
 

Interacting Cracks Obey a Multiscale Attractive to Repulsive Transition
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The observed repulsive behavior of two initially collinear cracks growing towards each other and
leading to a hook-shaped path questioned recently the validity of the principle of local symmetry within
linear elastic fracture mechanics theory. Our theoretical and numerical work solves this dilemma, providing
the precise geometric conditions for the existence of this repulsive phase. We moreover reveal a multiscale
behavior of the repulsive-attractive transition, explaining its ubiquitous occurrence, but also the difficulty to
predict the final cracks’ paths.
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Because any crack tip acts as a singularity that alters
nonlocally the stress field, multiple cracks affect each other,
curving to form complex paths and fracture patterns [1].
The particular case of en passant crack pairs [2], two
parallel and offset cracks approaching each other by
propagating through their inner tips, is commonly observed
and sometimes exhibits a truly counterintuitive behavior:
the cracks initially curve away from each other before
turning sharply inwards and attracting until coalescence,
forming a hook-shaped path. This supposedly universal
behavior has been observed in a wide variety of materials,
both soft [3,4] and brittle [2,5,6], and a wide variety of
scales, ranging from the micrometric scale in thin metallic
films or biological tissues [7] to the geological scale in
planetary crust or pack ice [8,9].
Yet, to the best of our knowledge, the repulsive compo-

nent of the paths has been seldom studied theoretically.
Fender et al. [10] presented a simple geometric model
fitting their experimental data, but corresponding only to an
attractive trajectory. Contrary to the attractive phase, the
repulsive phase is not systematically present and the precise
conditions necessary for its appearance are still unclear.
Melin [11] explained the repulsion of two aligned cracks as
an instability due to microscopic defects in the materials,
but did not make any predictions of the repulsion magni-
tude, or extend the study to the case of offset cracks. Linear
elastic fracture mechanics is the theoretical framework of
reference for the fracture of brittle materials and needs to be
completed by a bifurcation criterion to predict the propa-
gation direction and the final crack path shape. Using the
uncommon strain-energy density criterion [12], Gdoutos
[13] determined angles of repulsion in some examples, but
a systematic analysis to determine the geometric conditions
to induce repulsion remains lacking. Using the more
standard principle of local symmetry [14,15], Ghelichi

and Kamrin [16] presented a set of analytical tools to study
en passant cracks but did not explicitly study the repulsive
part of en passant cracks paths. Furthermore, a striking
discrepancy between theory and experiments was pointed
out by Dalbe et al. [17]: while maximum repulsion seems
to happen for perfectly aligned cracks, theory using the
principle of local symmetry criterion predicts no deflection
in this case. A recent study even suggested that plasticity
may be needed to induce repulsion [18]. Therefore, current
state of the art gives conflicting results and clearly calls for
a thorough re-examination of the linear elastic fracture
mechanics framework when applied to the case of en
passant cracks.
In this Letter, combining theoretical and numerical

analysis, we show that linear elasticity associated with
the standard criterion of crack propagation (the principle of
local symmetry) explains the existence of crack repulsion
as well as some of the discrepancies with experimental
observations [3,6,17]. We unveil the power law dependency
of the geometric conditions controlling the value of the
initial bifurcation angle, providing a broad insight as to
which en passant crack pairs will initially attract or repel
one another. Our results emphasize the multiscale nature of
the en passant problem; the length scales characterizing the
transition from attraction to repulsion may be orders of
magnitude smaller than the crack length. This will cause a
high sensitivity of crack trajectories with respect to their
precise location, making it possible for cracks or faults to
produce very different and hard to predict patterns as they
grow closer to each other.
In 2D, the stress distribution around the tips is entirely

defined by the stress intensity factors [1] KI and KII, two
parameters quantifying the relative importance of the two
cracking modes (opening and sliding respectively). In this
Letter, we differentiate KI and KII , the stress intensity

PHYSICAL REVIEW LETTERS 120, 255501 (2018)
Featured in Physics

0031-9007=18=120(25)=255501(5) 255501-1 © 2018 American Physical Society



factors in the original fracture problem, from K�
I and K�

II ,
the stress intensity factors at the tips of an infinitesimally
small crack extension. The most commonly used criteria to
determine the direction of crack growth in a homogeneous
and isotropic material are the maximum hoop stress [19],
the maximum energy release rate [20], and the principle of
local symmetry [14,15]. While all these criteria give similar
results and can be considered equivalent, the principle of
local symmetry is often considered as more physically
acceptable for cracks propagating into homogeneous and
isotropic materials [21]. We choose, therefore, the principle
of local symmetry criterion stating that all cracks turn to
propagate into pure opening mode, which translates into the
equation K�

