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Available direct numerical simulation of turbulent channel flow at moderately high
Reynolds numbers data show that the logarithmic diagnostic function is a linearly de-
creasing function of the outer-normalized wall distance η = y/δ with a slope proportional
to the von Kármán constant, κ = 0.4. The validity of this result for turbulent pipe and
boundary layer flows is assessed by comparison with the mean velocity profile from
experimental data. The results suggest the existence of a flow-independent logarithmic
law U

+ = U/uτ = (1/κ ) ln(y∗/a), where y∗ = yUS/ν with US = yS(y) being the local
shear velocity and the two flow-independent constants κ = 0.4 and a = 0.36. The range
of its validity extends from the inner-normalized wall distance y+ = 300 up to half
the outer-length scale η = 0.5 for internal flows, and η = 0.2 for zero-pressure-gradient
turbulent boundary layers. Likewise, and within the same range, the mean velocity deficit
follows a flow-dependent logarithmic law as a function of a local mean-shear-based
coordinate. Furthermore, it is illustrated how the classical friction laws for smooth pipe
and zero-pressure-gradient turbulent boundary layer are recovered from this scaling.

DOI: 10.1103/PhysRevFluids.4.054605

I. INTRODUCTION

The Prandtl–von Kármán logarithmic law [1–3] for the mean velocity profile in canonical turbu-
lent wall-bounded flows (plane channel, circular pipe, and zero-pressure-gradient boundary layer)
is one of the most important results in the field of turbulence, both because of its obvious practical
interest and of the elegance of its derivation. The law of the wall has indeed been obtained either
with dimensional analysis, similarity arguments or closure assumptions and is well supported by ex-
perimental data, leading to the inner-scaled law of the wall and outer-scaled defect law, respectively:

U
+

(y+) = 1

κ
ln y+ + A, (1a)

U
+
c (δ+) − U

+
(y+) = − 1

κ
ln η + B, (1b)

where U
+ = U/uτ and y+ = yuτ /ν. U is the mean streamwise velocity, y is the distance from the

wall, ν is the kinematic viscosity, and uτ is the friction velocity defined from the wall shear stress
τw as uτ = √

τw/ρ, where ρ is the fluid density. U c is the mean centerline, or outer velocity, and
η = y/δ, with δ being the channel half width, the pipe radius, or the boundary layer thickness. The
superscript (+) denotes scaling with inner variables, uτ and ν, and Rτ = δ+ is the Kármán number.
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The universality and values of the dimensionless constants (κ , the von Kármán constant and the
additive ones A and B) are the subject of intense discussion (see, e.g., Refs. [4–7]). At the root of this
debate are the results obtained at very large Reynolds number in the Princeton “superpipe” facility.
First, Zagarola and Smits [8] evaluated κ = 0.436 ± 0.002, with Pitot tube velocity measurements.
By using smaller Pitot tubes, McKeon et al. [9] obtained κ = 0.421 ± 0.002 in the same facility
with appropriate corrections. However, these values remain higher than those commonly obtained
in the two other canonical wall flows; namely, the boundary layer and the plane channel [10,11].
Thereafter, Bailey et al. [12], by analyzing five data sets taken in the same facility using Pitot
tubes, conventional hot wires, and nanoscale thermal anemometry probes, concluded that the best
estimate for the von Kármán constant in this facility can only be obtained with ±5% accuracy,
κ = 0.40 ± 0.02, due to the inherent measurement uncertainties, thereby requiring more accuracy
in the measurement techniques for a better estimate.

These discrepancies in the value of κ led some researchers to question its universality and to
consider that its value depends on the type of flow [5] or on the Reynolds number [13]. This
is in contradiction with the view of supporters of a universal logarithmic law (see, e.g., Marusic
et al. [14] among others). The last authors obtained a von Kármán constant κ = 0.39 and A = 4.3
for boundary layers, pipe flow, and atmospheric surface layers. But it should be noted that, in the
laboratory and atmospheric boundary layer datasets they used, the wall shear stress is not measured
directly. This is the case of many experimental studies in turbulent boundary layers where the wall
shear stress is determined by using empirical correlations, most of which are based on a wall law,
such as the Clauser chart [15] with κ = 0.41 and A = 5, or alternative estimates with different
constants [16–18]. Thus, such studies cannot be used unequivocally to provide any conclusion
regarding the scaling of the mean velocity profiles in turbulent boundary layer flow [16].

