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We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the
calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations
via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nu-
clear wavefunction. The theory of vibrationally resolved UV/Vis spectroscopy is first summarized
from the viewpoint of TD-DFTB. The method is benchmarked against time-dependent density
functional theory (TD-DFT) calculations for strongly dipole allowed excitations in various aro-
matic and polar molecules. Using the recent 3ob:freq parameter set of Elstner’s group, very
good agreement with TD-DFT calculations using local functionals was achieved. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4966918]

I. INTRODUCTION

Linear response time-dependent density functional theory
(TD-DFT) based on Casida’s equations1 is probably the most
widely used method for the simulation of processes involving
excited states, such as photon absorption and emission. In
UV/Vis spectroscopy, the absorption or emission of a photon
changes the electronic as well as the vibrational state of the
molecule. Thus, an accurate prediction of UV/Vis spectra
needs to take the simultaneous excitation of electrons and
nuclear vibrations into account.

When using TD-DFT for the calculation of absorption
spectra, these vibrational contributions, which are typically
much smaller than the electronic ones, often cannot be
included due to the computational cost and complexity
of calculating the normal modes of vibration in the
electronically excited state. The resulting absorption band
is then approximated as a single line at the vertical excitation
energy, which is artificially broadened through convolution
with a Gaussian or Lorentzian function. This approximation
is particularly severe if the absorption spectrum is dominated
by a single electronic transition because then the structure
of the spectrum is entirely determined by the vibrational fine
structure. Furthermore, the vertical excitation energy is strictly
speaking not a physical observable and its use as the center of
an absorption band relies heavily on error compensation. In
case of emission spectroscopy, the emission of a photon occurs
mostly from the lowest excited state of a given multiplicity2

(Kasha’s rule), so that the shape of the emission spectrum is
in fact mostly determined by vibronic effects.

Based on the framework of density functional based tight-
binding (DFTB),3,4 a computationally very efficient alternative

a)Electronic mail: rueger@scm.com

to TD-DFT has been developed in the form of time-dependent
DFTB.5 Here, the calculation of excited states is based on a
DFTB ground state calculation and additional approximations
are made to Casida’s TD-DFT equations in order to avoid
numerical integration at runtime. The resulting method is
orders of magnitude faster than TD-DFT and has successfully
been used in a wide variety of applications.6–15 A recent
review of TD-DFTB can be found in Ref. 16.

While the applicability of TD-DFT to the calculation
of vibrationally resolved UV/Vis spectra has been confirmed
in benchmark calculations,17–22 no such studies have been
performed for TD-DFTB. As such it is not clear at the
moment whether the additional approximations made in TD-
DFTB have a negative influence on the quality of calculated
vibronic effects. TD-DFTB has, however, been found to
yield satisfactory accuracy for both excited state geometries
and excited state normal modes of small molecules,23

which, together with its computational efficiency, makes its
application to vibrationally resolved spectroscopy promising.
In this article, we investigate the applicability of TD-
DFTB to the calculation of vibrationally resolved UV/Vis
spectra.

This paper is structured as follows: In Section II we
recapitulate the theory of vibrationally resolved UV/Vis
spectroscopy from a TD-DFTB perspective. We furthermore
present a method to follow a particular excitation through
conical intersections during an excited state geometry
optimization. In Section III, we evaluate the performance
of TD-DFTB for the calculation of vibronic effects for
strongly dipole allowed excitations in various aromatic
and polar molecules. We compare the obtained results to
both TD-DFT calculations and experimentally obtained data.
Section IV summarizes our findings and concludes the
article.
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II. THEORY

A. Excited states from TD-DFTB

In the field of quantum chemistry, the most commonly
used density functional based approach to excited state
calculations is Casida’s linear response formalism.1 Here the
problem of calculating excitation energies and excited states is
cast into an eigenvalue equation in the space of single orbital
transitions ĉ†aĉi |ψ0⟩, where |ψ0⟩ is the Slater determinant of the
occupied Kohn-Sham orbitals. For local exchange-correlation
functionals, the eigenvalue problem can be written as

Ω F⃗ = ∆2F⃗, (1)

where ∆ is the vertical excitation energy. For closed-shell
systems, the elements of the matrix Ω are given by

Ωia, jb = δi jδab∆
2
ia + 4


∆ia∆jbKia, jb. (2)

We follow the usual convention of using the indexes i, j for
occupied and a,b for virtual orbitals and have abbreviated the
difference in the Kohn-Sham orbital energies εa − εi = ∆ia.
The so-called coupling matrix K differs between TD-DFT
and TD-DFTB and also depends on the spin state of the
calculated excited state. The TD-DFTB coupling matrix is
obtained from the TD-DFT coupling matrix through an
approximate decomposition of the transition density into
monopolar contributions and is given by5

Kia, jb =

AB

qia,A κAB qjb,B, (3)

where the so-called atomic transition charges

qia,A =
1
2


µ∈A


ν

(
cµiSµνcνa + cνiSνµcµa

)
(4)

are calculated through the Mulliken population analysis24 from
the overlap and coefficient matrices S and C. We use capital
calligraphic indexes A,B for atoms and Greek indexes µ, ν
for the atomic basis functions. The atomic coupling matrix κ
depends on the multiplicity of the calculated excitation and is
given by

κS
AB = γAB for singlets (5)

or κT
AB = δABMA for triplets, (6)

where γAB is the normal γ-functional used in the SCC
(self-consistent charge) extension of DFTB25 and MA is the
magnetic Hubbard parameter which is also used in spin
polarized ground state calculations.26

Detailed information about the excited state |Ψ ⟩ can
be extracted from the eigenvectors F⃗ in Equation (1): The
electronic transition dipole moment is in TD-DFTB easily
calculated as

⟨ψ | ˆ⃗µe|ψ0⟩ =

ia


2∆ia
∆

Fia


A

qia,AR⃗A, (7)

where ˆ⃗µe = −e


i
ˆ⃗r i is the electronic dipole moment

operator. Using Casida’s assignment ansatz, we can construct
an approximate excited state wavefunction |ψ⟩ from a
combination of single orbital excitations of the Kohn-Sham

Slater determinant |ψ0⟩,

|ψ⟩ =

ia


2∆ia
∆

Fia ĉ†aĉi |ψ0⟩. (8)

