
HAL Id: hal-02167865
https://univ-lyon1.hal.science/hal-02167865v1

Submitted on 28 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beyond Adherence Thresholds: A Simulation Study of
the Optimal Classification of Longitudinal Adherence

Trajectories From Medication Refill Histories
Samuel S Allemann, Dan Dediu, Alexandra Lelia Dima

To cite this version:
Samuel S Allemann, Dan Dediu, Alexandra Lelia Dima. Beyond Adherence Thresholds: A Simulation
Study of the Optimal Classification of Longitudinal Adherence Trajectories From Medication Refill
Histories. Frontiers in Pharmacology, 2019, 10, �10.3389/fphar.2019.00383�. �hal-02167865�

https://univ-lyon1.hal.science/hal-02167865v1
https://hal.archives-ouvertes.fr


fphar-10-00383 April 26, 2019 Time: 11:46 # 1

METHODS
published: 26 April 2019

doi: 10.3389/fphar.2019.00383

Edited by:
Isabelle Arnet,

Universität Basel, Switzerland

Reviewed by:
Maria Margarita

Salazar-Bookaman,
Central University of Venezuela,

Venezuela
Maarten J. Bijlsma,

Max-Planck-Institut für
Demografische Forschung, Germany

*Correspondence:
Samuel S. Allemann

s.allemann@unibas.ch

Specialty section:
This article was submitted to

Pharmaceutical Medicine
and Outcomes Research,

a section of the journal
Frontiers in Pharmacology

Received: 03 August 2018
Accepted: 27 March 2019

Published: 26 April 2019

Citation:
Allemann SS, Dediu D and

Dima AL (2019) Beyond Adherence
Thresholds: A Simulation Study of the
Optimal Classification of Longitudinal

Adherence Trajectories From
Medication Refill Histories.
Front. Pharmacol. 10:383.

doi: 10.3389/fphar.2019.00383

Beyond Adherence Thresholds: A
Simulation Study of the Optimal
Classification of Longitudinal
Adherence Trajectories From
Medication Refill Histories
Samuel S. Allemann1,2* , Dan Dediu3,4 and Alexandra Lelia Dima1

1 Health Services and Performance Research (HESPER EA 7425), University Claude Bernard Lyon 1, Lyon, France,
2 Pharmaceutical Care Research Group, University of Basel, Basel, Switzerland, 3 Collegium de Lyon, Institut d’Études
Avancées, Lyon, France, 4 Laboratoire Dynamique Du Langage UMR 5596, Université Lumière Lyon 2, Lyon, France

Background: The description of adherence based on medication refill histories relies
on the estimation of continuous medication availability (CMA) during an observation
period. Thresholds to distinguish adherence from non-adherence typically refer to an
aggregated value across the entire observation period, disregarding differences in
adherence over time. Sliding windows to divide the observation period into smaller
portions, estimating adherence for these increments, and classify individuals with
similar trajectories into clusters can retain this temporal information. Optimal methods
to estimate adherence trajectories to identify underlying patterns have not yet been
established. This simulation study aimed to provide guidance for future studies by
analyzing the effect of different longitudinal adherence estimates, sliding window
parameters, and sample characteristics on the performance of a longitudinal clustering
algorithm.

Methods: We generated samples of 250–25,000 individuals with one of six longitudinal
refill patterns over a 2-year period. We used two longitudinal CMA estimates (LCMA1
and LCMA2) and their dichotomized variants (with a threshold of 80%) to create
adherence trajectories. LCMA1 assumes full adherence until the supply ends while
LCMA2 assumes constant adherence between refills. We assessed scenarios with
different LCMA estimates and sliding window parameters for 350 independent samples.
Individual trajectories were clustered with kml, an implementation of k-means for
longitudinal data in R. We compared performance between the four LCMA estimates
using the adjusted Rand Index (cARI).

Results: Cluster analysis with LCMA2 outperformed other estimates in overall
performance, correct identification of groups, and classification accuracy, irrespective
of sliding window parameters. Pairwise comparison between LCMA estimates showed
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a relative cARI-advantage of 0.12–0.22 (p < 0.001) for LCMA2. Sample size did not
affect overall performance.

Conclusion: The choice of LCMA estimate and sliding window parameters has a major
impact on the performance of a clustering algorithm to identify distinct longitudinal
adherence trajectories. We recommend (a) to assume constant adherence between
refills, (b) to avoid dichotomization based on a threshold, and (c) to explore optimal
sliding windows parameters in simulation studies or selecting shorter non-overlapping
windows for the identification of different adherence patterns from medication refill data.