Another point to consider when assessing scaling in wall-bounded flows is the distance over
which turbulence evolves before reaching a fully developed flow. In boundary layer flows, this
issue is closely linked to the question of the triggering of turbulence [19]. Both numerical [20] and
experimental [21–24] works on this issue have shown a significant effect on the development of
turbulence downstream of the tripping device and on the strength of the perturbations. In internal
flows, the downstream distance after which the flow becomes fully developed is no less than 120
channel widths or pipe diameters [25,26]. It is necessary to add to these various issues, which affect
the mean velocity profile, the error on the probe position with respect to the wall as well as the
position of the center of the channel or pipe and the thickness of the boundary layer. These errors
can influence the values of the wall-law constants at very high Reynolds number since, in this
situation, a small physical variation is greatly amplified in wall units.

All these issues show that obtaining reliable data at very large Reynolds numbers remains difficult
but most of these difficulties can be settled if Reynolds-number effects are correctly accounted for.
This is what will be attempted in this paper with results obtained for the logarithmic diagnostic
function from highly accurate direct numerical simulations (DNSs) of turbulent plane channel flow.
They are extended to other canonical flows by using a similarity variable which makes the mean
velocity logarithmic law flow-independent. These results are compared with the finite Reynolds
number refinement introduced by Jiménez and Moser [27].

II. NEW SIMILARITY LAW

A. Linear behavior of the log-law diagnostic function

The starting point of this analysis is the observation of the logarithmic diagnostic function �,
defined so that it is an undeniable indicator of the logarithmic law and of the value of the von
Kármán constant κ , i.e.,

� = d ln y+

dU
+ = d ln η

dU
+ . (2)
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FIG. 1. Log-law diagnostic function � (broken lines) and �/(1 − βη) (solid lines) from DNSs of channel

flow. ------, - - ----, Rτ = 3990, ------, - - ----, Rτ = 8016 Yamamoto and Tsuji [28]; ------, - ----, Rτ = 1000,

------, - ----, Rτ = 5186 Lee and Moser [29]; ------, -- --, Rτ = 2003 Hoyas and Jiménez [30]. (a) � (broken
lines) and �/(1 − βη) (solid lines) as a function of η. (b) � (broken lines) and �/(1 − βη) (solid lines) plotted
against y+. Error bars, with an uncertainty of ±1.5%, are located at y+ = δ+/2. Horizontal long dashed line,
� = 0.34. Vertical dashed line, y+ = 300. Bullets denote �(δ+/2). The gray band represents an uncertainty of
±1.5%. The thin dashed lines show Eq. (3).

This function tends to a constant with a value κ in the case of the logarithmic laws of Eqs. (1).
The profiles of � for various channel flow DNSs are plotted with broken lines as a function of η

and of y+ in Figs. 1(a) and 1(b), respectively. The broken lines in Fig. 1(a) clearly highlight the
quasilinear decrease with η, up to η = 0.5, of the diagnostic function with an intercept of 0.4 and
a Reynolds-number-dependent slope, denoted −κβ. The profiles of the ratio �/(1 − βη), plotted
with solid lines in the two figures, show that the relative departure from the constant value of 0.4 is
within ±1.5%. In Fig. 1(a) this ratio exhibits a plateau that extends up to η = 0.5. In Fig. 1(b), where
the same quantity is plotted against y+, the beginning of the plateau is located at approximately
y+ = 300.

Hence, by using the results from available highly reliable DNS data of channel flow at moderately
high Reynolds numbers, it is found, as an accurate first approximation, that the logarithmic
diagnostic function � decreases linearly with a slope −κβ and an intercept κ , i.e.,

� = 1

y+S+ = κ (1 − βη), (3)

with κ = 0.4, S+ being the mean velocity gradient, and β being a Reynolds-number-dependent
variable related to the upper limit of validity of this law, viz.,

β = 1

ηo

(
1 − �(ηo)

