
HAL Id: hal-02291584
https://univ-lyon1.hal.science/hal-02291584v1

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental study of convection in the compressible
regime

Rémi Menaut, Yoann Corre, Ludovic Huguet, Thomas Le Reun, Thierry
Alboussière, Michael Bergman, Renaud Deguen, Stéphane Labrosse, Marc

Moulin

To cite this version:
Rémi Menaut, Yoann Corre, Ludovic Huguet, Thomas Le Reun, Thierry Alboussière, et al.. Ex-
perimental study of convection in the compressible regime. Physical Review Fluids, 2019, 4 (3),
�10.1103/PhysRevFluids.4.033502�. �hal-02291584�

https://univ-lyon1.hal.science/hal-02291584v1
https://hal.archives-ouvertes.fr


Experimental study of convection in the compressible regime
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An experiment of thermal convection with significant compressible effects is presented. The high-
gravity environment of a centrifuge and the choice of xenon gas enable us to observe an average
adiabatic temperature gradient up to 3.5 K cm−1 over a 4 cm high cavity. At the highest rotation
rate investigated, 9990 rpm, the superadiabatic temperature difference applied to the gas layer is less
than the adiabatic temperature difference. The convective regime is characterized by a large Rayleigh
number, about 1012, and dominant Coriolis forces (Ekman number of order 10−6). The analysis of
temperature and pressure fluctuations in our experiments shows that the dynamics of the flow is in
a quasi-geostrophic regime. Still, a classical power law (exponent 0.3±0.04) is observed between the
Nusselt number (dimensionless heat flux) and the superadiabatic Rayleigh number (dimensionless
superadiabatic temperature difference). However, a potential hysteresis is seen between this classical
high flux regime and a lower heat flux regime. It is unclear whether this is due to compressible or
Coriolis effects. In the transient regime of convection from an isothermal state, we observe a local
decrease of temperature which can only be explained by adiabatic decompression.

I. INTRODUCTION

Thermal convection is an important mechanism in the
dynamical and thermal evolution of geophysical and as-
trophysical systems. One of the first theoretical descrip-
tion of this phenomenon was made by Boussinesq [1] in an
incompressible regime. This study was used by Rayleigh
who obtained the criterion of stability of a layer of a fluid
heated from below [2]. First works on convection focused
on incompressible fluids and could not be applied to geo-
physical and astrophysical systems in which compress-
ibility is important due to large variations across large
scale objects. To study these kinds of systems, Ogura
and Phillips [3] proposed the anelastic approximation in
which acoustic waves vanish while other compressibility
effects are retained. This approximation consists in con-
sidering convection as fluctuations around an isentropic
state. The nearly hydrostatic pressure gradient and the
isentropic hypothesis imply the existence of a temper-
ature gradient, called the adiabatic gradient, from low
temperatures at high altitude to high temperatures at
low altitude, as first suggested by Carnot [4].

The anelastic approximation has been applied to many
different natural objects such as the atmosphere [3], the
Earth’s outer core [5], gas giant planets [6] or stars
[7, 8]. In addition, more theoretical studies have been
conducted to gain a better understanding of phenomena
which take place in compressible convection [9, 10]. Nev-
ertheless, all these studies are theoretical or based on
numerical approaches.

On the other side, many convection experiments have
been done but the overwhelming majority of them are in
the incompressible regime. In the geophysical and as-
trophysical fields, most of these experiments focus on
the heat transfer due to convection by evaluating the

Rayleigh-Nusselt relationship and on the influence of the
rotation on this transfer. Different geometries (cylindri-
cal cell, spherical, hemi-spherical) and fluids have been
tested. A review of the obtained power laws was made
by Aurnou [11].

The adiabatic gradient has been observed in the
Earth’s atmosphere by sounding balloons [12], but there
are very few experiments in which compressible convec-
tion effects are present. One study in a gas-pressurized
Rayleigh-Bénard cell [13] mentions the adiabatic gradi-
ent, and takes it into account to estimate a superadia-
batic temperature difference. The total adiabatic tem-
perature drop was 9.5 mK (meaningful as the temper-
ature control is within 0.4 mK) over a height equal to
105 mm, using SF6 close to the critical point. The max-
imum temperature difference applied was 10 K, so that
the adiabatic temperature difference introduced a small
correction most of the time, except for the smallest tem-
perature differences.

We present here an experiment especially designed to
study compressible convection in the lab. The param-
eters of the experiment have been optimized for having
significant compressible effects: we use xenon gas placed
in a centrifuge. An important dimensionless parameter
characterizing compressibility during convection is the
dissipation number

D =
αgL

cp
, (1)

where α and cp are typical values for the thermal expan-
sion coefficient and heat capacity of the fluid, while g and
L are typical values of gravity and size of the system. The
dissipation number D is equal to the difference between
the maximal (near the bottom) and minimal (near the
top) values of the adiabatic temperature profile, divided
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by an average temperature in the system. The dissipa-
tion number is also close to the typical ratio of the viscous
dissipation to the heat flux transferred across the system.
Our experiments reach a dissipation number of 0.06, still
an order of magnitude less than that of the Earth’s outer
core or mantle. This value D = 0.06 is enough to reach
an adiabatic profile of amplitude above 10 K. Usually,
thermal convection experiments in a laboratory have a
dissipation number below 10−5. In our experiment, we
also have access to the departures of pressure and tem-
perature away from their hydrostatic and adiabatic pro-
files. The values show that the pressure departures con-
tribute significantly to entropy departures. This means
that the anelastic liquid approximation should not be
used to model our experiments, although the criterion
for its validity seems to be met according to Anufriev
et al. [5].

In a first part (section II), we explain how the experi-
ment was designed to obtain compressible effects in the
laboratory and we derive expressions for the adiabatic
profile of an ideal gas placed in a centrifuge. In section
III, we describe extensively our experimental setup and
we study heat losses. In section IV, we present the re-
sults of our experiment. We compare the temperature
gradient to the adiabatic gradient. We then study the
Rayleigh-Nusselt power law relationship. Next, we ex-
amine the temperature fluctuations and pressure signals
to describe the flow dynamics. Finally, we study how
convection is established in the initial transient of an ex-
periment through the propagation of a convective front
at the expense of a stably stratified state. Concluding
remarks are made in section V.

II. ADIABATIC PROFILE OF XENON GAS IN
A CENTRIFUGE

In this section, we derive the analytic expression for
the isentropic hydrostatic profile (also called the adia-
batic profile) in the rotating frame of a rotor centrifuge
for xenon gas. When convection is sufficiently developed
in a compressible flow, the fluid state is isentropic due
to the fast mixing of entropy, compared to the timescale
of viscous or thermal dissipation. With the additional
condition of hydrostatic equilibrium, a unique profile is
obtained [14]. This profile, which is the neutral convec-
tive stability profile [15], is called the adiabatic profile.
Thus the equations governing the adiabatic profile are

∇sa = 0, (2)

∇pa = ρag, (3)

∇Ta = αsg, (4)

where the subscript a refers to the adiabatic profile, sa is
the specific entropy, Ta the temperature, pa the pressure,

ρa the density, g the gravitational acceleration and αs the
isobaric entropy expansion coefficient

αs = −1

ρ

(
∂ρ

∂s

)
p

=
αT

cp
, (5)

where α is the isobaric thermal expansion coefficient and
cp the specific heat capacity at constant pressure.