Keywords: medication adherence, compliance, sliding window, computer modelling, methods, cluster analysis,
non-parametric

INTRODUCTION

Medication adherence is frequently estimated based on electronic
healthcare data (EHD), such as prescription, dispensing, and
claims databases. Numerous variations of the “medication
possession ratio” (MPR) or “proportion of days covered” (PDC)
are commonly reported as aggregate or “point” estimates of
medication availability for a person over a given observation
period (Dima and Dediu, 2017). Moreover, these estimates are
often dichotomized at a threshold to discriminate “adherence”
from “non-adherence.” A threshold of 80% has been proposed
for a range of diseases, such as Schizophrenia, Diabetes,
Hypertension, Hyperlipidemia and Chronic Heart Failure (Karve
et al., 2009). In these studies, adherence thresholds over long
time periods show only a modest prediction accuracy for clinical
outcomes (Hansen et al., 2009).

The low prediction accuracy may reflect loss of information
regarding the process of adherence, a process which may vary
substantially across time (Steiner, 2016), and prototypically
includes three phases: initiation, implementation, and non-
persistence (Vrijens et al., 2012). Low adherence, when
calculated across all three phases, could reflect delayed initiation
of a treatment, incorrect implementation, or premature
discontinuation (Vrijens et al., 2012). Patients may also have
variable adherence during the implementation phase, and some
temporal sequences of deviations from the prescribed regimen
may be more detrimental to treatment effectiveness and safety
compared to others. Characterizing patients based on an overall
adherence estimate across this phase and its threshold-based
dichotomization does not capture these temporal variations
and therefore, may not reflect appropriately the impact of
adherence on clinical outcomes. In contrast, characterizing
patients based on temporal adherence trajectories is useful in
many clinical and research contexts. In a clinical setting, it
can guide decision-making regarding medical treatment, or
behavioral support for medication use. In research, trajectories
can be used for exploratory analysis of adherence patterns, as
implicit predictor or covariant of outcomes, or as outcome itself
(Bijlsma et al., 2016).

Several methods have shown promise in describing adherence
longitudinally and classifying patients based on EHD. Short-term
estimates of medication availability predicted outcome measures
on corresponding time intervals better than estimates over a

longer time period (Bryson et al., 2007; Nichols et al., 2015).
Calculating multiple estimates of medication availability over
shorter periods captured within-patient variation over a longer
treatment duration (Bijlsma et al., 2016; Souverein et al., 2017).
This approach is commonly described as “moving average” or
“sliding windows,” and has been used in numerous fields, such as
economics, finances, genomics, and electronics. It is particularly
appropriate for estimating trajectories from data that have not
been sampled at the same fixed time points for all subjects,
which is the case for EHD. For such data, a summary measure
is calculated for a specific observation period (window) based on
the raw data available within that window, in order to reduce
measurement error due to variations in sampling moments.
Windows typically have the same duration (window length), and
move (slide) forward at a constant rate (lag time or step length),
which results in varying degrees of overlap between windows.
Trajectory-based models have gained traction in psychology,
medicine, and criminology (Nagin and Odgers, 2010) and have
recently been proposed as a method to classify patients based
on their longitudinal adherence trajectories (Franklin et al.,
2013). These models empirically identify clusters of individuals
following similar trajectories and the resulting groups can
then be used as predictors or dependent variables (Genolini
et al., 2015), for example to examine causes and consequences
of (non-)adherence.

The challenge with this approach is to identify clusters that
capture meaningful differences between individuals in terms
of their temporal adherence patterns, and classify individuals
accurately based on the available data. With real-world data,
neither the “real” clusters nor the allocation of individuals
to those clusters are known. Simulation studies offer the
possibility to assess the performance of a variety of methods
and parameters in relation to a known state (Burton et al.,
2006). In adherence research, simulation studies have been
used to estimate pharmacokinetic properties (Ding et al., 2012;
Pellock and Brittain, 2016) or the impact of interventions to
improve adherence (Slejko et al., 2014; Volino et al., 2014; Piette
et al., 2015). Optimal methods of summarizing longitudinal
adherence and ideal parametrization of sliding windows to
identify underlying patterns have not yet been established for
this type of data. Methods have been suggested to select optimal
window size and overlaps in various fields (Chu, 1995; Pesaran
and Timmermann, 2007; Rossi and Inoue, 2012; Gusnanto et al.,
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2014). To ensure best use of these promising classification
methods, it is necessary to test how well they are able to identify
known patterns, and to explore what parameter values are more
performant under which conditions.

Aims and Objectives
This simulation study aimed to analyze the effect of different
adherence estimation methods, sliding window parameters, and
sample characteristics on the performance of a longitudinal
clustering algorithm to (a) identify temporal adherence patterns
from EHD and (b) classify individuals accurately into the
identified clusters.

The objective of this study is to provide guidance for future
longitudinal adherence studies using EHD.