κ

)
. (4)
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FIG. 2. Evolution with Kármán number of β obtained from Eq. (4) with ηo = 0.5 for the three canonical

flows. Channel flow: ♦ , Hoyas and Jiménez [30]; , Laadhari [31]; , Schultz and Flack [32]; , Bernardini

et al. [33]; , Lee and Moser [29]; , Yamamoto and Tsuji [28]. Pipe flow: , Zagarola and Smits [8]; , Wu

and Moin [34]; , Hultmark et al. [35]; , El-Khoury et al. [36]; , Chin et al. [37]; , Ahn et al. [38]; ,
Furuichi et al. [39]; , Bauer et al. [40]. Boundary layer: , Schlatter and Örlü [20]; , Örlü and Schlatter [41];

, Sillero et al. [42]; , Bailey et al. [43]; , Vallikivi et al. [44]. , βch = 0.3; - ----, βp f = 0.6; - - ----,
βbl = 0.9. Vertical dashed line: Rτ = 4000.

The validity of the linear law of Eq. (3) is from y+
i = 300 up to ηo = 0.5 (y+

o = δ+/2), the lower
and upper limits, respectively. It is therefore obvious that this linear law can only be observed if
the Kármán number is such that δ+ � 600 and (y+

o − y+
i ) is, at least, of the order of 200. This is

the case for the lowest Kármán number Rτ = 1000 [29] plotted in Fig. 1 where the normalized
diagnostic function is equal to 0.4 ± 0.004, with β = 0.41 and within the range y+ ∈ [300, 500].
It should be noted that the available data do not allow us to verify directly if such linear behavior
applies to the canonical turbulent pipe and boundary layer flows since they are mainly restricted to
experimental results that produce an inherent large scatter in the diagnostic function profiles due to
the mean-velocity gradient evaluation. But, this possibility will be investigated later by using the
mean velocity distributions.

These figures show also that the value of � at η = 0.5, highlighted by bullets, reaches a constant
value of �(ηo) = 0.34 for Rτ � 4000, leading to a constant value of β = βch = 0.3. This value
corresponds to a relative departure of the mean velocity gradient with respect to the value given by
� = κ of (κ/� − 1), up to 17% at the channel quarter-width. This large deviation cannot be the
result of errors on the mean velocity gradient, otherwise it would question the validity of all DNS
results. Also, the value of �(y+

i ), with y+
i = 300, asymptotically approaches the value κ = 0.4

according to the relation

�(y+
i ) = κ

(
1 − βch

y+
i

δ+

)
= 0.4

(
1 − 90

δ+

)

for Rτ � 4000, thereby leading to a vanishing relative departure from 0.4 with increasing Reynolds
number. Hence, if rather a more limited range of distance to the wall is considered, e.g., y+ within
the range [50, 0.12δ+], with a negligible variation of �, then the value of the von Kármán constant
for high Reynolds number is κ = 0.4.

The parameter β, obtained from Eq. (4) at ηo = 0.5, is plotted in Fig. 2 as a function of the
Kármán number for the three canonical flows. It is obvious that, after a Reynolds-number-dependent
regime, it takes constant but different values for each type of flow. The average values obtained
for Rτ � 4000 are βch = 0.3, βp f = 0.6, and βbl = 0.9 for channel, pipe, and boundary layer,
respectively. These differences in β highlight that the geometry affects notably the intensity of
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the mean velocity gradient at η = 0.5 [37,45,46]. More particularly, Klewicki [46] evaluated the
mean-velocity gradient at the quarter-width of internal wall-bounded turbulent flows and at the
half thickness of turbulent boundary layers. He first highlighted the constancy of dU

+
/dη at

η = 0.5, for sufficiently large Reynolds numbers, and then gave the following limiting values for
the three canonical flows: 6.24, 7.15, and 9.86 for channel, pipe, and boundary layer, respectively
(see Table 3 page 188 in Ref. [46]). These values are in good agreement with Eq. (3), which
yields, for Rτ � 4000, mean velocity gradient values of 5.88, 7.14, and 9.1, with relative departure
of 5%, 0.1%, and 8%, for channel, pipe, and boundary layer, respectively (for more details, see
Appendix A).