The so-called adiabatic gradient is defined by Eq. (4).
It is easily deduced from Eq. (2) and Eq. (3) by using
thermodynamic identities. In order to obtain sizeable
effects of compressibility in the experiment, our goal was
to maximize the adiabatic gradient. There are two ways
to do so: artificially increase gravity g or choose a fluid
with good thermodynamic properties (large αs i.e. large
αT value and small cp). We have been following both
ways.

A convenient way to raise the value of gravity to a high
level is to use a centrifuge which creates a radial acceler-
ation of amplitude rΩ2 where r is the distance from the
rotation axis and Ω is the rotation rate. With a rota-
tion rate of several thousands rotations per minute and
a rotor size of several centimeters, the rotational accel-
eration can reach values several thousands times larger
than Earth’s gravity. As a consequence, we will neglect
Earth’s gravity in the following and consider a purely
radial gravity.

In order to maximize the adiabatic gradient, it is bet-
ter to use a gas (αT ∼ 1) than a liquid (αT ∼ 10−4). The
best gas candidates are thus the ones with the smallest
cp, hence monoatomic gases with large molar masses. We
decided to use xenon which is one of the monoatomic gas
with the smaller specific heat capacity due to its large
molar mass. Radon gas is still better but was discarded
because of its radioactivity. In the range of our exper-
iments, T ∈ [280 K; 330 K], p ∈ [1.75 MPa; 2.25 MPa],
xenon is not an ideal gas. Because there is no simple
analytic equation of state for xenon in these conditions,
we use the CoolProp library [16] to evaluate the thermo-
dynamic properties of xenon in the conditions of our ex-
periments. This library uses the empirical data of xenon
given by Lemmon and Span [17]. Thermo-physical prop-
erties of Xenon at 300 K and 2 Mbar are listed in Table
I.

On Fig. 1, we plot the isobaric entropy expansion coef-
ficient αs in the range of pressure and temperature in our
experiments. We see that its value has very little varia-
tions, in particular along isentropic curves. For instance,
red lines (isovalues of αs) are different but very close to
adiabats (dashed lines). Hereafter, we take αs constant,
which is true to a very good approximation. With this
approximation, the expressions for the temperature adi-
abatic profile is easily determined by solving Eq. (4)

Ta(r) = Tmaxa +
αsΩ

2

2
(r2 − r2

max), (6)

where Tmaxa is the extrapolated temperature, on the adi-
abat, at the bottom plate at r = rmax.
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FIG. 1. Value of αs (from the CoolProp library) for our
experiments. The dashed lines are the isentropic curves. The
red lines delimit the area in which αs variations are less than
1% from its value at 300 K and 2 MPa.

Molar mass M 0.1313 kg mol−1

Density ρ0 118 kg m−3

Specific heat capacity at
constant volume

cv 105 J K−1 kg−1

Specific heat capacity at
constant pressure

cp 204 J K−1 kg−1

Heat capacity ratio cp/cv 1.98

Isobaric thermal expan-
sion coefficient

α 4.73× 10−3 K−1

Product αT αT 1.42

Entropic thermal expan-
sion coefficient

αs 6.94× 10−3 K kg J−1

Thermal conductivity
[18]

k 6.54× 10−3 W K−1 m−1

Dynamic viscosity [19] η 2.46× 10−5 Pa s

Prandtl number ηcp/k 0.77

TABLE I. Xenon properties at 300 K and 2 MPa. Except
for the thermal conductivity and the viscosity, all these data
are evaluated with the CoolProp library [16] using the xenon
equation of state given by Lemmon and Span [17].

This expression will be used in part IV to compare the
measured and adiabatic profiles. Any difference between
temperature and the adiabatic profile will be called the
superadiabatic temperature.

III. EXPERIMENTAL SETUP

A. Global description

In our experiments, xenon gas is mostly contained in
a cuboid cavity placed in a centrifuge (Figs. 2 and 3).
We use cylindrical coordinates (er, eθ, ez). The rotation
axis of the centrifuge ez is vertical in the laboratory and
the long axis of the cavity is along the radial direction

Materials Thermal Specific Density

conductivity heat capacity

(W m−1 K−1) (J K−1 kg−1) (kg m−3)

Aerogel 0.029 680 to 730 200

Polycarbonate 0.19 to 0.22 1200 to 1300 1200

PEEK 0.25 320 1320

Duraluminium 134 920 2700

Titanium 21.9 522 4510

TABLE II. Thermal properties of materials in the setup.

er. To simplify our explanations in the following, we
give different names to the different walls of the cavity.
The two walls of normal vector er are called the top and
bottom walls. The furthest from the rotation axis, where
heat will be provided to the fluid, is the bottom wall and
the closest to the axis, is the top wall. The other four
faces are named according to the type of boundary layer
that develops due to the rotation. Thus, walls of normal
vector ez are called Ekman walls and the last two walls
are called Stewartson walls.

The cavity is cut into a polycarbonate cylinder fixed
to the centrifuge’s rotor by a titanium lid (Fig. 2). The
cavity is L = 39 mm long with a section of H2 =
23×23 mm2. Ekman and Stewartson walls are thermally
insulated by a 1 mm layer of aerogel (Airloy X103 Class
M). On the top wall, there are two cylindrical holes with
radii 6 mm and 7.7 mm long through which xenon is in
contact with the rotor’s titanium. On the bottom wall,
xenon is heated by a duraluminium plate under which
a square heating resistor is placed. This plate is held in
place by a piece of PEEK plastic under which there is an-
other layer of aerogel for thermal insulation. Properties
of these materials are listed in Table II.

Temperatures are measured by nine NTC thermistors
aligned in the centre of an Ekman wall. These thermis-
tors are glass-encapsulated sensors with a head of 0.8 mm
of diameter and a resistance of 10 kΩ at 25◦C. Moreover
another thermistor is added on the opposite side. The
hot and cold temperatures are measured using a thermis-
tor placed in a hole at the centre of the duraluminium
plate and another is fixed to the rotor. Two piezoelectric
pressure probes allow us to measure dynamical pressure
p − pa. They measure the differential pressure between
the cavity and the thin layer of gas, supposed to be at rest
(i.e. without dynamical pressure), contained between the
polycarbonate and the titanium lid.

The connection with the probes inside the centrifuge
during the experiments is made through a slip-ring
(Michigan Scientific S10) with 10 channels. Due to the
high number of signals to be measured, the signals are
multiplexed using an electronic card fixed to the cen-
trifuge’s rotor. To simplify the electronic circuit, we only
multiplex signals from the thermistors. We add a refer-
ence resistor of a known constant value and we link this
resistor and thermistors together in a series circuit. The
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multiplexer is wired to return the voltage of each ther-
mistor cyclically. There are 11 cycles of measurements
per second. Because we use a 16 channels multiplexer,
we measure the voltage of each thermistor every 91 ms
on a window of 5.7 ms. The principle of temperature
measurement is that the intensity passing through the
thermistors is the same. We determine the value of the
intensity by measuring the voltage of the reference re-
sistor, then we measure the voltage of each thermistor
to evaluate their resistance. And finally, we deduce the
corresponding temperature from an analytical expression
representative of the relationship between temperature
and resistance

R = R0e
−β0

(
1
T0
− 1

T

)
, (7)

where R is the resistance of the thermistor and R0 =
10 kΩ, T0 = 25◦C, β0 = 3492 K are given in the datasheet
provided by the maker. The calibration of the thermis-
tors is done in an isothermal environment, the value R0

of each thermistor is slightly adjusted to match the im-
posed temperature.

