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We provide a theoretical framework to analyze the properties of frontal collisions of two growing interfaces
considering different short-range interactions between them. Due to their roughness, the collision events spread
in time and form rough domain boundaries, which defines collision interfaces in time and space. We show that
statistical properties of such interfaces depend on the kinetics of the growing interfaces before collision, but are
independent of the details of their interaction and of their fluctuations during the collision. Those properties exhibit
dynamic scaling with exponents related to the growth kinetics, but their distributions may be nonuniversal. Our
results are supported by simulations of lattice models with irreversible dynamics and local interactions. Relations
to first passage processes are discussed and a possible application to grain-boundary formation in two-dimensional
materials is suggested.
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Interface motion and collisions are ubiquitous in nonequi-
librium systems. For example, in graphene growth on metal
substrates, monocrystalline domains grow and meet, ultimately
forming a polycrystalline film with grain boundaries [1–4] that
influence material properties [5,6]. The formation of rough
domain boundaries via interface collisions is encountered
in many other systems undergoing domain growth, such as
bacterial colonies [7]. Motivated by the selection of grains
in crystal growth [8] or of species in population dynamics
[9], domain boundary formation has been investigated within
competitive growth models, where two interfaces grow in
the same direction generating two types of domains growing
side by side. The domain boundary exhibits a self-similar
behavior [8], which can be affected by the average orientation
of the growing interfaces [10]. However, fewer studies have
considered domain boundary formation by frontal collisions,
where colliding interfaces are parallel in average. Based on
simulations of the Eden model, Albano et al. [11,12] have
exhibited numerical evidence suggesting dynamic scaling.

Furthermore, interface collisions do not always produce a
domain boundary, and instead interfaces may simply annihi-
late. In such cases, the collision spreads in time due to the
roughness of the growing fronts. This is, for example, observed
in magnetic domains [13], reaction fronts [14], turbulent liquid
crystals [15], burning paper [16], forest fires [17], and layer by
layer crystal growth [18].

In this Rapid Communication, we determine both the
roughness of the resulting domain boundary, and the spreading
of the collision in time during frontal collisions. We use several
different models of interface growth with irreversible rules
and short-range interactions between the two interfaces. We
show that the distribution and spatial correlations of collision
times and of the resulting domain boundary are independent of
the details of the interactions between the two interfaces, and
only depend on the roughness that builds up before collision.
Dynamic scaling appears as a consequence of these results.

The asymptotic distributions are dictated by the interface with
the largest roughness when the growth exponent of the two
colliding interfaces are different, and those distributions are
nonuniversal when the growth exponents are equal.

We performed simulations using well-known one-
dimensional irreversible lattice growth models: random depo-
sition (RD) with a sticking coefficient [19], a modified Family
model [20], and restricted solid on solid models [21] with
maximum height differences 1 (RSOS) or 2 (RSOS2). Their
rules are described in Fig. 1(a). The lattice constant is the unit
length and the interface length is denoted as L. The unit time
is set by L attempts of particle deposition; rejection of such
attempts are possible in RSOS and RSOS2 models or after
collision events with short-range interactions (defined below).

We denote the two interface positions at time t and abscissa
x as h−(x,t) and h+(x,t). They are initially flat and located at
positions h±(x,t = 0) = ±d0. During growth, these interfaces
move toward each other and collide. At each x the collision
time tc(x) and the locus of the collision hc(x) obey

h+[x,tc(x)] = h−[x,tc(x)] = hc(x). (1)

Since we consider irreversible growth models, interfaces only
move forward and, consequently, they only pass one time at
a given height. Thus, tc(x) and hc(x) are uniquely defined by
Eq. (1). Collisions are studied when both interfaces are in their
growth regimes, i.e., with time increasing roughness [19,22].