II ¼ 0.
The geometry of en passant cracks [Fig. 1(a)] is con-

trolled by three parameters: the half crack length Lf, and
the two tip to tip separation distances 2δx and 2δy. In
arbitrary units, Lf was taken between 1 and 200, while δx
and δy covered�½0; 100� and ½0; 300�, respectively, in order
to chart the (Δx, Δy) space with over 7000 computation
points. We are always considering a far-field uniaxial stress
field in the direction orthogonal to the cracks. To determine
the angle θ formed between the original crack and its
extension satisfying the principle of local symmetry, we
determine first K�

II using universal polynomial expressions
depending only on θ, KI , and KII [21]. KI and KII can be
easily determined in a finite element computation through
the well-known interaction integral procedure [22–24].
Therefore, our scheme to determine θ amounts to two
steps: a finite element analysis to computeKI and KII and a
simple minimization algorithm solving K�

IIðθÞ ¼ 0. We
were able to validate this computational procedure by

comparing quantitatively some of our results with the ones
obtained using an analytical procedure predicting the stress
intensity factors of interacting cracks [16]. The specifics
concerning the boundary value problem, the computation
scheme, and the validation of our procedure are available in
the Supplemental Material [25].

We find that the problem reduces to a set of only two
parameters: the scaled tip to tip relative separation Δx ¼
δx=Lf and Δy ¼ δy=Lf. The efficiency and robustness of
calculation allowed us to repeat the computation for many

FIG. 1. (a) En passant crack configurations in the approaching
and partially superimposed cases. The behavior is repulsive when
θ < 0 and attractive when θ < 0. The cracks are always sub-
mitted to a far-field uniaxial tension. (b) Real life example of
approaching en passant cracks in asphalt concrete. The case of
superimposed en passant cracks is most often observed at the
microscale; see for example in bones [26], stretchable electronics
[27], or mechanical sensors [28]. (c) Simulated en passant crack
paths using our iterated scheme.

FIG. 2. (a) and (b) Typical θðΔyÞ trend for approaching and
superimposed cracks, respectively. Several crack lengths Lf were
used to reach a 5 orders of magnitude span in Δy. (c) Maximum
interaction angles follow a shifted power law (continuous line) of
the distance Δd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2

p
. Note that repulsion is recorded

for much smaller tip to tip separation than attraction.
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(Δx,Δy) points, therefore producing an accurate θðΔx;ΔyÞ
map, the sign of θ indicating very clear repulsion and
attraction zones.
An attractive to repulsive transition.—We find that

the typical variation of θ with Δy belongs to one of
three kinds, depending on the fixed Δx value; thus, we
distinguish between approaching cracks (Δx > 0), coinci-
dent cracks (Δx ¼ 0), and partially superimposed cracks
(−1 < Δx < 0).
In the case of approaching cracks, we retrieve the

nonmonotonic behavior shown in Fig. 2(a). As expected,
large lateral separations Δy result in weak interaction; θ
starts small and increases to convey increasing attraction as
Δy diminishes. Surprisingly, interaction does not intensify
indefinitely as the cracks get closer: θ reaches its maximum
value θaðΔxÞ at ΔyaðΔxÞ. After this point, θ decreases
acutely to the extent of crossing the abscissa axis at
ΔycðΔxÞ: the behavior becomes then exclusively repulsive.
The existence of an optimum of repulsion −θr realized at
Δyr comes off as a second surprise: amazingly, the
magnitude of the interaction only decreases after this point
until it reaches zero for perfectly aligned cracks. In the case
of coincident cracks (Δx ¼ 0) and partially superimposed
cracks (−1 < Δx < 0), the inner kink angle is positive for
all values of Δy: the cracks always exhibit an attractive
behavior. In Fig. 2(b), we plotted the evolution of the initial
kink angle when Δy tends toward zero or, alternatively,
when Lf approaches infinity. While the repulsive zone
disappears abruptly for Δx ≤ 0, the optimum of attraction

evolves continuously across Δx ¼ 0: θa continues to exist
for superimposed cracks not as a global maximum of
attraction but as a local one. As the level of superimposition
increases, θa progressively vanish until θðΔyÞ becomes a
purely decreasing function. It is possible to reach much
larger kink angles in this situation: we recorded θ values up
to about 55° for largely superimposed cracks.
Phase diagram of crack interaction.—The various

configurations are summarized in Fig. 3 showing the value
of θ in the (Δx, Δy) space. The landscape formed by the θ
values presents multiscale characteristics. First, we find
that the positions of the local extrema of attraction and
repulsion, as well as the neutral line θ ¼ 0, are reasonably
fitted as power laws of Δx (see also Table I):

