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INTRODUCTION

Fishes have a long history as models for energetics and exercise physiology [START_REF] Fry | The aquatic respiration of fish[END_REF][START_REF] Brett | Energetic Responses of Salmon to Temperature. A Study of Some Thermal Relations in the Physiology and Freshwater Ecology of Sockeye Salmon (Oncorhynchus nerkd)[END_REF]. Currently, they are used to investigate muscle metabolism and pathologies at various levels of integration [START_REF] Li | Muscular dystrophy modeling in zebrafish[END_REF][START_REF] Bergen | Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds[END_REF][START_REF] Krishnan | Sweet fish: Fish models for the study of hyperglycemia and diabetes[END_REF]. At the in vivo level, fish swimming gaits have been well-studied, to define various measures of performance [START_REF] Brett | The respiratory metabolism and swimming performance of young sockeye salmon[END_REF][START_REF] Beamish | Swimming capacity[END_REF][START_REF] Drucker | The Use of Gait Transition Speed in Comparative Studies of Fish Locomotion[END_REF][START_REF] Peake | Locomotory behaviour and post-exercise physiology in relation to swimming speed, gait transition and metabolism in free-swimming smallmouth bass (Micropterus dolomieu)[END_REF]. Gaits comprise steady sustained aerobic swimming, for relatively low speed activities such as migration or holding station, and unsteady burst or sprint anaerobic swimming, for high speed swimming such as predator-prey encounters [START_REF] Webb | Body Form, Locomotion and Foraging in Aquatic Vertebrates[END_REF]. Aerobic and anaerobic swimming relies on structurally separate muscles in fishes [START_REF] Bone | Locomotor muscle[END_REF][START_REF] Webb | Body Form, Locomotion and Foraging in Aquatic Vertebrates[END_REF]. Slowtwitch oxidative 'red' muscle is used for steady aerobic swimming, it is found in strips along the midline and typically represents about 10% of muscle mass [START_REF] Bone | Locomotor muscle[END_REF][START_REF] Mckenzie | Swimming and other activities -energetics of fish swimming[END_REF]. Fast-twitch glycolytic 'white' muscle comprises the large myotomal blocks that form the majority of the muscle mass [START_REF] Bone | Locomotor muscle[END_REF][START_REF] Johnston | Dynamic properties of fish muscle[END_REF][START_REF] Lauder | How swimming fish use slow and fast muscle fibers: implications for models of vertebrate muscle recruitment[END_REF].

Moreover, red and white muscle are fueled by different energetic substrates and metabolic pathways relying on carbohydrate or lipid fuels are gradually involved in these different locomotion modes among fish species, depending on their swimming needs [START_REF] Moyes | Exercise metabolism of fish[END_REF][START_REF] Weber | Pathways for metabolic fuels and oxygen in high performance fish[END_REF].

The European sardine Sardina pilchardus and the gilthead seabream Sparus aurata have very different ecologies, in particular in terms of their swimming activity. Sardines are pelagic, they swim constantly in schools, covering great distances [START_REF] Webb | Body Form, Locomotion and Foraging in Aquatic Vertebrates[END_REF]. Gilthead seabream are coastal bentho-pelagic, usually foraging in a discontinuous pattern for limited distances, although they perform quite extensive seasonal migrations to and from breeding grounds [START_REF] Lasserre | Dynamique des populations ichtyologiques lagunairesapplication à Sparus aurata[END_REF][START_REF] Mcclelland | Lipid composition of tissue and plasma in two Mediterranean fishes, the gilt-head sea bream (Chrysophyrys auratus) and the European seabass (Dicentratchus labex)[END_REF][START_REF] Grigorakis | Comparison of wild and cultured gilthead sea bream (Sparus aurata): composition, appearance and seasonal variations[END_REF][START_REF] Steinhausen | The effects of swimming pattern on the energy use of gilthead seabream (Sparus aurata L.)[END_REF][START_REF] Mercier | Multielement otolith fingerprints unravel sea-lagoon lifetime migrations of gilthead sea bream Sparus aurata[END_REF]. Gilthead seabream and sardine also present a different lipid storage capacity, which can be related to their lifestyle and locomotor behavior. The sardine stores lipids in its muscle, as the primary site of rapidly available substrate [START_REF] Venugopal | Structure and composition of fish muscle[END_REF]. By contrast, gilthead seabream mainly stores lipids in the liver [START_REF] Mcclelland | Lipid composition of tissue and plasma in two Mediterranean fishes, the gilt-head sea bream (Chrysophyrys auratus) and the European seabass (Dicentratchus labex)[END_REF]. Beyond the fundamental ecophysiological interest of comparing these two species, our study has broader ecological and socio-economical implications. Sparus aurata is highly prized in inshore fisheries, representing the second most captured species (Weiss et al., 2018, https://archimer.ifremer.fr/doc/00478/58970/) and is also the main aquaculture species in the Mediterranean Sea, accounting for 44% of the farmed fish production. Sardinus pilchardus is the second most fished species in the Mediterranean as a whole, representing 17% of landings (FAO 2018. Global Capture Production 1950-2016 (online query), www.fao.org). Further, the sardine stock in the Gulf of Lions is currently considered to be ecologically unbalanced, with a major decline in final adult size and body condition (GFCM 2018), possibly mediated by differences in prey composition and feeding behaviour [START_REF] Saraux | Small pelagic fish dynamics: A review of mechanisms in the Gulf of Lions[END_REF]Queiros et al., submitted). While significant information is available on the seabream, due to its status as a farmed species (Pavlidis and Mylonas, 2011), much less is known about the physiology of sardines, due to the difficulties of maintaining them in captivity.