B. Heat losses and heat capacity

The setup is heated by the square heating resistor
which dissipates a power ΦT with a maximum value of
9.33 W. However, this power is not entirely transmit-
ted to the xenon, a fraction of it is lost to the walls of
the setup. Two quantities are important to describe this
phenomenon, the setup’s heat capacity C which controls
how the setup warms up during an experiment and its
thermal resistance Rth which quantifies the power lost
by conduction Φlost. The power effectively transmitted
to the xenon Φ, in the steady state, is written

Φ = ΦT − Φlost, (8)

where

Φlost =
Thot − Text

Rth
. (9)

Thot is the temperature of the duraluminium plate, Text
is the temperature of titanium outside the cell.

To evaluate these two quantities, we made a thermal
numerical simulation of the setup using the finite ele-
ment solver FreeFem++ [20]. Since the main part of the
setup is cylindrical, we use an axisymmetric simulation
and solve the corresponding 2D problem (see Fig. 4). In
our simulation, we replace the xenon cubic cavity by a
cylindrical one such that the heating resistor and the du-
raluminium plate have the same surface area. In each
simulation, we solve on the whole setup the heat equa-
tion

ρmcp,m
∂T

∂t
= ∇(km∇T ), (10)

a

b 1cm

5cm

slip-ring

cell

thermistors

aerogel
layer

electronic card

pressure probe

gas valve

FIG. 2. (a) Picture of the centrifuge rotor in which the cell
is placed. (b) Polycarbonate cell with aerogel layer on the
wall. The nine thermistors are the orange points aligned in
the centre of a wall, see Fig. 3.

where ρm, cp,m and km are the density, the specific heat
capacity and the thermal conductivity of materials done
in Table II. Moreover, we consider, as external bound-
ary conditions, that the titanium lid stays at a constant
temperature that we arbitrarily take as T = 0.

The first simulation is static (∂T/∂t = 0) and deter-
mines the thermal resistance Rth. We imposed a known
temperature difference ∆T = 10 K between the duralu-
minium plate and the outside, and a uniform interme-
diate temperature ∆T/2 in the xenon region. By calcu-
lating the heat flux Φlost which leaves the duraluminium
plate through the faces not in contact with xenon, we
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FIG. 3. (a) Sketch of the cavity of the experimental setup
with heating resistor and thermal and pressure probe posi-
tions. (b) Three-dimension view of the rectangular cavity
containing xenon gas. Small black circles are the thermistors
positions. Big ones are the pressure probes positions. Dashed
lines are the iso-gravity contour. Labels B, T , E and S cor-
respond respectively to bottom wall, top wall, Ekman walls
and Stewartson walls.

estimate Rth as

Rth =
∆T

Φlost
. (11)

We find a value of Rth = 40 K W−1. However, this simu-
lation cannot reproduce all the details of the setup. This
is the reason for including an uncertainty of 25% on this
value in the following. Since ΦT is well known, the un-
certainty on Φ the effective power transmitted to xenon
is caused by this uncertainty of 25% on Φlost. In this
way, when the heating ΦT is low, the uncertainty on Φ
makes it difficult to know the effective flux transmitted
to the xenon.

The second simulation determines the heat capacity C
of the walls of the setup. We start from an isothermal

0

2

4

6

8

10

T
em

p
er
a
tu
re

(K
)

FIG. 4. Thermal simulation of the setup. We impose a tem-
perature difference of 10 K between the duraluminium plate
and the exterior. The grey part is the xenon cavity assumed
to be at the mean temperature between the duraluminium
plate and the exterior.

state at T0 then, for t > 0, we heat with a power ΦT the
area where the heating resistor is placed. In this simu-
lation, we consider that the xenon is thermally inert i.e.
its heat capacity and thermal conductivity are zero. By
considering the mean temperature Thot(t) of the duralu-
minium plate, we estimate C as

C(t) =
ΦT
∂Thot

∂t

. (12)

In the first 30 s, we find a value of C which goes quasi-
linearly from 5 J/K to 9 J/K. We do not need more pre-
cision here. Due to the complexity of the setup geometry,
we are essentially looking for its order of magnitude.

IV. RESULTS

A. Protocol

We ran experiments at three different rotation speeds
5000, 7000 and 9990 rpm. During an experiment, we set
a constant rotation speed and we set different values of
heat power in the heating resistor. For each value of the
heat flux, we wait approximatively 3 minutes to reach an
equilibrium state before changing its value. In order to
avoid heating the whole setup above 80◦C (to preserve
the aerogel insulating material), we start with the highest
heat power and decrease it step by step (Fig. 5). The
experiments done are listed in Table III.

B. Adiabatic gradient

When the heating is strong enough, we observe that
the temperature profile in the cell is no longer isother-
mal. It is instead close to an adiabatic profile: by ad-
justing the reference temperature T0 (not imposed in our
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ΦT (Watt) 0 0.07 0.15 0.3 0.58 1.2 2.3 3 4.8 5.8 6.9 9.3

5000 rpm • • • •
7000 rpm • • • • • • • • • • •
9990 rpm • • • • • • • • • • •

TABLE III. Range of the experiments, in terms of rotation
rate and heating power injected in the resistor.
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FIG. 5. Measured temperatures and pressures during an ex-
periment at 9990 rpm. The blue numbers at the top indicate
the heat power ΦT in Watt. The gold line is the temperature
T5G from the thermistor opposite T5, the black line is the
temperature of the heating plate Thot and the gray line is the
titanium temperature outside the cell Text. P1 corresponds
to the pressure from the closest probe to the heating plate,
P2 to the furthest.

setup) in Eq. (6) via a least square method on T1 to T8

(excluding Thot and Text), we obtain a very good agree-
ment between the theoretical and experimental curves
(Fig. 6(a)). As expected, the profile shape depends only
on gravity (i.e. rotation rate) outside of the boundary
layer for high enough heating power. We measure an
average adiabatic gradient of order 3.5 K/cm. On ta-
ble IV, we compute the maximum acceleration in the
setup near the heating plate rmax = 0.072 m. From this
value, we determine the maximum adiabatic temperature
gradient and maximum value of the dissipation number
defined in equation (1), with the maximum gravity g,
the height of the cavity L = 0.039 m and an arbitrary
representative value of the thermal expansion coefficient
α = 4.73 × 10−3 K−1 (see Table I). We also introduce
another dimensionless number, the Ekman number E,

Rotation Apparent Adiabatic Dissipation Ekman

rate gravity gradient number number

(rpm) (m s−2) (K m−1)

0 9.81 0.068 8.8 × 10−6 ∞
5000 19700 137 0.018 7.5 × 10−7

7000 38700 268 0.035 5.4 × 10−7

9990 78800 547 0.071 3.8 × 10−7

TABLE IV. Apparent gravity (centripetal acceleration) cal-
culated near the heating plate (r = 7.2 cm), adiabatic
gradient, dissipation number αgL/cp and Ekman number
ν/(ΩH2).

characterizing the magnitude of viscous forces compared
to Coriolis apparent acceleration

E =
ν

ΩH2
, (13)

where ν = η/ρ0 is the kinematic viscosity, and the width
of the cavity H = 23 mm is used instead of its length
L = 39 mm.