Following the auxiliary functional approach27 developed
by Furche and Ahlrichs, analytical gradients for the excitation
energies have been derived by Heringer et al.23 With the
following definitions for several auxiliary objects:

Uia =


∆ia
∆

Fia, (9)

∆qex
A =


µ∈A


ν

PµνSµν, (10)

UA =

ia

Uiaqia,A, (11)

ΘA =

B
γAB ∆qB, (12)

Θex
A =


B
γAB ∆qex

B , (13)

ΞA =

B
κAB UB, (14)

the gradient of the excitation energy ∆ can be written as

d∆

dR⃗A
= 2


B,A


µ∈A
ν∈B

dH0
µν

dR⃗A
Pµν

+

B,A


µ∈A
ν∈B

dSµν

dR⃗A
(ΘA +ΘB) Pµν

+

B,A

dγAB
dR⃗A

�
∆qA∆qex

B + ∆qex
A∆qB

�

+

B,A


µ∈A
ν∈B

dSµν

dR⃗A

�
Θex
A +Θ

ex
B

�
Dµν

−

B,A


µ∈A
ν∈B

dSµν

dR⃗A
Wµν + 4


B,A

dκAB
dR⃗A

UAUB

+ 2

B,A


µ∈A
ν∈B

dSµν

dR⃗A
(ΞA + ΞB)Uµν, (15)

where ∆qA are the Mulliken charges and D is the ground
state’s density matrix. The exact definition of the one-particle
difference density matrix P and the Lagrange multipliers Wµν

can be found in Appendix B of Ref. 23.
Analytical second derivatives have not been derived for

the TD-DFTB excitation energies. We therefore calculate
the Hessian by numerical differentiation of the analytical
gradient using a three point approximation with nuclear
displacements of 10−4 bohr along the Cartesian axes. While
this increases the computational complexity of vibrational
frequency calculations by a factor of 6Natom, it also allows
derivatives of other properties to be calculated simultaneously
at no additional cost. A useful application of this would be
the calculation of the electronic transition dipole moment’s
gradient; a property needed for the incorporation of Herzberg-
Teller effects, which are important in the correct description
of weakly dipole allowed and dipole forbidden transitions.
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B. Vibrationally resolved spectroscopy

Calculating absorption spectra solely from the vertical
excitation energies ∆ and the corresponding electronic
transition dipole moments ⟨ψ | ˆ⃗µe|ψ0⟩ is computationally very
attractive, since the entire calculation can be performed at a
fixed nuclear geometry. This, however, completely neglects the
excitation of nuclear vibrations that happens simultaneously
to the electronic transition. These nuclear effects determine the
shape of an absorption band belonging to a specific electronic
transition and are therefore important if an accurate absorption
spectrum is required or if the spectrum is dominated by only
a single band.

A more realistic description of the absorption is obtained
if both electronic and nuclear effects are considered for the
calculation of the transition dipole moment. Using the Born-
Oppenheimer approximation28

Ψ (r⃗ , R⃗) = ψ(r⃗ , R⃗)v(R⃗) (16)

to express the total wavefunction Ψ (r⃗ , R⃗) as a product
of electronic ψ(r⃗ , R⃗) and nuclear wavefunction v(R⃗), the
transition dipole moment can be written as

⟨Ψ ′| ˆ⃗µe + ˆ⃗µN |Ψ ⟩ = ⟨ψ ′v ′| ˆ⃗µe|ψv⟩ + ⟨ψ ′v ′| ˆ⃗µN |ψv⟩                    
=0

. (17)

Here ˆ⃗µN = e

A

ˆ⃗RA is the nuclear dipole moment operator.
Primed symbols denote excited state wavefunctions and
unprimed symbols the ground state wavefunctions. The
second term vanishes due to the orthogonality of the
electronic wavefunctions ψ(r⃗ , R⃗) and ψ ′(r⃗ , R⃗) for any nuclear
geometry R⃗. The first term involving the electronic dipole
moment is then approximated by assuming that the electronic
transition dipole moment is constant in the region of
configuration space where the nuclear wavefunction v(R⃗) is
non-zero, which gives the Franck-Condon approximation29–31

for the transition dipole moment

⟨Ψ ′| ˆ⃗µe + ˆ⃗µN |Ψ ⟩ ≈ ⟨v ′|v⟩⟨ψ ′| ˆ⃗µe|ψ⟩. (18)

The square of the overlap ⟨v ′|v⟩ between the initial and final
nuclear wavefunctions is called the Franck-Condon factor.
For strongly dipole allowed transitions, this approximation is
generally sufficient. Dipole forbidden transitions are, however,
poorly described by Equation (18), as it predicts a zero
transition dipole moment. The description of these transitions
can be improved if the gradient of the electronic transition
dipole moment is explicitly taken into account. These so-called
Herzberg-Teller effects32 are beyond the scope of this article
though, and we will restrict our investigation to dipole allowed
transitions.

In order to calculate the overlap ⟨v ′|v⟩, some functional
form for the nuclear wavefunction is required. Within the
Born-Oppenheimer approximation, the nuclei move in the
potential given by the electronic energy of the ground state and
excited state, respectively. Using a harmonic approximation
of the Born-Oppenheimer potential around the equilibrium
geometry of the respective state, the nuclear wavefunction can
be approximated as a multidimensional harmonic oscillator,

for which the wavefunction is well known

v(n⃗, q⃗) =

i

(
ωi

π

) 1
4 1
√

2nini!
e−

1
2ωiq

2
i Hni(

√
ωiqi). (19)

Here ni is the number of energy quanta ωi in the ith normal
mode of vibration and qi is the normal mode coordinate. Hni

is the nith Hermite polynomial. Before the overlap ⟨v ′|v⟩ can
be calculated, one has to account for the fact that both the
normal modes as well as the equilibrium geometries of ground
and excited states are different. Duschinsky showed33 that the
normal mode coordinates of the initial and final states can
be related through a linear transformation q⃗′ = Jq⃗ + k⃗, which
allows the overlap integral to be written as

⟨v ′|v⟩ = (det J)− 1
2


v ′(n⃗′,Jq⃗ + k⃗) v(n⃗, q⃗) dq⃗. (20)

Details on the calculation of these integrals can be found in
Refs. 34 and 35.