MATERIALS AND METHODS

We conducted a simulation study to identify pre-defined groups
with distinct longitudinal adherence patterns and to assess
classification accuracy for different scenarios. To assess whether
clustering on longitudinal trajectories offers advantages over
simple clustering on group means, we compared performance of
longitudinal classification to clustering with average Continuous
Medication Availability (CMA) version 9 estimates for the whole
observation period (Dima and Dediu, 2017). All simulations and
cluster analyses were carried out on two systems: one cloud-based
Microsoft Azure cluster of Virtual Machines running Linux and R
version 3.5.1, and the other a dedicated dual Intel Xeon E5-2620
with 64GB RAM running Windows Server 2012 R2 and R 3.4.4
(R Core Team, 2018). Performance analyses were carried out with
R version 3.5.0 running on Microsoft Windows 10 Pro x64. We
followed published guidelines for the design and reporting of
simulation studies in medical statistics (Burton et al., 2006).

Data Generation
We simulated refill histories for a single medication over an
observation period of 720 days (2 years). This timeframe allows
simulating realistic patterns observed for chronic treatments.
To simulate successful treatment initiation, each individual had
an initial fill for 30 days and at least one refill. Initiation
happened on the same day for each individual. After the initial
fill, refill durations of 30, 60, or 90 days were randomly sampled
for each subsequent refill. Individuals were partitioned into
one of six hypothetical groups with different longitudinal refill
patterns (Figure 1):

• Group 1: “High adherence” with an average
CMA9 of around 95%.

• Group 2: “Erratic adherence” with a median CMA9
between 50 and 90%.

• Group 3: “Gradual decline” with increasingly delayed refills.
• Group 4: “Intermittent adherence” with a change between

high and low adherence at regular intervals.
• Group 5: “Partial drop-off” with high adherence initially

and partial drop after some time.
• Group 6: “Non-persistence” with one or two refills after the

initial fill and no refills afterward.

The parameters to generate the refill patterns for each group
were tuned to achieve unique trajectories with distinct shapes
over time similar to previously identified patterns (Franklin et al.,
2013; Hargrove et al., 2017), e.g., groups 1, 3, 5, and 6. In addition,
we added two other patterns to cover diverse rates of change
(groups 2 and 4). Groups 1 (“High adherence”) and 6 (“Non-
persistence”) were designed as control groups, as the individuals
in these groups could be identified by calculation of average
CMA alone; in our simulations, these groups represented 10%
of the total sample size each. Groups 3–5 represented different
temporal patterns but similar average CMA distributions so
that identification of the correct group from average CMA
was impossible. Group 2 served as “challenge” group with no
underlying trend to use for clustering. With the exception of
group 6, individuals persisted during the full observation period
of 2 years. Details of the data generation can be found in the
supplementary online materials on github1.

We generated a number of independent datasets to control for
group size and refill durations, which might have an influence on
the performance but are usually beyond the control of researchers
and clinicians. The group size (proportion of individuals per
group) can have an impact on the performance of the partitioning
algorithm: if there are only few individuals in one group or the
algorithm has difficulties to correctly identify individuals of a
particular group, the performance may suffer. To control for this
variation, group sizes were randomly sampled for each simulation
with a minimum of 5% of the total sample size per group.

The refill duration (number of days covered by each refill)
may vary based on medication type, health condition, healthcare
system or other circumstances. To control for this variation, each
refill duration was randomly sampled from a random sampling
probability generated at the beginning of each simulation. For
this simulation study, dispensing events covered 30-, 60-, or 90-
day periods. These durations are consistent with the practice
for long-term conditions in many healthcare settings. There was
no minimum for each duration, meaning that a data set could
consist of only 30-, 60-, or 90-day supplies (apart from the fixed
initial 30-day supply).

Cluster Analysis
To identify groups and classify individuals based on adherence
trajectories, we used the R package “kml” (version 2.4.1),
which provides an implementation of k-means designed to
work specifically on longitudinal data (Genolini and Falissard,
2011; Genolini et al., 2015). In brief, the algorithm does not
require prior information about groups, allows for the clustering
of trajectories that do not follow polynomial or parametric
functions, and avoids issues related to model selection. It features
an implementation of the algorithm optimized for increased
speed with default settings (Euclidean distance and 20 re-rolls
with different starting conditions). In a direct comparison, kml
showed equal or better performance compared to “Proc Traj,”
a SAS implementation of “Group based trajectory modeling”
frequently used to partition longitudinal data (Jones and Nagin,
2007) that has also been used in adherence research (Franklin

1github.com/Masswear/BeyondThresholds/
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FIGURE 1 | Refill-patterns for a sample of 10 individuals per group. Length of the bars represent supply duration in days. Groups are ordered from bottom (navy
blue, group 1) to top (orange, group 6). Areas with higher saturation indicate refill overlaps.

et al., 2013, 2015; Lalic et al., 2018). To avoid overfitting to the
dataset and to benefit from the fast implementation, we pre-
specified the number of clusters to six (corresponding to the
six pre-specified groups) and used kml with the default settings
for all simulations. As a baseline comparison, we performed
simple k-means clustering with the average CMA9 over the whole
observation period with the default algorithm used by the kmeans
function in R (Hartigan and Wong, 1979).