The growth models are supplemented with rules describing
the interaction of the interfaces as they collide. The first rule,
which is illustrated in Fig. 1(b), accounts in a simple way for
short-range interactions: the interfaces stop growing at each
column x when they meet, i.e., when Eq. (1) is satisfied.
Since particle deposition depends on the height of neighboring
sites (except in RD), the collision at a given column affects
the subsequent growth of its neighbors. An example of the
dynamics with short-range interaction is presented in Fig. 1(d).
The second rule considers noninteracting interfaces which
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FIG. 1. Interface collision models. (a) Growth models. Random deposition (RD) model: at each time step, an incident particle sticks with
probability p in each column. Modified Family model: the incident particle aggregates at the column of incidence if no nearest-neighbor (NN)
column has smaller height; if only one NN has a smaller height, it aggregates at that column, and if two NN columns have smaller heights,
one of them is randomly chosen. RSOS models: the particle sticks only if the resulting differences of heights between all NN columns do not
exceed 1 (RSOS model) or 2 (RSOS2 model). (b) Schematics of collision with short-range interaction, with growth ceasing at columns 0, 3, and
7. (c) Phantom collision, where growth continued in columns 0 (advance of upper interface) and 3 (advance of lower interface). (d) Collision
simulation (d0 = 29) with two interfaces growing with the RSOS model in opposite directions and colliding with short-range interaction.

continue to grow as if the opposite interface was not there.
This rule, hereafter denoted as phantom collision, is illustrated
in Fig. 1(c) (movies of collisions with both types of rules are
reported as Supplemental Material [23]).

We assume that interfaces move with constant and model-
dependent average velocities v± [24]. We have v± = p± in RD,
and v = 1 in the Family model by construction. Moreover,
we extracted from simulations v = 0.419 04(10) for RSOS,
and v = 0.6036(3) for RSOS2. The relative velocity of the
two interfaces is v̄ = v− + v+, leading to the average collision
time t0 = 2d0/v̄, while the average position of the collision is
h0 = d0(v− − v+)/v̄. The deviations of tc(x) and hc(x) from
these average values are denoted as

δtc(x) = tc(x) − t0, (2a)

δhc(x) = hc(x) − h0. (2b)

We then define the distributions Fc(δtc) of collision times,
and Pc(δhc) of collision loci for an initial distance 2d0.

The first striking point revealed by simulations is the irrel-
evance of short-range interactions on the statistical properties
of the collisions. Indeed, for d0 large enough, the distributions
Fc(δtc) and Pc(δhc) in phantom collisions are found to be
identical to those with short-range interactions. This is shown
in Fig. 2 for collision between interfaces governed by identical
or different models.

This result suggests that interactions during collision are ir-
relevant. We thus define the distributions P±(ζ±; t) of interface
fluctuations ζ±(x,t) = ∓[h±(x,t) − 〈h±(x,t)〉] in absence of
collision (with this definition ζ > 0 for fluctuations in the
direction of growth). Assuming that interactions are irrelevant,
we replace interface fluctuations by ζ±, and rewrite Eq. (2)
using Eq. (1):

δtc(x) = −ζ+[x,t0 + δtc(x)] + ζ−[x,t0 + δtc(x)]

v̄
, (3a)

δhc(x) = −v−ζ+[x,t0 + δtc(x)] + v+ζ−[x,t0 + δtc(x)]

v̄
. (3b)

For large t0, we expect δtc(x) � t0, and hence to leading
order we approximate t0 + δtc(x) by t0 in the right-hand side

of Eqs. (3). We therefore define

δt0
c (x) = −ζ+(x,t0) + ζ−(x,t0)

v̄
, (4a)

δh0
c(x) = −v−ζ+(x,t0) + v+ζ−(x,t0)

v̄
. (4b)

These quantities can be obtained as follows: (i) perform the
evolution as if interfaces could evolve and freely cross without
interacting up to time t0; (ii) freeze the interfaces at t = t0
and slide them (forward and backward in time) without shape
change and with their own average velocity v±; (iii) measure
the collision times t0

c (x) and locations h0
c(x). This process,

hereafter referred to as the freeze-and-slide approximation,
corresponds to a situation where fluctuations during collision
are absent.

Since ζ+ and ζ− are independent, the probability distribu-
tions resulting from Eq. (4) read

Fc(δtc) = v̄

∫
dζ+P+(ζ+; t0)P−(−δtcv̄ − ζ+; t0), (5a)

Pc(δhc) = v̄

v+

∫
dζ+P+(ζ+; t0)P−

(−δhcv̄ + ζ+v−
v+

; t0

)
.