When the heating is low, the temperature profile is
not adiabatic but nearly isothermal. The threshold ap-
pears to be when the effective heating is close to zero.
Actually, no adiabatic gradient is detected when 0 W
is in the confident interval of heating. The uncertainty
on the effective heating flux makes it difficult to esti-
mate precisely this threshold. On Fig. 6(b), we plot the
difference between the temperature profile and the adi-
abatic profile from Eq. 4 at 9990 rpm for various heat
fluxes. It seems that there is an optimum heat flux cor-
responding to the best fit of the average temperature
profile with the adiabatic profile. At Ω = 9990 rpm, this
optimum flux is Φ = 0.7 W, (corresponding to the to-
tal flux ΦT = 1.19 W, on Fig. 5). At lower heat fluxes,
the intensity of convection is probably not strong enough
to impose an adiabatic profile (the curve with effective
heat flux −70 ± 20 mW is isothermal), while at higher
fluxes the superadiabatic temperature contributions be-
come large enough to alter the adiabatic profile. It can be
seen on Fig. 5 that the superadiabatic temperature dif-
ference becomes progressively larger than the total adi-
abatic temperature drop across the cavity when the flux
increases above ΦT = 1.19 W.

Instead of using the theoretical value of αs, we have
also tried to determine a value αfits to fit the experi-
mental temperatures data in the bulk of the fluid with a
quadratic radial function of the form

Tfit(r) = Tmaxfit + αfits
Ω2

2
(r2 − r2

max). (14)

Using a least square method, we determine the two pa-
rameters Tmaxfit and αfits . Values of αfits are plotted on

Fig. 7(a) as a function of the effective heat flux for dif-
ferent rotation rates. For the smallest heat fluxes (tens
of mW) the temperature profile is nearly isothermal cor-
responding to a vanishing αfits . Below a heat flux of
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FIG. 6. (a) Temperature profiles averaged over 30 s for
Ω = 5000, 7000, 9990rpm for an electric power dissipated in
the heating resistor of ΦT = 1.19 W. The dashed lines are
theoretical profiles defined by Eq. (6) where Tmax

a is adjusted
by least-square method. The vertical black line is the bot-
tom boundary of the xenon cavity. (b) Differences between
temperature profile T and theoretical profiles Ta for different
values of Φ at Ω = 9990 rpm.

100 mW, the value of αfits is significantly lower than the
adiabatic value αs. Above 100 mW, increasing the heat
flux brings αfits closer to αs. On Fig. 7(b), we plot the
difference between the temperature profile and the ex-
pression (14) using αfits for values of heat fluxes above
200 mW. Fig. 7(b) is analogous to Fig. 6(b) with ref-
erence to Eq. (14) instead of the adiabatic profile (4).
We observe on Fig. 7(b) that the departure from the
quadratic fit (14) increases as the heat flux increases.

The temperature drop across the hot thermal bound-
ary layer is estimated as follows: the quadratic curve
fitting the experimentally measured temperatures is ex-
trapolated at the radius of the hot surface, we then take
the difference between the temperature measured within
the hot plate and that extrapolation. Unfortunately, the
boundary conditions are not well defined for the top cold
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FIG. 7. (a) Best fitted quadratic coefficient of the temper-
ature profile αfit

s from Eq. (14) as a function of the effective
heat flux Φ. The horizontal line corresponds to the adiabatic
profile αfit

s = αs = 6.94× 10−3 K kg J−1. Each symbol color
and shape corresponds to a series of measurements in which
the heat flux is decreased from its highest to its lowest value.
(b) Differences between temperature profile T and fitted pro-
files Tfit for different values of Φ at Ω = 9990 rpm.

plate due to the geometry of the setup. This is the rea-
son why we will only consider the jump of temperature
across the bottom hot boundary layer and call it the su-
peradiabatic thermal difference ∆TSA. It is defined, as
shown on Fig. 6(a), by

∆TSA = Thot − Tmaxa . (15)

Experimentally, we find ∆TSA of order 10 K.

C. Turbulent heat transfer

From ∆TSA in equation (15), we wish to introduce
a superadiabatic Rayleigh number RaSA and a Nusselt
number Nu. Because only the bottom boundary condi-
tions are well established in our setup, it is natural to
build these numbers with parameters pertaining to the
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bottom boundary layer. We define the superadiabatic
Rayleigh number as

RaSA =
ρ2
Bc

2
p,Bαs,BrmaxΩ2L3∆TSA

TBkη
, (16)

where TB , ρB , cp,B and αs,B are the characteristic
temperature, density, specific heat capacity and entropy
expansion coefficient inside the bottom boundary layer.
These quantities are evaluated numerically via the fol-
lowing algorithm.

Experimentally, we measure Tmaxa and ∆TSA with a
best fit of the profile (6). Using the CoolProp library,
we solve numerically Eq. 4 and Eq. 3 with the conditions
that Ta(rmax) = Tmaxa and the conservation of the entire
xenon’s mass. This results in the adiabatic pressure and
density profiles Pa(r) and ρa(r) inside the cell. We note
Pmaxa and ρmaxa their values at r = rmax. Due to the
small thickness of the boundary layer, we assume that
the pressure stays constant across it. The characteristic
pressure inside the boundary layer is thus PB = Pmaxa .
The characteristic temperature inside the boundary layer
TB is estimated as TB = Tmaxa + 1

2∆TSA. Finally, from
TB and PB , the CoolProp library allows us to estimate
all other quantities in the boundary layer ρB , cp,B and
αs,B . Table V gives estimates of these parameters for
different values of Ω, Tmaxa and ∆TSA.

The Nusselt number is defined as

Nu =
ΦL

k∆TSAS
. (17)

where S = H2 = 530 mm2 is the cross-sectional area.
We could have defined the Nusselt with Φ − Φa instead
of Φ where Φa is the power conducted along the adiabat.
This conduction heat flux is evaluated as Φa = k∇TaS ∼
kr0Ω2

cp
S ∼ 10−3 W. This value is smaller than typical

values of Φ by 3 orders of magnitude, so we neglect it.
An important point is that these estimates of Rayleigh
and Nusselt numbers are valid only when the convection
is established because it uses the adiabatic temperature
fit (6) to obtain ∆TSA.

We show on Fig. 8 the evolution of RaSA and Nu with
time. When the heat flux is changed, the system reaches
a new steady state where RaSA and Nu become constant
in approximatively 1 min. We shall use those steady-
state values to plot the Nusselt number in terms of the
superadiabatic Rayleigh number on Fig. 9. On Fig. 8,
for the total heat flux ΦT = 0.58 W and below, we are
in the range where the net heat flux Phi entering the
gas volume is so weak that the adiabatic profile is not
maintained in the cavity. Hence, the determination of
the superadiabatic temperature difference becomes neg-
ative, which is meaningless. So, from ΦT = 0.58 W and
below, both the superadiabatic Rayleigh number and the
Nusselt number are not properly defined, because ∆TSA
is not properly defined and because the net heat flux Φ
is not well known. We can nevertheless notice that these