Δyi ¼ Δy0i þ AijΔxjαi : ð1Þ

The local optimum angles of interaction θa and θr form
the crests and valleys of the landscape in Fig. 3. Their
values can be fitted as shifted power laws [29] of the tip to
tip distance Δd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2Þ

p
[Fig. 2(c)]:

θa=r ¼ θ0a=r

�
1þ Δd

λa=r

�
−αa=r

: ð2Þ

Equations (1) and (2) quantify how sensible interacting
cracks are to the initial configuration and, in a larger sense,
how difficult it is to determine the path of interacting

FIG. 3. Initial kink angle for overlapping cracks (a) and approaching cracks (b) in the (Δx, Δy) space. The superimposed white lines
signal the local maxima of attraction and repulsion, as well as the transition from attractive to repulsive (defined by θ ¼ 0). The dotted
vertical lines show where the cuts for Figs. 2(a) and 2(b) were taken.
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cracks. For Δx > 0, both attraction and repulsion tend to
become stronger when the crack tips are closer. The length
scale λr characterizing the increase in repulsion is, however,
nearly 3 times smaller than the corresponding scale λa for
the attractive zone. Another remarkable scaling property is
that attraction remains a dominant behavior when the
vertical offset between the cracks Δy is of the order of
the crack length (as shown by Δy0a ≠ 0), while repulsion
becomes prevailing for crack tip distances corresponding to
very small fractions of the crack length, typically of the
order of Lf=100 [Fig. 2(c)].
Concluding remarks.—In agreement with the computa-

tion reported by Dalbe et al. [17], we find that perfectly
aligned cracks (Δy ¼ 0) do not interact at all and propagate
straight ahead. This failure of the principle of the local
symmetry criterion to predict strongly repulsive paths as
observed in experiments turns out to be only apparent.
Indeed, as shown in Fig. 2(a) the initial angle of deviation
grows steeply with a slight increase in lateral spacingΔy so
that the smallest perturbation can lead to significant
repulsion, favoring unstable crack paths. This is consistent
with the theory proposed by Melin [11] where the author
concluded that the smallest perturbation in collinear en
passant cracks will force the cracks to deviate from their
straight path.
Overall, our numerical study provides a deeper under-

standing of how tip to tip separation affects the initial kink
angle. While previous theoretical models of en passant
cracks either neglected the repulsive part of the paths [10]
or conjectured that repulsion is a product of plasticity
[17,18], we find that the theoretical framework combining
linear elastic fracture mechanics and the principle of local
symmetry is sufficient to quantitatively predict significant
repulsion, up to nearly 18°. This Letter is a first step to
reconcile theory with observation: the difficulty of predict-
ing crack repulsion in the context of linear elastic fracture
mechanics does not come from a limitation of the model
or of the bifurcation criterion, but from the very specific
(Δx, Δy) domain in which repulsion can initiate.

Our results highlight the need to take into proper
consideration the length of the en passant cracks when
studying them. As the repulsion behavior happens when the
inner tips are separated by only a fraction of the crack
length, it is more easily revealed in natural settings. For
instance, our analysis could help in understanding why
spreading centers observed in geological situations and
involving hundreds of kilometers long ridges interacting
on a scale of a few hundred meters, commonly exhibit a
repulsive deviation of their trajectories before overlapping
[9,30,31]. The ability to model at small scales the attrac-
tion-repulsion transition during propagation of en passant
cracks is especially relevant for industrial applications that
involve a control of cracking behavior such as in mechani-
cal sensors [28] or stretchable electronics [27]. We dem-
onstrated that any numerical model of en passant cracks
must be able to account for two very different length scales:
the cracks length and the scale at which crack repulsion
occurs, typically more than 2 orders of magnitude smaller.
The robustness of our computation method allows by

iteration to determine complete en passant crack trajectories
[Fig. 1(c)]. Taking into account the entire history of the
crack path will be part of future work in which we will
analyze more physically realistic trajectories. Indeed,
because they can interact and deflect one another from
afar, the cracks growing towards each other and reaching
coincident or partially superimposed configurations will
never be rigorously straight. Nevertheless, simulations with
straight cracks allowed us here to capture the main
interaction mechanism that is determined by the relative
positions of the closest cracks tips, without considering the
influence of the full crack path history.
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Anne Tanguy and Stéphane Roux for fruitful discussions.