Scenarios Investigated
Longitudinal Adherence Estimation
Calculation of adherence from EHD allows only an estimation of
medication availability over time, based on various assumptions
(Arnet et al., 2016). For longitudinal adherence estimation, two
methods based on different assumptions have been proposed for
assigning an adherence estimate to each day, week or month of
an observation period (Bijlsma et al., 2016; Franklin et al., 2013).
The described methods mainly differ in their assumption about
medication administration between refill events. For the purpose
of this study, we defined the two different methods and their
dichotomized versions as follows (Figure 2):

• Longitudinal Continuous Medication Availability
(LCMA1) assumes that medication is administered as
prescribed every day after a dispensing event until the
supply is exhausted and not administered for the remaining
days until a subsequent refill (Franklin et al., 2013). After
each dispensing event, the consecutive number of days
covered by the supply receive the value 1 and the remaining
days until a subsequent refill receive the value 0. For each

sliding window, the CMA estimate is the mean of the
daily values within the window. This method does not
allow for adherence values >100%, but oversupply may be
carried forward.

• LCMA2 assumes that administration is evenly distributed
over the time between refills (Bijlsma et al., 2016). Each
day between refills receives the same adherence value,
calculated as the duration of dispensed supply divided
by the time until the next refill. This assumption is also
implemented in CMA9 of AdhereR, an R package for the
reproducible and transparent estimation and visualization
of adherence from electronic healthcare data (Dima and
Dediu, 2017). For each sliding window, the CMA estimate
is the mean of the daily values within the window. This
method allows for adherence values >100% if a refill
occurs before an existing supply is exhausted, although
oversupply may be carried forward (as in CMA9 of the
AdhereR package).

• LCMA1-threshold and LCMA2-threshold dichotomize the
output of LCMA1 and LCMA2, respectively, based on a
threshold. For this simulation study, we used a threshold
of 0.8, the most common threshold used in the literature
(Karve et al., 2009). For each sliding window, the CMA
estimate is 0 if the mean of the daily values within the
window is below the threshold and 1 otherwise.

For this simulation study, we did not allow carryover, because
individuals with a habit of early refills may be identified as a group
with a distinct pattern. The way of handling oversupply should be
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FIGURE 2 | Longitudinal trajectories for the six groups in a sample of 1000 individuals. Each of the four panels shows the result of using one of the four CMA
estimates (named on the vertical axis) to estimate adherence during the 24 non-overlapping 30-day-windows of the 2-year observation period (identified by window
ID on the horizontal axis) for each of the six groups (identified by the numeric labels above each individual graph). Generalized additive models (GAMs) were used to
fit mean trajectories (black lines).

decided based on the setting, health condition, and medication
under investigation.

Sample Size
Adherence studies using EHD may involve between a few
hundred and up to several hundred-thousand patients. With
increasing number of patients, the computational costs to
execute the partitioning algorithm increase, but it might affect
performance as well. Due to computational limitations, we
performed separate analyses with a limited number of window
sizes and overlaps and compared performance between samples
with 250, 500, 1000, 2500, 5000, 10,000, and 25,000 individuals to
assess the impact of the sample size.

Window Size and Overlap
The sliding window size refers to the time covered by each
window, e.g., 30 days. Subsequent windows “slide” forward with
a defined lag time, creating overlaps of various degrees, e.g., 50%
if windows of size 30 days slide forward with a lag time of 15 days.
If window size and lag time are equal, windows do not overlap at
all. The sliding window size and overlap might have an influence
on the performance of the classification algorithm.

If the window size is small compared to the observation
period, long-term trends may remain masked by noise and
computation time may increase. With very long window
sizes, shorter trends or gaps will get lost. The degree of

overlap between windows mainly has an influence on the
smoothness of the trajectory. With windows overlapping to
a large degree, trajectories appear smoother. Larger overlaps
also offer a possibility to regain some of the details when
using longer window sizes, albeit at the cost of increased
computational complexity.

In this simulation study, we assessed performance of the
partitioning algorithm with various window sizes and overlaps.
Window sizes covered 7, 14, and each multiple of 30 days up
to the maximum duration of the observation period (720 days).
For each window size, we assessed overlaps of 0–90% in
10% increments.

Measures and Criteria to
Evaluate Performance
For every scenario, we captured the original group assignments
and classification results for individuals together with the
parameters used (i.e., CMA estimate, sample size, window size,
degree of overlap).

Identification of Groups
Although the algorithm in our simulation study always
partitioned individuals into six clusters with random labels from
A–F, the predicted clusters did not necessarily resemble the pre-
specified groups 1 to 6 (Figure 3). To compare performance
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FIGURE 3 | Trajectory clusters generated by kml for one sample of 1000 individuals. Each of the four panels shows the result of using kml with one of the four CMA
estimates (named on the vertical axis) to estimate adherence during the 24 non-overlapping 30-day-windows of the 2-year observation period (identified by window
ID on the horizontal axis). The colored lines (labeled A–F) represent the mean trajectories of the identified cluster. Note that the letters A–F do not necessarily
correspond to groups 1–6.

between scenarios, we relabelled each cluster with the number of
the best matching group. We defined the best matching group as
the group with the highest representation in a given cluster. For
example, the clusters A-F for LCMA2 in Figure 3 (bottom left
panel) were relabelled to groups 3, 4, 5, 2, 1, and 6, respectively. If
the predicted clusters did not correspond to the six pre-specified
groups, the final number of predicted groups was smaller than
six. For example, if the majority of the individuals in both
of the predicted clusters A and B belonged to group 1, both
clusters A and B received the label “1,” reducing the number of
identified groups to 5.