The aim of this study was to characterize aerobic (slow-twitch oxidative) muscle bioenergetics in the sardine and gilthead seabream. We hypothesized that the lifestyle of the sardine would be associated with adaptations for constant aerobic exercise, notably a high capacity for lipid-oxidative metabolism in their muscles compared with those of the more sedentary gilthead seabream.

MATERIAL AND METHODS

Fishes

The S. aurata were bought in April 2016 from Cannes Aquaculture (Cannes, France), and transported to the Ifremer research station at Palavas-les-Flots (France). They were then held at a density of 4 kg.m -3 in outdoor 4 m 3 tanks supplied with well-aerated seawater at prevailing seasonal temperatures (8-25°C). Fish were fed once a day in the morning with 1% body weight of commercial feed. The S. pilchardus were captured in March 2016 off Sète (South of France) by a commercial purse-seiner adapted for this purpose. They were transported to the same site as seabream and held in quarantine tanks for health assessment.

After confirmation of an absence of pathogens, sardines were moved into indoor 3 m 3 tanks supplied with water pumped directly from the sea (more details in Queiros et al., submitted). The photoperiod was adjusted each week to follow the natural cycle and sea water temperature was not controlled (averaging 12°C at this period of time) except to maintain a minimum of 10°C or a maximum of 25°C. Sardines were fed every day with 0.6% body mass of aquaculture pellets. Experiments were performed in February 2017 and approved by the Ministère Français de l'Enseignement Supérieur, de la Recherche et de l'Innovation (APAFIS # 4000-2016020415387815 v.3;APAFIS# 7097-2016093008412692).

Tissue sampling and Fiber bioenergetics

Fishes were fasted for one day before being euthanized with an overdose of benzocaine (1000 ppm) and small muscle samples were immediately withdrawn and stored at 4°C in MIR05 buffer containing 0.5 mM EGTA, 3 mM MgCl2, 60 mM K-lactobionate, 20 mM Taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, 1g/L free-fatty-acid bovine serum albumin, pH = 7.1 [START_REF] Kuznetsov | Selected media and chemicals for respirometry with mitochondria and permeabilized cells[END_REF]. Thereafter, the entire red and white muscles, liver and visceral tissues were dissected and weighed.

Respiration rates of both red and white muscle fibers were measured using high resolution respirometers (O2K, Oroboros Instruments; www.orobros.at) in 2 ml of MIR05 solution at 12°C, following a protocol of sequential injections of substrates and inhibitors of the mitochondrial electron transport system (ETS) adapted from a previous study on Danio rerio [START_REF] Teulier | Consequences of electroshock-induced narcosis in fish muscle: from mitochondria to swim performance[END_REF]. According to this protocol, instead of using chemical permeabilization, fibers were gently mechanically disrupted to measure the cellular respiration rates. Basal nonphosphorylating respiration rate was obtained by addition of either a mixture of respiratory substrates (5 mM pyruvate/2.5 mM malate/5 mM succinate; PMS), which allow a full activation of the ETS by generating a convergent electron flow at the coenzyme-Q junction, or a lipid-derived substrate (40 µM palmitoyl-carnitine/2.5 mM malate; PCM). The phosphorylating rate of respiration was initiated by the injection of ADP (1 mM). The integrity of mitochondrial membranes was systematically checked by adding cytochrome c (10 μM). Maximal respiration rate was obtained using carbonyl cyanide-p-trifluoromethoxyphenyl hydrazine (FCCP; 1 μM). Finally, the complex III (ubiquinol-cytochrome c oxydoreductase) of the ETS was inhibited by an injection of antimycin A (2.5 μM). The factorial cellular aerobic scope refers to the ratio of FCCP-induced maximal uncoupling respiration rate to basal non-phosphorylating respiration rate [START_REF] Roussel | Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs[END_REF].