*loic.vanel@univ-lyon1.fr
[1] G. Irwin, J. Appl. Mech. 24, 361 (1957).
[2] R. L. Kranz, Int. J. Rock Mech. Min. Sci. Geomech. Abstr.

16, 37 (1979).
[3] P. Cortet, G. Huillard, L. Vanel, and S. Ciliberto, J. Stat.

Mech. (2008) P10022.
[4] T. Tentler and V. Acocella, J. Geophys. Res. 115, B01401

(2010).
[5] J. Sempere and K. Macdonald, Tectonics 5, 151 (1986).
[6] A. Eremenko, S. Novikov, and A. Pogorelov, J. Appl. Mech.

Tech. Phys. 20, 477 (1979).
[7] S. Bechtle, S. Habelitz, A. Klocke, T. Fett, and G.

Schneider, Biomaterials 31, 375 (2010).
[8] G.W. Patterson and J. W. Head, Icarus 205, 528 (2010).
[9] V. Acocella, A. Gudmundsson, and R. Funiciello, J. Struct.

Geol. 22, 1233 (2000).
[10] M. Fender, F. Lechenault, and K. Daniels, Phys. Rev. Lett.

105, 125505 (2010).
[11] S. Melin, Int. J. Fract. 23, 37 (1983).

TABLE I. Coefficients used in Eqs. (1) and (2) for the lines of
maximum attraction or repulsion and the attraction-repulsion
transition line. The nonzero Δya indicates that an optimum of
attractive behavior subsists well after superimposition of the inner
tips.

Δy0i Ai αi

Δya 0.45 1.5 0.77
Δyc 0 0.95 0.66
Δyr 0 0.41 0.86

θ0 λ α

θa 44.8 0.96 2.35
θr −16.3 0.35 1.61

PHYSICAL REVIEW LETTERS 120, 255501 (2018)

255501-4



[12] G. Sih, Eng. Fract. Mech. 5, 365 (1973).
[13] E. Gdoutos, in Problems of Mixed Mode Crack Propaga-

tion, edited by G. Sih (Martinus Nijhoff Publishers, Leiden,
1984), Chap. 4, pp. 71–96.

[14] B. Cotterell and J. Rice, Int. J. Fract. 16, 155 (1980).
[15] R. V. Goldstein and R. L. Salganik, Int. J. Fract. 10, 507

(1974).
[16] R. Ghelichi and K. Kamrin, Soft Matter 11, 7995 (2015).
[17] M. J. Dalbe, J. Koivisto, L. Vanel, A. Miksic, O. Ramos, M.

Alava, and S. Santucci, Phys. Rev. Lett. 114, 205501 (2015).
[18] J. Koivisto, M.-J. Dalbe, M. J. Alava, and S. Santucci, Sci.

Rep. 6, 32278 (2016).
[19] F. Erdogan and G. C. Sih, J. Basic Eng. 85, 519 (1963).
[20] B. Cotterell, Int. J. Fract. Mech. 1, 96 (1965).
[21] M. Amestoy and J. Leblond, Int. J. Solids Struct. 29, 465

(1992).
[22] J. R. Rice, J. Appl. Mech. 35, 379 (1968).
[23] M. Gosz and B. Moran, Eng. Fract. Mech. 69, 299 (2002).

[24] X. Suo and A. Combescure, Int. J. Fract. 57, 127 (1992).
[25] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.120.255501, the com-
plete computation scheme is presented along the equations
necessary to compute K�

IIðθÞ. Comparaison of our results
with previous papers serves as validation of our method.

[26] K. J. Koester, J. W. Ager, and R. O. Ritchie, Nat. Mater. 7,
672 (2008).

[27] S. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, Proc. IEEE
93, 1459 (2005).

[28] D. Kang, P. V. P., Y. Choi, C. Lee, S. Shin, L. Piao, B. Park,
K. Suh, T. Kim, and M. Choi, Nature (London) 516, 222
(2014).

[29] J. L. Liu, J. Wang, Z. G. Yu, and X. H. Xie, Sci. Rep. 7, 1
(2017).

[30] K. MacDonald and P. Fox, Nature (London) 302, 55 (1983).
[31] D. D. Pollard and A. Aydin, J. Geophys. Res. 89, 10017

(1984).

PHYSICAL REVIEW LETTERS 120, 255501 (2018)

255501-5