Within this context, it is worth mentioning that Jiménez and Moser [27] introduced a refinement
of the logarithmic law by using an asymptotic expansion and matching the inner and outer forms
of the mean velocity gradient. The correction introduced by these authors with respect to the
mean velocity gradient given by the classical logarithmic law is quasiconstant for sufficiently large
Reynolds numbers, and flow-dependent, i.e.,

dU
+

dη
−

(
1

χ
+ γ

δ+

)
1

η
= α,

while, for the model proposed here, the departure is in addition a function of the distance to the
wall, viz.,

dU
+

dη
− 1

κη
= β

κ (1 − βη)
.

Then, for sufficiently high Reynolds numbers and by equating the two previous relations, the
weighted mean velocity gradient in channel flow at η = 0.5, with κ = χ = 0.4 and β = 0.3, leads
to α = 0.88 and to

y+ dU +

dy+ = 2.5 + 0.88η,

which compare very well to Eq. (3), i.e.,

y+ dU +

dy+ = 2.5

1 − 0.3η
,

with a relative departure less than 0.7% in the range [y+ = 300, η = 0.5]. It should be noted that
Jiménez and Moser [27] also suggested that the value of α for pipe flow is approximately 2.5, which
is also well predicted by the present results, since the previous equations for the mean velocity
gradient, with κ = 0.4, βp f = 0.6, and η = 0.5, yield α = 2.14. A more detailed comparison is
presented in Appendix B.

The two refinements suggest that the mean velocity profile never achieves a genuine logarithmic
law as claimed by Bernardini et al. [33]. They constitute an alternative to the classical law of the
wall and defect law.

B. Logarithmic mean velocity laws

The integration of Eq. (3) with respect to the wall-normal position, from y+ or η up to y+
o or ηo,

leads to the following logarithmic mean velocity and mean velocity-defect laws

U
+ = 1

κ
ln y+ − 1

κ
ln [κ (1 − βη)] − 1

κ
ln a, (5a)

U
+
c − U

+ = − 1

κ
ln η + 1

κ
ln [κ (1 − βη)] − 1

κ
ln b, (5b)
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with κ = 0.4. The range of validity of these expressions extends from y+
i = 300 to ηo = 0.5, and β

is a flow-dependent parameter but invariant for Rτ � 4000. The additional logarithmic term with
respect to Eqs. (1), ln(1 − βη)/κ , remains relatively weak and varies from 2% at η = 0.2 for
boundary layer flow up to 3.6% at η = 0.5 for pipe flow, and this for a mean velocity magnitude of
U

+ � 25.
This term can be interpreted as an anticipation of the mean velocity distribution in the wake

region. Indeed, the extension of the upper limit ηo to η � 0.2 leads to a mean velocity and velocity-
defect laws more marked by the wake strength, which is stronger in boundary layer flow compared
with pipe and channel flows [48–50]. The constants a and b are a priori dependent on the type of
confinement and, consequently, the logarithmic friction law

U
+
c (Rτ ) = 1

κ
ln Rτ − 1

κ
ln (ab) (6)

will be valid from moderately to infinite Reynolds numbers but depends on the flow geometry
through these coefficients.

The empirical constants a and b may be more accurately determined by making the logarithmic
laws of Eqs. (5) independent of the parameter β using Eq. (3). Interestingly, by replacing 1/[κ (1 −
βη)] by the weighted mean velocity gradient y+S+, the purely logarithmic mean velocity and mean
velocity-defect laws follow

U
+ = 1

κ
ln

y∗

a
, (7a)

U
+
c − U

+ = − 1

κ
ln(bη∗), (7b)

with y∗ = y2S(y)/ν and η∗ = y∗/δ+. The similarity variable y∗ is identical to the similarity
parameter ζ/κ2 of Mellor [51] and to the Y 2 parameter of McDonald [52] introduced when studying
mainstream pressure-gradient effects on the law of the wall. It can be interpreted as the ratio of
wall-normal position y to the local shear length scale ν/US , with US (y) = yS(y) being the local
shear velocity. Hence, in the classical logarithmic laws of Eq. (1), the wall-friction length scale
ν/uτ is used while Eqs. (7) suggest that the length scale changes with the distance to the wall, i.e.,
ν/US = ν/(yS).