Ω = 5000 rpm

Tmax
a 300 305 310 315 320 325 330

ρmax
a 120 120 120 120 120 120 120

∆TSA Pmax
a = PB 2.02 2.06 2.10 2.14 2.18 2.23 2.27

5 TB 302.5 307.5 312.5 317.5 322.5 327.5 332.5

ρB 118 118 118 118 118 118 118

cp,B 203 202 200 198 197 196 194

αs,B 6.93 6.92 6.90 6.89 6.87 6.86 6.85

10 TB 305.0 310.0 315.0 320.0 325.0 330.0 335.0

ρB 117 117 117 117 117 117 117

cp,B 202 200 199 197 196 194 193

αs,B 6.92 6.90 6.89 6.88 6.86 6.85 6.84

15 TB 307.5 312.5 317.5 322.5 327.5 332.5 337.5

ρB 116 116 116 116 116 116 116

cp,B 200 199 197 196 195 193 192

αs,B 6.90 6.89 6.88 6.86 6.85 6.84 6.83

Ω = 7000 rpm

Tmax
a 300 305 310 315 320 325 330

ρmax
a 121 121 121 121 121 121 121

∆TSA Pmax
a = PB 2.04 2.08 2.12 2.16 2.20 2.24 2.29

5 TB 302.5 307.5 312.5 317.5 322.5 327.5 332.5

ρB 120 119 119 119 119 119 119

cp,B 204 202 200 199 197 196 195

αs,B 6.94 6.92 6.91 6.89 6.88 6.87 6.85

10 TB 305.0 310.0 315.0 320.0 325.0 330.0 335.0

ρB 118 118 118 118 118 118 118

cp,B 202 201 199 198 196 195 194

αs,B 6.92 6.91 6.89 6.88 6.87 6.85 6.84

15 TB 307.5 312.5 317.5 322.5 327.5 332.5 337.5

ρB 117 117 117 117 117 117 117

cp,B 201 199 198 196 195 194 193

αs,B 6.91 6.89 6.88 6.87 6.86 6.84 6.83

Ω = 9990 rpm

Tmax
a 300 305 310 315 320 325 330

ρmax
a 124 124 123 123 123 123 123

∆TSA Pmax
a = PB 2.08 2.12 2.16 2.20 2.24 2.29 2.33

5 TB 302.5 307.5 312.5 317.5 322.5 327.5 332.5

ρB 122 122 122 122 122 122 122

cp,B 205 203 201 200 198 197 195

αs,B 6.95 6.93 6.92 6.91 6.89 6.88 6.86

10 TB 305.0 310.0 315.0 320.0 325.0 330.0 335.0

ρB 121 121 121 121 121 121 121

cp,B 204 202 200 199 197 196 194

αs,B 6.94 6.92 6.91 6.89 6.88 6.87 6.85

15 TB 307.5 312.5 317.5 322.5 327.5 332.5 337.5

ρB 119 119 119 119 119 119 119

cp,B 202 200 199 197 196 195 193

αs,B 6.92 6.91 6.89 6.88 6.87 6.85 6.84

TABLE V. Calculated parameters in the boundary layer for
different values of Ω, Tmax

a and ∆TSA. The units for temper-
ature, pressure, density, heat capacity and entropy expansion
coefficient are K, MPa, kg m−3, J kg−1 K−1 and mK kg J−1

respectively.
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FIG. 8. Evolution of superadiabatic Rayleigh number RaSA

and Nusselt number Nu during the same experiment as in
Fig. 5 at 9990 rpm. The blue numbers at the top indicate the
heat power ΦT in Watt.

ill-defined quantities are governed by slow diffusive pro-
cesses (heat conduction) since they do not reach a steady
value within three minutes.

Nusselt numbers obtained as described above are plot-
ted as a function of the superadiabatic Rayleigh number
on Fig. 9. In order to model the Nu-RaSA relationship,
we look for a power law of the form

Nu ∝ (RaSA)β . (18)

Our data are mostly consistent with a 1/3 power law
(Fig. 9). Nevertheless, some data do not follow the same
power law. When we run an experiment, we decrease the
heating, and so RaSA, step by step. Sometimes for low
RaSA, the heat transfer seems to follow another branch
with a steeper power law and lower values. If we consider
only points on the main branch we find the power law

Nu = (0.44± 0.02)× (RaSA)0.30±0.04. (19)

The fact that some points are not on the main branch
is surprising because, by reproducing the experiment at
the same rotation speed, we observe sometimes the clas-
sic branch (exponent 0.3 ± 0.04) and some other times
the steeper branch (exponent around 1). It may be the
signature of an hysteresis in the system. Guervilly and
Cardin [21] showed that hysteresis is possible in rotating
convection in a sphere in a quasi-geostrophic approxima-
tion. The geometry is not the same here but we expect
that a similar phenomenon could explain this behavior.

Here we would like to draw the attention to what has
been observed in another context, where a dual power
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FIG. 9. (a) Nusselt number values plotted as a function of
the Rayleigh number, for different rotation rates. Each sym-
bol color and shape corresponds to a series of measurements
in which the heat flux is decreased from its highest to its low-
est value. The solid line has a slope of 0.3 and the dashed
line a slope of 1. (b) Same plot using the normalizing factor
0.44 Ra0.30

SA for the Nusselt number.

law has been seen, while we think the underlying physics
has no relationship with our experiments. In the case
when rotation axis and gravity are parallel, two expo-
nents have been found for the Ra-Nu relationship [22],

a steep law Nu ∼ Ra6/5 followed by the non-rotating
usual law Nu ∼ Ra0.3. This is understood as the tran-
sition between a regime where the flow structures ex-
tend over the whole height of the cavity for moderate
Ra, followed by a 3D (yet anisotropic) dynamics at large
Ra. However, there is no hysteresis in this configuration,
the heat transfer is determined by the value of the in-
put parameters Rayleigh and Ekman numbers. On the
contrary, our experiments show some hysteresis between
two quasi-geostrophic configurations of seemingly differ-
ent heat transfer power laws.
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FIG. 10. Standard deviation of temperature fluctuations
σ(T ′) as a function of the heating power Φ at 9990 rpm. The
color code is the same as in Fig. 5.

D. Temperature measurements

In fully convective cases, temperature signals can be
seen as the sum of three contributions: the adiabatic
profile, a stationary deviation from the adiabatic profile
and finally, temporal fluctuations

T = Ta + Ts + T ′. (20)

At large rotation rate and heat flux, a typical amplitude
of these contributions is 310 K for Ta (with a 10 K in-
crease from the top to the bottom), 1 K for Ts and 0.05 K
for T ′. The profile of Ta is given in Eq. (6) and Ts can
be seen on Fig. 6(b) where the adiabatic profile has been
subtracted to the time averaged temperature profile. The
stationary departure Ts from the adiabatic profile is in-
terpreted as the signature of a stationary convective flow
contribution.

We have access to temperature fluctuations by elim-
inating the long-term variations of temperature signals
below 0.2 Hz. However, the study of temperature fluctu-
ations is difficult due to the high level of electronic noise
on the signals caused by the multiplexing electronic card
and the slip-ring. We show on Fig. 10 the standard de-
viation of temperature fluctuations as a function of the
heating power. We see that temperature fluctuations are
large enough to exceed the noise only for large heat fluxes
(Φ > 3 W). The amplitude of fluctuations increases with
the heating flux. The order of magnitude of temperature
fluctuations we measure in our setup is σ(T ′) ∼ 0.05 K,
for the maximum heat flux Φ = 5.8 W. For smaller heat
fluxes (Φ < 3 W), the signals are dominated by the elec-
tronic noise with a constant apparent standard deviation
of 0.02 K. For large heat fluxes (Φ > 3 W), we show
the calculated power spectral density of the temperature
signals on Fig. 11 which shows a good fit to a −5/3 slope.

We cross-correlate fluctuation signals from the differ-
ent thermistors in the experiment (Fig. 12(a)). Ther-
mistors can be separated into two groups. The first 3
thermistors close to the heating plate are mutually cor-
related and the same holds for the farthest thermistors.
These two groups of thermistors are anti-correlated. This
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FIG. 11. Power spectral density of temperature fluctuations
at 7000 rpm and Φ = 4.0± 0.2 W. The color code of temper-
ature signals is the same as in figure 5. The black dashed line
shows a -5/3 slope.

shows that the flow has a large scale structure inside the
cell. This fact is confirmed by a proper orthogonal de-
composition (POD) of the signals, providing the main
temperature modes in the cell (Fig. 12(b)). The first
mode which represents the majority of the signal energy
has the same shape as described above: the first three
thermistors evolve together in phase opposition with the
others.