With the harmonic approximation for the potential
experienced by the nuclei, they behave as a multidimensional
harmonic oscillator for which the energy can easily be written
as

Enuc(n⃗) =

i

ωi

(
ni +

1
2

)
. (21)

Note that even without excitation of nuclear vibrations the
nuclei in their ground state still have a vibrational zero point
energy given by

EZPE = Enuc(⃗0) = 1
2


i

ωi. (22)

As the thermal energy is usually small compared to the
energy necessary for vibrational excitations, it is reasonable
to assume that both the electrons and the nuclei are in their
respective ground state when the photon is absorbed. The total
energy of the system is therefore given by the DFT(B) energy
functional EDFT(B) plus the nuclear vibrational zero point
energy EZPE, both of which are calculated at the equilibrium
geometry R⃗GS of the ground state, that is where EDFT(B) is
minimal

EGS = EDFT(B)(R⃗GS) + EZPE
GS . (23)

After the absorption, the total energy of the excited state is the
sum of DFT(B) ground state energy EDFT(B), vertical excitation
energy ∆, and the nuclear vibrational energy according to
Equation (21), where everything is evaluated at the excited
state equilibrium geometry R⃗EX, that is where EDFT(B) + ∆ is
minimal

EEX(n⃗′) = EDFT(B)(R⃗EX) + ∆(R⃗EX) + Enuc
EX (n⃗′). (24)

The difference EEX(n⃗′) − EGS between ground and excited
state energies together with the intensities calculated as the
square of the overlap ⟨v ′|v⟩ from Equation (20) determines the
shape of an absorption band belonging to a specific electronic
transition. The smallest possible excitation energy called E0-0
is obtained if the nuclei remain in the ground state during the
photon absorption and is given by

E0-0 = EEX(⃗0) − EGS. (25)



184102-4 Rüger et al. J. Chem. Phys. 145, 184102 (2016)

FIG. 1. Illustration of the quantities involved in vibrationally resolved spec-
troscopy calculations.

An illustration of the various energies used in this article can
be found in Figure 1.

It is interesting to note that despite its widespread use
for the calculation of absorption spectra the vertical excitation
energy ∆ is not experimentally observable. Its popularity stems
from the fact that it is easily calculable and often a reasonable
approximation for the position of an absorption band: The
vertical excitation energy ∆ is always larger than E0-0, which
on the other hand is a lower bound to the photon energy at
which the absorption can happen. Depending on the details
of ground and excited state potential energy surfaces, it might
well happen that these effects compensate and the vertical
excitation energy ∆ is actually not too far from the band
maximum. We will later plot the vertical excitation energy
into the vibrationally resolved spectra to investigate to what
extent it can be used as an approximation to the absorption
band’s maximum.

So far we have only described absorption spectroscopy.
For emission spectroscopy, the only necessary modification
is that the system is assumed to be in the vibrational ground
state of the electronically excited state prior to the emission
of the photon. All vibrational states of the electronic ground
state are then valid final states. This includes the vibrational
ground state, so that absorption and emission spectra overlap
at the line corresponding to the 0-0 transition.

The method outlined in this section is commonly referred
to as adiabatic Hessian Franck-Condon (AH|FC) since it
performs an optimization of the excited state, calculates
its Hessian, and subsequently uses the Franck-Condon
approximation for the calculation of the dipole moments.
Various other methods for the calculation of vibronic fine
structures are available, a comparison of which on the basis
of DFT can be found in a recent article by Muniz-Miranda
et al.22 These methods generally skip one or more steps
in the calculation to increase the computational efficiency.
The vertical gradient Franck-Condon (VG|FC) method36 (also
called linear coupling model), for example, requires neither
an optimization of the excited state nor a calculation of the

excited state Hessian, thereby avoiding the most costly steps
in the AH|FC procedure. All of these methods can in principle
also be used within the DFTB framework. However, the
purpose of the current paper is to investigate the effect of the
DFTB approximations on the calculation of vibrational fine
structures. We believe that this is best done using the AH|FC
method, as it offers the most complete test of the DFTB
framework, i.e., excited state geometries and vibrational
frequencies as well as E0-0 energies, all of which would
not be tested in, e.g., the VG|FC method. We do not expect
the DFTB approximations to alter the conclusions of Muniz-
Miranda et al.22 and have hence restricted our investigations
to the AH|FC method.

C. Following a particular excitation
during geometry optimization

In order to reliably calculate the equilibrium structure
of a specific electronically excited state, we need to make
sure that at every step of the geometry optimization the
excitation energy gradient is calculated for the correct excited
state. If the excited states are well separated in energy, this
is trivial as one can just use the gradient of the Ith lowest
excited state, where I is the number of the excited state of
interest at the initial geometry. This, however, does not work
if potential energy surfaces (PESs) cross and can not only
lead to finding equilibrium geometries of excited states other
than the originally selected but can also lead to completely
unphysical results. Such a case is illustrated in Figure 2.
Here the excited state of interest A has been identified as
the S2 state at the ground state’s equilibrium geometry R⃗GS,
so that the optimization would start at the blue dot on the
dotted PES. Optimization on the PES of state A would go
through the conical intersection with the other PES and end
at the equilibrium geometry R⃗A

EX of state A. However, if one
simply optimizes the second lowest excited state one runs
into a problem at the conical intersection: The S2 surface
on which the optimization would take place is the PES of
state A left of the conical intersection and the PES of state B
right of the intersection. The “minimum” of this surface
is at the intersection, but the gradient is not defined there
and in practice common optimizers just oscillate around the
conical intersection geometry. In order to solve this problem
generally and to reliably reach the equilibrium geometry of
the originally selected excitation, we need a way to follow a
particular excited state through a conical intersection.