Statistical analysis

All data are expressed as means ± SEM. Species (sardine vs. seabream) and substrate (PMS vs PCM) effects on bioenergetics parameters were tested using 2-way ANOVA, or nonparametric 2-way ANOVA on ranks, depending on normality (Shapiro-Wilk test) and homoscedasticity (Levene test). When apposite, pairwise comparisons with adjustments for multiple comparisons (Holm-Sidak method) were conducted to detect further differences between substrates or species. Statistical analysis was performed using SIGMAPLOT 12 (Systat Software, Inc.; www.systatsoftware.com).

RESULTS

Body and tissue masses

Because of the much lower body mass of sardines, wet tissue masses were all significantly lower in sardines than in seabream (Table 1). However, relative to their body mass, the proportion of the different tissues varied between species. Sardines had a 2.5-fold higher proportion of red muscle to body mass than seabream, while visceral and white muscles were in similar proportions in both species (Table 1). The wet mass-to-body mass ratios (g/100 g BM) of liver were significantly lower in sardines than in seabream (Table 1).

Muscle fibers bioenergetics

Red and white muscle phosphorylating respiration rate (i.e. ADP-induced respiration rates with pyruvate/malate/succinate as respiratory substrates) were markedly different; white muscle fibers exhibited 6 to 12-fold lower respiration rates than red muscle fibers from sardine and seabream, respectively (Fig. 1A). Phosphorylating respiration rate of white muscle was higher in sardine than in gilthead seabream, while red muscle respiration rate was not statistically different between species (Fig. 1A). Using masses of white and red muscles, we then calculated the total muscle oxidative metabolism per gram of fish (Fig. 1B) and the relative contribution of white and red muscle to this total muscle oxidative metabolism (Fig. 1C). Sardines exhibited a significantly higher body mass specific-muscle oxidative capacity than gilthead seabream (Fig. 1B), and the contribution of its red muscles to whole body muscle oxidative capacity was slightly but significantly greater than gilthead seabream (67±1% versus 58±3%; Fig. 1C).

Because of the very low level of aerobic capacity in white muscles, the study regarding energy substrates oxidation was conducted on red muscles only. On the whole, red muscle fibers of sardines exhibited higher oxidative capacities than gilthead seabream, regardless of respiratory substrates (Table 2). In details, the differences in ADP-induced respiration rate observed between species (2 and 2.5-fold higher in sardines than in gilthead seabream fibers respiring on PMS (p=0.11) and PCM (p=0.07)) were, however, not statistically significant. (Table 2). The rates of FCCP-induced maximal oxygen consumption were significantly higher in sardine than in gilthead seabream fibers, regardless of respiratory substrates (Table 2). The factorial cellular aerobic scope was not significantly different between fishes when fibers respired on PMS, but higher in sardine for a lipid-derived substrate, such as PCM (Table 2).

The higher muscle aerobic metabolism is even more pronounced when the rates of muscle oxygen consumption are expressed per gram of body mass when taking into account the total mass of red skeletal muscle in these two species (Fig. 2A). Despite huge differences in body mass-specific oxidative activities (Fig. 2A), the part of oxygen consumption associated with mitochondrial ATP synthesis was similar in the two species, accounting for about 75% and 87% of phosphorylating respiration rate with PMS and PCM, respectively (Fig. 2B). The remaining 13-25% of oxygen consumption was devoted to counteract proton leakage across the mitochondrial inner membrane (Fig. 2B). Hence, muscle mitochondria of both species allocated the same proportion of oxygen consumed to synthesize ATP. When fibers oxidized PMS, both species exhibited a large mitochondrial extra respiratory capacity (FCCP-induced maximal respiration rate minus ADP-induced phosphorylating respiration rate; Fig. 2B). By contrast, the extra respiratory capacity was reduced in the muscle fibers of gilthead seabream oxidizing a lipid-derived substrate (Fig. 2B). By comparison, sardine muscle fibers retained a large extra respiratory capacity with PCM, which was as high as that calculated with PMS (Fig. 2B).