In addition, the cross-correlation between the signals
from the two thermistors facing each other on Ekman
walls, T5 and T5G, is a good way to test the flow geostro-
phy. There are two opposite effects which influence the
geostrophy. The high rotation rate favours a geostrophic
flow in the cell whereas convection tends to destroy it
by creating a turbulent flow when the heating is strong
enough. Since the normalized correlation between these
two signals has a high value (> 0.5) for all the heat-
ing fluxes tested, we conclude that the flow in the cell is
geostrophic in all our experiments.

E. Pressure measurements

In a statistically stationary state, similarly to temper-
atures, the total pressure p is split into three terms

p = pa + ps + p′, (21)

where pa is the adiabatic pressure profile as defined in
Eq. (3), ps is the stationary pressure caused by the large
scale stationary flow in the cell. As can be seen on Fig. 5,
pressure signals have a large stationary component that
depends only on the heat flux (we will see that it also
depends on the rotation rate). At last, p′ is the time-
dependent pressure fluctuation. The differential pressure
probes give us measurements of the dynamical pressure
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FIG. 12. (a) Correlation matrix between temperature fluc-
tuations signal at 7000 rpm and Φ = 4.0± 0.2 W. The signal
T5G corresponds to the thermistor opposite T5. The high-
correlation between T5G and T5 validates the geostrophic hy-
pothesis.(b) Plots of the first three temperatures fluctuation
modes inside the cell obtained by a POD analysis. The num-
ber in brackets corresponds to the fraction of energy (norm
L2) associated with the mode.

p − pa = ps + p′. To separate ps and p′ in our analysis,
we consider that fluctuations p′ corresponds to the part
of the signal above 1 Hz. The part below 1 Hz has a con-
stant value during stationary states which corresponds to
ps. This decomposition of the pressure leads to consider
three terms with very different order of magnitude: pa is
of order of 2 MPa, ps is of order of 10 kPa and p′ is of
order of 100 Pa (see Fig. 13).

From the stationary pressure ps, we estimate the or-
der of magnitude of the velocity v in the cell. Assuming
geostrophic equilibrium in the fluid, we expect the pres-
sure gradient −∇ps to balance the Coriolis acceleration
2ρaΩ × v. With the typical length-scale L, we find an
estimate for v

v ∼ ps
2ρ0ΩL

∼ 1 m s−1. (22)

This estimate leads to a Rossby number of Ro ∼

10−2, which is consistent with the initial assumption
of geostrophic balance. Alternatively, assuming that
the pressure gradient is balanced by 3D inertial terms
ρa(v · ∇)v, we then obtain the following velocity esti-
mate

v ∼
√

ps
2ρ0
∼ 10 m s−1, (23)

leading to a Rossby number of 0.1, which seems too small
to justify a 3D balance. Moreover, the excellent correla-
tion of the temperature signals of the probes T5 and T5G

gives further credential to the quasi-geostrophic dynam-
ics. To conclude, the estimate provided by Eq. (22) is
most probably correct.

At this point, we have determined the order of mag-
nitude of the pressure and temperature departures from
their hydrostatic and adiabatic profiles: Ts ∼ 1 K and
ps ∼ 10 kPa. This can be used to evaluate their relative
contribution to the departure of entropy from a uniform
value. Gibbs equation Tds = cpdT − αT/ρdp allows us
to determine the ratio of the pressure contribution to the
temperature contribution in the entropy variations

αT

ρcp

ps
Ts
' αs
ρ0

ps
Ts
∼ 0.6, (24)

while Anufriev et al. [5] give an estimate (αT )D = 0.06
for the same ratio, see their equation (2.17). This ratio
is crucial to decide whether the so-called anelastic liquid
approximation can be used, whereby entropy departures
are expressed in terms of temperature departures only.
From our experiments it seems that pressure departures
are underestimated in [5]. They use a balance between
buoyancy forces and pressure gradient, to derive pressure
departures from hydrostatics as a function of tempera-
ture departures from the adiabatic profile (their equation
(2.17)a in a different form)

ps ∼ ρ0αgLTs. (25)

This balance does not apply to our data: with Ts ∼ 1 K,
Eq. (25) leads to ps ∼ 1000 Pa whereas the measured
value is of order ps ∼ 10 kPa, see Fig. 13.

To correctly evaluate the pressure fluctuations p′ we
eliminate the long-term variations of the signal below
1 Hz and short-term variations above the rotation fre-
quency. At higher frequency, the signal is dominated by
peaks of harmonics of the rotation frequency and elec-
tronic noise, while the hydrodynamic part of the signal
is already nearly at the level of noise measurement, as
we will see later on Fig. 15. The amplitude of the fluc-
tuations depends strongly on the heat dissipated in the
heating resistor. This amplitude goes to zero when the
convection stops due to a insufficient heating. We esti-
mate the amplitudes of fluctuations by taking the stan-
dard deviation of the filtered signal (Fig. 13). We calcu-
late the probability density function (PDF) of pressure
fluctuations for each heating power tested. The PDF of
the signal from probe 1 is nearly gaussian (Fig. 14, top),
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FIG. 13. Stationary pressure ps and standard deviation of
pressure fluctuations σ(p′) as a function of the heating power
Φ at 9990 rpm.

while the PDF of the signal from probe 2 shows a distinct
asymmetry with a longer tail on the positive fluctuations
side (Fig. 14, bottom).

From the temperature and pressure fluctuations, we
can test equation (25) originating from the dynamical
balance between buoyancy and pressure gradient. At
9990 rpm and for large heat fluxes, using σ(T ′) ∼ 0.05 K,
equation (25) leads to pressure fluctuations of order
50 Pa, whereas we measure σ(p′) ∼ 100 Pa. Contrary to
the stationary departures ps and Ts, pressure and tem-
perature fluctuations p′ and T ′ seem to obey rather well
the balance between buoyancy forces and pressure gradi-
ent.

We calculate the power Fourier spectra of p′ (Fig. 15).
The spectra are dominated by very localized peaks corre-
sponding to the rotation rate and harmonics. Moreover,
there are some other very localized peaks above 200 Hz
which are probably created by the electronics and not
relevant to our study. If we look at the general behav-
ior of these spectra, there are two kinds of spectra. For
low heating fluxes, the spectra have a constant value,
corresponding to the noise level of the acquisition. It is
characteristic of the piezoelectric sensor we use since a
similar spectrum is obtained outside the cell without any
load. For higher heating fluxes, the spectra have three
parts. The first part, below 13 Hz, has an approxima-
tively constant value. The second one, between 13 Hz and
20-40 Hz, decreases with a slope close to −7/3 (in log-log
coordinates) which is the expected power law for pres-
sure fluctuations in homogeneous turbulence [23]. And
the third part, above 40 Hz, is constant and corresponds
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FIG. 14. Probability density function of pressure fluctua-
tions for both pressure sensors (pressure probe 1 is the closest
to the heating plate) at 9990 rpm for several heating powers.
Colors are the same as in Fig. 6(b).

to the noise level.
The threshold between these two kinds of spectra is

the same as the threshold evaluated in part IV B with the
temperature profile. When the heat flux value is too low,
there is no convection and we only measure the sensor
response. For higher fluxes, the convection is established
and we measure the convection spectrum.