Let F⃗k
I be the eigenvector of the Ith excitation at the

kth step of the geometry optimization. Assuming that the Ith

FIG. 2. An example system where optimization on the S2 potential energy
surface does not converge to a minimum. Note that the ground state’s potential
energy surface is not shown.
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excitation is the one for which the geometry is to be optimized,
we would use this eigenvector to calculate the gradient which
determines the nuclear geometry for the next step. Having
solved Equation (1) at step k + 1 of the optimization, it would
then be natural to look at the eigenvectors F⃗k+1

J in order to
check which of the new eigenvectors is most similar to F⃗k

I . We
use the following measure θ I J for quantifying the similarity
between eigenvectors in subsequent steps of the geometry
optimization:

θ I J = θ(F⃗k
I , F⃗

k+1
J ) =

������


µν

Fk
µν, IF

k+1
µν,J

������
. (26)

Here

Fk
µν, I =


ia

ckµiF
k
ia, Ic

k
νa (27)

are the elements of Casida’s eigenvectors in an atomic orbital
basis. The similarity measure θ I J is calculated for all J and the
gradient of the most similar excitation is used to proceed with
the next step of the geometry optimization. Switching to the
atomic orbital basis is necessary as the molecular orbitals can
vary drastically from step to step (i.e., their sign is undefined
and their energetic ordering can change), which makes the
direct comparison of eigenvector elements Fia difficult.

A more rigorous way to compare two excited states
would be to use Casida’s assignment ansatz from Equation (8)
to calculate the overlap ⟨ψk

I |ψk+1
J ⟩. This would also take

the change in the positions of the atomic basis functions
into account, which is neglected in Equation (26). We have,
however, found that this is a small effect for the nuclear
displacements typically seen from one step in a geometry
optimization to the next and that the similarity measure θ I J
very reliably selects the correct excitation, while having the
advantage that it is much easier to calculate than the more
rigorous overlap ⟨ψk

I |ψk+1
J ⟩ between wavefunctions.

It is important to note that the procedure introduced in this
section is only a technical tool that avoids certain problems
during geometry optimizations of excited states. By staying
on the original PES, the result is also easier to interpret for
the user. However, great care must be taken in situations
where potential energy surfaces cross, as it can in reality
happen that the system switches to another PES at the conical
intersection. If this is the case, the user should manually restart
the optimization from the intersection geometry on the other
PES.

D. Technical details

The first step in the calculation is to perform a
geometry optimization of the ground state using DFT(B).
This determines the ground state’s equilibrium geometry R⃗GS
at which the vertical excitations are calculated with TD-
DFT(B) and the excitation of interest identified. The ground
state geometry R⃗GS is then slightly distorted by adding
small random vectors to all nuclear positions. This distorted
geometry is then used as the initial geometry for a geometry
optimization of the desired excited state, which yields
the excited state’s equilibrium geometry R⃗EX. The random
displacement is necessary in order to allow the excited

state to break possible symmetries of the ground state, as it
might otherwise well happen that the geometry optimization
starts on a saddle point or local maximum, making it
difficult to define an initial direction for the optimization by
following the gradient. Excitation following as introduced in
Subsection II C is used during the geometry optimization
of the excited state. Normal modes of the ground and
excited states are calculated at the respective equilibrium
geometries and used to calculate the Franck-Condon factors
and the vibrationally resolved spectrum. The nuclear system
is assumed to be in the vibrational ground state prior to
the absorption of the photon. The theoretical spectra are
convoluted with Gaussian or Lorentzian functions of suitable
widths in order to match the resolution of the respective
experimental spectra. Intensities in the theoretical spectra
naturally integrate to one over the entire spectral width.
Experimental spectra were normalized in the same way,
if possible. In cases where this was impossible due to a
cutoff 0-0 peak or a limited spectral range, the experimental
spectrum was scaled to match the intensity of a prominent
line to the DFT result. In order to facilitate a comparison of
spectral shapes even when absolute excitation energies differ,
all spectra have had their E0-0 energy shifted to zero.

All simulations were performed with the 2016 version of
the ADF modeling suite. DFT calculations were performed
with a TZP basis set and the PBE functional.37 For the
DFTB calculations, we used the DFTB3 Hamiltonian38

and the 3ob:freq parameter set.39 Conceptually, using the
DFTB3 Hamiltonian in the ground state calculation is slightly
inconsistent, as TD-DFTB is based on the linear response of
SCC-DFTB, not DFTB3. While TD-DFTB has been adapted
to the DFTB3 framework,40 the difference in the results is
negligible in practice and we used TD-DFTB in its original
formulation.5

III. RESULTS

In order to evaluate the loss in accuracy introduced
through the DFTB approximations, we have calculated
vibrationally resolved spectra with both DFT and DFTB.
In addition to the comparison between the two theoretical
methods, we also compare both of them to experimentally
obtained spectra. This allows us to determine whether a
deviation is indeed caused by the DFTB approximations or
already present at the DFT/GGA level.

A summary of all energies and oscillator strengths can be
found in Table I. For planar molecules with D2h symmetry,
the x y-plane was chosen to be the plane of the molecule, with
the x-axis along the longer axis of the molecule.

A. Anthracene

Our first example is the S0 → S1 excitation in anthracene,
a typical example of a dipole-allowed π → π∗ transition in
a polycyclic aromatic hydrocarbon (PAH). Anthracene is a
precursor to anthraquinone from which many technically
important dyes such as alizarin are derived. Furthermore,
the optical properties of anthracene have recently also been
discussed in the context of absorption lines of interstellar
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TABLE I. Summary of vertical excitation energies, E0-0 energies, and oscillator strengths for all example
transitions from Section III. All energies are given in eV. Experimental E0-0 energies from Refs. 22 and 41–48.

DFT/PBE DFTB
Exp.
E0-0Molecule Excited state ∆(R⃗GS) E0-0 f ∆(R⃗GS) E0-0 f

Anthracene 11B2u, La 2.91 2.67 0.037 2.98 2.65 0.048 3.43
Pentacene 11B2u, La 1.60 1.48 0.059 1.80 1.61 0.033 2.12a

Pyrene 11B3u, La 3.38 3.17 0.211 3.25 2.97 0.201 3.84
Pentarylene 11B3u, La 1.36 1.31 1.48 1.49 1.38 1.58 1.66a

Octatetraene 11Bu 3.78 3.53 1.40 3.83 3.44 1.14 4.40
trans-Stilbene 11Bu 3.60 3.32 0.85 3.74 3.34 0.83 3.80a

Anisole 11A′ 4.72 4.38 0.030 4.69 4.22 0.036 4.51
C480 11A 3.06 2.73 0.23 3.19 2.77 0.22 ≈3.22a