(5b)

Using P±(ζ±,t0) obtained numerically from simulations
of interfaces without collision, we calculated these convo-
luted distributions for collisions with five pairs of mod-
els, as shown in Fig. 2. In all cases, there is excel-
lent agreement with distributions obtained in collision sim-
ulations, confirming the validity of the freeze-and-slide
approximation.

Based on this result, we now show that collision properties
obey simple scaling laws. From dynamic scaling [19,25], time
correlation functions of a growing interface are characterized
by the growth exponent β:

〈[ζ (x,t + τ ) − ζ (x,t)]2〉 = B|τ |2β, (6)

as long as the correlation length ξcorr ∼ tβ/α is smaller than the
interface length L. The roughness exponent α characterizes
spatial correlations at short enough distances ξ � ξcorr [19,22]
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FIG. 2. Distributions of collision times and loci. Models: (a) RD-RD with p+ = 0.5 and p− = 1, (b) Family-Family, (c) RSOS-RSOS,
(d) RSOS-RSOS2, (e) RSOS-Family. Symbols indicate simulation results with d0 = 212 and L = 232, and with short-range interaction [�:
Pc(δhc), �: Fc(δtc)] or phantom collision [×: Pc(δhc), ∗: Fc(δtc)]. Thick curves are obtained from Eqs. (5a) and (5b) (green, blue) using
distributions from interfaces without collision calculated numerically. Thin lines are distributions obtained from Eqs. (5a) and (5b) (red, orange)
using theoretical universal distributions (Gaussian or Tracy-Widom) with variances extracted from simulations of interfaces without collisions.
In (b), Fc(δtc) is shifted down by one unit for the sake of clarity.

via

〈[ζ (x + ξ,t) − ζ (x,t)]2〉 = A|ξ |2α. (7)

Within this description, RD corresponds to diffusive dynamics
with β = 1/2 without lateral correlation. The other models
belong to universality classes with subdiffusive time
correlations [19,22]: Edwards-Wilkinson (EW) class with β =
1/4 and α = 1/2 for the Family model; Kardar-Parisi-Zhang
(KPZ) class with β = 1/3 and α = 1/2 for RSOS and RSOS2.

The variances of the distributions Fc(δtc) and Pc(δhc) are
obtained from Eq. (4) as

〈δtc(x)2〉 = B+t
2β+
0 + B−t

2β−
0

v̄2
, (8a)

〈δhc(x)2〉 = v2
−B+t

2β+
0 + v2

+B−t
2β−
0

v̄2
, (8b)

where we have used that 〈ζ±(x,t0)2〉 = B±t
2β±
0 from Eq. (6)

with ζ±(x,t = 0) = 0. If β+ = β−, both terms in the right-
hand-side of Eqs. (8) are equally relevant. Otherwise, for
β+ 	= β−, the term with the largest exponent is asymptotically
dominant, and the variances scale with exponent 2βm, where
m = + when β+ � β− and m = − when β− > β+.

In collisions with the RD model, each column is equivalent
to an independent first passage process, thereby providing an
alternative analytical derivation of Eqs. (5) and (8) in a special
case. The resulting distribution for the height h± of one column
is a binomial distribution [19]. Using Stirling’s formula, one
obtains a Gaussian distribution for P (h±; t) at long times with
variance 〈ζ 2

±〉 = 〈(h± − v±t)2〉 = 4D±t , where v± = p± and
D± = p±(1 − p±)/2 is the diffusion constant. Comparison
with Eq. (6) leads to β± = 1/2 and B± = 2D±. In one column,
the collision then reduces to the first passage process of
two particles undergoing biased diffusion toward each other,
which has a well-known solution [26]. Since columns are
independent, the average over realizations leads to the same
result as the average over the interface size L, providing the
distributions Fc(δtc) and Pc(δhc) (detailed expressions are in
the Supplemental Material). In the limit where d0 
 1 and
d0 
 D±/v±, one finds Gaussians in agreement with Eqs. (5),
with variances given by Eqs. (8).

For collisions with other models, the estimates of the
exponents of the variances of δtc and δhc were obtained in
simulations and are shown in Table I (numerical procedures are
in the Supplemental Material). They agree with the exponent
βm expected from Eq. (8). Using the theoretically predicted
value of βm and the variances from simulations, we calculated
the ratios 〈δt2

c 〉/(2d0)2βm and 〈δh2
c〉/(2d0)2βm and extrapolated

them to d0 → ∞. As shown in Table I, the results agree
with the estimates obtained from Eq. (8) with the values
of v and B extracted from simulations of interfaces in the
absence of collision [B = 0.4495(10) for the Family model;
B = 0.254(1) for RSOS; B = 0.552(2) for RSOS2].

