (4) the spatial continuity of inter-
faces on the CCP images improves with the ZHU15 model instead of IASP91 (Figures 2 and S2). These
results are caused by better focusing of the converted seismic signals in the depth domain before stack-
ing. In particular before correction, the distribution of 660 depths is bimodal, with maxima centered at
643‐ and 652‐km depths (Figure S7b). After correction using the ZHU15 model, the distribution is
unimodal centered around 655 km (Figure S7b). Similar, but less pronounced effect is observed for
the depth distribution to the 410 (Figure S7a).

The amplitudes of conversion at the 410 and 660 are the smallest for the networks deployed in Finland (net-
works ZB and XK in Figure S3). It is also the area with the highest uncertainties in our maps (Figures S4 and
S5). Factors explaining this may include the following: (i) lower density of data—short temporary deploy-
ments do not provide sufficient coverage despite a relatively small spacing between stations, (ii) possible
complex crustal and UM structure with shallow discontinuities in the crust and structures related to
Proterozoic/Archean suture zones unaccounted for in the velocity model (Kozlovskaya et al., 2008;
Yliniemia et al., 2004), (iii) strong variations in the local topography of MTZ interfaces, and (iv) extended
(>50 km) velocity gradients that decrease conversion amplitudes.

The ZHU15 model is a more accurate representation of the deep velocity structure in Scandinavia than
IASP91. As both interfaces have been mapped close to standard depths, it is likely that most of the shear
wave velocity variations have been accounted for, including the sharp velocity difference in the UM below
Southern Norway and Sweden (up to 0.25 km/s in Vs; Kolstrup & Maupin, 2013; Maupin et al., 2013).
The mean value of MTZ thickness (242 km with standard deviation over the area ± 12 km) is close to the
standard value of 250 km.
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There is a trade‐off between shear wave speed and recovered discontinuity depth. Additionally, corrections
for 3‐D mantle structure are not always accurate. To investigate how our results depend on the chosen
model, we have compared the shear velocity structure in the 3‐D models ZHU15 and in NA‐IP (North
Atlantic‐Instantaneous Phase) model by Rickers et al. (2013). Locally, differences can be significant (up to
0.15 km/s, that is, ΔV ≈ 2.5% that corresponds to 13.6‐km change in the MTZ thickness; Figure S8a) but
the areas with the largest differences coincide with areas with ~15‐km uncertainty in our MTZ topography
maps. However, the overall difference remains small in the investigated region, with an average of
~0.035 km/s (Figures S8b and S8c) in the MTZ (i.e., ΔVs ≈ 0.6%). This shear velocity perturbation roughly
corresponds to ~3‐km difference in thickness (Figure S8a). Thus, correcting using the NA‐IP model would
not affect our interpretation.

4.2. No Deep Thermal Origin for the High Topography of Scandinavia

One of the most disputed topics in Scandinavia is the cause of the high topography in the Scandinavian
mountains with >1,500‐m elevation in the southern and northern domes. One of the proposed explanations
is lateral influence of the Icelandic plume. Tomographic studies suggest that the UM shear wave velocities
are much higher in Sweden than in southern Norway at 100‐ to 150‐km depth (Kolstrup & Maupin, 2013;
Maupin et al., 2013). The NA‐IP tomography model includes a structure at 100‐ to 200‐km depth beneath
southern Norway that have been interpreted as an Icelandic “plume finger” (Schoonman et al., 2017).
However, due to resolution issues, there is no unambiguous observation that constrains the maximum depth
of these anomalies, and whether they affect mineralogical phase changes. The minimum thermal perturba-
tion detectable by our method is ~30 K (it would create variation in thickness of >5 km that exceeds mean
uncertainty). We find standard thickness of the MTZ and almost equally elevated 410 and 660, independent
of the UM velocity model. Therefore, it is unlikely that the temperatures causing the low velocities in the
sub‐Moho mantle extend to the depths of the MTZ.