Bithiophene 11Bu 3.68 3.38 0.40 3.67 3.30 0.40 3.86
Triazoline 11B2 1.67 1.60 0.0006 1.83 1.60 0 2.15a

aMeasured in solution or matrix conditions. A solvent-induced shift of about 0.1–0.2 eV should be considered when comparing
with theoretical results.

molecular clouds of which anthracene is one of the most
complex constituents.49

As expected from experiment,41 we observe a dipole-
allowed S0 → S1 transition (La state in the Platt nomencla-
ture50) with B2u symmetry and an oscillator strength f = 0.048
calculated with DFTB and 0.037 with DFT. The calculated
vertical excitation energies are ∆(R⃗GS) = 2.98 eV with DFTB
and 2.91 eV with DFT. Optimization of the excited state
leads to an equilibration of the bond lengths in the outer
rings and a slight expansion of the outer bonds of the
central ring for both DFTB and DFT, with a overall slightly
stronger deformation for DFTB. The DFT(B) ground state
geometry and its deformation upon excitation is shown in
Figure 3. The deformation qualitatively agrees with the
results obtained by Dierksen and Grimme using a hybrid
functional.17 The comparison of the total energy of excited
and ground states yields an E0-0 energy of 2.65 eV for
DFTB and 2.67 eV for DFT, both of which considerably
underestimate the experimentally obtained E0-0 of 3.43 eV
by almost 0.8 eV.41 It is known that density functional
theory systematically underestimates energies of La states
in acenes,51,52 though this deficiency is corrected with range-
separated hybrid functionals.53

The vibrational fine structure of the S0 → S1 absorption
band is shown in Figure 4. The general shape and the peak
positions of both the DFT and DFTB calculated spectra
agree very well with the experimental reference, though the

FIG. 3. Deformation in the S1 state of anthracene calculated with DFTB (left)
and DFT (right). Distances are given in Ångström.

experimental spectrum is overall a little more intense at higher
energies. This was also observed by Dierksen and Grimme
who hypothesized that this is due to a skewed baseline in the
experimental spectrum.17 While they have later found that the
effect reduces with a larger ratio of Hartree-Fock exchange
(see also Section III D), it never quite disappears as it does
for other PAHs.18

Overall it can be said that the vibrational fine structure of
the S0 → S1 transition in anthracene is remarkably accurate
compared to the absolute energies, which are almost 0.8 eV
too low. This indicates that the excited state potential energy
surface is mostly shifted to smaller energies, but not distorted
in the process. The similarity between the DFT and DFTB
calculated spectra suggests that the additional approximations
of DFTB have little influence on the quality of the obtained
spectrum.

B. Pentacene

The next example is the S0 → S1 transition in pentacene.
The S1 state is of B2u symmetry and labeled as La in
Platt’s nomenclature.50 The transition is dipole-allowed with
an oscillator strength f = 0.033 calculated from DFTB and
0.059 from DFT. We have calculated a vertical excitation
energy of ∆(R⃗GS) = 1.80 eV with DFTB and 1.60 eV with

FIG. 4. Vibrationally resolved S0→ S1 absorption spectrum of anthracene.
The arrows mark the vertical excitation energies. Experimental spectrum from
Ref. 41.
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FIG. 5. Deformation in the S1 state of pentacene as calculated with DFTB.
Due to the symmetry of the deformation, only half of the molecule is shown.
Distances are given in Ångström.

DFT. Optimization of the excited state yields an E0-0 energy of
1.61 eV for DFTB and 1.48 eV for DFT, which is again too low
when compared to the experimental E0-0 energy of 2.12 eV.42

The ground state bond distances and the deformation in the S1
state is shown in Figure 5. As was the case for anthracene, the
internal bonds are hardly affected in the excited state while
bond distances on the outside tend to become more uniform,
with larger deformations in the outer rings of the molecule.

The vibrationally resolved S0 → S1 absorption spectrum
is shown in Figure 6. The experimental spectrum was
measured in a n-hexadecane Shpol’skii matrix at a temperature
of 5 K and therefore has a much better spectral resolution than
the vapor absorption spectrum we used for comparison in case
of anthracene. Both theoretical and experimental spectra show
a strong absorption at the E0-0 energy, indicating that there is
a large probability for the nuclei to remain in their vibrational
ground state during photon absorption. Peak positions of
the experimental spectrum are generally reproduced within
50 cm−1 by both DFTB and DFT. Intensities are also generally
well reproduced, with the exception of a line at 750 cm−1

which is almost missing with DFTB and a line at 1320 cm−1

that is too intense. However, considering that embedding
into different matrices yields slightly different experimental
spectra,42 while our calculation corresponds to absorption in
the gas phase, both DFT and DFTB are in excellent agreement
with the experimental data.

It is interesting to note that the vertical excitation energy
(arrows in Figure 6) is a rather poor approximation to the

FIG. 6. Vibrationally resolved S0→ S1 absorption spectrum of pentacene.
The arrows mark the vertical excitation energies. Experimental spectrum from
Ref. 42.

absorption maxima for both DFT and DFTB: For DFTB, it
is clearly at too high energies and completely neglects the
rather intense 0-0 transition. For DFT it is closer to the “mean
absorption energy” but paradoxically ends up at an energy
where pentacene does not absorb at all.

C. Pyrene

Another interesting test system is pyrene, which is
not only a precursor to dyes such as pyranine, but as the
smallest peri-fused PAH also structurally rather different from
the previous acene examples. Experimentally the absorption
spectrum of pyrene shows a weak band associated with
excitation into the Lb state with an E0-0 energy of 3.36 eV54

and an intense band of absorption into the La state with
E0-0 = 3.84 eV.41 Both DFT and DFTB erroneously predict
the La state to be the S1 state with vertical excitation energies
of ∆(R⃗GS) = 3.25 eV with DFTB and 3.38 eV with DFT. The
excitation into the La state (B3u symmetry) is dipole allowed
with an oscillator strengths of f = 0.201 for DFTB and 0.211
for DFT. The deformation of the molecule upon excitation is
shown in Figure 7 and is dominated by an equilibration of
bond lengths along the perimeter of the molecule. Comparing
the total energies of ground and excited states, we have found
E0-0 energies of 2.97 eV for DFTB and 3.17 eV with DFT,
both of which are too low compared to experiment.