Beyond exponents, the different universality classes impose
that P (ζ ; t) = f (ζ/W )/W , with W = B1/2tβ and universal
distributions f at long times: Gaussian for RD and EW class,
and Tracy-Widom for the KPZ class [27,28]. Inserting this
ansatz into Eq. (5) and using the variances from the correspond-
ing models without collision at t0, we obtain distributions Fc

and Pc in good agreement with collision simulations, as shown
in Fig. 2 (this is confirmed by the analysis of the skewness

TABLE I. Comparison of exponents and amplitudes calculated in
simulations with short-range interaction (upper values) and predicted
by the freeze-and-slide approximation (lower values).

+ Family RSOS RSOS RSOS
− Family RSOS RSOS2 Family

β(δtc) 0.248(5) 0.329(4) 0.333(1) 0.330(15)
Eq. (8a) 1/4 1/3 1/3 1/3

〈δt2
c 〉/(2d0)2β 0.159(1) 0.815(2) 0.761(1) 0.095(25)

Eq. (8a) 0.1589(4) 0.814(3) 0.759(4) 0.0999(4)

Aδtc 0.318(7) 2.34(2) 3.6(2) 0.75(3)
Eq. (9a) 0.320(5) 2.35(3) 3.49(7) 0.728(10)

β(δhc) 0.250(2) 0.333(1) 0.334(1) 0.327(3)
Eq. (8b) 1/4 1/3 1/3 1/3

〈δh2
c〉/(2d0)2β 0.1593(3) 0.1435(5) 0.179(1) 0.100(5)

Eq. (8b) 0.1589(4) 0.1429(6) 0.1785(6) 0.0999(4)

Aδhc
0.320(5) 0.414(6) 0.745(15) 0.475(20)

Eq. (9b) 0.320(5) 0.413(5) 0.761(14) 0.466(5)
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and kurtosis in the Supplemental Material). If β+ 	= β−, this
scaling ansatz can be inserted in Eqs. (5). We then find that, to
leading order, the distributions of time and locus of collision
follow the universal distribution of the growing interface with
exponent βm: Fc(δtc) = fm(−δtc/Tc)/Tc, where Tc = Wm/v̄,
and Pc(δhc) = fm(−δtc/Wc)/Wc, where Wc = v−mWm/v̄. In
contrast, when β+ = β− the distributions Pc and Fc resulting
from Eq. (8) cannot be rescaled by a single time or length scale;
they are nonuniversal in the sense that they depend on (ratios
of) nonuniversal model-dependent parameters (v± and B±).

We now turn to spatial correlations. Approximating δtc and
δhc by Eq. (4) and using Eq. (7), we find that at distances
smaller than the correlation lengths of the two interfaces,
spatial correlations obey

〈[δtc(x + ξ ) − δtc(x)]2〉 = A+|ξ |2α+ + A−|ξ |2α−

v̄2
, (9a)

〈[δhc(x + ξ ) − δhc(x)]2〉 = v2
−A+|ξ |2α+ + v2

+A−|ξ |2α−

v̄2
.

(9b)

Thus, to leading order, correlations scale in ξ with an
exponent αc = max[α+,α−].

In the absence of collisions, the scaling in Eq. (7) is
observed numerically in narrow ranges of ξ even at long times.
However, using the known values of α± and an extension
of the procedure developed in [29], we estimated the am-
plitudes A = 0.64(1) for the Family model, A = 0.825(10)
for RSOS, and A = 2.82(6) for RSOS2. The same method
is used to estimate Aδtc ≡ 〈[δtc(x + ξ ) − δtc(x)]2〉/|ξ |2αc and
Aδhc

≡ 〈[δhc(x + ξ ) − δhc(x)]2〉/|ξ |2αc . The results shown in
Table I indicate good agreement between Eq. (9) and the
simulations (the convergence to these values is presented
in the Supplemental Material). For family-RSOS collisions,
observe that α+ = α−, thus EW correlations contribute to the
lateral correlation of the collision interface at small length
scales, although distributions Fc and Pc belong to the KPZ
class.