It also suggests that the mean shear not only affects turbulent fluctuations but also the mean
velocity, in a complex manner that could match the scenario put forward by Jiménez [53]: the
mean velocity gradient fixes the rate of production of the velocity fluctuations. If it is increased,
the fluctuations are enhanced and create Reynolds shear stress, which in turn modifies the mean
velocity profile. In any case, this refers to the close connection between the mean shear and local
turbulent processes; thereby giving the possibility to address the finite Reynolds number refinement
of the logarithmic law through the dynamical properties of the velocity field and not only by the
existence of two length scales, as quoted by Jiménez and Moser [27] regarding the derivation of
their refinement.

III. ASSESSMENT OF THE NEW LOGARITHMIC LAWS

A. Logarithmic mean velocity law

The main features of the present analysis will be assessed by using experimental data corre-
sponding, as much as possible, to the largest Reynolds number cases with direct measurement of
the wall friction, and available DNS datasets. The choice of only some data used here does not
affect the accuracy of the findings. The same conclusions apply to all the pipe-flow results of Örlü
et al. [47] and Furuichi et al. [39], and to the boundary layer measurements of Bailey et al. [43] with
Rτ � 6000, although it is expected that difficulties will arise because of the evaluation of the mean
velocity gradient for experimental data, which introduce a large scatter.
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FIG. 3. Mean velocity profiles U
+

as a function of y∗. (a) Channel flow: large black symbols show mean
velocity at η = 0.5. (b) Pipe flow: large black symbols show mean velocity at η = 0.5. (c) Boundary layer:

large black symbols show mean velocity at η = 0.2. --- ---, Eq. (7a) with κ = 0.4 and a = 0.36; ,
√

y∗.

Vertical dashed lines: y+ = 300. All other symbols and lines are defined in Table I.

Figure 3 shows that the logarithmic law of Eq. (7a) with κ = 0.4 and a = 0.36 is well verified for
the three canonical flows in the range y+ � 300 (y∗ � 750 and U

+ � 19) and η � ηo, with ηo = 0.5
for internal flows and 0.2 for the boundary layer. This lower value of ηo is due to the presence of
small but systematic velocity undershoot just above the logarithmic law observed for boundary layer
profiles in Fig. 3(c), which persists with increasing Reynolds number. The values κ and a obtained
for the data plotted in Fig. 3 and shown in Table I, are in favor of the flow-independent character
of the logarithmic law of Eq. (7a) as it takes flow-independent values of 0.4 and 0.36 for κ and a,
respectively, and fits quite well all observations.

Hence, based on the available data, the logarithmic law expressed as a function of the inner and
outer normalized wall distance [Eq. (5a)], is found to be different in channel, pipe, and boundary
layer flows, only through the presence of the parameter β, but still unchanged for each flow for
Rτ � 4000 and can be interpreted as a limiting law for infinite Reynolds number. However, these
results are to be taken with some care since the error on the evaluation of the velocity derivative
from experimental profiles can be very large. Therefore, there is no reason to exclude, a priori, a
Reynolds number dependence of β that can decrease to zero very slowly. The verification of this
possibility will for a long time remain beyond reach of current experimental facilities and of high
Reynolds number DNSs.
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TABLE I. Estimated values of the logarithmic law constants for the different datasets used.

Type βb Symbols
Authors of flowa Rτ κ [Eq. (4)] a b and lines

Hoyas and Jiménez [30] DNS-CH 2003 0.4 0.388 0.363 0.33
Yamamoto and Tsuji [28] DNS-CH 8016 0.403 0.31 0.361 0.36
Yamamoto and Tsuji [28] DNS-CH 3986 0.403 0.307 0.355 0.35
Bernardini et al. [33] DNS-CH 4079 0.4 0.368 0.376 0.34 -------
Lee and Moser [29] DNS-CH 5186 0.401 0.32 0.35 0.348
Schultz and Flack [32] Exp. CH 5895 0.395 0.303 0.379 0.367

Bailey et al. [43] Exp. BL 13100 0.402 1.0 (0.78) 0.338 0.107
Bailey et al. [43] Exp. BL 19518 0.405 0.94 (0.77) 0.322 0.103

Ahn et al. [38] DNS-PF 3008 0.4 0.73 0.36 0.2
Örlü et al. [47] Exp. PF 32000 0.396 c 0.39 0.32
Furuichi et al. [39] Exp. PF 14400 0.403 0.56 0.325 0.263

aCH: channel, PF: pipe, BL: boundary layer flows.
bValues obtained with ηo = 0.5, while those in brackets are obtained with ηo = 0.2.
cUnavailable since data are limited to η � 0.22.