The vibrational fine structure of the absorption into the
La state (S1 theoretically, S2 experimentally) is shown in
Figure 8. The agreement between the theoretical spectra and
experiment is almost perfect. This indicates that with DFT
and DFTB the excited state potential energy surfaces are not
distorted but merely shifted in energy, which is interesting
considering that the shift is quite severe and even reverses
the energetic ordering of La and Lb state with respect to
experiment.

D. Pentarylene

The examples so far were rather small molecules where
even for DFT the calculation of the vibrational structure of

FIG. 7. Deformation in the S1 state of pyrene as calculated with DFTB.
Distances are given in Ångström.
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FIG. 8. Vibrational fine structure of the absorption into the La state of
pyrene. The arrows mark the vertical excitation energies. Experimental spec-
trum from Ref. 41.

the absorption band belonging to a single electronic excitation
is computationally not a problem. For larger molecules or if
multiple electronic states have to be considered, performance
will be come an issue though. In order to investigate these
computational aspects, we have calculated the vibrational fine
structure of the S0 → S1 transition in pentarylene. With 74
atoms, pentarylene is much larger than the previous example
molecules.

The S1 state in pentarylene has B3u symmetry and the
transition from the ground state is strongly dipole allowed
with oscillator strengths of f = 1.58 with DFTB and 1.48
with DFT. The calculated E0-0 energies (1.38 eV for DFTB,
1.31 eV for DFT) again underestimate the experimental value
of 1.66 eV.43 The vibrational structure of the absorption band
is shown in Figure 9. The agreement of the calculated spectra
with experiment is rather bad: Both DFT/PBE and DFTB
show a dominating 0-0 transitions, while the experimental
spectrum is fairly wide and features at least 4 distinct maxima
of decreasing intensity.43 This difference indicates that the
geometry deformation between ground and excited states
is underestimated with both DFT/PBE and DFTB, making
the overlap between the nuclear ground state wavefunctions
too large and the 0-0 transition too likely. This was also
observed by Dierksen and Grimme, who have found that
a large ratio of exact exchange (50% with the BH-LYP
functional) is needed in order to reproduce the experimental

FIG. 9. Vibrationally resolved S0→ S1 absorption spectrum of pentarylene.
The arrows mark the vertical excitation energies. DFT/BH-LYP results from
Ref. 18. Experimental spectrum from Ref. 43.

spectrum.18 However, even though DFT/PBE and DFTB both
disagree with experiment, they agree very well with each
other, indicating that the deficiency is already present at the
level of DFT with GGA functionals and was not introduced
with the additional approximations in DFTB.

Looking at the computational performance, it is clear that
the calculation of vibrational frequencies in the excited state
is the bottleneck for these calculations. With the numerical
differentiation of the analytical gradient, 6Natom single point
TD-DFT(B) calculations are necessary to determine the
Hessian. Running on an Intel Core i7-4770 CPU the entire
calculation took 49 h for DFT, out of which 43 h were
spent on the excited state Hessian. With DFTB it is also the
evaluation of the Hessian that takes the most time, but the
entire calculation finishes within 7 min, which is a speedup
by a factor of 420 when compared to DFT.

E. Octatetraene

In addition to the aromatic compounds covered in
Section III A–III D, polyenes are another class of systems
known for their optical properties: On the one hand they
exhibit intensely absorbing π → π∗ transitions, the energy of
which can be tuned through the number of conjugated double
bonds, making them excellent dyes. On the other hand they
can also undergo cis-trans isomerization upon absorption of
a photon; a process critical in the biochemical conversion of
radiative into chemical energy.

Our specific example is the excitation into the 11Bu state
in all-trans octatetraene. This transition is strongly dipole
allowed with an oscillator strength of f = 1.14 with DFTB,
and 1.40 with DFT. For both DFTB and DFT, this is the S1 state
with vertical excitation energies of ∆(R⃗GS) = 3.83 eV for
DFTB and 3.78 eV for DFT. However, experimentally a weak
dipole-forbidden absorption into the 21Ag state is observed at
E0-0 = 3.60 eV,55 while absorption into the 11Bu state only
starts at E0-0 = 4.40 eV.44 Optimization of the 11Bu excited
state leads to an equilibration of bond lengths, in which
double bonds stretch and single bonds contract. This is shown
in Figure 10. The calculated E0-0 energies are 3.44 eV with
DFTB and 3.53 eV with DFT, both of which are almost 1 eV
too low compared to experiment.

The vibrationally resolved absorption into the 11Bu state
is shown in Figure 11. While both DFTB and DFT
predict the experimentally seen, very intense 0-0 transition,
the rest of the spectrum is rather poorly described. The
most pronounced peaks in the experimental spectrum are
found at 1235 cm−1 and 1645 cm−1. Additional absorption
peaks are seen at 2880 cm−1 = (1235 + 1645) cm−1 and
3290 cm−1 = 2 × 1645 cm−1, corresponding to combined
and double excited modes, respectively.44 Compared to the
experimental spectrum, both calculated spectra show the
prominent peaks at slightly lower energies: With DFTB the

FIG. 10. Deformation in the 11Bu state of octatetraene as calculated with
DFTB. Distances are given in Ångström.
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FIG. 11. Vibrational fine structure of the absorption into the 11Bu state of
octatetraene. The arrows mark the vertical excitation energies. Experimental
spectrum from Ref. 44.

corresponding modes are found at 1125 cm−1 and 1570 cm−1,
with the combined and double nuclear excitations visible
at 2695 cm−1 and 3140 cm−1. Additionally there are rather
intense peaks at 331 cm−1 and 1460 cm−1, which were not
observed in the experimental spectrum. However, the spectra
obtained with DFTB and DFT are almost identical, indicating
that these deficiencies are already present at the DFT/GGA
level and have not been introduced through the additional
approximations in DFTB. As was the case for the PAHs,
Dierksen and Grimme have found that the DFT results can be
improved by the inclusion of exact exchange in the exchange-
correlation functional, though for octatetraene they have found
that an especially large amount of exact exchange (>50%) is
required for a better agreement with the experimental data.

F. Stilbene

The optical properties of stilbene are used in various
technical applications such as dye lasers, optical brighteners,
and as a scintillator material. In addition to its technical
importance it is also an interesting test system due to the fact
that it contains both the conjugated double bond and aromatic
rings.