In addition, dynamic scaling provides a rationale for the
irrelevance of short-range interactions. Indeed, from Eqs. (8),
the collision duration Tc = 〈δtc(x)2〉1/2 ∼ Wc/v̄, where Wc =
〈δhc(x)2〉1/2. Thus, during collision, lateral correlations prop-
agate on a distance ξcoll ∼ T

β/α
c ∼ W

β/α
c (here the indices of

α and β can be + or − without affecting the conclusions).
Since the distance between the interfaces during collision is
∼Wm ∼ Wc, we expect the typical distance between contact
points to be ξcontact ∼ W

1/α
c from Eq. (9b). For normal dynamic

scaling, β < α � 1 [19,22], thus we have ξcoll � Wc � ξcontact

at long times. Hence, interactions influence the collisions in the
vicinity of contact points, but these perturbations do not have
time to propagate between contact points during the collision
time. Thus, interactions are irrelevant to leading order.

Scaling also imposes the irrelevance of fluctuations during
collision. Indeed, we have Tc ∼ Wc/v̄ ∼ t

βm

0 � t0, justifying
the separation of scales at the origin of the freeze-and-slide
approximation. Furthermore, from Eqs. (3), (4), and (6), we

have 〈(δtc − δt0
c )2〉 ∼ 〈[ζ (t0 + δtc) − ζ (t0)]2〉 ∼ T

2βm
c ∼ t

2β2
m

0 .

Thus, 〈(δtc − δt0
c )2〉 � T 2

c ∼ t
2βm

0 . This means that deviations
of δtc from δt0

c are negligible, i.e., fluctuations during col-

lision are irrelevant. This result and a similar analysis of
〈(δhc − δh0

c)2〉 are presented in the Supplemental Material.
Similarly, when the growing fronts reach the late-times station-
ary state where the roughness saturates to a value that depends
on L, scaling as a function of L is also expected for large L,
as observed in simulations in Refs. [11,12].

As a final remark, we conjecture that our results for irre-
versible growth should directly extend to growing interfaces
with particle attachment and detachment, that may exhibit
more than one passage obeying Eq. (1). In such cases, the
predictions reported above describe the average passage time
for phantom collisions instead of their first passage time.
Nevertheless, the difference between the first passage time
and the average passage time is dictated by the fluctuations
during the collision, which were shown to be irrelevant. As
a consequence, the first passage time should also be well
approximated by the freeze-and-slide process and our results
should be valid when backward motion of the interfaces is
possible. This conclusion is corroborated by the agreement
discussed above between the asymptotic behaviors of the
irreversible RD model and the continuum biased random walk,
which exhibits both forward and backward propagation.

In conclusion, our central result is that local interactions
and interface fluctuations during the collision do not affect
the asymptotic statistical properties of interface collision. As a
consequence, collision properties exhibit dynamic scaling with
universal exponents; however, distributions can be nonuniver-
sal when β+ = β−.

Our results may be investigated with the measurement of
grain-boundary roughness of two-dimensional materials such
as graphene [1–4] and MoS2 [30,31]. Assume, for example,
that the radius R of growing two-dimensional grains is pro-
portional to time t , and β is the growth exponent of the two
grain edges before collision. From Eq. (8b), we speculate
that the roughness of grain boundaries will be W ∼ tβ ∼ Rβ .
The relation between W and R should therefore allow one
to determine β, providing strong constraints on the possible
microscopic growth mechanisms proposed in the literature
[32,33].

As a promising perspective, interface collisions can be con-
sidered as a generalization of first passage processes [26,34],
where particles diffuse and stick or annihilate when they meet.
As opposed to particles, interfaces present intrinsic roughness,
which leads to a spreading of the collision in time (some
parts meet earlier than others) and in space (all parts do not
meet on the same plane). Hence, advances on first passage of
subdiffusive systems [34,35] and in exact solutions of kinetic
roughening [27,36,37] should provide tools to explore the
underlying links between interface collisions and first-passage
processes. Natural ramifications linked to persistence [38],
large deviation [39], and extremal statistics [40] of interfaces
also appear when, e.g., considering the properties of first and
last contacts during interface collisions.
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