B. Logarithmic mean velocity-defect law

In Fig. 4, the mean velocity deficit is plotted as a function of η∗ for the three flows. As expected,
the slope is flow-independent, 1/κ = 2.5, while the coefficient b in Eq. (7b) is different for each
flow. The fitting of the data in the range 300/δ+ � η � ηo with respect to this relation gives the
values of the coefficient bch = 0.36, bp f = 0.25, and bbl = 0.11 for channel, pipe, and boundary
layer flow, respectively. The channel-flow measurements of Schultz and Flack [32], well described
by the fitting coefficients κ = 0.396 ± 0.004 and b = 0.366 ± 0.005, are in good agreement with
the DNS profile at Rτ = 5186 [29]. Note that the value of b = 0.2 (see Table I) obtained for the
DNS defect law profile of Ahn et al. [38] is less than 0.25 since it is at a Kármán number less
than 4000, where low Reynolds number effects are present on b. In the case of the boundary layer
mean velocity-defect profiles of Fig. 4(c), the undershoot observed in Fig. 3(c) appears therefore as
an overshoot, and the departure from the logarithmic law is observed beyond the position η = 0.2
(η∗ ≈ 0.55), highlighted by the large black symbols.

IV. LOGARITHMIC FRICTION LAWS

With the previous results it is now possible to specify the friction law for the most important
two flows in engineering application, namely the pipe flow and the zero-pressure-gradient turbulent
boundary layer. Note that for evaluating the power-loss in internal flows (the mean streamwise
pressure gradient by the mean flow rate) the bulk velocity U b is needed. The classical approach for
obtaining it is from the centerline velocity by assuming a constant value to the Zagarola–Smits [8]
velocity scale ξ = U

+
c − U

+
b (see Schlichting Ref. [54], p. 609). The value of ξ = 4.3, for pipe flow

is obtained from the average value of 4.34 given by Zagarola and Smits (Ref. [55], Fig. 22), 4.28 by
McKeon and Morrison [Ref. [56], Fig. 2(b)], and 4.26 by Furuichi et al. (Ref. [39], Fig. 12).

Then, for the pipe flow with κ = 0.4, a = 0.36, bp f = 0.25, and ξp f = 4.3, the universal law of
friction for a smooth pipe proposed by Schlichting (Ref. [54], page 610) is recovered. First, as a
function of Kármán number [see Schlichting Ref. [54], relation (20.29)],

U
+
b = 2.5 ln Rτ + 1.72,
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FIG. 4. Mean velocity-defect profiles as a function of η∗. (a) Channel flow: dotted line, Eq. (7b) with
κ = 0.4 and b = 0.36; large black symbols, mean velocity deficit at ηo = 0.5. (b) Pipe flow: dashed line,
Eq. (7b) with κ = 0.40 and b = 0.2; dashed-double dotted line, Eq. (7b) with κ = 0.4 and b = 0.25; large
black symbols, mean velocity deficit at ηo = 0.5. (c) Boundary layer: dashed-dotted line, Eq. (7b) with κ = 0.4
and b = 0.11; large black symbols, mean velocity deficit at ηo = 0.2. Vertical dashed lines: y+ = 300. All other
symbols and lines are defined in Table I.

and second, for the Darcy–Weisbach friction factor, λ = 8/U
+
b

2
, as a function of the bulk Reynolds

number, Rb = U bD/ν:

1√
λ

= 2.035 log10(Rb

√
λ) − 0.92.

Note that λ can be explicitly expressed as a function of the bulk Reynolds number by using the
principal branch of the Lambert W0 function (see, e.g., More, Ref. [57])

λ = 8κ2

[
W0

(
κRb

2abp f exp (κξ )

)]−2

� 1.28

[W0(0.4Rb)]2 .

Finally, for the turbulent boundary layer, the friction law defined by the triplet of parameters
κ = 0.4, a = 0.36, bbl = 0.11 in Eq. (6) leads to

U
+
∞ = 2.5 ln Rτ + 8.07.