We have studied the S0 → S1 excitation in trans-stilbene.
The S1 state has Bu symmetry and the absorption is a strongly
dipole allowed π → π∗ transition with an oscillator strengths
of f = 0.83 for DFTB and 0.85 for DFT. The calculated
vertical excitation energies of ∆(R⃗GS) = 3.74 eV from DFTB
and 3.60 eV agree surprisingly well with the experimental
E0-0 energy of 3.80 eV,45 though the experimental value was
measured in a methyl pentane solution, so a solvent induced
shift should be kept in mind. Optimization of the excited state
shows the strongest change in geometry at the central double
bond and smaller displacements further away, see Figure 12.
The calculated E0-0 energies of 3.34 eV with DFTB and
3.32 eV with DFT are too small compared to the experimental
value of 3.80 eV, though the relative error is small compared
to some other examples.

The vibrational fine structure of the S0 → S1 transition in
trans-stilbene is shown in Figure 13. While peak positions are
relatively well described, both DFT and DFTB overestimate
the intensity of the 0-0 transition, indicating that the

FIG. 12. Deformation in the S1 state of trans-stilbene as calculated with
DFTB. Distances are given in Ångström.

geometric displacement between ground and excited states
is underestimated. The same problem was also observed for
the pentarylene example, where it was found that a larger
amount of exact exchange improves the results.18 This is also
the case for the S0 → S1 transition in trans-stilbene, where
Dierksen and Grimme have found that 30%–40% of exact
exchange give the best agreement with experiment.

G. Anisole

Moving away from pure hydrocarbons, we have
calculated the excitation into the 11A′ state of anisole. The
11A′ state is the S1 at the ground state’s equilibrium geometry
and its excitation is dipole allowed with an oscillator strength
of 0.03 and 0.036 for DFT and DFTB, respectively. With
E0-0 energies of 4.22 eV with DFTB and 4.38 eV with
DFT, both methods slightly underestimate the experimental
0-0 energy of 4.51 eV. Compared to the ground state geometry,
all bonds in the benzene ring expand upon excitation. It is
interesting to note that this expansion is larger for DFTB, with
a maximum bond elongation of 7 pm compared to 4 pm with
DFT. Furthermore the C–N bond within the methoxy group
elongates slightly upon excitation in DFT, while it shrinks by
2 pm for DFTB.

The vibrational fine structure of the transition is shown in
Figure 14. With the exception of two peaks at 100 cm−1 and
860 cm−1, DFT at the GGA level reproduces the experimental
spectrum46 very well. (A spectrum calculated with the
B3LYP hybrid functional can be found in Ref. 19 and is

FIG. 13. Vibrationally resolved S0→ S1 absorption spectrum of trans-
stilbene. The arrows mark the vertical excitation energies. Experimental
spectrum from Ref. 45.
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FIG. 14. Vibrationally resolved S0→ S1 absorption spectrum of anisole.
Vertical excitation energies are outside of the plotted spectral range. The
experimental spectrum from Ref. 46 has been scaled to match the intensity
of the feature at 750 cm−1 with the one calculated from DFT.

almost identical to the GGA calculation.) DFTB qualitatively
reproduces the experimental spectrum but compared to DFT
shows larger deviations in peak positions. Peak intensities
also seem to be worse with DFTB at first sight. However,
one should keep in mind that the experimental data have
been scaled to match the intensity of the feature at 750 cm−1

to the DFT spectrum. Nevertheless, considering the entire
spectral range (including the region >1800 cm−1 not shown in
Figure 14), DFTB predicts larger intensities further away from
the 0-0 origin. This is consistent with the larger geometric
deformation seen in the excited state with DFTB, which due
to the displaced minima requires more vibrational quanta in
the excited state to reach overlap with the original nuclear
wavefunction.

H. Coumarin dye C480

As an example of a heterocyclic compound, we have
chosen the coumarin dye C480 (structure inlayed in Figure 16).
As a typical dye molecule, coumarin C480 has a strongly
dipole allowed S0 → S1 transition with π → π∗ character
(HOMO → LUMO). We have calculated 0-0 energies of
2.73 eV and 2.77 eV with DFT and DFTB, respectively.
As for all other compounds, both methods underestimate the
experimental 0-0 energy of ≈3.22 eV determined from the
inset of the first band in the absorption spectrum measured
in methylcyclohexane.22 The deformation upon excitation is
shown in Figure 15 and is mostly restricted to the core
coumarin and the C–N bond linking the nitrogen atom to
the coumarin unit. Especially noteworthy is the very strong
elongation (+12 pm for DFTB; +10 pm for DFT) of the
C–O bond between the heterocyclic oxygen and the carbonyl
carbon. The deformation upon excitation is very similar
for DFT and DFTB, although, as was already observed in
previous examples, DFTB predicts overall slightly larger
deformations.

The vibrational fine structure of the S0 → S1 transition
in C480 is shown in Figure 16. The DFT calculated
spectrum agrees very well with the experimental absorption
spectrum measured in methylcyclohexane,22 though contrary
to experiment, DFT predicts the first absorption maximum

FIG. 15. Deformation in the S1 state of the coumarin dye C480 as calculated
with DFTB (top) and DFT (bottom). Distances are given in picometers.

to be slightly more intense than the second. For DFTB the
relative intensities of the two maxima agree with experiment,
but the absorption band is overall slightly wider, which
we attribute to the larger geometric deformations seen in
DFTB.

The coumarin C480 dye has recently also been used by
Muniz-Miranda et al. in a benchmark study22 investigating the
performance of different (global and range-separated hybrid)
exchange-correlation functionals on the vibronic structure
and absolute band positions. The authors found that the
ωB97X functional56 predicts the best spectral shapes but
that no single functional simultaneously provides accurate

FIG. 16. Vibrationally resolved S0→ S1 absorption spectrum of the coumarin
dye C480. The arrows mark the vertical excitation energies. Experimental
spectrum from Ref. 22.
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band positions and shapes. In fact ωB97X overestimates the
E0-0 energy by about as much as we have found PBE to
underestimate it. GGA functionals were unfortunately not
included in the comparison in Ref. 22 but considering our
results, the system seems to be sufficiently well described at
the GGA level and by extension with DFTB.