DISCUSSION

The results obtained at the cellular level show that sardines have muscle biochemical adaptations for a lifestyle of constant sustained aerobic exercise, with a better ability to oxidize lipids than the sedentary gilthead seabream.

Muscles represent a large proportion of the body mass of both gilthead seabream and sardine (approximately 45%), which is in accordance with the classically described range of 40% to 60% [START_REF] Bone | Locomotor muscle[END_REF]. Even if the proportion of white muscle is roughly the same between species (~40%), the ratio between red muscle and body mass was significantly higher in sardines (above 10%) than in gilthead seabream (below 5%). Hence, red muscle represents almost 25% of the total muscle mass in sardines and only 10% in gilthead seabream. Our results are in line with the 30% obtained for Sardina pilchardus and the 15% in Pagellus bogaraveo, a fish closely related to Sparus aurata [START_REF] Greer-Walker | A survey of red and white muscle in marine fish[END_REF].

Overall, fishes with a more active mode of life have a higher proportion of red fibers [START_REF] Webb | Body Form, Locomotion and Foraging in Aquatic Vertebrates[END_REF][START_REF] Dwyer | Morphology, metabolism and behaviour: responses of three fishes with different lifestyles to acute hypoxia[END_REF]. Red and white muscle also show different aerobic capacity, with respiration rates 6-fold to 12-fold higher in red than in white muscle of sardine and gilthead seabream, respectively. Even though red muscles contribute to a small proportion of total skeletal muscle masses, its high respiratory capacity explains why its oxidative activity contributes to a major part of total muscle respiration rate (Fig. 1). The high metabolic capacity found in the red muscle of the two species is coherent with the extensive evidence of differences in histochemistry, enzyme activity and respiratory capacity between red and white muscles of many fish species [START_REF] Bone | Locomotor muscle[END_REF][START_REF] Moyes | Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish[END_REF][START_REF] Martinez | Condition, prolonged swimming performance and muscle metabolic capacities of cod Gadus morhua[END_REF][START_REF] Morash | Intertissue regulation of carnitine palmitoyltransferase I (CPTI): Mitochondrial membrane properties and gene expression in rainbow trout (Oncorhynchus mykiss)[END_REF][START_REF] Strobel | Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii[END_REF][START_REF] Zak | Exogenous thyroid hormones regulate the activity of citrate synthase and cytochrome c oxidase in warmbut not cold-acclimated lake whitefish (Coregonus clupeaformis)[END_REF][START_REF] Teulier | Consequences of electroshock-induced narcosis in fish muscle: from mitochondria to swim performance[END_REF].

The body-mass specific aerobic metabolism of red muscle is markedly higher in S. pilchardus than in S. aurata. Interestingly, the relative increase in respiration induced by ADP phosphorylation, i.e. the oxygen consumption dedicated to drive ATP synthesis, was the same for both species. This indicates that red muscle fibers of both species allocate the same energy to synthesize ATP and thus to sustain aerobic locomotor performance. However, the FCCPinduced extra respiratory capacity of red muscle fibers differed between species depending on the respiratory substrates. Hence, it was not different when fibers respired on PMS, a mixture of substrates that fully activate the ETS by generating a convergent electron flow at the coenzyme-Q junction. It was, however, significantly lower in gilthead seabream than in sardines when fibers oxidized PCM, a lipid-derived substrate. The FCCP-induced extra respiratory capacity is controlled exclusively by mitochondrial oxidation of substrates, which include the electron transport system, dehydrogenases and translocases. Hence, the results indicate that the capacity to oxidize lipids is significantly higher in the red skeletal muscle of sardine than in gilthead seabream. Indeed, sardine red muscle fibers oxidize PCM at 79% the rate of fully activated ETS, whereas red muscle fibers of seabream oxidize lipids at 47%. This metabolic "specialization" toward lipids oxidation is also supported by a very high value of factorial aerobic scope in sardine red muscle fibers oxidizing a lipid-derived substrate. These results are in accordance with other studies showing that, for instance, red muscles of the pelagic coalfish (Johnston and Moon, 1980) or the endurance swimming rainbow trout [START_REF] Kiessling | Selective utilization of fatty acids in rainbow trout (Oncorhynchus mykiss Walbaum) red muscle mitochondria[END_REF] exhibit a high lipid oxidation ability. And by directly comparing the red muscles of skipjack tuna with the more sedentary freshwater carp, Moyes and collaborators showed that the former contained more active mitochondria with also a greater ability to oxidize lipids than the latter [START_REF] Moyes | Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish[END_REF]. Such difference of lipid aerobic metabolism results from a combination of both a higher respiratory capacity and proportion of red muscle in S. pilchardus than in S. aurata.