054605-9



F. LAADHARI

Recently, Heinz (Ref. [58], Fig. A.2d) provides a relation between the momentum thickness
Reynolds number Rθ and the Kármán number, i.e., Rτ = 0.31Rθ , which leads to the skin friction
relation of the Coles–Fernholz type:

Cf = 2

[2.5 ln Rθ + 5.1]2 .

This friction law lies between the commonly used version, utilizing κ = 0.41 and an additive
constant C = 5, and the one proposed by Nagib et al. [59] with κ = 0.384 and C = 4.127.

V. CONCLUSION

The most important result obtained in this study is that, by replacing the wall shear velocity by
the local shear velocity for scaling the wall distance, strong evidence appears for the existence of
a flow-independent logarithmic law for canonical turbulent wall-bounded flows [Eq. (7a)], with a
validity range from y+ = 300 up to η = 0.5 for pipe and channel flows and η = 0.2 for boundary
layer flow. The slope of this purely logarithmic law is the inverse of the von Kármán constant with
unambiguously κ = 0.4 for the three canonical flows.

On the other hand, when the normalized mean velocity is expressed against the classical variables
y+ and η, then it is flow-dependent through the presence of the parameter β in Eq. (5a). This
parameter reflects the interaction of the outer region with the near-wall region; and its constancy
for Rτ � 4000 implies that the influence of the outer length scale is present permanently. The
improvement of the present laws through the term 1 − βη leads to a more precise determination
of the empirical constants over a greater range of wall distance. In addition, the velocity defect law
[Eq. (7b)] is shifted by a flow-dependent constant function of b.

Also, by relating the Zagarola–Smits velocity scale and the momentum-thickness Reynolds
number to the evolution of the mean centerline velocity of Eq. (6), the classical friction laws for
turbulent pipe and zero-pressure-gradient boundary layer flows were obtained with a single von
Kármán constant κ = 0.4.

It should be noted that the present model for the weighted mean velocity gradient compares very
well with the model introduced by Jiménez and Moser [27]. However, unlike the model proposed
in Ref. [27], the present model is directly related to a simple alternative expression for the log-law,
Eq. (7a), function of a local shear-based wall distance. One of its features is that the mean wall
friction velocity appears only on the left-hand side, so that it can be obtained directly by accurate
measurements of the mean streamwise velocity and its wall-normal gradient, relatively far from the
wall, up to η = 0.2.

This suggests an alternative to the classical empirical method for assessing the wall friction in
canonical wall bounded flows and more particularly in the case of zero-pressure-gradient turbulent
boundary layers. More precisely, in this case the wall friction velocity is given by uτ = �yS, so
that the relative departure from the value given by the classical log-law, i.e., κyS, is (1 − κ/�) =
−βblη/(1 − βblη) and varies from −1% at η = 0.01 to −22% at η = 0.2.

ACKNOWLEDGMENTS

I thankfully acknowledge all the colleagues who made their data available to the community or
who provided me with their valuable data. I am very thankful to my colleague Dr. Wouter J. T.
Bos for his encouragement and helpful comments throughout this study. This work was granted
access to the HPC ressources of the FLMSN, “Fédération Lyonnaise de Modélisation et Sciences
Numériques,” partner of EQUIPEX EQUIP@MESO.

054605-10



REFINEMENT OF THE LOGARITHMIC LAW OF THE WALL

TABLE II. Mean velocity gradient dU
+
/dη at η = 0.5.

Flow type Klewicki (Ref. [46]) Present Eq. (3) RD (%)

Channel 6.24 5.88 6
Pipe 7.15 7.14 0.1
Boundary layer 9.86 9.09 8

APPENDIX A: COMPARISON WITH KLEWICKI (REF. [46]) ESTIMATIONS OF MEAN
VELOCITY GRADIENT AND VELOCITY DEFICIT AT η = 0.5

Klewicki [46] has pointed out the differences in the mean-velocity distribution at the quarter-
width of internal wall-bounded turbulent flows and the half-thickness of the turbulent boundary
layer. He gives (see Ref. [46], Table 3, page 188) the values of the mean velocity gradient and
the mean velocity deficit at η = 0.5 for the three canonical flows. These values are well predicted
by the relations obtained here and more particularly for internal flows, bearing in mind that
in the case of boundary layer flow, the present logarithmic laws of Eq. (5) are valid only up
to η = 0.2.