F. Convection pattern and heat flux

Using the results obtained above, we can make an
attempt to characterize the structure of the quasi-
geostrophic convective flow in our experiment. The pres-
sure signals indicate that the stationary part of the con-
vective flow is much more vigorous than its fluctuations,
by a factor 100. We can get an idea of the magnitude of
stationary temperature deviations from the adiabat when
looking at Fig. 6(b) and 7(b). As we already pointed out,
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FIG. 15. Power spectral density of pressure fluctuations for
the same experiment at 9990 rpm (166.5 Hz) and for three
different heating fluxes: (a) Φ = (4.8 ± 0.2) W, (b) Φ =
(0.7 ± 0.1) W, (c) Φ = 0 W. The black line is a -7/3 slope.
The peak at 11 Hz corresponds to signal cross-talking with
the cycle measurement rate for temperatures.

the temperature profile is very close to the theoretical
adiabatic profile when the heat flux is just exceeding the
heat losses. Increasing the heat flux further causes the
temperature measurements to depart from the adiabatic
profile. The amplitude of the deviations is of the order of
1 K for the maximum heat flux (about 5 W). We believe
that these deviations are linked to the stationary part
of the convective flow: this is indeed in accordance with
the estimate for the convective heat flux. The convective
heat flux is estimated as

Φ ∼ ρ0cpSvδT. (26)

For the highest rotation rate (9990 rpm) and highest heat
flux (about 5 W), we have estimated v ∼ 1 m s−1, and
δT ∼ 1 K. With a cross-section area S = 530 mm2,
density ρ0 ∼ 100 kg m−3 and heat capacity cp =
204 J K−1kg−1, the estimate Eq. (26) gives Φ ∼ 13 W ,
which is of the same order of magnitude as the actual heat
flux (about 5 W), given that we do not have sufficient
spatial coverage to extract the shape of that stationary
flow and associated thermal signature. In any case, the
velocity fluctuations (100 times smaller than the station-
ary flow) together with the temperature fluctuations (less
than 0.05 K, see Fig. 5) would by no means generate a
convective heat flux close to the imposed heat flux. The
large-scale stationary flow and its small fluctuations are
also in good agreement with the POD analysis of tem-
perature fluctuations, showing a large-scale pattern (see
Fig. 12 (b)).

The global picture of the convective flow is that of
a two dimensional turbulent flow in which the inverse
energy cascade has given rise to an intense stationary
large-scale flow dominating small-scale fluctuations. This
process is also known as the condensation of small scale
vortices in a large-scale steady flow and was observed for
two-dimensional flows due to rotation, stratification, or
the effect of an imposed magnetic field on an electrically
conducting fluid [24–26].

Within the frame of this global picture, we can re-
examine some of the results presented above. Concern-
ing the spectrum of temperature fluctuations on Fig. 11,
the signal above 2 or 3 Hz is dominated by measure-
ment noise. With a global flow of 1 m s−1 and a cavity
height of 0.039 m, we expect that the turn-over frequency
of large vortices is of order 20 Hz. Hence the tempera-
ture spectrum corresponds to very low frequencies which
are probably representative of the long-term evolution of
the main large-scale circulation and does not give infor-
mation on the small-scale structure of turbulence. On
the contrary, pressure spectra shown on Fig. 15 allow us
to determine the frequency of the large flow structures,
corresponding to the kink point between a flat part at
low frequency to a steep part at higher frequency. That
steep part contains probably information on the small
scale turbulence of the flow. The low frequency nature of
the temperature fluctuations is also probably the reason
why the POD analysis, see Fig. 12, produces large scale
modes which correspond to the slow evolution modes of
the large scale circulation.

G. Initial transient

The temperature signals allow us to study how con-
vection is established in the cell at the beginning of an
experiment. The initial isothermal state corresponds to a
strongly stratified stable configuration (entropy increases
with height). When we start to heat from below, we see
the temperature signals starting to increase one after an-
other (Fig. 16(a)) indicating that a convective region de-
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velops. If we plot the starting time of each signal versus
the position of the corresponding thermistor, we track
the front of convection in the cell. We can also track
the front of convection by looking at the beginning of
pressure fluctuations on both pressure probes. This cor-
responds to a case of penetrative convection, as a growing
convective region erodes an initially stagnant region.

We propose here a simple model to describe the front
propagation. We assume that all the setup (xenon and
walls) is initially at a constant temperature Ti. At time
t=0, the heating starts at a constant power flux ΦT . The
bottom plate, where the front of convection starts, is at
r = rmax. For t > 0, the position of the front of convec-
tion is denoted by rc(t). During the onset of convection,
rc(t) goes from rmax to rmin. At a given time t, the
temperature profile in the cell has to follow the adiabatic
profile in the convective area and stays at Ti outside.
Thus, it has the form

T (r, t) =

{
Ti + Ω2

2cp
(r2 − rc(t)2) for r ≥ rc(t),

Ti for r < rc(t).
(27)

The total heat capacity of xenon is negligible compared
to that of the walls. Thus, the majority of energy is used
to heat the walls. A simple model is to consider that the
internal energy of the walls is proportional to the bottom
plate temperature T (rmax, t). The proportionality con-
stant C is an effective heat capacity. The energy balance
is then

ΦT t = C(T (rmax, t)− Ti). (28)

By inverting this equation, we find

rc(t) = rmax

√
1− 2cpΦT t

CΩ2r2
max

. (29)

The shape given by this expression is in accordance
with our data where we see an acceleration of the front
of convection. We adjust on Fig. 16(c) the value of C
in Eq. (29) to obtain the best fit of our data points.
According to the experimental data, we find C between
9 J/K and 14 J/K. However with the same conditions,
we find the same value of C. The results show that C
depends on the heat flux ΦT and the rotation rate Ω.
These values of C have the same order of magnitude as
the heat capacity of the whole setup evaluated in section
III B, although this simplified model ignores convection
(and rotation effects). Nevertheless, we see on the exper-
imental temperature curve that there is a small cooling
of some tenth of Kelvin just before the front of convec-
tion reaches the thermistor and the temperature increase
significantly. This phenomenon is more and more im-
portant during the front propagation and is even visible
on the thermistor on the opposite wall. This is typically
a compressible effect and could never be envisaged in
the Boussinesq approximation. We temporarily observe
temperature levels lower than the initial uniform temper-
ature, while the bottom boundary gets heated: this is a
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FIG. 16. (a-b) Temperature signals and pressure fluctuations
versus time since the beginning of heating. The color code is
the same as in Fig. 5. The dashed yellow line corresponds
to T5G. (c) Position of the convective front rc versus time.
Solid lines are theoretical evolutions from Eq. (29) with the
adjusted value of C.

manifestation of compressible penetrative convection. A
fluid parcel initially at rest can be cooled adiabatically
when it is suddenly entrained into convection as the con-
vective region reaches its position.