The crust is thin in southern Norway and it lacks a high‐velocity lower crust. This has been explained by
lithospheric root delamination (Abramovitz & Thybo, 2000; Artemieva & Meissner, 2012; Frassetto &
Thybo, 2013), which might have affected the MTZ. The relatively thin crust is enigmatic as it is observed
below the highest topography in Scandinavia, such that isostasy would predict low topography. It has been
hypothesized that the Caledonian orogen around 400Mawas comparable in size and crustal thickness to the
Himalayas (Gee, 2015), with a layered structure in the UM (Kind et al., 2013). The lower crust has potentially
transformed into eclogite facies, and its increased density may have led to instability of the lithospheric root
followed by delamination (Artemieva & Meissner, 2012; Mengel & Kern, 1992). Such piece of a lithosphere
would sink through the UM and could potentially reach the MTZ and perturb the temperature field. The
MTZ structure resolved by our method has a resolution of ~150 km laterally and 15 km vertically. Within
this resolution, our results show no evidence for the presence of lithospheric keel around theMTZ. This does
not represent a final rejection of the delamination model, as the keel could be stalled in the upper or lower
mantle, or the plate could have moved away from it since delamination.

Another feature that could potentially complicate the MTZ structure in Scandinavia are paleosubducted
slabs from the Proterozoic accretion of the Baltica plate (dashed black lines in Figure 1b) and the closure
of the Iapetus Ocean. Several seismic studies have reported presence of dipping mantle reflectors below
the crust in the Gulf of Bothnia and in the North Sea south of Norway (Abramovitz et al., 1997;
Abramovitz & Thybo, 2000; BABEL Working Group, 1990; Balling, 2000; MONA LISA Working Group,
1997). Tomographic studies observe dipping features interpreted as possible paleosubduction and delamina-
tion (Eken et al., 2008; Zhu et al., 2012a, 2012b). Other evidence for ancient subducted slabs could be reduc-
tion of seismic velocities atop the 410‐ and 660‐km discontinuities and within the MTZ (Revenaugh &
Sipkin, 1994; Shen & Blum, 2003). Our CCP stacks contain negative amplitude converters atop the 410
and 660 in a broad region, including the area adjacent to the boundary between the Archean and
Proterozoic domains, which might indicate the presence of remnants of paleo subduction. Other possible
explanation for the negative conversion atop MTZ are variation in the Mg# or influence of the pyroxene
to majorite phase transformation (Thybo et al., 2003).

Although with large uncertainty, relatively thick MTZ is observed in the Archaean parts of the study area,
which appear 20–30 km thicker than in the Proterozoic and Caledonian parts of Fennoscandia. MTZ thick-
nesses of 270–280 km in the northeastern, Archaean part of the East European Craton, and ~240 km in the
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Proterozoic part have been observed from travel time analysis of refracted arrivals from the 410 and 660 by
Świeczak and Grad (2004). Gao and Liu (2014) observed a relatively thick (>260 km)MTZ in most of the cra-
tonic parts of United States as compared to normal (245–250 km) thickness of the MTZ around the
craton. We speculate that the thick MTZ below the Archaean parts of Fennoscandia may indicate low tem-
perature that exists due to long‐term cooling of the stable region without tectonic events (Artemieva &
Mooney, 2001). This interpretation may be supported by the coincidence between the thick MTZ and extre-
mely thick lithosphere (>250 km) in these parts of the Baltic Shield observed by a variety of geophysical, in-
cluding thermal, seismic, and electromagnetic studies (Artemieva et al., 2006; Artemieva & Thybo, 2008) and
from analysis of mantle xenoliths brought to surface by kimberlitic eruptions (Kukkonen et al., 2003).

5. Conclusion

A large number of RFs form the basis for the first high‐resolution maps of the MTZ beneath Fennoscandia,
which allow investigation of the topography of the 410 and 660 discontinuities and the MTZ thickness. Our
results suggest that the MTZ has a thickness close to reference values (~243 ± 10 km) and that it is not
affected by any significant temperature variation in the Proterozoic and Caledonian areas. However, we
observe a thicker MTZ (265 km ± 20 km) in the Archaean parts of the shield, which may be the result of
long‐term stable cooling. Both the 410 and the 660 discontinuities appear to be slightly deeper than normal
beneath Norway. We demonstrate that the maps obtained using the 3‐D velocity model by ZHU15 are more
accurate than the ones calculated by using the 1‐D IASP91 model. We find no evidence in the MTZ beneath
Fennoscandia for a deep thermal anomaly that could explain the unusually high topography. The cause of
the enigmatic high topography must therefore be found in the shallower structure.
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