Classification Accuracy
To assess classification accuracy, we computed the adjusted Rand
Index (ARI), which is a commonly used measure for the similarity
between two sets of clusters (Hubert and Arabie, 1985). The
ARI takes a value between 0 (not better than random allocation)
and 1 (perfect agreement with pre-specified group allocation).
Because the number of correctly identified groups directly affects
classification accuracy, we calculated two different ARIs: One
restricted to the subset of the groups identified with the clustering
algorithm (ARI) and another for the complete data set with all
six groups (cARI).

For each CMA estimate, we assessed the impact of sample size,
window size, and overlap on the identification of pre-specified

groups and on classification accuracy and calculated overall
performance differences between CMA estimates using pairwise
ANOVA and Tukey’s range test. To understand performance
differences for each group, we created confusion matrices for each
CMA estimate to visualize the classification accuracy.

RESULTS

We simulated 50 data sets per sample size (350 in total) to assess
impact of sample size on performance. Sample size did not have a
substantial impact on overall classification accuracy (Spearman’s
Rho = 0.04, p-value = 0.5), and increased computational costs
considerably. For the final analysis, we simulated 100 data sets
with 1000 individuals and investigated 1040 different scenarios
(four adherence estimates, 26 window sizes, and 10 degrees of
overlap per window size) for each data set. Mean refill duration
was 60.58 days (IQR: 53.83–67.62) with a mean interval of
92.4 days (IQR: 84.10–103.07) between refill events.

Performance Analysis
Cluster analysis with LCMA2 outperformed every other
method irrespective of sliding window parameters in overall
performance, correct identification of groups, and classification
accuracy. Pairwise comparison of overall cARI showed a relative
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advantage of 0.12–0.22 for LCMA2 compared with other
estimates. All differences were highly significant using pairwise
ANOVA and Tukey’s range test except for the dichotomized
estimates (Table 1).

Impact of Window Size and Overlap on Overall
Performance
Window size and overlap affected overall performance with
all CMA estimates, albeit in different ways (Figure 4 and
top row of Figure 5). LCMA2 consistently showed the
best overall performance, with the highest cARI values for
smaller window sizes and overlaps. LCMA1 showed the
worst performance for smaller window sizes up to 100
days and reached peak cARI values with window sizes
of 150–200 days and large overlaps. Performance of both
dichotomized estimates was generally better with short
window sizes and decreased rapidly with larger window

TABLE 1 | Pairwise comparison of overall cARI between CMA estimates (100
simulations of 1000 individuals).

CMA comparison Diff (95% CI) p adj

LCMA2 : LCMA1-thr 0.22 (0.18–0.25) < 2.2 × 10−16

LCMA2 : LCMA2-thr 0.20 (0.17–0.24) < 2.2 × 10−16

LCMA2 : LCMA1 0.12 (0.08–0.15) < 2.2 × 10−16

LCMA1 : LCMA1-thr 0.10 (0.07–0.14) < 2.2 × 10−16

LCMA1 : LCMA2-thr 0.09 (0.05–0.12) < 1.2 × 10−8

LCMA2-thr : LCMA1-thr 0.02 (–0.02–0.05) 0.65

Diff: Difference in overall adjusted Rand Index, CI: confidence interval, p
adj: P-values adjusted for multiple comparison, thr: Threshold, indicating the
dichotomized LCMA estimates.

sizes. Although performance of LCMA2 also decreased
with larger window sizes, it remained relatively stable up to
around 360 days (half of observation period). Classification
with the dichotomized estimates required at least three
windows, which was due to the requirement to generate
six different clusters and the limited options to form six
distinct trajectories with dichotomized values. Consequently,
the possible window sizes were restricted, e.g., to 240 days
for non-overlapping windows compared to 360 days for the
continuous LCMA-methods).

With LCMA1 and LCMA2, the number of correctly identified
groups was higher for larger window sizes between 180 and
360 days and overlaps between 25 and 70% (Figure 5, middle
row). However, the effect was more pronounced with LCMA1.
Overall, with both dichotomized versions (LCMA1-threshold
and LCMA2-threshold) the number of correctly identified groups
was lower than for clustering on average CMA9. With LCMA2
and window sizes below 420 days, kml correctly identified at least
five of the six groups in over 90% of the scenarios.

With LCMA2, classification accuracy for the correctly
identified groups (ARI) was best with short window sizes and
small overlaps (Figure 5, bottom row). For the other LCMA
methods, the curve for classification accuracy was similar to that
for correctly identified groups.