V. CONCLUSION

In the reported experiments, we show that com-
pressible convection can be studied in the laboratory.
A substantial adiabatic temperature gradient (about
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3.5 K cm−1) has been measured. The Nusselt-Rayleigh
relationship, once the adiabatic gradient has been taken
into account, follows the expected 1/3 power law. Adia-
batic decompression effects are observed during the tran-
sient heating of the fluid from an initial isothermal state.
However, the dimensionless dissipation number reaches
only modest values, around 0.06. This probably means
that compressible effects are moderate and that the ex-
periments are within what we might call a ’Jeffreys’
regime: [15] has shown that the stability criterion derived
by Rayleigh for the onset of convection was still applica-
ble, provided the superadiabatic temperature difference
is considered instead of the total imposed temperature
difference. It can indeed be seen [9] that Jeffreys’ result
holds for a dissipation number as small as 0.06. Away
from the stability threshold, numerical results from the
literature also suggest that compressible results are very
close to those obtained using the Boussinesq approxima-
tion [10, 27, 28]. Our experiments nevertheless open the
way to further attempts and further progress into exper-
imental compressible convection. We are still working
on the possibility to make measurements with twice the
maximal rotation rate reported here, i.e. 20000 rpm.
This would increase gravity levels by a factor four, lead-
ing to a dissipation number around 0.24. Next, using
another centrifuge or other dedicated experiments, it is
conceivable to obtain dissipation numbers of order 1 or
more, and even to run compressible convection experi-
ments with other fluids.

During our experiments, we have shown that tempera-
ture measurements were possible in a hostile environment
of apparent high gravity. We have been using small ther-
mistors probes for two reasons: first, small parts have a
relatively larger resistance to stress and can sustain bet-
ter high gravity. Secondly, we wanted to measure fast
temperature fluctuations in a gas with small heat capac-
ity and were looking for a probe with a small thermal
diffusion time and small heat capacity. In addition, we
have also successfully used differential pressure probes
(100 Pa), under large pressure level (3 × 106 Pa) and
under a large gravity (7 × 104 m s−2). Those signals
were processed using onboard home-designed electronics,
essentially multiplexing signals, which worked satisfacto-
rily up to 9990 rpm, but did not allow us to obtain results
at higher rotation rates, due to the failure of an elec-
tronic component. It is difficult to assess whether elec-
tronic components will sustain high gravity levels based
on their datasheet. The method is simply to go for small
components and test them.

Since we aim for a large apparent gravity level, and
since we are using a low-viscosity fluid, our experiments
have large values for the (superadiabatic) Rayleigh num-
ber and small values for the Ekman number. In fact,
Coriolis effects are so large that all our experimental
runs obey a quasi-geostrophic dynamics. This is a dif-
ficulty as we would like to unravel the role of compress-
ibility and that of geostrophy: for instance, is the hys-
teresis behaviour between branches of a large heat flux

and a small heat flux due to geostrophy, or compressibil-
ity, or both? Concerning the value of the superadiabatic
Rayleigh number, one could think that it would be made
as small as desired by just reducing the imposed heat
flux (and associated superadiabatic temperature differ-
ence). However, we have shown that our cavity has a
significant amount of heat losses, despite the use of an
excellent insulating material (aerogel). This imposes a
minimum level to the heat flux that can effectively be
studied. In our case, this limits our range of superadi-
abatic Rayleigh numbers to 5 × 1011 from below. As
a corollary, the study of the onset of convection seems
hopeless in our setup and similar ones. Busse [29] had
anticipated that some aspect of compressible convection
could be studied from the oscillatory or stationary char-
acter of the first unstable mode of convection, but large
difficulties should be expected to observe this first mode.

Which of our measurements are due to compressibility
effects and which are not? Typically, the temperature
gradient along the direction of the apparent gravity, i.e.
the adiabatic gradient, is certainly due to compressibility.
Secondly, the negative overshoot of temperature during
the initial transient after heating the bottom plate can
only be understood within the frame of compressible con-
vection. Concerning the heat flux results, we have obvi-
ously removed the effect of the adiabatic gradient in our
estimate of the effective driving temperature difference of
convection. After this is done (and this is an important
aspect of compressible convection), we obtain a classical
(incompressible) Nu−Ra relationship. Stated otherwise,
the isolated bottom boundary layer behaves like an in-
compressible convection boundary layer in terms of the
heat flux going through it as a function of the temper-
ature difference across it. The whole initial transient is
also due to compressibility: the isothermal initial state
corresponds to a strongly stably stratified situation (in
terms of entropy), whereas this initial state would be
marginally stable in the incompressible case. Geostrophy
and the amplitude of pressure measurements are proba-
bly due to Coriolis forces and independent of compress-
ibility. The modes of temperature fluctuations (Fig. 12)
are also probably mostly due to Coriolis effects on con-
vection, however we do not know at this stage whether
compressibility has an effect on them.

Despite the difficulties, our experiment shows that it is
indeed possible to study compressible convection in the
laboratory. This should provide future benchmarks, and
unravel new phenomena to be compared to compressible
convection models and to natural phenomena observed
in stars and planets.
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bien Dubuffet, Stéphane Labrosse, and Yanick Ricard,
“Numerical solutions of compressible convection with an
infinite prandtl number: comparison of the anelastic and
anelastic liquid models with the exact equations,” Jour-
nal of Fluid Mechanics (2018, submitted).

[29] F.H. Busse, “Centrifugally driven compressible convec-
tion,” European Journal of Mechanics - B/Fluids 47, 35–
38 (2014).

https://fr.wikisource.org/wiki/R%C3%A9flexions_sur_la_puissance_motrice_du_feu
http://dx.doi.org/ https://doi.org/10.1016/j.icarus.2017.07.016
http://dx.doi.org/ https://doi.org/10.1016/j.icarus.2011.08.014
http://dx.doi.org/ https://doi.org/10.1016/j.icarus.2011.08.014
http://dx.doi.org/ 10.1017/jfm.2017.108
http://dx.doi.org/ 10.1017/jfm.2017.108
http://dx.doi.org/ 10.1103/PhysRevE.84.026323
http://dx.doi.org/ 10.1080/03091920701472568
http://dx.doi.org/ 10.1080/03091920701472568
http://dx.doi.org/10.1086/141615
http://dx.doi.org/10.1103/PhysRevLett.83.3641
http://dx.doi.org/ 10.1017/S0305004100015413
http://dx.doi.org/ 10.1017/S0305004100015413
http://dx.doi.org/10.1021/ie4033999
http://dx.doi.org/10.1021/ie4033999
http://dx.doi.org/ 10.1021/je050186n
http://dx.doi.org/ 10.1021/je050186n
https://books.google.fr/books?id=DFo1sZBwdNgC
https://books.google.fr/books?id=DFo1sZBwdNgC
http://dx.doi.org/ 10.1063/1.3253152
http://dx.doi.org/ 10.1063/1.3253152
http://dx.doi.org/10.1017/jfm.2016.631
http://dx.doi.org/10.1017/jfm.2016.631
http://dx.doi.org/10.1038/nature07647
http://dx.doi.org/10.1038/nature07647
https://books.google.fr/books?id=POG-LSUgYckC
https://books.google.fr/books?id=POG-LSUgYckC
http://dx.doi.org/10.1063/1.868278
http://dx.doi.org/10.1063/1.868278
http://dx.doi.org/10.1103/PhysRevLett.79.4162
http://dx.doi.org/10.1017/S0022112086000836
http://stacks.iop.org/0004-637X/805/i=1/a=62
http://stacks.iop.org/0004-637X/805/i=1/a=62
http://dx.doi.org/ https://doi.org/10.1016/j.euromechflu.2014.04.002
http://dx.doi.org/ https://doi.org/10.1016/j.euromechflu.2014.04.002

	Experimental study of convection in the compressible regime
	Abstract
	I Introduction
	II Adiabatic profile of xenon gas in a centrifuge
	III Experimental setup
	A Global description
	B Heat losses and heat capacity

	IV Results
	A Protocol
	B Adiabatic gradient
	C Turbulent heat transfer
	D Temperature measurements
	E Pressure measurements
	F Convection pattern and heat flux
	G Initial transient

	V Conclusion
	 Acknowledgments
	 References