However, we cannot completely rule out that part of the muscle metabolism difference between the two species might also be explain by large difference in size, as S. aurata weighting 8-fold more than S. pilchardus. Indeed, it has been reported that mitochondrial oxidative enzyme activities in both red and white muscles negatively correlate with body mass of fishes [START_REF] Childress | Metabolic Scaling: A New Perspective Based on Scaling of Glycolytic Enzyme Activities[END_REF][START_REF] Pelletier | Does the aerobic capacity of fish muscle change with growth rates?[END_REF][START_REF] Burness | Allometric scaling of RNA, DNA, and enzyme levels: an intraspecific study[END_REF][START_REF] Almeida-Val | Scaling effects on hypoxia tolerance in the Amazon fish Astronotus ocellatus (Perciformes: Cichlidae): contribution of tissue enzyme levels[END_REF][START_REF] Davies | Allometric scaling in centrarchid fish: origins of intraand inter-specific variation in oxidative and glycolytic enzyme levels in muscle[END_REF][START_REF] Young | Allometry of skeletal muscle fine structure allows maintenance of aerobic capacity during ontogenetic growth[END_REF]. For instance, the activity of cytochrome-c oxidase, which measure the maximal oxidative capacity of a tissue, correlate negatively with body mass with a scaling coefficient of -0.014 and -0.31 in red muscle of striped bass and white muscle of Atlantic cod, respectively [START_REF] Pelletier | Does the aerobic capacity of fish muscle change with growth rates?[END_REF][START_REF] Young | Allometry of skeletal muscle fine structure allows maintenance of aerobic capacity during ontogenetic growth[END_REF]. Based on these equations, body mass would explain between 30% and 60% of the differences in the lipid-supported maximal respiratory capacity between S. aurata and S. pilchardus. The rest would thus relate to difference in lipid energy metabolic pathway (β-oxidation process and/or mitochondrial translocation system), which might ultimately fit with the lifestyles of the two species. Lipids are well known to be a major fuel for long distance locomotion in animals [START_REF] Weber | Metabolic fuels: regulating fluxes to select mix[END_REF] and to play an important role as energy substrates for sustained aerobic swimming in fishes (Johnston and Moon, 1980;[START_REF] Moyes | Exercise metabolism of fish[END_REF][START_REF] Mcclelland | Lipid composition of tissue and plasma in two Mediterranean fishes, the gilt-head sea bream (Chrysophyrys auratus) and the European seabass (Dicentratchus labex)[END_REF]. It is therefore not surprising that pelagic sardines, that swim constantly, exhibit a higher ability to oxidize fat than bentho-pelagic and less active gilthead seabream. Finally, pelagic fishes are characterized by abundant fat deposits under skin and within red muscle, which are associated with their enhanced capacity to consume lipids as fuel, whereas less active demersal fish typically stock fat in their liver [START_REF] Mcclelland | Lipid composition of tissue and plasma in two Mediterranean fishes, the gilt-head sea bream (Chrysophyrys auratus) and the European seabass (Dicentratchus labex)[END_REF][START_REF] Venugopal | Structure and composition of fish muscle[END_REF]. In this context, the very different lipid stores between Sardina pilchardus and Sparus aurata would also participate in the differences in the availability of fatty acids to fuel aerobic muscle function [START_REF] Mcclelland | Lipid composition of tissue and plasma in two Mediterranean fishes, the gilt-head sea bream (Chrysophyrys auratus) and the European seabass (Dicentratchus labex)[END_REF][START_REF] Venugopal | Structure and composition of fish muscle[END_REF].

In conclusion, our results show that pelagic sardine exhibits a higher percentage of red muscle than bentho-pelagic gilthead seabream, with a higher oxidative capacity at the cellular level. Sardine are also able to oxidize lipids at nearly 80% the rate of fully ETS activity, whereas gilthead seabream reach only 47% of the maximum respiratory capacity. However directly linking the locomotion performances to the cellular energetics needs further investigations at the individual scale. 