Classification Accuracy per Group
Classification accuracy varied not only between CMA estimates
and sliding windows parameters, but also between the six pre-
specified groups (Figure 6). The reference group 1 (consistent
adherence) was correctly identified with all methods, including
CMA9. Reference group 6 (non-persistence) was identified
with LCMA1 and LCMA2 (and CMA9), but not with

FIGURE 4 | Level plot of the cARI in relation to window size (horizontal axis, in days) and overlap (vertical axis, in percent) for 100 simulations of 1000 individuals. The
four panels of the graph represent the different LCMA estimates (identified by the panel title). The gray area in the lower right corner shows where the longitudinal
classification algorithm failed because there were less than two windows or less than six distinct trajectories to form clusters. Colors range from blue (low cARI) to
red (high cARI).
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FIGURE 5 | Performance with different CMA methods per window size (in days, left-hand side panels) and overlap (in percent, right-hand side panels) for 100
simulations of 1000 individuals. The vertical axes are adjusted Rand Index for all groups (top panels), average number of correctly identified groups (mid panels) and
adjusted Rand Index for the identified groups (bottom panels). The black dotted line represents the performance of simple k-means clustering on the average CMA9
over the whole observation period.

the dichotomized variants. For this group, LCMA2-threshold
showed the weakest accuracy with less than 20% of non-
persistence correctly identified. As expected, group 2 (erratic
adherence) was the most problematic with an accuracy of around
30% for all estimates. For groups 3–5, LCMA2 reached an
overall classification accuracy of around 80%, unrivaled by any
other estimate. In comparison, clustering with CMA9 reached an
accuracy of around 50% for these groups.

While classification accuracy was consistent between groups
over window sizes for LCMA1 and LCMA2, accuracy for different
window sizes varied between groups with the dichotomized
estimates (Figure 7).

Choice of Optimal Parameters
In our simulation study, optimal sliding window parameters
varied between CMA estimates (Table 2). The continuous
estimates LCMA1 and LCMA2 reached optimal performance
at larger window sizes of 150 and 90 days, respectively. The

dichotomized versions required shorter windows of 60 days.
Both LCMA2 estimates performed better with non-overlapping
windows. In contrast, LCMA1 estimates required larger overlaps
of 80% for optimal performance. With LCMA2 and non-
overlapping windows of 90 days, kml correctly identified
group membership for an average 84.4% of individuals in 100
independent simulations.

DISCUSSION

Overview
Classifying patients based on their long-term medication use
behaviors could prove useful in numerous clinical settings, to
understand reasons for low adherence to prescribed treatments
and decide on treatment and behavioral support needs. In
addition, researchers may use trajectory-based models to classify
subjects based on properties emerging from empirical data
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FIGURE 6 | Confusion matrices for each CMA estimate (identified by the panel titles) for 100 simulations of 1000 individuals. Rows represent the pre-specified (i.e.,
reference) groups (from 1 to 6 in top to bottom order) and columns represent the predicted clusters after relabelling (from 1 to 6 in left to right order). Numbers in
cells indicate the mean frequency with which patients from the reference group were classified in the predicted cluster (i.e., 0.25 in the 2:3 cell in the top panel
means that on average 25% of the patients in the reference group 2 were classified into cluster 3). Colors range from blue (0%) to red (100%).

instead of a priori criteria such as thresholds. Such classification
needs to rely on methods with proven performance regarding
the identification of underlying patterns and the classification
accuracy. To our knowledge, this is the first simulation study to
systematically analyze the effect of different adherence estimates,
sample size, and sliding window parameters on the performance
of a longitudinal classification algorithm. Our study showed that
compared to other methods, LCMA2 is the most appropriate
method for calculating medication availability trajectories to
use for longitudinal clustering. With LCMA2, a longitudinal
k-means algorithm reliably identified six distinctive adherence
patterns from electronic healthcare data during an observation
period of 2 years. In addition, it generates visualizations that
represent most accurately the individual adherence trajectories.
We recommend using LCMA2 in longitudinal adherence studies
to identify and explore different time-varying adherence patterns
and to visualize individual adherence trajectories to assist with
clinical decisions.

In contrast to LCMA1 and most other CMA methods, LCMA2
does not assume 100% use until the supply is exhausted. In the
case of longitudinal adherence analysis, this assumption has been
questioned before (Bijlsma et al., 2016). While it may have only a
minor impact on average adherence estimates over long periods,
it strongly affects estimates for periods shorter than the interval
between two refills, as it is the case with sliding window analyses.
Our simulation study shows that performance with LCMA1 is
poor for window sizes below 90 days, which coincides with

the average interval between dispensing events in our simulated
data sets. However, performance remained lower compared with
LCMA2 even for larger window sizes, although larger overlaps
improved performance noticeably. In contrast, window sizes up
to one year (half of the observation period) and overlap had only
a minor impact on performance with LCMA2.