I. Bithiophene

As another example for a heterocyclic compound, we
have calculated the S1 → S0 fluorescence spectrum of planar
trans-2,2’bithiophene. The fluorescence of bithiophene has
recently also been used in a benchmark study21 by Stendardo
et al. investigating the effect of different exchange-correlation
functionals on the vibrational fine structure of the emission
line. The 3ob:freq parameter set used so far does not
include parameters for sulfur. However, different versions
of the 3ob set are cross compatible among each other, so
that sulfur parameters from a newer version (with sulfur
repulsive potentials not specifically optimized for frequency
calculations) were used. For planar bithiophene, the S1 has
11Bu symmetry and we have calculated 0-0 energies of 3.38 eV
and 3.30 eV with DFT and DFTB, respectively. As with all
examples so far, this underestimates the experimental E0-0 of
3.86 eV.

The fluorescence spectrum of bithiophene is shown in
Figure 17. Both DFT and DFTB show very good agreement
in peak positions compared to experiment.57 The biggest
difference between the DFT and DFTB calculated spectra is
the relative intensity of the two intense features at 700 cm−1

and 1450 cm−1. Here DFT predicts a higher intensity of
the 700 cm−1 peak, while DFTB predicts the opposite.
Stendardo et al. have pointed out that the relative intensity
of the two features is extremely sensitive to the choice
of the functional and furthermore depends strongly on the
experimental conditions, with the 1450 cm−1 peak being much
more intense in a hexane matrix57 than in a jet-cooled beam.47

It appears that both DFT and DFTB underestimate to overall
intensity in the spectral region <−1500 cm−1. However, the
experimental spectrum has been scaled to match the intensity
of the feature at 390 cm−1 with the one calculated from DFT,
so absolute intensities should not be overinterpreted.

FIG. 17. S1→ S0 fluorescence spectrum of bithiophene. The experimental
spectrum from Ref. 57 has been scaled to match the intensity of the feature
at 390 cm−1 with the one calculated from DFT.

FIG. 18. Deformation in the S1 state of triazoline as calculated with DFTB.
Distances are given in Ångström.

J. Triazoline

The last example we want to look at is the S0 → S1
excitation in 4-H-1,2,4-triazoline-3,5-diones. As opposed to
the other examples, which were π → π∗ transitions, the
S0 → S1 transition in triazoline has n → π∗ character. This
is an interesting test case as TD-DFTB is known to fail
for σ → π∗ and n → π∗ transitions in that it predicts zero
oscillator strengths and vanishing singlet-triplet gaps.58 We
therefore expect to see significant differences in the spectra
calculated with (TD-)DFTB and (TD-)DFT at the GGA level,
which is in contrast to the close correspondence we have
observed for the other systems. Note that TD-DFTB’s failure
for these transitions has recently been corrected by Domínguez
et al. through the inclusion of one-center integrals of the
exchange type.58 However, this so-called on-site correction
to TD-DFTB is fairly involved and analytical excited state
gradients are not yet available. We will hence restrict our
discussion to TD-DFTB in its original formulation.5

The S0 → S1 excitation in triazoline is very weakly
dipole-allowed with an oscillator strength of f = 0.0006
for DFT, while DFTB mispredicts the oscillator strength
to be exactly zero due to the above mentioned problem.
Optimization of the excited state with DFTB leads to a
stretching of the N–N double bond and a shrinking of the
adjacent C–N bond. This is shown in Figure 18. The calculated
E0-0 energies are 1.60 eV with DFTB and 1.42 eV with DFT,
both of which are considerably too low compared to the
experimental value of 2.15 eV.48

FIG. 19. Vibrationally resolved S0→ S1 absorption spectrum of triazoline.
The arrows mark the vertical excitation energies. Experimental spectrum from
Ref. 48.



184102-12 Rüger et al. J. Chem. Phys. 145, 184102 (2016)

The vibrational structure of the absorption band is
shown in Figure 19. DFTB indeed predicts a qualitatively
wrong spectrum in which the 0-0 transition has the highest
intensity, while both DFT and the experimental spectrum have
their absorption maximum around 1000 cm−1. The spectrum
obtained with DFT is overall too wide when compared to
experiment but according to Dierksen and Grimme this
problem can be resolved by using hybrid exchange-correlation
functionals.18

IV. CONCLUSION

We have shown that DFTB is an excellent and
computationally very efficient approximation to DFT at the
GGA level for the calculation of the vibronic fine structure
of UV/Vis absorption bands. Using the recent 3ob:freq
parameter set39,59 very good agreement with DFT calculated
spectra was achieved at a fraction of the computational cost.

We have found that experimentally measured vibrational
fine structures are often reproduced by GGA DFT and DFTB,
even when absolute excitation energies are in significant error
compared to experiment. This shows that the shape of the
excited state potential energy surface is well reproduced in
both GGA DFT and DFTB, even though the surface may be
shifted in energy.

In cases such as pentarylene and stilbene, where the
experimentally seen vibronic structure is not well reproduced
by DFT at the GGA level and DFTB, better agreement
with experiment can usually be obtained using hybrid
exchange-correlation functionals.18 While this is relatively
straightforward and well established in DFT, work on
including exact exchange in the DFTB framework has only
recently begun60–62 and analytical TD-DFTB gradients are not
yet available for these extensions.

The only example where we found a large discrepancy
between DFT and DFTB was the S0 → S1 excitation in
triazoline. This is caused by the known failure of TD-
DFTB for n → π∗ transitions which was recently removed
by Domínguez et al. with the so-called on-site correction.58

However, since analytical gradients are not yet available for
on-site corrected DFTB, it can presently not be used efficiently
for the calculation of vibronic fine structures.

In summary, we believe that the good performance of
(TD-)DFTB for the calculation of vibronic effects in UV/Vis
spectra makes the inclusion of these effects possible for
applications where they would previously have been neglected
due to their computational cost. Care should be taken
when the method is applied to excitations with σ → π∗ or
n → π∗ character or excitations that are not well described by
(TD-)DFT at the GGA level. However, both these restrictions
are likely to be lifted with recent DFTB extensions, i.e., on-site
correction58 and inclusion of exact exchange,60–62 which due
to the lack of analytical (excited state) gradients, cannot yet
be used for the calculation of the vibronic fine structure.
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