In Tables II and III the values given by this author are compared with those given by the laws
obtained in the present work for the mean velocity gradient and the mean velocity deficit at η = 0.5
with the corresponding relative departure (RD).

APPENDIX B: COMPARISON WITH JIMÉNEZ AND MOSER MODEL (REF. [27], SECTION 4A)

The refinement developed by Jiménez and Moser [27] corresponds to the introduction of two
supplementary terms in the expression of the weighted mean velocity gradient (see relation 4.9 in
Ref. [27]) with respect to the constant value 1/χ of the classical law (i) a high Reynolds-number
vanishing term and (ii) a Reynolds-number-dependent linear term, i.e.,

1

�
= y+ dU

+

dy+ = 1

χ
+ γ

δ+ + αη, (B1)

within the range of validity from y+ = 350 up to η = 0.45, as found by these authors.
This model can be recovered from the present linear diagnostic function of Eq. (3), when

expressed with a first-order expansion around η∅, i.e.,

1

�
= 1

κ (1 − βη)
≈ 1 − 2βη∅

κ (1 − βη∅)2 + β

κ (1 − βη∅)2 η, (B2)

with η∅ within this range.

TABLE III. Mean velocity deficit U
+
c − U

+
at η = 0.5.

Flow type Klewicki (Ref. [46]) Present Eq. (5b) RD (%)

Channel 1.75 1.59 9.6
Pipe 2.03 2.02 0.5
Boundary layer 2.66 3.47 26.4
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TABLE IV. Values of parameters in Eqs. (B1) and (B2) from different DNS of turbulent channel flow.

Authors Rτ βa χ γ
[

1
χ

+ γ

δ+
] [ 1−2βη∅

κ (1−βη∅ )2

]
b α

[
β

κ (1−βη∅ )2

]
b

Jiménez and Moserc 2003 0.388 0.402 150 2.56 2.47 1 1.2
Bernardini et al.d 4079 0.37 0.41 180 2.48 2.47 1.15 1.13
Lee and Mosere 5186 0.32 2.586 (2.49)f 2.48 0.2 (0.94)f 0.95

Present prediction �4000 0.3 2.48 0.88

aβ from Eq. (4).
bobtained with κ = 0.4 and η∅ = 0.26.
cReferences [27,30].
dReference [33].
eReference [29].
fValues in brackets are obtained by fitting the data of Ref. [29] in the range y+ = 350, η = 0.45.

Then, equating terms of the same order on right-hand sides of Eqs. (B1) and (B2) leads to the
following relations:

1

χ
+ γ

δ+ = 1 − 2βη∅
κ (1 − βη∅)2 , (B3a)

α = β

κ (1 − βη∅)2 . (B3b)

Note that another relation exists between α and β and is obtained by equating the two expressions
of � provided by Eqs. (B1) and (3) at the position ηo, whence follows, with δ+ → +∞ and κ = χ ,

α = β

κ (1 − βηo)
,

which, with Eq. (B3b), yields

η∅ = 1 − √
1 − βηo

β
,

and to the value η∅ = 0.26 (with β = 0.3 and ηo = 0.5 for channel flow), approximately the middle
of the range where � is linear.

The left- and right-hand sides of Eqs. (B3) are compared in Table IV for three channel flow DNS
results and the agreement between them is very good for the results of Jiménez and Moser [27] and
Bernardini et al. [33]. The value α = 0.2 of Lee and Moser [29] in Table IV is very low compared
with the others results. It seems to have been obtained with a data fitting in the range y+ = 350
to η = 0.16 [y+ = 830 in their Fig. 3(c)], smaller than the range used by Jiménez and Moser [27]
and Bernardini et al. [33]. The fitting of their data at Rτ = 5186 in the range [y+ = 350, η = 0.45]
yields the set of values 1/χ + γ /δ+ = 2.49 and α = 0.94 (enclosed in parentheses in Table IV) that
compare very well with the present predictions of 2.48 and 0.95, respectively.
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