Performance with the dichotomized versions of both LCMA
was lower than with the continuous estimates, which illustrates
the loss of information consequent to this decision. The
dichotomization on a threshold makes it difficult to distinguish
non-persistence from implementation below the threshold. This
distinction between implementation and non-persistence is
crucial to understand reasons for low adherence and for decision-
making regarding medical treatment or behavioral support. Thus,
we recommend against the use of thresholds in trajectory-
based models. However, dichotomizing adherence estimates
of particular subgroups identified in cluster analysis may be
appropriate, e.g., for erratic adherence (group 2 in our study)
or to identify the exact moment when individuals with delayed
adherence (group 3), intermittent adherence (group 4) or partial
drop-off (group 5) cross a certain threshold.

Sample size did not have a substantial effect on overall
performance. Hence, we performed our study with 1000
individuals per simulated dataset. However, real data sets may
consist of much smaller or larger samples. With smaller samples,
the number of individuals per group might be too small to
appear as a separate cluster. Classification with more individuals
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FIGURE 7 | Classification accuracy (vertical axis) per window size (horizontal axis, in days) and group (colored lines) for each CMA estimate (individual panels
identified by their title) for 100 simulations of 1000 individuals.

TABLE 2 | Optimal parameters and performance per CMA method, based on 100 simulations of 1000 individuals.

CMA9 LCMA1 LCMA1-thr LCMA2 LCMA2-thr

Window size – 150 60 90 60

Overlap – 80% 70% 0% 0%

Mean cARI [95% CI] 0.35 [0.33–0.36] 0.65 [0.62–0.68] 0.65 [0.62–0.68] 0.72 [0.69–0.74] 0.58 [0.55–0.62]

Classification accuracy [95% CI]

Consistent adherence 100% 100% 100% 100% 100%

[100–100%] [100–100%] [100–100%] [100–100%] [100–100%]

Erratic adherence 18% 29% 27% 33% 29%

[13–23%] [23–35%] [21–34%] [28–39%] [23–35%]

Gradual decline 53% 74% 65% 85% 77%

[45–62%] [66–82%] [57–74%] [77–91%] [70–85%]

Intermittent adherence 51% 70% 75% 76% 74%

[43–60%] [62–77%] [68–83%] [69–83%] [67–81%]

Partial drop-offs 51% 81% 84% 86% 89%

[43–59%] [75–88%] [77–90%] [80–92%] [85–95%]

Non-persistence 100% 100% 89% 100% 21%

[100–100%] [100–100%] [84–95%] [100–100%] [14–28%]

Overall 66% 80% 79% 84% 75%

[65–68%] [79–82%] [78–81%] [83–86%] [73–76%]

A classification accuracy of 100% indicates that the clustering algorithm correctly identified all individuals of a pre-allocated group. cARI: adjusted Rand Index for all
groups, CI: confidence interval.

requires more computational resources. The requirements for
computational resources increase not only with sample size, but
also with the length of the trajectories (e.g., number of sliding

windows) included in the analysis. For a trajectory length of 101
windows, clustering with kml was possible for a maximum of
40,000 individuals on a typical consumer machine with 8 GB
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of RAM and required over 20 h to complete (Genolini et al.,
2015). Thus, clustering on larger data sets benefits from a larger
window size and short overlaps. With the optimal parameters for
LCMA2 in our study (non-overlapping windows of 90 days), an
observation period of 2 years results in trajectories of length 8,
which should not take more than 7 h to classify with kml on a
typical machine for sample sizes of up to 40,000.

Advantages
Our methods for estimating longitudinal adherence based on
EHD and the performance analysis in a simulation study have
several advantages.

First, we calculated LCMA2 for intervals between two
refills instead of the three dispensing events proposed by
Bijlsma et al. (2016). This ensures the calculation of an
adherence estimate even if there are less than three dispensing
events (e.g., some individuals in group 6 of our simulation
study). While stabilizing the adherence estimate and reducing
variance, the Bijlsma et al. approach may mask temporal
variation, e.g., if the interval between the first and second
dispensing event is a lot longer or shorter than between the
second and third. With larger window sizes, we achieved a
similar form of stabilizing adherence estimates over multiple
dispensing events. Nevertheless, with our method of calculating
LCMA2 between two dispensing events, time-varying adherence
patterns were reliably identified with short window sizes
covering not more than the interval between two dispensing
events. On the other hand, short-term temporal variation
can also mask true underlying adherence patterns, e.g., with
early refills resulting in overlapping supplies. If this is a
concern, we recommend to carry-over oversupplies before
adherence estimation.

Second, we separately assessed performance regarding
the identification of groups and classification accuracy.
With this approach, we were able to separate the issue
of cluster selection (identification of cluster centers)
from the classification accuracy (identification of
cluster boundaries).