Figure legends

Figure 1 :

 1 Figure 1: Aerobic metabolism of red and white muscles in sardine and gilthead seabream. A) Phosphorylating respiration rate of white (white bars, n=2-4) and red (red bars, n=6) muscle fibers. B) Contribution of white and red muscles to total body mass-specific respiration rate. C) Relative contribution of white and red muscles to whole body muscle oxidative activity. Values are means ± sem. †p<0.05, significantly different from white muscle within the same fish species; *p<0.05, significantly different from gilthead seabream.

Figure 2 :

 2 Figure 2: Bioenergetics status of red muscle fibers. Fibers were respiring either on pyruvate/malate/succinate to fully activate the electron transport system (ETS) or palmitoylcarnitine/malate (a lipid-derived substrate). A) Contribution of mitochondrial proton leak (basal non-phosphorylating respiration), mitochondrial ATP synthesis (ADP-induced phosphorylating respiration minus basal non-phosphorylating respiration), and mitochondrial respiratory reserve (FCCP-induced maximal respiration minus ADP-induced phosphorylating respiration) to body mass-specific respiration rates of fibers. B) Contribution of mitochondrial proton leak, ATP synthesis and respiratory reserve expressed as percentage of phosphorylating respiratory capacity. Values are means ± SEM for n=6 independent fiber preparations. *p<0.05, significantly different from seabream.

  

Table 1 : Fish biometrics and tissue masses

 1 

	Tissues	Parameters	Gilthead Seabream	Sardine
		Body mass, g	340 ± 20	40 ± 5*
		Body length (mm)	270 ± 6	162 ± 5*
	Red muscle	Fresh mass, g	15.5 ± 1.2	4.5 ± 0.5*
		Relative mass, g/100g BM	4.6 ± 0.5	11.3 ± 0.4*
	White muscle	Fresh mass, g	137 ± 14	14 ± 2*
		Relative mass, g/100g BM	40 ± 2	36 ± 2
	Liver	Fresh mass, g	9.5 ± 0.8	0.4 ± 0.1*
		Relative mass, g/100g BM	2.8 ± 0.2	0.8 ± 0.1*
	Visceral tissues Fresh mass, g	25.3 ± 2.7	3.3 ± 0.8*
		Relative mass, g/100g BM	7.4 ± 0.5	7.7 ± 0.9
	Values are means ± sem for n=6. *p<0.05, significantly different from gilthead seabream.

Table 2 : Respiratory variables of red muscle fibers from gilthead seabream and sardines.

 2 Oxygen consumption rates are expressed in pmol O2 s -1 mg of tissue -1 and were determined at 12°C. Basal state, basal non-phosphorylating respiration measured in the presence of respiratory substrate alone; Phosphorylation state, ADP-induced phosphorylating respiration determined after addition of 1 mM ADP; Maximal respiratory state, FCCP-induced maximal uncoupling respiration determined after addition of 1 µM FCCP; Factorial cellular aerobic scope is the ratio of FCCP-induced maximal uncoupling respiration rate to basal non-phosphorylating respiration rate. Values are means ± sem for n=6 independent fibers preparations. *p<0.05, significantly different from seabream; † p<0.05, significantly different from pyruvate/malate/succinate within the same fish species.

	Substrates	Respiratory parameters	Gilthead seabream	Sardine
	Pyruvate/Malate/Succinate	Basal non-phosphorylating rate	3.3 ± 0.8	6.1 ± 1.4
		ADP-induced phosphorylating rate	14.1 ± 3.5	27.4 ± 6.8
		FCCP-induced maximal oxidative rate	26.4 ± 4.1	47.6 ± 7.8*
		Factorial cellular aerobic scope	10.2 ± 2.5	8.5 ± 0.9
	Palmitoyl-carnitine/Malate	Basal non-phosphorylating rate	1.5 ± 0.1	2.7 ± 0.5 †
		ADP-induced phosphorylating rate	9.4 ± 3.1	23.2 ± 6.1
		FCCP-induced maximal oxidative rate	12.5 ± 3.3 †	37.8 ± 5.9*
		Factorial cellular aerobic scope	7.0 ± 0.9	15.4 ± 1.7* †

Acknowledgements

Sardine experiments were funded through the MONALISA project, which was cofunded by the European Union and the French Ministry of Agriculture in the framework of the European Maritime and Fisheries Fund (grant number PFEA280017DM0910001) and by France Filière Pêche (France). The work on seabreams was funded by IFREMER -Site Politic Initiative. Thanks to Philippe Joris for all his investment in managing the seabream for so long as well as Hachim Mouniboudine for all the help in the lab analysis.