Third, we simulated a large number of independent data sets
and compared classification performance over a wide range of
sliding windows parameters. This kind of analysis would not
be possible with real datasets, because cluster analysis is by
definition always exploratory. To identify optimal parameters for
the analysis of a specific data set, we recommend performing a
simulation study similar to the one outlined here, but adapted
to the data set under investigation. Researchers may simulate
adherence patterns, group sizes, and refill durations based
on population characteristics and study objectives to identify
optimal parameters. To facilitate such studies, researchers may
refer to the source code released under a GNU General Public
License v3 on github2.

Limitations
We report several limitations relating to cluster analysis in
general and to our simulation study in particular.

2github.com/Masswear/BeyondThresholds/

First, kml (and most other trajectory-based models) group
trajectories together that are similar at given time points. As
a result, the shape of the trajectory might be less important
than the time at which change occurs. For this simulation
study, the change in adherence happened around similar
times for all individuals in a particular group. To arrive at
meaningful results in real-world scenarios, trajectories should
align with specific events of interest, e.g., the start of a
treatment, hospitalization, or another clinical outcome. In
some instances, however, the shape of the adherence trajectory
might be more important than the time at which it changes,
e.g., when the time of initiation of a treatment is not
known. For these instances, other classification methods such
as a shape-respecting version of kml (kmlShape) might offer
advantages (Genolini et al., 2016).

Second, kml is non-parametric, which might be an advantage
in some situations, but can be a limitation in others. Due
to the lack of an underlying model, it is not possible to
test a fit or specify a likelihood for group membership of
individuals. (Semi-)parametric methods such as group-based
trajectory modeling (Nagin and Odgers, 2010) and other variants
of finite mixture models have these properties, which can be
useful especially if clusters are not well separated. Nevertheless,
our results concerning the choice of LCMA methods and sliding
windows parameters should in principle be valid for these
methods as well.

Third, we did not address the issue of cluster selection,
although the number of correctly identified groups had a
major impact on performance. Unlike in our simulation
study, the “true” number of groups in a data set is usually
unknown. Identifying the correct number of clusters is a
long-standing issue in cluster analysis (Everitt et al., 2001).
One possibility is to perform cluster analysis with varying
number of groups and then select the “best” number of
clusters based on a quality criterion (Milligan and Cooper,
1985). With LCMA2, the number of correctly identified groups
was highest for window sizes between 200 and 360 days,
but classification accuracy was highest for short window sizes
and linearly decreased with longer window sizes. Hence,
overall performance would be highest if the “true” groups
could be identified reliably with short window sizes. This
could be achieved by tuning the starting conditions for the
clustering algorithm or performing classification with pre-set
cluster centere based on clusters previously identified with
longer window sizes.

Fourth, we did not systematically analyze the impact of refill
duration and group size on classification performance. It appears
that the window size for optimal performance with LCMA2
coincides with the mean interval between refills, but this should
not serve as a recommendation without further verification.
Nevertheless, overall performance with LCMA2 was robust over
a wide range of parameters.

Finally, the results of our simulation study are difficult
to validate with real data, because cluster analysis is always
exploratory. We strived to simulate realistic refill patterns
for medications intended for chronic use. At the same
time, we needed patterns that (a) were distinct enough to
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allow partitioning into groups and (b) had similar average
adherence (otherwise, one could just group by average adherence,
which would not be useful to answer the study question). Hence,
the parameters were a trade-off between internal and external
validity. However, the simulated refill patterns and resulting
adherence trajectories have been observed previously in real data
sets (Franklin et al., 2013, 2016; Hargrove et al., 2017). Because of
the clear and highly significant advantage of LCMA2 over a wide
range of sliding windows parameters, we are confident that our
results can be generalized to many other real-world settings.

Outlook
To correlate temporal adherence patterns with other outcomes,
such as time of hospitalization, exacerbations or illness
progression, or discontinuation with treatment, joint modeling
techniques could combine adherence trajectories from a sliding-
windows approach with a relative risk model (Sweeting and
Thompson, 2011). Kml offers this functionality with its kml3d
package (Genolini et al., 2015). This approach could be applied
to other adherence estimates derived from electronic monitoring
or self-report (especially joint analysis).

To facilitate longitudinal adherence analysis from EHD, the
AdhereR package implements sliding-windows capabilities using
different (even user-defined) adherence estimates (Dima and
Dediu, 2017). The LCMA2 used in this study is the equivalent
to sliding windows using CMA9 in AdhereR, albeit the standard
CMA9 accounts for carry-over. As AdhereR is under active
development, we will add additional options for longitudinal
adherence research in the future based on our own research
and user feedback.

CONCLUSION

The choice of CMA estimates and sliding window parameters
has a major impact on the performance of a clustering algorithm
to identify distinct longitudinal adherence trajectories. We
recommend (a) assuming constant adherence between refills,
(b) avoiding dichotomization based on a threshold, and (c)
exploring optimal sliding windows parameters in simulation
studies or selecting shorter non-overlapping windows for the
accurate and robust identification of different adherence patterns
from electronic healthcare data.
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